
�

�

�

�

�

�

�

�

J. Math. Kyoto Univ. (JMKYAZ)
45-1 (2005), 57–97

One dimensional wave equations in domain with
quasiperiodically moving boundaries and

quasiperiodic dynamical systems

Dedicated to Professor Mitsuru Ikawa on his 60th birthday

By

Masaru Yamaguchi

Abstract

We shall deal with IBVP for a linear one-dimensional wave equation
in domain with time-quasiperiodically oscillating boundaries. We shall
show that for any given initial data and almost all boundary data, every
solution is quasiperiodic in t, provided that the basic frequencies of time-
quasiperiodic data of IBVP satisfy the number-theoretic Diophantine
conditions. In order to solve this problem, we shall show the reduction
theorem of one-dimensional quasiperiodic dynamical systems. To prove
the reduction theorem, we shall define upper and lower rotation numbers
of dynamical systems and apply the rapidly iteration method to the
related dynamical system defined by the boundary functions. Also we
shall construct a class of time-quasiperiodic boundary data of IBVP and
the basic frequencies such that IBVP has quasiperiodic solutions that
are the superposition of the sequentially time-unbounded forward and
backward waves.

1. Introduction

Let D be a noncylindrical domain in two dimensional (x, t)-plane with
time-quasiperiodic boundaries

a1(t) < x < a2(t), t ∈ R1.

Here the given functions ai(t), i = 1, 2, are quasiperiodic functions. For the
definition of quasiperiodic functions, see Section 2.

Consider IBVP for a linear nonhomogeneous wave equation:

∂2
t u(x, t) − ∂2

xu(x, t) = h(x, t), (x, t) ∈ D,(1.1)

u(a1(t), t) = r1(t), u(a2(t), t) = r2(t), t ∈ R1,(1.2)
u(x, 0) = φ(x), ∂tu(x, 0) = ψ(x), x ∈ [a1(0), a2(0)].(1.3)
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58 Masaru Yamaguchi

Here ri(t), i = 1, 2, and h(x, t) are quasiperiodic functions in t. We assume
that

(1.4) |a′i(t)| < 1 for all t ∈ R1

in order to deal with non-shock waves.
This IBVP describes some physical phenomena like the motions of the

string with time-quasiperiodically oscillating ends ([Ya1], [Ya3]), the problem
of one-dimensional optical resonator with a quasiperiodically moving wall ([L-
P], [P-L-V]) and so on.

In this paper we shall investigate the behavior of the solutions of IBVP
(1.1)–(1.3). For example, let us consider the motions of a vibrating string with
quasiperiodically moving end points. Since the ends of the string quasiperiod-
ically vibrate and the outer force works to the string in a time-quasiperiodic
way, in general we may expect that

(C) every solution of IBVP (1.1)–(1.3) is quasiperiodic in t.

However, J. Cooper [C] showed that even in a simpler IBVP,

(1.5)

∂2
t u(x, t) − ∂2

xu(x, t) = 0, (x, t) ∈ {0 < x < a(t), t ∈ R1},
u(0, t) = u(a(t), t) = 0, t ∈ R1,

u(x, 0) = φ(x), ∂tu(x, 0) = ψ(x), x ∈ [0, a(0)],

where a(t) is periodic but not quasiperiodic, the energy of each solution is un-
bounded in t, and as a matter of course, the solution is not quasiperiodic under
some conditions on a(t). Also in [Ya4], nonhomogeneous IBVP is considered in
a cylindrical domain

∂2
t u(x, t) − ∂2

xu(x, t) = h(x, t), (x, t) ∈ (0, π) ×R1,

u(0, t) = u(π, t) = 0, t ∈ R1,

u(x, 0) = φ(x), ∂tu(x, 0) = ψ(x), x ∈ [0, π],

and it is shown that there exists a family of time-quasiperiodic functions h(x, t)
for which all the solutions of IBVP are unbounded in t. Such elements h have
the property that the Diophantine order of its basic frequencies is large and the
differentiability with respect to t and x is small. On the other hand, we can
deduce from [Ya7] that in the fixed ends case every solution of the above IBVP
is time-quasiperiodic if the differentiability of h is larger than the Diophantine
order of the basic frequencies of h. Thus the Diophantine condition is necessary
in order that the solutions of IBVP (1.1)–(1.3) are time-quasiperiodic.

The aim of this paper is to show that our above conjecture (C) is true
for perturbed type boundary functions ai and almost all given functions ri, h.
Namely, we shall give general conditions under which every solution of IBVP
(1.1)–(1.3) is quasiperiodic in t. We shall clarify that IBVP (1.1)–(1.3) has the
structure of one-dimensional quasiperiodic dynamical systems.

In the previous papers [Ya1], [Ya2], [Ya3] we were concerned with homo-
geneous wave equations and periodic boundary functions i.e., h(x, t) vanishes
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identically, and ai(t) and ri(t) (i = 1, 2) are periodic. The quasiperiodic or
periodic properties of the solutions of IBVP (1.1)–(1.3) with h(x, t) ≡ 0 were
studied in detail. It was made clear that a composed function

(1.6) A = A−1
1 ◦A2, Ai = (I + ai) ◦ (I − ai)−1, i = 1, 2,

is an one-dimensional periodic dynamical system, where I is the identity, f−1

means the inverse of f and f ◦ g means the composition of f and g, and that
A and its rotation number are the essential notions to describe periodic and
quasiperiodic property of the solutions of IBVP and BVP with periodically
oscillating boundaries. To show the results we applied the reduction theorem
by Herman-Yoccoz ([H], [Yoc]) to A under the Diophantine condition on the
rotation number of A. Our results on the quasiperiodic properties of the so-
lutions of BVP (1.5) are more exact expression of qualitative property of the
solutions of Dittrich-Duclos-Gonzalez [D-D-G]. [D-D-G] also studied the time-
unboundedness of the solutions in the energy norm.

In general, even if ai(t) are not necessarily periodic, the mapping A is
well-defined for ai(t) satisfying a1(t) < a2(t) and |a′i(t)| < 1. It also has
the following geometrical definition. In the space-time plane ((x, t)-plane) we
consider characteristic curves (polygons) reflected by two curves C1 : x = a1(t)
and C2 : x = a2(t). Let X = (0, t0) be any point on the t-axis. Consider a
straight line W through X whose gradient is +1. Let P1 be the intersection
point of the line W and the curve C2. Let L be a reflected characteristics
through P1. Let reflected points of L by C2 and C1 be Pi and Qi (i = 1, 2, . . .)
(resp.) in order as the ray goes to the direction of the plus infinity of t starting
at P1. We denote the intersection point of the line Q1P2 and t-axis by (0, t1).
Then A is defined by a mapping A : t0 ∈ R1 → t1 ∈ R1.

In the above works [Ya1], [Ya2], [Ya3], both ai(t), i = 1, 2, are periodic
and the ratio of the periods is a rational number. In this case A− I is clearly
a periodic function. It is well-known [H] that for periodic A − I the rotation
number of A,

lim
n→∞

(An − I)(x)
n

,

exists for each x ∈ R1 and is independent of x, where An means the n-th iter-
ate of A. In [Ya1] and [Ya3] the case where both ai(t), i = 1, 2, are 1-periodic
and ri(t) are αi-periodic was considered. It was shown that if the periods of
ai(t), ri(t) and the rotation number ω of A satisfy some Diophantine approxi-
mation inequality from number theory, then every solution is quasiperiodic in
t with basic periods (ω, α1, α2, 1). In [Ya2] it was shown that the properties of
A and the reflected characteristics determine the periodicity of the solutions of
IBVP (1.1)–(1.3) with a1(t) = r1(t) = r2(t) = h(x, t) ≡ 0. From the point of
view of the spectrum, Cooper and Koch [C-K] studied in detail the spectrum
of evolution operator U of BVP (1.5) defined in H1

0 (0, 1) × L2(0, 1) by

U : (φ, ψ) → (u(·, T ), ∂tu(·, T )),
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where T is the period of a(t), and showed that the spectrum is the unit circle
in the complex plane if the rotation number is irrational.

All these results are essentially due to the periodicity of A − I that as-
sures the existence of the rotation number ([Ya1], [Ya2], [Ya3], [C-K], [D-D-G])
and the periodic reflected characteristics ([Ya2]). However, for example, if the
periods of a1(t) and a2(t) have an irrational ratio, A − I is not periodic but
quasiperiodic with two basic periods. Then the situation seems to be much
more complicated. In this paper, we shall be interested in such cases. We
shall treat IBVP (1.1)–(1.3) under more general condition that all ai(t) and
ri(t), i = 1, 2, are quasiperiodic functions. In this case naturally A − I is
quasiperiodic.

In order to treat the case that A − I is quasiperiodic, we shall gener-
ally consider one dimensional quasiperiodic dynamical system (DS) defined by
monotone increasing mapping f(x) = (I + g)(x) with quasiperiodic term g(x).
It is not known that for the quasiperiodic DS the rotation number exists for all
x. As a matter of fact, in this paper we shall see that the existence of the rota-
tion number is not necessary to show the reduction theorem for quasiperiodic
DS. Instead, we shall introduce a more weak notion upper and lower rotation
number of f at every point x (see Section 2)

lim sup
n→∞

(An − I)(x)
n

, lim inf
n→∞

(An − I)(x)
n

.

Clearly this upper (lower) rotation number is a generalization of the rotation
number. The upper (lower) rotation numbers have several important properties
like as semi-invariant property under conjugation that are used to show the
reduction theorem for quasiperiodic DS (Section 3 and Section 8).

Roughly speaking, the following holds: Assume that an upper (lower)
rotation number ω of f and the basic frequencies of the quasiperiodic term g
satisfy the Diophantine condition. Then the nearly affine mapping f written
in the form x + ω + q(x) is conjugate to an affine mapping x + ω, provided
that q is small enough. As a consequence, it will be shown that under the same
Diophantine condition the rotation number of f exists and coinsides with the
upper (lower) rotation number (Corollary of the Reduction Theorem in Section
3). The main tool we shall use here to show the above reduction theorem is the
rapidly convergent iteration method based on the Newton iteration method [S-
M], instead of the Herman-Yoccoz theory [H], [Yoc] used in case of the periodic
A−I in [Ya1], [Ya3]. Then we shall show that under the Diophantine conditions
on an upper (lower) rotation number of A and the basic periods of ai, ri, h, every
solution of IBVP (1.1)–(1.3) is quasiperiodic in t and x. In this case the rotation
number of A exists and coincides with the upper (lower) rotation number of A.
The reduction problem is also treated by [P-L-V], [L-P] in the quite different
point of view.

Note that our results are obtained for ai(t) with the small perturbation
forms, different from those of [Ya1]–[Ya3].

All above works [Ya1]–[Ya3] dealt with homogeneous string equations. In
order to treat a nonhomogeneous equation (1.1) with h(x, t) �≡ 0, we shall in-
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troduce the useful domain transformation of the noncylindrical domain D̄ to a
cylindrical domain [0, ω/2] × R1, where ω is the upper (lower) rotation num-
ber of A. It is remarkable that different from other domain transformations
which change the noncylindrical domain to a cylindrical domain, our transfor-
mation preserves the d’Alembert operator and does not produce any lower order
differential operators. This will be constructed by using the conjugate func-
tion of the Reduction Theorem. In case where a1(t) vanishes identically and
a2(t) is periodic, in [Ya-Yos] we have already constructed such d’Alembertian-
preserving transformation of a time-periodic one-sided noncylindrical domain
onto the cylindrical domain. And using this transformation, we treated IBVP
for a nonhomogeneous string equation ([Ya-Yos]). In [Ya5] the above domain
transformation is generalized to a time-periodic both sided noncylindrical do-
main, and IBVP for a 3-dimensional radially symmetric wave equation is stud-
ied. Also [Ya6] treated the periodic solutions of nonlinear string equation with
periodic nonlinear term, using the domain transformation.

