J. Math. Kyoto Univ. (JMKYAZ)
45-1 (2005), 39-55

The Steenrod algebra and the automorphism
group of additive formal group law

By

Masateru INOUE*

1. Introduction

Let H, H be the Hopf algebra of stable co-operations of the mod 2 ordinary
cohomology theory H*( ). The structure of H, H is well known as follows. First
J. P. Serre [7] determined the unstable cohomology of the Eilenberg-MacLane
complex K(n,Z/2). He has shown the stable part of H*(K(n,Z/2)) is gener-
ated by iterated Steenrod operations and computed the rank of H*(K (n,Z/2))
in terms of excess operations. He assumed the existence of Steenrod squares
Sq' but did not use the Adem relations. Using the Adem relations, we see that
the algebra S* generated by Steenrod squares modulo the Adem relations is iso-
morphic to H*H. Moreover Milnor [4] determined the Hopf algebra structure
of S,, the dual Steenrod algebra which is the polynomial algebra Fy[£1, o, . . .|
with the coproduct ¢(&,) = S0, €27, ® &, and therefore we obtain the Hopf
algebra structure of H, H.

Now we recall strict automorphisms of the additive formal group law. Let
G, be the additive formal group law, and Autp,(G,)(R.) the set of strict
automorphisms of G, over a non-negatively graded commutative Fo-algebra
R.. An element f(z) in Autp,(G.)(R.) is written as a formal power series
z+37 a;x?, where a; € Ryi_;. Here Autp, (G,)(—) is a functor from the cat-
egory of graded algebras to the category of sets. A product of Auty,(Gg)(Rx)
is defined by the composition of power series, and induces the group struc-
ture. Therefore Autg,(G,)(—) is a functor to the category of groups, and
is represented by the Hopf algebra A, = Fy[&),&s,...] with the coproduct

V(&) = S0, €2, ®¢&;. In other words, we have a natural group isomorphism
Hom]Fz_alg(A*, R*) = Aut]F2 (Ga)(R*)

Comparing S, with A,, we see that S, = A, as a Hopf algebra.
We recall the Dickson algebra. Let V™ be the Fs-vector space spanned
by elements z1,...,2,. In the polynomial ring Fa[z1,...,x,][t], consider the
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polynomial

n
I t+e)=> a4, withg, =1.
acVn s=0

Then gy, s is invariant under the usual action of GL, (F2) and Dickson [2] has
shown that

FZ[xla cee 7xn]GL"(]F2) = IE‘2[qn,07 sy Qn,n71]~

Formally putting degxz; = 1, we have degg, s = 2" — 2% Let Y» be the
symmetric group of degree 2™,

P, : H (X) — H**(EXgn x5, X?")

the extended power operations of Steenrod [8], and d,, : BXon XX — EXon Xy,
X?2" the diagonal map. We regard Yon as the group of set automorphisms of
E" and we obtain the regular embedding ¢ : E™ C ¥gn which takes g € E" to
the permutation induced by h — g + h. Identify V" by the dual of E™ over
Fy. Then we have canonical isomorphisms H'(BE") = V" and H*(BE™) =
Folz1,...,z,]. Furthermore Mui [6] has proved Imi* = Falgn0,- .., ¢nn-1]-
Now consider the restriction of d} P,

H(X) "7 B (BSy) @ HY(X) "2 H*(BE™) © H*(X),

which is written by the same symbol d} P,. Actually Imd} P, C Fa[gn.0,---,
Gnn—1) ® H*(X), and we can define an operation S,, : H*(X)—F [qio, ce
Inn—1) @ H*(X) by S,(z) = q;gegwd:Pn(x). We set &[n] = gn.i/qno and
Din). = Fsl&1[n], ..., &un]] C ]Fg[qio, <+ -sqnn—1]- Then by [6] we see S,, takes
value in D[n]. @ H*(X).

Now we have four algebras H,H, S., A, and D[n].. The purpose of this
paper is to give a new proof of theorem of Milnor. In other words, we have
showed directly that there exists a Hopf algebra isomorphism

Xo Ay — H.H

without the usage of S,. Since the Hopf algebra structure of A, is easily seen,
we can obtain that of H,H. Hence we have S, = H,H as a corollary. The key
idea to relate those algebras is the notion of unstable multiplicative operations
based on a graded ring R.