This paper is organized as follows. In Section 2 we shall introduce the
upper and lower rotation number of quasiperiodic DS and investigate its prop-
erties, and in Section 3 we shall show the reduction theorem that plays an
essential role to show our results on IBVP and also the existence of the rota-
tion numbers of quasiperiodic DS. In Section 4 we shall state our main theorem.
The theorem shall be proved in Sections 5 and 6. First IBVP for the homoge-
neous wave equation will be dealt with in Section 5, and second the boundary
value problem (BVP) will be treated in Section 6. In Sections 5 and 6 the
similar methods in [Ya1], [Ya3], [Ya-Yos], [Ya5] will be used. In Section 7 we
shall deal with quasiperiodic solution of (1.1)–(1.3) that are represented by the
superposition of the sequentially time-unbounded waves. We shall construct
ri(t) for which every solution has such property. In Section 8 we shall prove
the Reduction Theorem stated in Section 3.

2. Upper and lower rotation numbers of one-dimensional DS with
quasiperiodic terms

In this section we shall introduce upper (lower) rotation number and in-
vestigate several properties. They play an essential role to prove the reduction
theorem and seem to be interesting from the point of view of quasiperiodic DS.

First we recall the definition of quasiperiodic functions. A function g(t), t ∈
R1, is called quasiperiodic with basic frequencies β = (β1, . . . , βm) ∈ Rm(briefly
2π/β-q.p.) if there exists a continuous function ĝ(θ), θ = (θ1, . . . , θm) ∈ Rm,
that is 2π-periodic in each θi such that g(t) = ĝ(βt) holds. ĝ(θ) is called a
corresponding function of g and 2π/β = (2π/β1, . . . , 2π/βm) is called the basic
periods of g. Without loss of generality, basic frequencies β1, . . . , βm of any
q.p. functions are always assumed to be rationally independent.

We consider a monotone increasing mapping of R1 to R1

(2.1) f(x) = x+ g(x),

where g(x) is a 2π/β-q.p. function. We denote the set of such functions f by
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Dβ .

Remark 1. Clearly Dβ is a group with respect to the operation of the
composition of functions.

H. Poincaré first introduced a rotation number for any monotone increasing
mapping f with continuous periodic g:

ρ = ρ(f) = lim
n→∞

(fn − I)(x)
n

,

where fn is the n-th composed iterate of f . In this periodic DS case it is well-
known [H] that the above limit ρ always exists, is independent of x and has a
property of the conjugacy invariant i.e., ρ(φ◦f ◦φ−1) = ρ(f) for every periodic
and continuous DS φ.

Now we introduce an upper and lower rotation number that are general-
izations of the rotation number. These numbers will play an important role
in showing the reduction theorem. In case of periodic g the rotation num-
ber played the same role ([Yoc]). We define an upper (lower) rotation number
ρ̄(f)(x) (ρ(f)(x)) of f ∈ Dβ at x ∈ R1 as follows:

ρ̄(f)(x) = lim sup
n→∞

(fn − I)(x)
n

,

ρ(f)(x) = lim inf
n→∞

(fn − I)(x)
n

.

(2.2)

The following is clear. If ρ̄(f)(x) = ρ(f)(x) holds, then the rotation number
ρ(f)(x) exists and vice versa, and ρ̄(f)(x) = ρ(f)(x) = ρ(f)(x) holds. Note
that

(2.3) fn(x) = x+ g(x) + g ◦ f(x) + · · · + g ◦ fn−1(x),

where F ◦ G means the composition of F and G, i.e., F ◦ G(x) = F (G(x)).
Since g(x) is q.p. hence bounded in R1, it follows from (2.3) that the above
superior (inferior) limit always exists for each x ∈ R1. It is clear that

inf
x∈R1

g(x) ≤ ρ(f)(x) ≤ ρ̄(f)(x) ≤ sup
x∈R1

g(x).

It is natural to ask whether for any given q.p. g the above rotation number
exists and is independent of x. As will be seen from Corollary of Reduction
Theorem in Section 3, the limit exists and is independent of x for every mapping
(2.1) with small perturbation term under suitable number-theoretic condition
(the Diophantine condition) on an upper (lower) rotation number of f and the
basic periods of g.

From now on we shall deal with only upper rotation numbers. The corre-
sponding results hold for the lower rotation numbers.

We have a generalization of the conjugacy invariant of the rotation number.
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Proposition 2.1. Consider a mapping f ∈ Dβ. For any point x ∈ R1

and any H ∈ Dβ there exists a point y ∈ R1 such that

(2.4) ρ̄(H−1 ◦ f ◦H)(y) = ρ̄(f)(x).

Especially, if the mapping f has a rotation number ρ(f) independent of x, then

(2.5) ρ(H−1 ◦ f ◦H) = ρ(f)

holds.

Proof. We set fH = H−1 ◦ f ◦H and H−1 = I+ h̃, where h̃(x) is (2π/β)-
q.p.. For a given x we set y = H−1(x). Then since fn

H(y) = H−1 ◦ fn ◦H(y)
holds, we have

(fn
H − I)(y)

n
=
H−1 ◦ fn(x) −H−1(x)

n

=
(I + h̃) ◦ fn(x) − (I + h̃)(x)

n

=
fn(x) − x

n
+
h̃ ◦ fn(x) − h̃(x)

n
.

Since h̃ is a bounded function, the second term tends to 0 as n tends to ∞.
Hence (2.4) holds. (2.5) is shown from the above identity and the relation
y = H−1(x). In fact, since by the assumption the right hand side of (2.5) is
constant for all x, the left hand side is constant for any fixed H ∈ Dβ and
y = H−1(x). Since H is a surjection of R1 to R1, ρ̄(H−1 ◦f ◦H)(y) is constant
for all y.

Remark 2. For any real number ω there exist fω ∈ Dβ that has the
rotation number ω.

In fact, we denote φ−1◦Rω◦φ by fφ,ω for any φ ∈ Dβ , where Rω(x) = x+ω.
Clearly Rω has the rotation number ω. Hence by Proposition 2.1 fφ,ω has the
rotation number ω.

For brevity, for any x0 ∈ R1 denote ρ̄(f)(x0) by ω = ω(x0). Then we
rewrite f in the following form

(2.6) f(x) = x+ ω + q(x).

The following property will be effectively used to show the reduction theorem.

Proposition 2.2. For any mapping f ∈ Dβ of the form (2.6)

inf
x∈R1

| q(x)| = 0

holds i.e., for any positive ε there exists a point z = zε ∈ R1 such that |q(z)| ≤ ε
holds.
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Proof. When q(x) takes both positive and negative values, then by the
continuity of q(x) there exists z such that q(z) = 0 so that the conclusion is
clear. Hence we suppose q(x) > 0 for all x ∈ R1. Assume that the conclusion
does not hold. Then there exists a positive constant c such that q(x) ≥ c for
all x ∈ R1. Since from (2.3)

fn(x) − x

n
=
q(x) + q ◦ f(x) + · · · + q ◦ fn−1(x)

n
+ ω

holds and the upper rotation number of f at x0 is equal to ω, we have

lim sup
n→∞

q(x0) + q ◦ f(x0) + · · · + q ◦ fn−1(x0)
n

= 0.

On the other hand, from the above assumption, we have

lim sup
n→∞

q(x0) + q ◦ f(x0) + · · · + q ◦ fn−1(x0)
n

≥ c > 0.

This leads to a contradiction. In case of negative q we can show contradiction
in the similar way.

3. Reduction problem of nearly affine mapping with quasiperiodic
perturbation

In this section we shall formulate the Reduction Theorem of a quasiperiodic
DS with small perturbation.

Consider a mapping Q ∈ Dβ of the form (2.1):

Q(x) = x+ g(x).

Here g(x) is a 2π/β-q.p. function. We shall assume that the corresponding
function ĝ(θ) is a real analytic function defined in a strip |	θi| ≤ r, i = 1, . . . ,m.
Here 	z is the imaginery part of z ∈ C1, where C1 is one dimendional complex
plane. Let a0 be a point in R1 and denote the upper rotation number ρ̄(Q)(a0)
by ω = ω(a0). Then we rewrite Q as a nearly affine mapping from {x ∈ C1 :
|	x| ≤ r̃} to C1 in the following form:

(3.1) x1 = Q(x) = x+ ω + q(x).

Clearly q(x) is a 2π/β-q.p. function whose corresponding function q̂(θ) is a real
analytic function defined in a strip |	θi| ≤ r, i = 1, . . . ,m.

Our reduction problem is the following: By a suitable transformation of
the variable x to ξ

(3.2) x = H(ξ) = ξ + h(ξ),

where h is a 2π/β-q.p. function and ĥ(θ) is a real analytic function, reduce
(3.1) to an affine mapping

(3.3) ξ1 = H−1 ◦Q ◦H(ξ) = R(ξ) = ξ + ω.
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We introduce notation and definitions. Let Cm be the m-dimensional com-
plex Euclidean space. For θ = (θ1, . . . , θm) ∈ Cm we set |	θ| = max1≤j≤m |	θi|.
Let Πr and Π̂r be sets {θ ∈ Cm : |	θ| ≤ r} and {θ ∈ Cm : |	θ| < r}
(resp.). Let f(θ) be 2π-periodic in each θi and real analytic in Πr. Set
∂θf(θ) = (∂θ1f(θ), . . . , ∂θm

f(θ)). We define the norms

|f |r = max
θ∈Πr

|f(θ)|, |∂θf |r = max
1≤j≤m

max
θ∈Πr

|∂θj
f(θ)|.

For β = (β1, · · · , βm) set || β ||= max1≤i≤m |βi|. Let F (x) and G(x) be any
2π/β-q.p. functions whose corresponding functions F̂ (θ) and Ĝ(θ) are real
analytic in Πr. Then clearly one has

|F̂ Ĝ|r ≤ |F̂ |r |Ĝ|r, |(dF/dx)̂ |r ≤ m‖β‖ |∂θF̂ |r.
Now we shall formulate the reduction theorem. Consider a mapping Q of

the form (3.1).

We assume the following number-theoretic condition.

(C) There exists a point a0 ∈ R1 such that ω = ω(a0) = ρ̄(Q)(a0) and
β = (β1, . . . , βm) satisfy the following Diophantine condition: There exists a
positive constant C0 depending on β such that

|(k, β) + πl/ω| > C0

|k|m+1

holds for all k ∈ Zm \ {0} and all l ∈ Z.

Reduction Theorem. Consider a mapping (3.1) with ω = ρ̄(Q)(a0),
where q(x) is a 2π/β-q.p. function with q̂(θ) real analytic in Π̂r and continu-
ous in Πr. Assume that (C) holds. Then there exists a positive constant M0

dependent on C0, r such that if |q̂|r ≤ M0 holds, then the mapping (3.1) is
reduced to the affine mapping (3.3) by a transformation (3.2) with a 2π/β-q.p.
term h(ξ) with ĥ(θ) real analytic in Π̂r/2.

The proof of this theorem is done in Section 7.

As a corollary of the reduction theorem we have the existence of a rotation
number of a mapping Q independent of x.

Corollary. Consider a mapping (3.1) with ω = ρ̄(Q)(a0). Under the
same assumptions of the reduction theorem the mapping (3.1) has a rotation
number independent of x ∈ R1. In other words, ρ(Q) = ρ̄(Q)(x) = ω(x) holds
for any x ∈ R1.

Proof of Corollary. By the above theorem the mapping Q is reduced to
the affine mapping by a transformation H ∈ Dβ :

H−1 ◦Q ◦H(ξ) = ξ + ω.
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Since the rotation number of ξ+ω is ω, from Proposition 2.1 we have ρ(Q) = ω
independent of x.

4. Quasiperiodic solutions of IBVP (1.1)–(1.3)

We shall deal with IBVP (1.1)–(1.3) with the following assumptions on the
boundary functions ai(t), the boundary values ri(t), i = 1, 2, the nonhomoge-
neous term h(x, t) and the initial values φ(x), ψ(x).

(C1) ai(t), i = 1, 2, are η-q.p. functions, where η ∈ Rm. âi(θ) are real analytic,
and satisfy 0 < infθ∈Rm â2(θ) − supθ∈Rm â1(θ)) and |â′i(θ)| < 1 for θ ∈ Rm.
ai(t) satisfy a′i(0) = a′′i (0) = 0, i = 1, 2, a1(0) = 0.

(C2) ri(t), i = 1, 2, are αi-q.p. functions, where αi ∈ Rmi (resp.). r̂i(θ) are
C∞-function satisfying

∫
T mi

r̂i(θ)dθ = 0. ri(t) satisfy ri(0) = r′i(0) = r′′i (0) =
0, i = 1, 2.

(C3) h(x, t) is a µ-q.p. function, where µ belongs to Rp. ĥ(x, θ) is of C∞

in D, and the support of h is contained in the cylinder W = (supt∈R1 a1(t),
inft∈R1 a2(t)) ×R1.

Remark 3. (1) a′i(0) = a′′i (0) = 0, i = 1, 2, a1(0) = 0 in (C1) and
ri(0) = r′i(0) = r′′i (0) = 0, i = 1, 2 in (C2) are compatibility conditions with
the latter part of (C6) below.
(2) Note that

sup
t∈R1

a1(t) = sup
θ∈Rm

â1(θ), inf
t∈R1

a2(t) = inf
θ∈Rm

â2(θ)

hold. For, the flow {ηt : t ∈ R1} is dense in Tm from the Weyl Theorem.
(3) For the same reason as (2) it follows immediately that

|a′i(t)| ≤ sup |a′i(t)| = sup |â′i(θ)| < 1

for all t ∈ R1.

By |a′i(t)| < 1 for t ∈ R1 in (C1) the composed functions Ai = (I+ai)◦(I−
ai)−1, i = 1, 2, are defined. We define A(x) by A−1

1 ◦A2(x). Then A(x) belongs
to Dβ . Let ω be an upper rotation number of A. Then A(x) is represented by

(4.1) A(x) = x+ ω + q(x).

Here q(x) is an η-q.p. function. As is shown in the same way as in Lemma
5.2, the corresponding function q̂(θ) of q(x) is real analytic in {θ ∈ Cm; |	θi| ≤
r0, i = 1, . . . ,m} for some positive constant r0.

Remark 4. Without loss of generality we can assume that the basic
periods of a1(t) and a2(t) are the same. Otherwise, we take the maximal
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rationally independent set from the basic frequencies of a1(t) and a2(t) as the
common basic frequencies of a1(t) and a2(t). We shall show that the qualitative
property of the solutions is determined by A.

The following proposition is important. It assures the existence of infinitely
many boundary functions a1(t), a2(t) that satisfy both the analytical condition
(C1) and the number-theoretic conditions (C4) and (C5).

Proposition 4.1. Let ω be any positive number. Then for any small ε
there exist infinitely many real analytic a1(t) and a2(t) satisfying inft a2(t) >
supt a1(t) such that A has the rotation number ω and q(x) satisfies |q̂|r < ε.
The set of such functions a1(t), a2(t) has a continuum cardinal number.

Proof. Let Rω(x) be a constant rotation x+ ω. Let us take

A = φ−1 ◦Rω ◦ φ
for any real analytic φ = I + ψ ∈ Dβ . Then clealy A is an element of Dβ . It
follows from Proposition 2.1 that the rotation number of A is equal to ω. Let
us write A in the form (4.1)

A(x) = x+ ω + q(x),

where q(x) = ψ(x)−ψ ◦A(x). Then we take ψ so small that q(x) ∈ Dβ satisfies
|q̂|r < ε.

We shall show the existence of ai(t), i = 1, 2, satisfying A(x) = A−1
1 ◦A2(x)

with Ai = (I+ai)◦(I−ai)−1, i = 1, 2. Simple calculations show that ai(t), i =
1, 2, satisfy

q(x) = 2a2 ◦ (I − a2)−1(x)

− 2a1 ◦ (I + a1)−1 ◦ (I + 2a2 ◦ (I − a2)−1)(x) − ω.

We take ψ sufficiently small so that q may satisfy |q′(x)| < ε. We take a1(t)
suitably small, say |a1(t)| + |a′1(t)| < ε/2. By setting t = (I − a2)−1(x), we
obtain a functional equation with respect to a2(t)

a2(t) =
1
2

(
ω + q ◦ (I − a2)(t)(4.2)

+ 2a1 ◦ (I + a1) ◦ (I + a2)(t)
)
.

We define a function G(z, t) by

G(z, t) = z − 1
2

(
ω + q(t− z) + 2a1 ◦ (I + a1)(t+ z)

)
.

Then since we have

Gz(z, t) = 1 − 1
2

(
− q′(t− z) + 2a′1 ◦ (I + a1)(t+ z)(1 + a′1(t+ z))

)
,
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it follows that

|Gz(z, t)| ≥ 1 − 1
2

(
ε+ ε

(
1 +

ε

2

))
>

1
2

for small ε. Hence it follows from the implicit function theorem that there
exists a solution a2(t) of the equation (4.2). Taking ε suitably small as 6ε < ω,
we have, from (4.2),

a2(t) > ω/2 − ε

2
>
ε

2
> a1(t)

for all t ∈ R1. Since a1(t) and q(t) are β-q.p., a2(t) also is β-q.p. Thus the
proposition is proved.

Remark 5. If h(x, t) identically vanishes, then the condition in (C1)
0 < inft a2(t) − supt a1(t) is not necessary.

For simplicity we set

β =
2π
η

=
(

2π
η1
, . . . ,

2π
ηm

)
,

λi =
2π
αi

=
(

2π
α1

i

, . . . ,
2π
αmi

i

)
,

γ =
2π
µ

=
(

2π
µ1
, . . . ,

2π
µp

)
,

where αi = (α1
i , . . . , α

mi
i ) and µ = (µ1, . . . , µp).

The following Diophantine condition from number theory is essential in
order that each solution is q.p. in t.

(C4)β, λ1, λ2, γ and ω satisfy the following Diophantine condition: There
exists a positive constant C depending on β, λ1, λ2, γ and ω such that

|(k1, λ1) + (k2, λ2) + (k, β) + (j, γ) + πl/ω|
>

C

(|k1| + |k2| + |k| + |j|)m+p+m1+m2+1

holds for all (k1, k2, k, j) ∈ Zm1+m2+m+p \ {0} and all l ∈ Z.

Remark 6. It is well-known in number theory that almost all vector

(λ1, λ2, β, γ, ω) ∈ Rm1+m2+m+p+1

satisfy (C4). “Almost all” means the Lebesgue measure sense. We can con-
struct such vectors as solutions of algebraic equation of orderm1+m2+m+p+1.
For the construction, see Appendix in [Ya4].

The following Diophantine condition is a special case of (C4), but is im-
portant to apply the reduction theorem in Section 3 to the composed function
A.
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(C5) β and ω satisfy the following Diophantine condition: There exists a
positive constant C0 depending on β such that

|(k, β) + πl/ω| > C0

|k|m+1

holds for all k ∈ Zm \ {0} and all l ∈ Z.

Remark 7. Applying the method in [Ya4] to IBVP (1.1)-(1.3), we can
show that for suitable ai(t), ri(t) and h(x, t) not satisfying (C4) or (C5), the
solutions grow up as some time sequence {tj} tends to infinity.

The initial values are assumed to have the following differentiability and
the usual compatibility condition.

(C6) The initial data φ and ψ are of C∞-class in (a1(0), a2(0)), and of C2-
class and C1-class (resp.) in [a1(0), a2(0)]. φ, φ′′ and ψ vanish at x = a1(0)
and x = a2(0).

Our theorem is as follows.

Theorem 4.1. Assume that (C1)–(C6) hold. There exists a positive
constant ε dependent on C0, β and r0 such that if sup|�θ|≤r0

|q̂(θ)| < ε holds,
IBVP (1.1)–(1.3) has a unique C2-solution u that is (α1, α2, η, ω)-q.p. in t
and x. u is represented by the sum of functions u0, u1, u2 and u3 satisfying the
following properties:

1. Solutions of BVP (1.1)–(1.2)
(a) u0 satisfies

∂2
t u− ∂2

xu = 0, (x, t) ∈ R2,

u(a1(t), t) = u(a2(t), t) = 0, t ∈ R1.

(b) u1 satisfies

∂2
t u− ∂2

xu = 0, (x, t) ∈ R2,

u(a1(t), t) = r1(t), u(a2(t), t) = 0, t ∈ R1.

(c) u2 satisfies

∂2
t u− ∂2

xu = 0, (x, t) ∈ R2,

u(a1(t), t) = 0, u(a2(t), t) = r2(t), t ∈ R1.

(d) u3 satisfies

∂2
t u− ∂2

xu = h̃(x, t), (x, t) ∈ R2,

u(a1(t), t) = u(a2(t), t) = 0, t ∈ R1.

Here h̃(x, t) is an extension of h(x, t) defined in D to R2 seen in
Section 6, Remark 9.
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2. Regularity
(a) u0 is of C2-class in (x, t) ∈ R2 and of C∞-class in (x, t) ∈ R2\S̄,

where S̄ = {(x, t) ∈ R2 ; x+ t = A1 ◦ An(µ), −x+ t = An(µ), µ =
0, a2(0), n ∈ Z}.

(b) ui, i = 1, 2, 3, is of C∞-class in (x, t) ∈ R2.
3. Quasiperiodicity

(a) u0 is (ω, η)-q.p. in both t and x.
(b) ui, i = 1, 2, is (αi, η)-q.p.(resp.) in both t and x.
(c) u3 is (µ, η)-q.p.(resp.) in t.

The proof of this theorem will be given in Sections 5 and 6.

5. IBVP for homogeneous wave equation

In this section we shall be concerned with a homogeneous IBVP with
quasiperiodic boundary condition. We shall construct u0, u1 and u2 in Theorem
4.1. Our strategy will be along the line of [Ya3].

Consider IBVP for a homogeneous wave equation with q.p. boundary
conditions

∂2
t u(x, t) − ∂2

xu(x, t) = 0, (x, t) ∈ D,(5.1)

u(a1(t), t) = r1(t), u(a2(t), t) = r2(t), t ∈ R1,(5.2)
u(x, 0) = φ(x), ∂tu(x, 0) = ψ(x), x ∈ [a1(0), a2(0)].(5.3)

Noting that a1(t) < a2(t) and |a′i(t)| < 1, i = 1, 2, in (C1) hold, we obtain the
d’Alembert representation formula of solutions of the one-dimensional homo-
geneous wave equation (5.1)

(5.4) u(x, t) = f(−x+ t) + g(x+ t).

We shall show that f and g are determined so that (5.4) may satisfy the bound-
ary condition (5.2) and the initial condition (5.3). First, from (5.2) we have

(5.5) f(−ai(t) + t) + g(ai(t) + t) = ri(t), i = 1, 2.