H*(X) — H*(X) @ R,.

A multiplicative operation w : H*(X) — H*(X) ® R. induces the graded
algebra homomorphism x,, : A. — R.. Moreover we have the universal mul-
tiplicative operation ¢ : H*(X) — H*(X) ® H.H. Namely, there exists a
unique algebra homomorphism @ : H,H — R, which satisfies (1 ® @) o) = w
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for a multiplicative operation w. For the above multiplicative operation .S,, :
H*(X) — H*(X) ® D[n],, we can get the following diagram:

A, X, g.H

N ls’:n

Din]..

Here xg, is an isomorphism in low dimensional range for sufficiently large n.
Therefore x, is injective and we see that x. is an isomorphism by Serre’s result
[7]. Furthermore we can show that the algebra homomorphism x,, is actually
a Hopf algebra homomorphism.

This paper is constructed as follows. We define a multiplicative operation
and construct the universal multiplicative operation 1 in Section 2. In Section
3, we recall the definition of the reduced power operation in Steenrod and
Epstein [8] and Mui’s results [5] [6], and introduce the multiplicative operation
S,. In Section 4, we construct A, and x, : A, — R, from a multiplicative
operation w over R,. We prove main theorem (Theorem 4.2). In appendix, we
determine a coproduct of certain elements in the algebra D, , =[], D[n]., and
consider relations to A, and H,H.

This paper is written under the supervision of Professor Goro Nishida. I
am grateful to him for his extraordinary patience, generous help and inspiring
guidance.

2. DMultiplicative operation

We assume that X and Y are spaces, and denote by H*(X) the mod 2
ordinary cohomology of X in this paper.

Definition 2.1. Let R, be a non-negatively graded commutative alge-
bra over Fo, namely R, = 0 for * < 0. We consider a graded module in which
the cohomological degree k-part is [, o H**"(X) ® R,. By abuse of notation
we denote the graded module by H*(X) ® R.. We call a natural operation
B H*(X) - H*(X)® R, with cohomological degree preserving multiplicative
when [ satisfies the following conditions:

(i) The diagram

H*(X) ® H*(Y) H (X xY)
s8] L
H*(X) ® R. -
1Qu®1 H*(X)®H*(Y)®R*®R* % H*(XXY)(X)R*

®H*(Y) ® R.

is commutative, where x is the cross product, p interchanges the first and
second factors, and m is the multiplication on R,.
(ii) B(u) = u® 1 where u is the generator of H(S?!).
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Let H *() be the reduced cohomology. We consider the following diagram:

0 —— H*(X) —— H*X) —— H*(pt) —— 0
| Js

0 —— H*(X)®R, —— H*(X)® R, —— H*(pt) ® R. —— 0,

with the horizontal sequences exact. Then we can define the reduced opera-
tion §: H*(X) — H*(X) ® R, such that the above diagram is commutative.

Obviously 3 is natural and the following diagram is commutative:

H*(X)@ H*(Y) : H (X AY)
E E
H* (X) ® R* 1eu®l T 7% (N@m 7%
—— H'(X)H" YY) R.® R ——— H'(XAY)® R.,

QH*(Y) ® R.
where A is the smash product.

Lemma 2.2.  For a multiplicative operation 3, (3 is stable. That is, the
following diagram is commutative:

H"(X) ——2- H"($X)
5 E
[H*(X)® R,)" 22 [H*(SX) ® R,
where o is the suspension isomorphism.

Proof. By the commutative diagram (1), we have the following commu-
tative diagram:
A

F*(x) ® (1) H*(X ASY)
Bod | I
H*(X) ® R. ~ - ~
1eue1l H*(X)®H*(Sl)®R*®R* _Nem H*(XASI)@JR*-

QH*(S1) ® Ra

For any element z in H*(X),

where 3(z) Au = Yonn Au) @ o, for f(x) =, Yn ® ,. This implies that

[ is a stable operation. |
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Let H be the mod 2 Eilenberg-MacLane spectrum, and H,.H be m.(HAH).
We want to introduce a multiplicative operation ¢ : H*(X) — H*(X)® H.H.
We define a map

¢ H*(X) = [X, H — [X, HA H|*

by ¥(f) =iAfe[S°AX, HAH]*, wherei:S® — H is the unit map.
Let x be the map

k:H (X)® H.H — [X, HAH]*

induced by H A (H A H) AL H A H, where m is the multiplication on H.