From (5.4) and (5.5) we obtain

u(x, t) = f(−x+ t) − f ◦A−1
1 (x+ t) + r1 ◦ (I + a1)−1(x+ t)

and

(5.6) f ◦A(τ ) − f(τ ) = r1 ◦ (I + a1)−1 ◦A2(τ ) − r2 ◦ (I − a2)−1(τ ).

Here we have set τ = (I − a2)−1(t) to obtain (5.6).

1. Construction of u1(x, t) and u2(x, t)

The following lemmas shall be used to solve the functional equation (5.6)
with respect to f for the given functions ai, i = 1, 2.
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Lemma 5.1. Let R(x) be a q.p. function with basic frequencies Ξ =
(Ξ1, . . . ,Ξν) whose corresponding function R̂(θ) is of C∞ and satisfies∫

T ν R̂(θ)dθ = 0. Let γ be a constant in R1\{0}. Assume that Ξ ∈ Rν and
γ satisfy the following Diophantine condition: There exist positive constants
C = C(Ξ, γ) and τ ≥ 1 such that the following inequality

|(k,Ξ) − (π/γ)l| > C

|k|ν+τ

holds for all k ∈ Zν \ {0} and all l ∈ Z. Here (·, ·) is the usual inner product
in Rν and |k| = |k1| + · · · + |kν | for k = (k1, . . . , kν) ∈ Zν . Then a functional
equation

G(x+ γ) −G(x) = R(x)

has a q.p. solution G(x) with basic frequencies Ξ. The corresponding function
Ĝ(θ) is of C∞. G(x) is the only q.p. solution with basic frequencies Ξ which
satisfies

∫
T ν Ĝ(θ)dθ = 0.

This lemma and its proof are seen in [Ya1], Lemma 2.9.

Lemma 5.2. Let a(t) and b(t) be 2π/α-q.p. and 2π/β-q.p. (resp.)
whose corresponding functions are of C∞, where α1, . . . , αm, β1, . . . , βn are ra-
tionally independent. Then a composed function a ◦ (I + b)(t) is (2π/α, 2π/β)-
q.p. Its corresponding function F (θ1, . . . , θm,Θ1, . . . ,Θn) is of the form

â(θ1 + α1b̂(Θ), . . . , θm + αmb̂(Θ))

of C∞. Moreover it holds∫
T m

F (θ,Θ)dθ =
∫

T m

â(θ)dθ.

Proof. Proof is similarly done by the argument in [Ya1, Lemma 2.8].
Clearly F (θ,Θ) = â(θ1 + α1b̂(Θ), . . . , θm + αmb̂(Θ))) is 2π-periodic in each
variables. We have

F (αt, βt) = â(α(t+ b̂(βt))) = a ◦ (I + b)(t).

So F is a corresponding function of a◦ (I+ b)(t). Denote the Fourier expansion
of â(θ) by

∑
k∈Zm rke

i(k,θ). Then we calculate∫
T m

F (θ,Θ)dθ =
∫

T m

â(θ1 + α1b̂(Θ), . . . , θ1 + α1b̂(Θ))dθ

=
∫

T m

∑
k∈Zm

rke
i(k,θ+αb̂(Θ))dθ

=
∑

k

rke
i(k,α)b̂(Θ)

∫
T m

ei(k,θ)dθ

= (2π)mr0 =
∫

T m

â(θ)dθ.
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This proves the Lemma.

Since by (C1) and (C4) A satisfies the assumptions of the Reduction Theo-
rem, it follows that there exists a real analytic function H(ξ) = ξ+h(ξ), where
h(ξ) is an η-q.p. function, such that

(R) H−1 ◦A ◦H(ξ) = ξ + ω.

Consider the following functional equations

gi(ξ + ω) − gi(ξ) = r̃i(ξ), i = 1, 2,

where

r̃1(ξ) = r1 ◦ (I + a1)−1 ◦A2 ◦H(ξ),

r̃2(ξ) = −r2 ◦ (I − a2)−1 ◦H(ξ).

Since ai and ri are αi-q.p. and η-q.p. (resp.), it follows from Lemma 5.2 that
r̃i(ξ), i = 1, 2, are (αi, η)-q.p. whose corresponding functions are of C∞ class
and have the 0-mean value. By this fact and the Diophantine inequality in
(C3), it follows from Lemma 5.1 that each equation has a unique (αi, η)-q.p.
solution gi whose corresponding function is of C∞. It is simple to see that
composed functions fi(τ ) = gi ◦H−1(τ ), i = 1, 2, are of C∞ in R1 and are the
solutions of Eq.s (resp.)

fi ◦A(τ ) − fi(τ ) = r̃i ◦H−1(τ ), i = 1, 2.

We set

(5.7) u1(x, t) = f1(−x+ t) − f1 ◦A−1
1 (x+ t) + r1 ◦ (I + a1)−1(x+ t)

and

(5.8) u2(x, t) = f2(−x+ t) − f2 ◦A−1
1 (x+ t).

Then clearly u1 and u2 are of C∞ in (x, t) ∈ R2 and satisfy equation

∂2
t u− ∂2

xu = 0, (x, t) ∈ R2.

Also it follows that the boundary conditions

u1(a1(t), t) = r1(t), u1(a2(t), t) = 0,
u2(a1(t), t) = 0, u2(a2(t), t) = r2(t)

hold. Since gi(ξ) and h(ξ) are (αi, η)-q.p. and η-q.p. (resp.), it follows from
Lemma 5.2 that fi is (αi, η)-q.p. Hence ui(x, t) is (αi, η)-q.p. (resp.) both in x
and t. Thus the assertions 1.(b), 1.(c), 2.(b) and 3.(b) of Theorem are proved.

2. Construction of u0(x, t)
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We shall construct an ω-periodic function g0(ξ) so that the function u0

defined by

u0(x, t) = f0(−x+ t) − f0 ◦A−1
1 (x+ t), f0 = g0 ◦H−1

may satisfy the assertions 1.(a), 2.(a) and 3.(a) of Theorem.

Let γ1 and γ2 be equal to A−1
1 (a2(0)) and −a2(0) (resp.). For φ0 and ψ0

satisfying (C5) define φ̂0(x) and ψ̂0(x) by

(5.9) φ̂0(x) =

{
φ0 ◦A1(x) (0 ≤ x ≤ γ1),
−φ0(−x) (γ2 ≤ x < 0)

and

(5.10) ψ̂0(x) =

{
ψ0 ◦A1(x)A′

1(x) (0 ≤ x ≤ γ1),
−ψ0(−x) (γ2 ≤ x < 0).

Define f̂0(x) by

(5.11) f̂0(x) = −(1/2)
(
φ̂0(x) +

∫ x

0

ψ̂0(η)dη
)
.

Then we define ĝ0 by

ĝ0(ξ) = f̂0 ◦H(ξ).

ĝ0(ξ) is defined in [ξ2, ξ1], where ξi, i = 1, 2, is the solution of equation H(ξi) =
γi.

Lemma 5.3. Let φ0 and ψ0 satisfy (C6). Let ĝ0 be the function defined
as above. Then there exists an ω-periodic function g0(ξ) such that

(a) g0(ξ) = ĝ0(ξ) for ξ ∈ [ξ2, ξ1],
(b) g0(ξ) is of C2 class in R1,
(c) g0(ξ) is of C∞ class in R1 \W , where W is a set {ξi +nω; i = 0, 1, n ∈

Z} and ξ0 = H−1(0).

To show this lemma we prepare some lemmas.

Lemma 5.3.1. φ̂0 and ψ̂0 are of C2 and C1 class (resp.) in [γ2, γ1] and
of C∞ class in (γ2, 0) ∪ (0, γ1).

Proof. It is clear from (C1) and (C5) that φ̂0 and ψ̂0 are of C∞ class in
(γ2, 0)∪ (0, γ1), and of C2 and C1 class (resp.) in [γ2, 0)∪ (0, γ1]. We show that
φ̂0 is of C2 class in [γ2, γ1]. We have

lim
x→−0

φ̂′′0(x) = lim
x→−0

(−φ′′0(−x)) = −φ′′0(0) = 0.
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We have, for x > 0,

φ̂′′0(x) = φ′′0 ◦A1(x)(A′
1(x))

2 + φ′0 ◦A1(x)A′′
1(x).

Since one has

A′
1(x) =

1 + a′1 ◦ (I − a1)−1(x)
1 − a′1 ◦ (I − a1)−1(x)

,

A′′
1(x) =

2a′′1 ◦ (I − a1)−1(x)
(1 − a′1 ◦ (I − a1)−1(x))3

,

it follows that

A1(0) = A′′
1(0) = 0, A′

1(0) = 1.

Hence we obtain

lim
x→+0

φ̂′′0(x) = 0.

Thus we obtain

lim
x→+0

φ̂′′0(x) = lim
x→−0

φ̂′′0(x) = 0.

Similar calculations show

lim
x→+0

ψ̂′
0(x) = lim

x→−0
ψ̂′

0(x) = ψ′
0(0).

This means the C2 and C1-differentiability of φ̂0 and ψ̂0 (resp.) in [γ2, γ1].

Lemma 5.3.2. f̂0(x) is of C∞ class in (γ2, 0)∪ (0, γ1), and of C2 class
in [γ2, γ1]. f̂0(γ2) = f̂0(γ1) holds.

Proof. The former part of this lemma is the direct conclusion of Lemma
5.3.1. One has

f̂0(γ1) = −1
2

(
φ0(a2(0)) +

∫ γ1

0

ψ0 ◦A1(η)A′
1(η))dη

)

= −1
2

∫ a2(0)

0

ψ0(ξ)dξ (ξ = A1(η)).

The right hand side is equal to f̂0(γ2). This implies the assertion.

Lemma 5.3.3. ĝ0(x) is of C∞ class in (ξ2, ξ0)∪(ξ0, ξ1), and of C2 class
in [ξ2, ξ1]. ĝ0(ξ2) = ĝ0(ξ1) holds.

This lemma is clear from the previous lemma.

Lemma 5.3.4. ξ1 − ξ2 = ω holds.
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Proof. We have

H(ξ2 + ω) = A ◦H(ξ2) = A−1
1 (a2(0)) = H(ξ1).

This implies ξ1 = ξ2 + ω.

Proof of Lemma 5.3. From Lemma 5.3.3 and Lemma 5.3.4 it follows that
ĝ0 is extended to an ω-periodic continuous function g0 in R1 which is of C∞ in
R1 \W . We show that g0 is of C2 in R1. To this end we show

lim
ξ→ξ1−0

ĝ0
′(ξ) = lim

ξ→ξ2+0
ĝ0

′(ξ),(5.12)

lim
ξ→ξ1−0

ĝ0
′′(ξ) = lim

ξ→ξ2+0
ĝ0

′′(ξ).(5.13)

First we have

ĝ0
′(ξi) = f̂0

′
(γi)H ′(ξi), i = 1, 2.

Differentiating H(ξ + ω) = A ◦ H(ξ) and setting ξ = ξ2, we have H ′(ξ1) =
A′(γ2)H ′(ξ2). Using A(γ2) = γ1, A

′
2(γ2) = 1, we have A′(γ2) = 1/A′

1(γ1),
whence

(5.14) H ′(ξ1) =
H ′(ξ2)
A′

1(γ1)
.

From these and

f̂ ′0(γ1) = −1
2
φ′0(a2(0))A′

1(γ1), f̂ ′0(γ2) = −1
2
φ′0(a2(0))

we obtain (5.12).
Next we show (5.13). We have

(5.15) ĝ′′0 (ξi) = f̂ ′′0 (γi)H ′(ξi)2 + f̂ ′0(γi)H ′′(ξi), i = 1, 2.

we have

φ̂′′0(γ1) = φ′′0(a2(0))(A′
1(γ1))2 + φ′0(a2(0))A′′

1(γ1)
= φ′0(a2(0))A′′

1(γ1),

ψ̂′
0(γ1) = ψ′

0(a2(0))A′
1(γ1)2 + ψ0(a2(0))A′′

1(γ1)

= ψ′
0(a2(0))A′

1(γ1)2.

Here we have used (C6). Thus we obtain

f̂ ′′0 (γ1) = −1
2
(
φ′0(a2(0))A′′

1(γ1) + ψ′
0(a2(0))A′

1(γ1)2
)
.

We also obtain

f̂ ′′0 (γ2) = −1
2
ψ′

0(a2(0)).
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Hence we have

(5.16) f̂ ′′0 (γ1) = f̂ ′0(γ2)A′′
1(γ1) + f̂ ′′0 (γ2)A′

1(γ1)2.

Differentiating H(ξ + ω) = A ◦H(ξ) twice and setting ξ = ξ2, we have

H ′′(ξ1) = A′′(γ2)H ′(ξ2)2 +A′(γ2)H ′′(ξ2).

Simple computations give

A′′(γ2) =
A′′

2(γ2)
A′

1(γ1)
− A′′

1(γ1)
A′

1(γ1)3
.

From (C1) we have a′′2 ◦ (I − a2)−1(γ2) = 0, which leads to

A′′
2(γ2) = 2a′′2 ◦ (I − a2)−1(γ2)/(1 − a′2 ◦ (I − a2)−1(γ2))3 = 0.

This implies

A′′(γ2) = − A′′
1(γ1)

A′
1(γ1)3

.

Hence we have

(5.17) H ′′(ξ1) = − A′′
1(γ1)

A′
1(γ1)3

H ′(ξ2)2 +
1

A′
1(γ1)

H ′′(ξ2).

From (5.15) and (5.16) we have

ĝ′′0 (ξ1) =
(
f̂ ′0(γ2)A′′

1(γ1) + f̂ ′′0 (γ2)A′
1(γ1)2

)
H ′(ξ1)2 + f̂ ′0(γ2)A′

1(γ1)H ′′(ξ1)

= f̂ ′′0 (γ2)A′
1(γ1)2H ′(ξ1)2 + f̂ ′0(γ2)

(
A′′

1(γ1)H ′(ξ1)2 +A′
1(γ1)H ′′(ξ1)

)
.

(5.14) and (5.17) give

A′′
1(γ1)H ′(ξ1)2 +A′

1(γ1)H ′′(ξ1) =
A′′

1(γ1)H ′(ξ2)2

A′
1(γ1)2

+A′
1(γ1)

[
− A′′

1(γ1)
A′

1(γ1)3
H ′(ξ2)2 +

1
A′

1(γ1)
H ′′(ξ2)

]
.

This is equal to H ′′(ξ2). Therefore we obtain

ĝ′′0 (ξ1) = ĝ′′0 (ξ2).

Hence Lemma 5.3 is proved.

Lemma 5.4. Let φ0 and ψ0 satisfy (C5). Let g0(ξ) be the ω-periodic
function in Lemma 5.3. Let f0(x) be defined by f0(x) = g0 ◦H−1(x). Then

(5.18) u0(x, t) = f0(−x+ t) − f0 ◦A−1
1 (x+ t)
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is the solution of IBVP

∂2
t u− ∂2

xu = 0, (x, t) ∈ (a1(t), a2(t)) ×R1,(5.19)

u(a1(t), t) = u(a2(t), t) = 0, t ∈ R1,(5.20)
u(x, 0) = φ0(x), ∂tu(x, 0) = ψ0(x), x ∈ [a1(0), a2(0)],(5.21)

and of C2 in R2 and of C∞ in R2 \ S̄, where S̄ = {(x, t) ∈ R2;x + t =
A1 ◦ An(µ),−x + t = An(µ), µ = −a2(0), a1(0), n ∈ Z}. u0 is (ω, η)-q.p. both
in t and x.

Proof. Since by Lemma 5.3 g0 is of C2 in R1 and of C∞ in R1 \W , f0(x)
also is of C2 and of C∞ in R1 \V , where V = HW = {An(−a2(0)), An(a1(0));
n ∈ Z}. Thus u0(x, t) is of C2 in R2 and of C∞ in R2 \ S̄. Clearly u0 is the
solution of ∂2

t u− ∂2
xu = 0 in R2. We simply have

u0(a1(t), t) = f0(−a1(t) + t) − f0 ◦A−1
1 (a1(t) + t) = 0.

By the change of variables τ = H−1 ◦ (I − a2)(t) we also have

u0(a2(t), t) = f0(−a2(t) + t) − f0 ◦A−1
1 (a2(t) + t)

= g0(τ ) − g0 ◦H−1 ◦A ◦H(τ )
= g0(τ ) − g0(τ + ω) = 0.

Therefore u0 satisfies the boundary conditions. Next noting that

f0(x) = f̂0(x), x ∈ [−a2(0), A−1
1 (a2(0))],

we have, in [a1(0), a2(0)] = [0, a2(0)]

u0(x, 0) = f̂0(−x) − f̂0 ◦A−1
1 (x).

Since −x ∈ [γ2, 0] and A−1
1 (x) ∈ [0, γ1], from (5.9), (5.10) and (5.11) we have

f̂0(−x) = −1
2

(
−φ0(x) +

∫ −x

0

−ψ0(−η)dη
)

=
1
2

(
φ0(x) −

∫ x

0

ψ0(ξ)dξ
)
,

f̂0 ◦A−1
1 (x) = −1

2

(
φ̂0 ◦A−1

1 (x) +
∫ A−1

1 (x)

0

ψ̂0(η)dη

)

= −1
2

(
φ0(x) +

∫ A−1
1 (x)

0

ψ0 ◦A1(η)A′
1(η)dη

)

= −1
2

(
φ0(x) +

∫ x

0

ψ0(ξ)dξ
)
.

This gives u0(x, 0) = φ0(x). Differentiating (5.18) with respect to t and setting
t = 0, we have

∂tu0(x, 0) = f̂ ′0(−x) − f̂ ′0 ◦A−1
1 (x)(A−1

1 )′(x).
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Since one has

f̂ ′0(−x) = −1
2

(φ′0(x) − ψ0(x)),

f̂ ′0 ◦A−1
1 (x) = −1

2
(φ′0(x) + ψ0(x))A′

1 ◦A−1
1 (x).

Therefore we obtain ∂tu0(x, 0) = ψ0(x).

Lemma 5.5. Let ui, i = 1, 2, be the functions defined by (5.7) and (5.8).
Let ui(x, 0) and ∂tui(x, 0), i = 1, 2, be denoted by φi(x) and ψi(x), i = 1, 2
(resp.). Then the restrictions of φi and ψi, i = 1, 2 to [a1(0), a2(0)] satisfy
(C6).

Proof. Since ui(x, t), i = 1, 2 are of C∞ in R2, φi(x) and ψi(x), i = 1, 2 are
of C∞ in R1. So we have only to show that all φi(x), φ′′i (x) and ψi(x), i = 1, 2
vanish at x = a1(0), a2(0). We simply have

φ1(ai(0)) = u1(ai(t), t)|t=0 = δi1r1(0) = 0, i = 1, 2,

where δij is the Kronecker delta. We also have

ψ1(ai(0)) = ∂tu1(ai(0), 0) = ∂tu1(ai(t), t)|t=0.

By differentiation of u1(ai(t), t) = δi1r1(t) with respect to t, we have

∂xu1(ai(t), t)a′i(t) + ∂tu1(ai(t), t) = δi1r
′
1(t).

Setting t = 0 and using a′i(0) = r′1(0) = 0 from (C1) and (C2), we obtain
ψ1(ai(0)) = 0, i = 1, 2. Next we differentiate u1(ai(t), t) = δi1r1(t) twice. Then
we have

∂2
xu1(ai(t), t)a′i(t)

2 + 2∂t∂xu1(ai(t), t)a′i(t)

+ ∂xu1(ai(t), t)a′′i (t) + ∂2
t u1(ai(t), t) = δi1r

′′
1 (t).

Setting t = 0 and using a′i(0) = a′′i (0) = r′′1 (0) = 0 and ∂2
t u1(x, t) = ∂2

xu1(x, t),
we have ∂2

xu1(ai(0), 0) = 0, which implies φ′′1(ai(0)) = 0. Similarly we can
prove φ2(ai(0)) = φ′′2(ai(0)) = 0.

6. BVP for nonhomogeneous wave equation

We shall consider BVP (1.1)–(1.2) with ri(t) ≡ 0 for the nonhomogeneous
equation. We shall show the existence of q.p. solutions of BVP. In order to
deal with this problem, we shall introduce a fine domain transformation of the
noncylindrical domain D̄ onto the cylindrical domain E = [0, ω/2] × R1. This
transformation preserves the d’Alembert operator and does not produce any
lower order differential operators.
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We consider BVP for a nonhomogeneous wave equation with the zero
Dirichlet boundary condition

∂2
t u(x, t) − ∂2

xu(x, t) = h(x, t), (x, t) ∈ D,(1.1)

u(a1(t), t) = 0, u(a2(t), t) = 0, t ∈ R1.(1.2′)

Now let H be the function in (R) in section 5. Let X be a mapping of R2 to
R2 defined by

y =
1
2
(
H−1 ◦A−1

1 (−x+ t) −H−1(x+ t)
)
,(6.1)

s =
1
2
(
H−1 ◦A−1

1 (−x+ t) +H−1(x+ t)
)
.(6.2)

Such transformations were considered in [Ya5], [Ya-Yo] in case where A(t) is a
periodic DS. Without any difficulty, we are able to extend the transformations
for periodic DS to one for quasiperiodic DS A(t) due to the Reduction Theorem
in Section 3. Similarly to Propositions 4.1 and 4.2 in [Ya5], we are able to show
the following Proposition 6.1. We assume

(C1′) ai(t), i = 1, 2, are η-q.p. functions, where η belongs to Rm. âi(θ) are
of C2 in Tm. ai(t) satisfy 0 < inft∈R1 a2(t) − supt∈R1 a1(t)) and |a′i(t)| < 1 for
t ∈ R1.

(R1) A is reducible in the following sense: there exists a conjugate function
H ∈ Dβ , where Ĥ and (H−1)̂ are of C2 in Tm, such that

(R) H−1 ◦A ◦H(x) = x+ ω.

Remark 8. Assume (C1) and (C5). Then it follows from the Reduction
Theorem that there exists a positive constant ε such that for q with |q|r < ε
A is reducible by a real analytic conjugate function H. Hence (C1′) and (R1)
are satisfied.

Proposition 6.1. Assume (C1′) and (R1). The mapping X defined by
(6.1)–(6.2) is the bijection of D̄ to Ē, and maps the boundaries x = a1(t) and
x = a2(t) onto the boundaries y = 0 and y = ω/2 (resp.) bijectively. Moreover
the d’Alembert operator is preserved by X as follows. Let u(x, t) be of C2 in
(x, t) ∈ R2 and v(y, s) be defined by u(X−1(y, s)). Then the following identity
holds

(6.3) (∂2
t − ∂2

x)u(x, t) = K(y, s)(∂2
s − ∂2

y)v(y, s),

where K(y, s) is defined by

(H−1)′ ◦H(y + s)(H−1)′ ◦H(−y + s)(A−1
1 )′ ◦A1 ◦H(y + s).