Lemma 2.3. k is an isomorphism.

Proof. If X =S, k is an isomorphism. Therefore if H*(X) ® H.H is a
cohomology, k is a cohomology operation. Because H,, H is finite dimensional,
we have the result. |

Therefore k14 : H*(X) — H*(X)® H, H is well-defined and it is denoted
by .

Theorem 2.4.  The operation ¢ : H*(X) — H*(X) ® H,H is multi-
plicative.

Proof. Themap iAl : SSAH — HAH is aring spectra map. Therefore 1) :
H*(X) — (HAH)*(X) preserves the external product. Since the multiplication
m: HANH — H is a ring spectra map, mA1l: HANH ANH — H N H is so.
Therefore we see that x : H*(X)® H.H — (H A H)*(X) preserves the external
product. Hence v satisfies Definition 2.1 (i).

Next we prove that ¢ satisfies Definition 2.1 (ii). It is enough to prove for
w =Y. Since Xi Ai =i AXiin [S', S(H A H)], we see

V(i) =rtoh(Xi) =kTTEAS) =k H(DiAD) =u® 1.
O

From now on, we assume any graded algebra R, is of finite type, that
is R, is finite dimensional for each n. We define Op(R,) by the set of all
multiplicative operations over R,. This is a covariant functor from the category
of graded algebras over Fy to the category of sets. We now construct a natural
transformation

A: Op(R,) — Homp, (H.H, R,),

where Homp, (, ) is the set of all graded linear homomorphisms.
Since H*(X) ® R, is a cohomology theory in the same way as the proof of
Lemma 2.3, we denote the spectrum which represents the cohomology H*( ) ®
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R, by HR,. Obviously HR, is a commutative ring spectrum and an H-module
spectrum induced by the products
H(X)®R. @ H(Y)® R, — H*(X xY) ® R,
(z2@reyer —(xxy)r-r),

and

H(X)® (H(Y)® R.) — H* (X XY) ® R.,
(Ryer— (zxy)r).

Under these conditions, we have

\:(HR.)*H — Homy, (H.H, R.),

1Nz

from [1, III, 13.5]. This map is defined by H A H -5 H A HR, — HR,,
where z € [H, HR,] and the H-module map 7 : H A HR, — HR,. For an
element « in (HR,)*H, we write \(a) as a. .

Let 8 : H*(X) — H*(X) ® R, be a multiplicative operation. Since
is stable by Lemma 2.2, we can identify 3 as a stable cohomology operation.
Therefore Op(R.) is a subset in (HR,)°H. j3 satisfies the following commuta-
tive diagram:

H (X)) —Y H*(X)® H.H
ﬁ\ ll@B

from the commutative diagram:

SOANH AL, HANH
Il ll/\m
HR, «——— HAHR,.

Here z is a spectra map which represents 3. We define A by the restriction of
A to Op(R,). Since Op(R.) C (HR.)°H, the image of \ is actually included
in Homp, (H.H, R.,).

Theorem 2.5.  Let Homy, a1s( , ) be the set of all graded algebra ho-
momorphisms. Then there is an one to one correspondence

X : Op(R,) — Homg, a1z (H.H, R.)

which is natural in R,.
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Proof. We now prove A(Op(R.)) C Homg,_a1o(H.H, R,). It is enough to
prove that the following diagram is commutative:

(mAm)o(1ApAL)
- 5

HAHAHAH HAH
1/\11/\1/\:El ll/\w
(2) HAHR,AHAHR, w20 - g,
'r/\’rl JT
HR, NHR, R, HR.,

where g is a multiplicative operation, x represents 3, and mpg, is the multipli-
cation on HR,. Because 3 is a multiplicative operation, the following diagram
is commutative:

HANH ", HR, AN HR,

m| [ ma.
H —%—~  HR.