K(y, s) is η-q.p. in s and its corresponding function K̂(y, θ) is real analytic.
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We apply X to BVP (1.1)–(1.2′). Then we obtain BVP in the cylindrical
domain E:

∂2
s v(y, s) − ∂2

y v(y, s) = g(y, s), (y, s) ∈ E,(6.4)

v(0, s) = v(ω/2, s) = 0, s ∈ R1.(6.5)

Here v(y, s) = u ◦ X−1(y, s) and g(y, s) = (1/K(y, s))h ◦ X−1(y, s). Clearly
g(y, s) is (η, µ)-q.p. and its corresponding function is analytic in Πr. We have
the following proposition.

(C4′)β, γ and ω satisfy the following Diophantine condition: There exists a
positive constant C depending on β, γ and ω such that

|(k, β) + (j, γ) + πl/ω| > C

(|k| + |j|)m+p+1

holds for all (k, j) ∈ Zm+p \ {0} and all l ∈ Z.

Proposition 6.2. Assume (C1), (C3) and (C4′). Then BVP (6.4)–
(6.5) has a (η, µ)-q.p. solution v(y, s). The corresponding function v̂(y, θ) of v
is of C∞ in (0, ω/2) × Tm+p.

Proof. The proof is done in the similar way to [Ya5, Proposition 5.1].
Since ĝ(y, θ) is of C∞ with respect to (y, θ) ∈ W = (0, ω/2) × Tm+p, ĝ(y, θ) is
expanded into the Fourier series:

(6.6) ĝ(y, θ) =
∑

j∈Z+, k∈Zm+p

gjk ejk,

where ejk = exp i(k, θ) sin(2πj/ω)y. We shall expand v into the Fourier series
formally:

(6.7) v̂(y, θ) =
∑

j∈Z+, k∈Zm+p

vjk ejk.

Substitute (6.6) and (6.7) into (6.4) and compare the Fourier coefficients. Then
we have

(6.8) vik =
gjk

(2πj/ω)2 − (k, ζ)2
,

where ζ = (β, γ) ∈ Rm+p. By (C4′) we have

(6.9) |vjk| ≤ Const. |gjk| |k|m+p.

Since ĝ(y, θ) is of C∞ with respect to (y, θ), the Fourier coefficients gik satisfy

(6.10) |gjk| ≤ Const.
Cd

(1 + |k| + j)d
,
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where

Cd = sup
(y,θ)∈W, |α|+i≤d

|∂i
y ∂

α
θ ĝ(y, θ)|

and Const. is a positive constant independent of g and d. From (6.9) and (6.10)
we obtain

|vjk| ≤ Const. Cd
|k|m+p

(1 + |k| + j)d

≤ Const.
Cd

(1 + |k| + j)d−(m+p)
.

Since d is taken arbitrarily large, this means that the Fourier series (6.7) con-
verges and v̂ is of C∞ in W .

It follows from Proposition 6.2 that u3(x, t) = v ◦ X(x, t) is a (η, µ)-q.p.
solution of BVP (1.1)–(1.2′) that is of C∞ in D.

Lemma 6.1. Let u3(x, 0) and ∂tu3(x, 0) be denoted by φ3(x) and ψ3(x)
(resp.). Then φ3 and ψ3 satisfy (C6).

Proof. Clearly φ3 and ψ3 are of C∞ in R1. It follows from the proof
of Proposition 6.2 that v(y, s), ∂2

yv(y, s) and ∂sv(y, s), ∂2
sv(y, s) vanish at the

boundaries y = 0 and y = ω/2. Simple calculation shows

∂tu3(x, t) = ∂yv(y, s)∂ty(x, t) + ∂sv(y, s)∂ts(x, t),

∂2
xu3(x, t) = ∂2

yv(y, s)(∂xy(x, t))2 + 2∂y∂sv(y, s)∂xy(x, t)∂xs(x, t)

+ ∂2
sv(y, s)(∂xs(x, t))2

+ ∂yv(y, s)∂2
xy(x, t) + ∂sv(y, s)∂2

xs(x, t).

By y(x, t)|x=a1(t) = 0 and a′1(0) = 0 we have ∂ty(x, 0)|x=a1(0) = 0, whence

ψ3(x)|x=a1(0) = ∂tu3(x, 0)|x=a1(0) = 0.

Also since ∂xs(x, t) = −∂ty(x, t) and ∂2
t y(x, t) = ∂2

xy(x, t) hold, we have

∂xs(x, 0)|x=a1(0) = −∂ty(x, 0)|x=a1(0) = 0,

∂2
xy(x, 0)|x=a1(0) = ∂2

t y(x, 0)|x=a1(0) = 0.

Hence we obtain

∂2
xφ3(x)|x=a1(0) = ∂2

xu3(x, 0)|x=a1(0) = 0.

In case where x = a2(0) we are able to show (C6) in the same way. Thus the
lemma is proved.

Thus we have obtained the following proposition.
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Proposition 6.3. Assume (C1), (C3) and (C4′). Then BVP (1.1)-
(1.2′) has a (η, µ)-q.p. solution u3(x, t) of C∞ in D. Moreover φ3(x) = u3(x, 0)
and ψ3(x) = ∂tu3(x, 0) satisfy (C6).

Remark 9. From the proof of the above proposition the solution is
extended to R1

x × R1
t if we extend h(x, t) to R1

x ×R1
t as h̃(x, t) = g ◦ Φ(x, t).

We shall complete the proof of Theorem. Let φ0 and ψ0 be defined by

φ0 = φ− (φ1 + φ2 + φ3), ψ0 = ψ − (ψ1 + ψ2 + ψ3),

where φ, ψ are the initial values in (1.3) satisfying (C6), and φi, ψi, i = 1, 2 are
defined in Lemma 5.5: φi(x) = ui(x, 0), ψi(x) = ∂tui(x, 0). Then since φi and
ψi, i = 1, 2 and φ3 and ψ3 satisfy (C6) from Lemma 5.5 and Proposition 6.3
(resp.). Then φ0 and ψ0 also satisfy (C6). Therefore it follows from Lemma 5.4
that u0 defined by (5.18) is the (ω, η)-q.p. solution of IBVP (5.19)–(5.21) and
satisfies the regularity conditions 2.(a) of Theorem. Clearly u = u0+u1+u2+u3

is the unique solution of IBVP (1.1)–(1.3). Thus we have proved the theorem.

7. Quasiperiodic solutions by the superposition of unbounded waves

As we have seen in the previous sections, the solutions of IBVP (1.1)–
(1.3) are represented as the superposition of the forward waves and the back-
ward waves that are almost periodic in t. The almost-periodicity of solutions
is shown, provided that the Diopantine condition and the differentiability of
ai, ri, h are supposed. In this section we shall construct ri so that every al-
most periodic solution of IBVP (1.1)–(1.3) is the superposition of the forward
wave and the backward wave that are sequentially time-unbounded. The order
of the growth rate of the waves depends on the differentiability of ri and the
order of the Diophantine index. As we stated in Section 1, in [Ya4] for the
fixed end case i.e., the case where a1(t) = ri(t) = 0, i = 1, 2, and a2(t) is equal
to a constant, we have already constructed h(x, t) so that every solution of
IBVP (1.1)–(1.3) may be time-unbounded. Hence in this section we shall treat
the case where h(x, t) identically vanishes. By the similar number-theoretic
arguments to [Ya4], we shall take appropriate basic frequencies, and then by
use of the basic frequencies we shall construct ri(t) as lacunary Fourier series
for which every solution of BVP (1.1)–(1.3) is the superposition of sequentially
time-unbounded waves. In this section we shall assume that ai(t), i = 1, 2, are
periodic functions with the same period 1.

Consider IBVP for a linear homogeneous wave equation:

∂2
t u(x, t) − ∂2

xu(x, t) = 0, (x, t) ∈ D,(7.1)

u(a1(t), t) = r1(t), u(a2(t), t) = r2(t), t ∈ R1,(7.2)
u(x, 0) = φ(x), ∂tu(x, 0) = ψ(x), x ∈ [a1(0), a2(0)].(7.3)
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Here ai(t), i = 1, 2, are C∞ periodic functions satisfying (1.4), and ri(t), i =
1, 2, are q.p. with basic frequencies λ = (λ1, . . . , λm) given later. For simplicity
we take the periods of ai(t) as 1. The initial values φ, ψ satisfy (C6) in Section
4.

First we shall change IBVP (7.1)–(7.3) to IBVP that gives boudary values
at fixed x in the same way in Section 6.

Consider the composed function A(t) in (1.6). Since ai(t) are periodic,
it follows from (1.4) that A is a periodic dynamical system in D(T 1), where
D(T 1) is the set of all one-dimensional continuous and 1-periodic dynamical
systems. Poincaré showed (see [Yoc]) that the rotation number of any one-
dimensional continuous periodic dynamical system always and uniquely exist
and is independent of t . Let the rotation number of A be ω. It is shown ([Ya1])
that ω is positive. Assume the following condition on ω:

(AH) ω satisfies the Diophantine condition: There exist positive constants c
and δ such that the following Diopahantine inequality holds

|qω − p| ≥ c

qδ

for any p ∈ N, q ∈ N .

It is well-known that the set of ω that satisfy (AH) for δ > 1 is of full
measure in R1

+.

By (AH) we are able to apply the Herman-Yoccoz Theorem to A(t) (see
[Ya3]). Then we obtain

H−1 ◦A ◦H(ξ) = ξ + ω

for some H ∈ D(T 1). Then by the same argument as that of Section 6, using
the domain transformation X of R2 onto R2 defined by

y =
1
2
(
H−1 ◦A−1

1 (−x+ t) −H−1(x+ t)
)
,(6.1)

s =
1
2
(
H−1 ◦A−1

1 (−x+ t) +H−1(x+ t)
)
,(6.2)

we transform D onto K = (0, ω/2) × R1. Also by this transformation IBVP
(7.1)–(7.3) becomes

∂2
t v(y, s) − ∂2

xv(y, s) = 0, (y, s) ∈ K,(7.4)

v(0, s) = ρ1(s), v(ω/2, s) = ρ2(s), s ∈ R1,(7.5)
v(y, 0) = φ1(y), ∂tv(y, 0) = ψ1(y), y ∈ (0, ω/2),(7.6)

where v(y, s) = u ◦ X−1(y, s), ρi(s) are q.p. functions with basic frequencies
(1, λ) whose corresponding function ρ̂i(θ) have the same smoothness as r̂i in
Tm+1, and φ1, ψ1 are C∞ in (0, ω/2) and C2 in [0, ω/2] and satisfy suitable
compatibility conditions.

In order to show our assertion we shall need some number-theoretic argu-
ments. We shall prepare some lemmas.
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Lemma 7.1. Let a be any natural number. Then there exist countably
many a-dimensional real vectors ζ = (ζ1, . . . , ζa) ; ζi > 0, i = 1, . . . , a, with the
following property : There exist positive constants C0 and C1, and a sequence
{kj} ⊂ Za \ {0} with |kj | → ∞ (j → ∞) such that

(7.7)
C0

|kj |a ≤ |(kj , ζ)| ≤ C1

|kj |a

holds.

This lemma is simply proved by using [Ca, Theorem VI and VIII in Chap-
ter I].

First we shall give the basic frequencies of ri(t), i = 1, 2, by Lemma 7.1.
Let a be equal to m + 1 and (ζ1, . . . , ζm+1) be the vector given in Lemma
7.1. We take (λ1, . . . , λm) = (ζ1/ζm+1, . . . , ζm/ζm+1) as the bacic frequencies
of ri(t). Set Λ = (λ, 1) ∈ Rm+1. Then it follows from Lemma 7.1 that there
exists a sequence {kj} ⊂ Zm+1 \ {0} such that

(7.8)
C2

|kj |m+1
≤ |(kj ,Λ)| ≤ C3

|kj |m+1

holds for any j. Here C2 and C3 are positive constants equal to C0/ζm+1 and
C1/ζm+1 (resp.).