Therefore the upper square in the diagram (2) is commutative. The lower
square in (2) is commutative since HR, is a commutative ring spectrum and
mp, : HR. N HR, — HR, is an H-module spectra map.

For any r in Homp, a1 (H.H, R.), the operation

(l@r)yoy: H(X) — H (X)® H.H — H*(X) ® R.

is multiplicative. This shows A(Op(R.)) = Homp, a1 (H.H, R.). O

3. Construction of the reduced power

Let G be a subgroup of the symmetric group %, of degree m. For a space
X, G acts on X™ as a permutation. Steenrod defined the extended power
operation

Pg: HY(X) — H™(Eq(X)),

where Eg(X) is defined by EG xg X™ [8, VII]. From the diagonal map d¢ :
BG x X — Eg(X), we have the natural map df, Pg : H9(X) — H™(BG x X).
Let E™ be the elementary abelian 2-group with dimension n and we write
E" = Fy x --- x E,, where F; = Z/2. Then we can identify Autge(E™), the
set of all permutations of the set E™, as Yon. Since E™ acts on itself as a
vector space, there is the regular embedding E™ C ¥s». The wreath product
Ey [--- [ Ey, is a2-sylow subgroup of ¥9n, and it is denoted by ¥9n 5. Obviously,
Ygn o contains E™. We define an inclusion E"~1 C E" by E"~! = {0} x Ej x
-+ X FE, C E". Then it induces the inclusion Xgn-19 C Ey [ Xon-19 = Xon 3.
From ig ¢ : G' C G, we have three maps BG' — BG, Eq/(X) — Eq(X),
and BG' x X — BG x X. They induce H*(BG) — H*(BG') , H*(Eg (X)) —
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H*(Eq/(X)) and H*(BG x X) — H*(BG’ x X), which are denoted by the
same symbol i . Since we see i; o P = Pgr by [8, VII, 2.5], we obtain
(3) i§:27l, E"’d§:27l PEQ“ - i§)2n:27 En ;:2’”,2P22n,2

=diP,: H(X) — H*1(BE" x X),

where d,, = dg» and P, = Pgn. We can identify Pg, ngn_l X with Pg2ny2 from
the following commutative diagram: 7

PEzn,z

H*(X) H*(Es,. , (X))

P22n—1,2J( l%
H* (B 5(X)) —— H*(Ep, (Ps,,_, (X)) = H*(Ep, 13,,_, (X)).

By the naturality of P, the following diagram is commutative:

H*(X)
PE2"—1,2l
dr_ 4
H*(Es,,_, (X)) — H*(BE"™! x X)

a |~

H*(Eg, (Bs,,_, (X)) —&,
a | |
H*(BEy x Bs,,_, (X)) 22l
Hence we see the following lemma:
Lemma 3.1 ([8]).  We have
&P, =diPid},_{P,_1.
Given the diagonal maps

A:EE" xpn (X xY)? — EE" X EE™ Xpgnypn X2 xY?",
and d :BE"x X xY — BE" x BE" x X xY,

we obtain the following maps:

HY(X)® H (V) " H*(BE™ xgn X¥') @ H*(EE™ xpn Y2")
n n. o \*

= H*(BE" X EE" Xgnxpn X*" x Y?") 2o HY(EE" xpn (X x Y)*),
and
7 (X) © H* (V) "2 B (BE™ x g X2') @ H*(EE™ xn Y?")

WX g (BE" x BE" x X x Y) % H*(BE™ x X x Y).
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Lemma 3.2. We have
d Py (uxv) = d"(d xd) (Poux Pov) : H*(X)@H*(Y) — H*(BE"x X xY).

Proof. By Steenrod and Epstein [8, VII, Lemma 2.6], we obtain A*(P,u x
P,v) = Py(u x v), where v € H*(X) and v € H*(Y). The commutative
diagram

BE"x X xY  —% EE" xpn (X x Y)?"

d/l l)\
BE" x BE" x X x Y X, ppn o BE" xgnygn X2 x V2"
induces

H*(BE" x X xY) < H*(EE" x g (X x Y)2")

‘] I

H*(BE" x BE" x X x Y) <% [(EE" x EE™ X gnxgn X2° x V"),
Therefore
d:Pp(u x v) = i\ (Pyu x Pyv) = d"(df x d5)(Pyu x Pyv).
0

We recall that H*(BE™) = Fy[z1,...,zy], where each z; is of degree 1. It
is well known by Mui [5] that

(4) Tm(i%,, go) =Foler, ..., 2,9 ) I, | o) = Fafer, .., 20]"™,
where T}, the upper triangular subgroup of GL,,(Fs). We define vi11 by
k
verr = [ [ <Z it + l‘k+1> ;
i=1
and g,,; by

n
(5) H (x+a)= qusxr with ¢, = 1.
acE™ s=0

Obviously deg g, ; = 2" — 2%, Dickson [2] and Mui [5] have shown

FQ[xlv cee ,fn]GL”(]&) = FQ[Qn,O; Qn,la ceey Qn,n—l]a

Fg[xl,.. .,xn]T" gFQ[Uh...,’U”].

Furthermore the following relations between ¢, ; and v; are known.
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Theorem 3.3 ([5]).  We have
Qn,j = Qn—1,5Vn + q721—17j—1a
where g, ; =0 for j <0 orn < j.
We need the following definition and theorem in [8].

Definition 3.4 ([8] VII 3.2).  Suppose H*(BE') = Fs[z] and u €
H9(X). Then we can write dj P (u) = Y., 2% x Sq?7*(u), where

Sq¢*: H1(X) — HITk(X).

Theorem 3.5 ([8] VII 4.3, 4.4, 3.4).  For each k, Sq¢* is a homomor-
phism. If u € HY(X), then Sq*(u) = 0 fork <0, Sq°(u) = u and Sq?(u) = u>.

We now consider
(6) diP, : H*(BE™) — H*(BE"' x BE™).
Obviously BE! x BE™ = BE™*!. Since
E">{0}x Fyx - X Epy1 CE" = E) x--- X B,
we identify BE! as BE; and BE™ as B(Fy x --+ x E,41) in (6).
Theorem 3.6 ([6] Theorem 1.5).  Define an element v], by

vy, = H < )\iIz‘+1?n+1> in H*(BE") =Falz,..., 2n41].
Ai=0,1 \i=2

Then we have
diPy(v)) = vpy1, in H*(BE™).
Especially
d; Poxyni1 = U1,
where H*(BE,+1) = Falzpi1] and diP, : H*(BE,+1) — H*(B(E; X -+ X
E,) X BE,11).

Proof. By Theorem 3.5, we have di Py (u) = 1 xu?+z1 xu foru € H'(X).
By Lemma 3.2, we have

diPy(vy,) = H dy Py (Z iy + 9Cn+1>

2i=0,1 i=2
n n
= H <Z N + $n+1> <$1 + Z N + xn+1>
A=0,1 \i=2 2

= Un+1-
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The second claim is obvious by Lemma 3.1. 1

From (3) and (4), the image of d’ P, is included in Fy[zy, ..., 2,9 F2) @
H*(X). For any v € HY(X), we can denote d;, P,u by

(7) dy, Pou = Z Glodn'y q:ﬁﬁil ® DRru,

R=(r0,...Tn—1)
where Dg : H1(X) — H*'~IRI(X) with |R| = 32—, re(2" — 2°).
Lemma 3.7 ([6], Lemma 2.3). Dru=0ifq<ro+r+ - +rp_1.

Proof. We now prove by the induction on n. In the case of n = 1, it is
obvious by Definition 3.4 and Theorem 3.5. We assume that the lemma is true
for n = k — 1. We consider the case of n = k. By Lemma 3.1 we have

2k71q

Flg—ig i g%
diPp(u) = diPrd_ Po_yu= Y af  “'Sq'(dj_  Pe_u).
i=0
So the degree of d} Py (u) in 21 is equal to 2¥~1q. From Theorem 3.3, deg,, qr,s
=deg,, qrs = 2=1. From the equality (7), we must have

2k_1(r1 +ooid o) < 2k_1q.
Therefore the lemma is true. O

Let P, = Falz1,..., x,|(= H*(BE™)), e, = [1(> i Niwi) € Poy (N =
0or 1, YA > 0), and &, = Py,le,;']. Then there exists the natural action
of GL,(F3) on P, and ®,. Define A, = ®I» and T, = ®SL», where &K
is the subalgebra of the invariants of K in @,, for K = T,, or GL,. We set
W41 = Vk+1/ek. It is easily seen that