Remark 10. The real vectors (ζ1, . . . , ζm+1) satisfying (7.7) are con-
structed as algebraic solutions of some algebraic equations of degree m + 1.
There are infinitely many vectors in Rm+1 that satisfy (7.7). See [Ca] and
[Ya4].

The following lemma is shown similarly to [Ya4, Proposition 2.4].

Lemma 7.2. There exists a subsequence of the above {kj} with the fol-
lowing properties. We again write the subsequence by {kj}.

1. 0 < (kj ,Λ) ≤ 2π/3ω for any j ∈ N .
2. {(kj ,Λ)} is monotone decreasing: (kj+1,Λ) ≤ (kj ,Λ).
3. There exists a positive constant M < 1 such that |kj | ≤ M |kj+1| holds

for any j ∈ N .

Let {kj} be the sequence given in Lemma 7.2. We define f̂(θ) by a lacunary
Fourier series

(7.9) f̂(θ) =
∞∑

j=1

fj cos (kj , θ).

Let the Fourier coefficients fj satisfy the following: There exists positive con-
stasnts ci = ci(f), i = 1, 2, such that

(7.10)
c1

|kj |N ≤ fj ≤ c2
|kj |N
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for a given N ∈ Z+. We denote the set of such functions f̂(θ) by Q̂N and the
set of q.p. functions f(t) defined by f(t) = f̂(Λt) by QN

Λ . Clearly QN
Λ is a

subset of DΛ.

Lemma 7.3. Consider a functional equation

(7.11) F (t+ ω) − F (t) = G(t), t ∈ R1,

where G(t) is an element of QN
Λ with

∫
T m+1 Ĝ(θ)dθ = 0. Let m+1 > N . Then

there exists a solution F (t) of (7.11) of the form

(7.12) F (t) = S(t) +G(t)/2 + U(t)

that is unique except ω-periodic functions U(t). S(t) satisfies the following:
There exist positive constants C, C̃ and a sequence {tν} with tν → ∞ (ν → ∞)
such that

(7.13) C t 1−N/(m+1)
ν ≤ S(tν) ≤ C̃ t 1−N/(m+1)

ν , ν ∈ N.

The proof of this lemma is done in the similar way to that of [Ya4, Theorem
3.1].

Proof. Without loss of generality we assume U(t) ≡ 0. Ĝ(θ) is expanded
into the lacunary Fourier series

(7.14) Ĝ(θ) =
∞∑

j=1

Gj cos (kj , θ).

We look for a solution of (7.11) in the Fourier series form. We formally expand
F̄ into the Fourier series

(7.15) F̄ (θ) =
∞∑

j=1

(Pj sin (kj , θ) +Qj cos (kj , θ)) .

Substituting (7.14) and (7.15) into (7.11) and comparing the Fourier coeffi-
cients, we have

Pj(cos (kj ,Λ)ω − 1) −Qj sin (kj ,Λ)ω = 0,
Pj sin (kj ,Λ)ω +Qj(cos (kj ,Λ)ω − 1) = Gj .

Solving this system, we obtain

Pj =
Gj

2
cos (kj ,Λ)ω/2
sin (kj ,Λ)ω/2

,

Qj =
Gj

2
, j = 1, 2, . . . .

Take

S̄(θ) =
∞∑

j=1

Pj sin (kj , θ).
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We shall show (7.13). Setting Λ1 = (ω/2) Λ, we have

S(t) =
∞∑

j=1

Gj

2
cos (kj ,Λ1)
sin (kj ,Λ1)

sin (kj ,Λ)t.

We decompose S(t) into two sums:

S(t) =


n0−1∑

j=1

+
∞∑

j=n0


 Gj

2
cos (kj ,Λ1)
sin (kj ,Λ1)

sin (kj ,Λ)t(7.16)

≡ I1
n0

(t) + I2
n0

(t).

We take

(7.17) tν =
π

2
(kν ,Λ)−1

for any ν ∈ N . Then it follows from (7.8) that

(7.18) c4 |kν |m+1 < tν < c5 |kν |m+1.

First we shall estimate I1
ν (tν). Set L = min0<x≤π/2(sinx/x). Since by use

of Lemma 7.2, no. 1 and (7.8) we have

sin(kj ,Λ1) ≥ ω L

2
(kj ,Λ) ≥ C2 ω L

2
1

|kj |m+1
,

it follows from Lemma 7.2, no. 3 and (7.10) that

|I1
ν (tν)| ≤

ν−1∑
j=1

∣∣∣∣Gj

2

∣∣∣∣ 1
| sin(kj ,Λ1)|(7.19)

≤ c2
C2ωL

ν−1∑
j=1

|kj |m+1−N

≤ c2
C2ωL

|kν |m+1−N
ν−1∑
j=1

M (m+1−N)j

≤ c2
C2ωL

|kν |m+1−N Mm+1−N

1 −Mm+1−N
.

Next we shall estimate I2
ν (tν):

I2
ν (tν) =

∞∑
j=ν

Gj

2
cos(kj ,Λ1)
sin(kj ,Λ1)

sin
(
π

2
(kj ,Λ)
(kν ,Λ)

)
.

Since {(kj ,Λ)} satisfies (kj ,Λ) ≤ (kν ,Λ), j ≥ ν from Lemma 7.2, we have

(7.20) sin
(
π

2
(kj ,Λ)
(kν ,Λ)

)
≥ L

π

2
(kj ,Λ)
(kν ,Λ)

.
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Also we have

cos(kj ,Λ1) ≥ 1
2
.

Therefore it follows from (7.20) and (7.10) that

I2
ν (tν) ≥ πL

8

∞∑
j=ν

Gj
1

sin(kj ,Λ1)
(kj ,Λ)
(kν ,Λ)

(7.21)

≥ πc1L

4ω
1

(kν ,Λ)

∞∑
j=ν

|kj |−N

≥ πc1L

4ωC3
|kν |m+1−N .

It follows from (7.16), (7.19) and (7.21) that

S(tν) ≥
(
πc1L

4ωC3
− c2
C2ωL

Mm+1−N

1 −Mm+1−N

)
|kν |m+1−N .

Thus by taking M sufficiently small and using (7.17) and (7.18), we obtain

S(tν) ≥ C t 1−N/(m+1)
ν ,

where C is a positive constant independent of ν. This proves the former part
of (7.13).

We shall show the latter part of (7.13). We have, from Lemma 7.2 and
(7.8)

|I2
ν (tν)| ≤

∞∑
j=ν

∣∣∣∣Gj

2

∣∣∣∣ 1
sin(kj ,Λ1)

sin
(
π

2
(kj ,Λ)
(kν ,Λ)

)
(7.22)

≤ πc2
2ωL

1
(kν ,Λ)

∞∑
j=ν

1
|kj |N

≤ πc2
2ωL

1
(kν ,Λ)

1
|kν |N

∞∑
j=1

M jN

≤ πc2
2ωLC2

|kν |m+1−N MN

1 −MN

≤
(

πc2
2ωLC2

MN

1 −MN

)
t 1−N/(m+1)
ν .

Therefore it follows from (7.19) and (7.22) that

S(tν) ≤ C4 t
1−N/(m+1)
ν .

Thus Lemma 7.3 is proved.
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Now we show the quasiperiodicity of the solution v(y, s) of IBVP (7.4)–
(7.6). v is represented by the superposition of the forward wave and the back-
ward wave by the d’Alembert formula (See Section 5)

(7.23) v(y, s) = f(−y + s) − f(y + s) + ρ1(y + s),

where f(s) satisfies

(7.24) f(s+ ω) − f(s) = ρ1(s+ ω) − ρ2(s+ ω/2) ≡ ρ(s).

The right hand side ρ(s) is q.p. with basic frequencies Λ. We take ρ as an
element of QN

Λ . We apply Lemma 7.3 to (7.24). Then there exists a solution
f(s) of the form

f(s) = S(s) + ρ(s)/2 + U(t),

where S(s) satisfies the following: There exist a sequence {sν}, sν → ∞, and
positive constants C, C̃ such that

(7.25) C s1−N/(m+1)
ν ≤ S(sν) ≤ C̃ s1−N/(m+1)

ν

holds. U(t) is an ω-periodic function. U(t) is determined by the initial data
φ1, ψ1 in the similar but simpler way as g0 in Section 5.

Next we shall show the quasiperiodicity of the solution v. Since we have

f(−y + s) − f(y + s) = S(−y + s) − S(y + s)

+
(
ρ(−y + s) − ρ(y + s)

)
/2 + U(−y + s) − U(y + s),

and the latter part is q.p. in s, we have only to estimate the former part:

|S(−y + s) − S(y + s)| ≤
∞∑

j=1

Gj

2
cos (kj ,Λ1)
sin (kj ,Λ1)

×
∣∣∣ sin (kj ,Λ)(−y + s) − sin (kj ,Λ)(y + s)

∣∣∣
≤

∞∑
j=1

Gj
1

sin (kj ,Λ1)

∣∣∣ sin (kj ,Λ)y cos (kj ,Λ)s
∣∣∣

≤ C3

∞∑
j=1

1
|kj |N

< +∞.

This means the quasiperiodicy of S(−y+s)−S(y+s). Therefore our assertion
is proved.

Since from (6.1) t is written of the form s + w(y, s) with w(y, s) periodic
in both (y, s), t tends to ∞ as s tends to ∞. Since we have, from (6.1)–(6.2),

u(x, t) = v ◦X(x, t),
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it follows that the solution u(x, t) also is the superposition of the sequentially
time-unbounded waves. Hence we have seen the conclusion.

8. Proof of the Reduction Theorem

In this section we shall prove the Reduction Theorem in Section 3. We
shall deal with

(3.1) x1 = Q(x) = x+ ω + q(x),

and by a suitable transformation

(3.2) x = H(ξ) = ξ + h(ξ)

reduce the mapping (3.1) to the affine mapping

(3.3) ξ1 = H−1 ◦Q ◦H(ξ) = R(ξ) = ξ + ω.

Let κ and α be constants in (0, 1) and (1,∞) (resp.). We set r0 = r and

aα =
∞∑

s=1

1
sα
,

d0 = min
(
r0

4aα
,

1
2aα

)
,

ds =
d0

sα
, s = 1, 2, . . . .

We take α so as to satisfy r0 > 2d0. We define sequences {rs}, {ρs}, {ζs} and
{Ms} by

rs+1 = rs − 2ds, ρs = rs − ds, ζs = rs − ds

2
,

Ms = M (1+κ)s

for every s = 0, 1, . . . and M = |q̂|r. For later use we note that

rs+1 − ρs = −ds,

ζs+1 = ρs+1 +
ds+1

2
,

ρs − ζs+1 = ds +
ds+1

2
.

In this section all C are positive constants dependent on some or all ofm,β, ω, α,
r.

Consider a sequence of mappings {Qs} of the form

(8.1) (T )s x1s = Qs(xs) = xs + ω + qs(xs), s = 0, 1, . . . ,
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where qs is a 2π/β-q.p. function and ω is the upper rotation number ρ̄(Q)(a0),
the same constant in (3.1), and for s = 0 we set x0 = x, x10 = x1, Q0 = Q and
q0 = q, where x1, x,Q, q are seen in (3.1). We shall successively construct a
sequence {Hs} of transformations in Dβ of the variables xs

xs = Hs(xs+1) = (I + hs)(xs+1), s = 0, 1, . . . ,

where hs is a 2π/β-q.p. function and I is an identity, so that the mappings
(T )s may become closer and closer to the affine mapping (3.3) by the successive
transformations. It should be noted that in this process we shall keep the upper
rotation number of Qs fixed i.e., for every s = 0, 1, ... there exists as ∈ R1 such
that ρ̄(Qs)(as) = ρ̄(Q)(a0) = ω . This is assured by Proposition 2.1.