A, = Fg[vlﬂ, e vffl] &~ Fg[wfﬂ, e wffl], r, = Fg[qié, Unis---s Qnn—1)-
Let S,, : H*(X) — &, ® H*(X) be the map which sends x to q;geg(x)d;‘;Pn(;v).
From the definition, .S,, preserves cohomological degree. It is the same as the
definition of S,, by Lomonaco [3] substantially.

Let D[n],. be the subalgebra generated by &i1[n],&2[n],...,&un] in &,
where &;[n] = gn,i/qno. It is easily seen that §;[n] is an element in D[n|yi_4
and D[nl]. = Fy[&i[n], ..., & [n]].

Corollary 3.8.  Suppose H*(BZ/2) = Fo[x]. Then we have

Proof. From the definition of v,, and the equality (5), we have v, =
S 0 @n,s72, 1. By Theorem 3.6 and the definition of S,, we have S, (z) =

S &s[nja? . O
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Lemma 3.9. Im(S,) C D[n], ® H*(X).
Proof. Trivial by Lemma 3.7. O

We consider the operation H*(X) 23 D[n], ® H*(X) — H*(X) ® D[nl,,
where the second map interchanges the first and second factors, and denote it
by the same symbol S,,.

Lemma 3.10.  The cohomology operation S,, is multiplicative. That is,

the following diagram is commutative:
X

H*(X)® H*(Y) H* (X xY)

Sn®Sn J lSn

H*(X) ® Din]« H*(X)® H*(Y)

1Qu®1
®H"(Y) ® D[n]. ®D[n]. ® D[n].

Proof. By Lemma 3.2, it is obvious. O

4. The relation between H,.H and Autgp, G,

Let G, be the additive formal group law and Auty, (G,)(R.) the set of all
strict automorphisms of G, over a graded Fa-algebra R.. Then Auty, (G4)(—)
is a functor from the category of graded algebras to the category of sets. An
element in Autp,(G,)(R.) is a power series f(z) € R.[[z]] satisfying the fol-
lowing three conditions: (i) f(z +y) = f(x) + f(y); (ii) the coefficient of =
in f(x) is equal to 1; (iii) that of z* is an element in Ry_;. Therefore for
f(z) € Auty, (G,)(R.) we have

f(z) :$+a1x2+a2m4+~~+amx2m+~-~ ,  where a; € Ryi_.

Let A, be the graded polynomial algebra generated by {&1,...,&,, ...} with
& € Agi_y. Such a power series is represented by a graded Fy-algebra homo-
morphism

X: A =Fa06,8&,...] — R.
defined by x(&;) = a;, and we have the natural isomorphism

(8) Hosz—alg(A*a R*) = AUt]Fg (Ga)(R*)v X = Z X(Si)xy,

=0
where §o = 1. A product of Autr,(Go)(R) is defined by (g- f)(x) = f(g(2)).
Then Auty, (G,)(R.) is a group, and thereby Auty, (G,)(—) is a functor to the
category of groups. This induces the coproduct map A : A, — A, ® A,. It is
easy to check A(£,) =Y 1 (&2, ®&;.

Consider a multiplicative operation 5 : H*(X) — H*(X) ® R.. The
classifying space BZ/2 is an H-space and the Hopf algebra H*(BZ/2) = Fy[z]
is nothing but the additive formal group. We can identify 5(z) as an element
in R,[[z]] and write it by fa(x).
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Lemma 4.1.  fz(z) is an element in Auty,(Gq)(Ry).

Proof. The product map a : BZ/2 x BZ/2 — BZ,/2 induces the commu-
tative diagram:

H*(BZ/2) ® H*(Bz/2) 2 H*(BZ/2)® R, ® H*(BZ/2) ® R,
xl l(x)xmo(lxuxl)
H*(BZ/2 x BZ)2) —2— H*(BZ/2 x BZ/2) ® R,
H*(BZ/2) A, H*(BZ/2) ® R,.