We assume

(As) q̂s(θ) is real analytic in Π̂ρs
, continuous in Πρs

and satisfies

(8.2) |q̂s|ρs
≤Ms.

The following proposition is fundamental to prove Reduction Theorem.

Proposition 8.1. Consider a mapping (8.1). Assume that (C) holds.
Then there exists a positive constant M0 = M0(κ, α, ‖β‖, r,m,C0) independent
of s such that for any M ∈ [0,M0), under the assumption (As) the mapping
(T )s is transformed to

(8.3) (T )s+1 x1s+1 = Qs+1(xs+1) = xs+1 + ω + qs+1(xs+1)

by a transformation with a 2π/β-q.p.term hs

(8.4) xs = Hs(xs+1) = (I + hs)(xs+1)

with the following properties :
1. qs+1 is a 2π/β-q.p. function, and q̂s+1 is real analytic in Π̂ρs+1 , con-

tinuous in Πρs+1 and satisfies

(8.5) |q̂s+1|ρs+1 ≤Ms+1 = M1+κ
s .

2. hs is a solution of the following functional equation

(8.6) hs(x+ ω) − hs(x) = qs(x) − νs,

where qs is expanded into the Fouriuer series

(8.7) qs(x) =
∑

n∈Zm

qn
s e

i(n,β)x, qn
s =

(
1
2π

)m ∫
T m

q̂s(θ)e−i(n,θ)dθ,

and νs is given by

(8.8) νs = q0s =
(

1
2π

)m ∫
T m

q̂s(θ)dθ.
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ĥs is real analytic in Π̂rs+1 , continuous in Πrs+1 and satisfies

|ĥs|rs+1 ≤ M
(5κ+3)/8
s

10
≤ Mκ

s

10
,(8.9)

|Dθĥs|rs+1 ≤ M
(5κ+3)/8
s

10
≤ Mκ

s

10
.(8.10)

In the following lemmas in this section M is taken suitably small.

Proof of Proposition 8.1. Proof of Proposition 8.1 shall be done by several
steps.

1. Estimates of ĥs and ∂θĥs

We show (8.9) and (8.10). Consider the functional equation (8.6) with
(8.7) and (8.8). Setting

(8.11) hs(x) =
∑

n∈Zm

hn
s e

i(n,β)x,

we obtain from (8.6), (8.7) and (8.11)

(8.12) hn
s =

qn
s

ei(n,β)ω − 1

for every n �= 0. h0
s is arbitrary. So we take h0

s = 0. We estimate hs as follows.
For θ ∈ Π̂rs+1 we have

|ĥs(θ)| ≤
∑

|hn
s |e|n||�θ|

≤
∑

|hn
s |e|n|rs+1 ,

where |n| = |n1| + · · · + |nm| for n = (n1, . . . , nm). Using the assumption (C),
we have, for a suitable l ∈ Z

|ei(n,β)ω − 1| ≥ 2
π
|(n, β)ω − πl|

≥
(

2|ω|C0

π

)
1

|n|m+1
.

Noting that |qn
s | ≤Ms exp (−|n|ρs) holds for each n ∈ Zm, we have

|ĥs(θ)| ≤
(

π

2|ω|C0

)∑
|n|m+1Ms e

−|n|ρs e|n|rs+1(8.13)

=
(

π

2|ω|C0

)
Ms

∑
|n|m+1e−|n|ds .



�

�

�

�

�

�

�

�

92 Masaru Yamaguchi

Since the inequality ∑
n∈Zm

|n|ke−|n|d ≤ Cmd
−(k+m+1)

holds for any positive d, it follows from (8.13) that

|ĥs(θ)| ≤ C
Ms

d2m+2
s

.

If we take M sufficiently small, then the right-hand side is estimated

|ĥs(θ)| ≤ M
(5κ+3)/8
s

10
≤ Mκ

s

10

in Πrs+1 . Hence (8.9) is proved. Similarly we can obtain (8.10). In fact, since
∂θj

ĥs(θ) =
∑
i njh

n
s exp i(n, θ), the same procedure as the above implies (8.10).

It is clear to show that hs(x) is real-valued for each real x. In fact, from (8.12)
h−n

s = hn
s holds.

2. Estimate of q̂s+1

We denote H−1
s by I + gs. Clearly gs = −hs ◦H−1

s .

Lemma 8.1. gs is 2π/β-q.p., and ĝs is real analytic in Πζs+1 .

This lemma proved in [S-M, p. 261–263].

Lemma 8.2. For any Θ ∈ Πζs+1 there exists θ ∈ Πrs+1 such that

(8.14) Θ = θ + βĥs(θ).

Proof. Define a sequence {θj} ⊂ C by

θj+1 + βĥs(θj) = Θ, θ0 = 0.

We show that {θj} is a contracting sequence in Πrs+1 . Let θj satisfy |	θj | ≤
rs+1. Then we have

|	θj+1| ≤ |	Θ| + |	ĥs(θj)| ‖β‖
≤ ζs+1 + |ĥs(θj)| ‖β‖.

Since |	θj | ≤ rs+1 holds, by (8.9) we have |ĥs(θj)| ≤ |ĥs|rs+1 ≤Mκ
s /10. Taking

M small such that Mκ
s /10 < ds+1/2 || β ||, we have

|	θj+1| ≤ ζs+1 +
ds+1

2
= rs+1.
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Next {θj} satisfies, by the mean value theorem

θj+1 − θj = β(ĥs(θj−1) − ĥs(θj))

= β

m∑
k=1

∂θk
ĥs(θj−1 + t(θj − θj−1))(θj−1

k − θj
k),

whence by (8.10)

|θj+1 − θj | ≤ Mκ
s

10
|θj−1 − θj |m‖β‖.

Therefore if we take M small, the sequence is the contracting sequence. Thus
there exists θ ∈ Πrs+1 such that (8.14) holds.

It follows from (8.1), (8.3), (8.4) and (8.6) that qs+1 is represented as

qs+1(xs+1) = (I + hs)−1
(
(I + hs)(xs+1 + ω) + νs(8.15)

+ [qs ◦ (I + hs)(xs+1) − qs(xs+1)]
)
− (xs+1 + ω).

Note that qs+1(x) is real-valued for real x. For brevity we set x = xs+1 and

J0 = (I + hs)(x+ ω),
J1 = qs ◦ (I + hs)(x) − qs(x),
J = J1 + νs.

Then using the mean-value theorem, we simply obtain

(8.16) qs+1(x) = J

∫ 1

0

((I + hs)−1)′(J0 + tJ)dt.

First we estimate J .

Lemma 8.3. J satisfies

|Ĵ |ρs+1 ≤ 1
5
Mκ+1

s .

Proof. By the mean-value theorem we have

J1 = hs(x)
∫ 1

0

q′s(x+ ths(x))dt.

Using (8.9), we have, for θ ∈ Πρs+1

|	(θi + tβiĥs(θ))| ≤ |	θi| + |	ĥs(θ)| |βi|

≤ ρs+1 +
Mκ

s |βi|
10

≤ ζs+1.
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Here we have taken M small so as to satisfy Mκ
s /10 < ds+1/(2‖β‖). Since

|q̂s(θ)| ≤Ms for |	θ| ≤ ρs, the Cauchy integral formula gives, for θ ∈ Πρs+1

|q̂′s(θ + tβĥs(θ))| ≤ ||β||m Ms

(ρs − ζs+1)m
≤ ||β||mMs

dm
s

.

Hence we obtain

|Ĵ1|ρs+1 ≤ ||β||mM
(5κ+3)/8+1
s

10dm
s

≤ M1+κ
s

20
.

Next we estimate νs as follows. By Proposition 2.1 the upper rotation number
can be kept invariant under the homeomorphism so that the upper rotation
number of Qs+1 may be equal to ω. Therefore Proposition 2.2 shows that by
choosing x suitably we can take qs+1(x) as small as possible. By this fact there
exists a point z ∈ R1 such that

(8.17) |qs+1(z)| ≤ M1+κ
s

40
.

From (8.15) it follows that

νs =
(
(I + hs)(z + ω + qs+1(z)) − (I + hs)(z + ω)

)
(8.18)

+
(
qs(z) − qs ◦ (I + hs)(z)

)
.

Then by the similar way to the estimate of J1 we have

|qs(z) − qs ◦ (I + hs)(z)| ≤ M1+κ
s

20
.

For the first term of the right hand side of (8.18), using the mean-value theorem,
(8.10) and (8.17), we have

|(I + hs)(z + ω + qs+1(z)) − (I + hs)(z + ω)|
≤ (1 + |h′s(η)| ) |qs+1(z)|

≤
(

1 +
Mκ

s m‖β‖
10

)
M1+κ

s

40

≤ M1+κ
s

20
.

Therefore we obtain

|νs| ≤ M1+κ
s

10
.

Thus we have the conclusion.

Lemma 8.4. The inverse of I + hs satisfies

|((I + hs)−1)′̂ (θ)|ζs+1 ≤ 4
3
.
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Proof. It follows from Lemma 8.2 that for Θ, |	Θ| ≤ ζs+1 we have |	(I+
βĥs)−1(Θ)| ≤ rs+1. Therefore, (8.10) gives

|((I + hs)−1)′̂ (θ)|ζs+1 ≤ 1

1 − ‖β‖m |∂θĥs|ζs+1

≤ 1
1 −Mκ

s ‖β‖m/10
<

4
3
,

where we have taken M small so as to satisfy Mκ
s ‖β‖m < 5/2.

From (8.15) and Lemma 8.2 clearly q̂s+1 is real analytic in Πρs+1 . We
estimate q̂s+1. Using (8.16), Lemma 8.3 and Lemma 8.4, we have

|q̂s+1|ρs+1 ≤ M1+κ
s

5
4
3
≤M1+κ

s = Ms+1.

This proves (8.5). Thus Proposition 8.1 is proved.

Now using Proposition 8.1, we shall prove the Reduction Theorem. Set

Gs = H1 ◦H2 ◦ · · · ◦Hs, Fs = Gs − I.

Then we have

Lemma 8.5. The sequence {F̂s} converges uniformly to a function F̂
in {|	θ| ≤ r/2}.

Proof. We show the following estimate

(8.19) |F̂s − F̂s−1|r/2 ≤ CMκ
s .

The differentiation of the composed functions and (8.9)–(8.10) gives

|(G′
s)̂|rs+1 ≤

∞∏
j=1

(1 +m‖β‖Mκ
j ) ≤ 3

2
.

We have

Fs(x) − Fs−1(x) = Gs(x) −Gs−1(x) = Gs−1(Hs(x)) −Gs−1(x).

Hence using the mean-value theorem, we have,

Fs(x) − Fs−1(x) = hs(x)G′
s−1(x+ ths(x))

= ĥs(βx) (G′
s−1)̂(β(x+ ths(x))).

Then we have, for θ ∈ {|	θ| ≤ r/2}
|F̂s(θ) − F̂s−1(θ)| = |ĥs(θ) (G′

s−1)̂(θ + tβĥs(θ))|
≤ Mκ

s

10
3
2

=
3
20
Mκ

s .
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Thus we have (8.19). (8.19) implies that {F̂s} is a Cauchy sequence with respect
to the norm | · |r/2. Therefore the lemma is proved.

Let H be the limit of the sequence {Gs}. Since

G−1
s ◦Q ◦Gs(x) = x+ ω + qs(x)

and qs(x) converges to 0 as s→ ∞, we obtain

H−1 ◦Q ◦H(x) = x+ ω.

Therefore the Reduction Theorem is proved.
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