Therefore we see
Bxx1+1xxz) =a"of(x) = foa™(z) = flax1)+B(1xz) = f(x)x1+1x [(z).
|

Let x3 : A« — R. be the algebra homomorphism corresponding to fz(x)
in (8). For the multiplicative operations v in Section 2 and S,, in Section 3, we

obtain the algebra homomorphisms x : A, — H.H and xsg, : Ax — D[n],.
1AL

The map HAS°ANH =5 HAHAH induces
§:H.H=[S°, HANH], — [S°, HNHANH], =~ H.H® H,.H,

and H,H is a Hopf algebra. Then H*(X) is an H,H-comodule with ¢ :
H*(X)— H*(X)® H.H.

Theorem 4.2. x4 : A. — H.H is a Hopf algebra isomorphism.

_ Proof.  From Theorem 2.5, there exists a unique algebra homomorphism
Sy : H.H — DI[n], with the commutative diagram

HY(X) — H*X)® H.H

> ll®gn
H*(X) ® D[n]..
It induces the following commutative diagram:

A, X, g.H

From Corollary 3.8, g, is defined by xs, (&) = &[n]. For sufficiently large m,
there exists a number n such that xg, : H.H — D[n], is an isomorphism on
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« < m. Therefore x, is injective. Serre [7, §18, Théoreme 3| has shown that
the Poincaré series of H*H and H,H is equal to [[2, 1/(1 — > ~1), which is
the same as that of A.. Hence x, is bijective.

Next we prove xy is a Hopf algebra homomorphism. Since 1 is an H, H-
comodule map, the following operation is multiplicative:

Wel)otp=(1®6 oy : H(X) > H(X)® H.H® H.H.

Since (¢ ® 1) o 1) is two iteration of 1, we see X(yp1)op = (Xy @ Xy) 0 A.
Moreover we obtain x(1gsyoy = 00 Xy Since (¥ ®1) 01 = (1®46) o ¢, we have
the following commutative diagram:

X l lxw Xy

H,H — . H.H® H,H.

5. Appendix

Let D, . be the bigraded algebra [], -, D[n]. with D, , = Dn],. In
this appendix, we define a coproduct of some elements in D, ., and construct
algebra homomorphisms xp : A, — D, , and S:H.H— D, . which preserve
coproducts.

First we study a coproduct of D[n].. Define an algebra homomorphism
6m7n : An+m - Am & An by

S (107) w; ® 1 if 0 <i<m,
w; ) =
e 1Qwi—y, Um+1<i<n-+m.

Lemma 5.1. 0,5 (§;[n + m]) = Zogjgiffij[m] ® &j[n].  Especially
Sm.n(D[n + m].) C Dim], ® D[n]..

Proof. We prove the lemma by induction on n + m. For n+m = 1,
it is trivial. We now assume that the lemma is true for n + m < k. For
n+m =k + 1, we consider only the map &, r—n+1 because the map dj41,0 is
trivial. From Theorem 3.3 and g, 0 = v1 - vy,

&) = ¢y 6(@n-1,00 + Go_1,j-1)
Qn—1,jUn + (17%71,]'71
V1V * * - Up
=¢&ln =1+ &a[n — 1w, .

By this equality, we have
Onk—n+1(&5[k +1])
= Onge—nt1 (& K] + &1 [K]Pwi )
= Gn,k—n(&[K]) + Onk—n(&-11K]) O k—nr1 (Wh1) 7"
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By the induction hypothesis, this is equal to

S @lmeak-n+ S &0 n+edk-nwl,,
0<i<y 0<i’'<j—1
—_ Z ® 61 Z 5] z// ® {z// 1[ — n]w,:_ln_H
0<i<y 0<7 <5
=Y &.netk-n+1).
0<i<y
Therefore we have the lemma. O

From Lemma 5.1, we have obtained the coproduct 6y, , : D[n + m], —
D[m], ® D|n].. Next we investigate the multiplicative operation S,, : H*(X) —
H*(X) ® D[n]..

Lemma 5.2. Foru € HY(X), we have
dpPo(u) = Y wftegt e x S¢S (u),
11,02,500050n
where 0 < i), < q+Z?=k+1ij and ¢, :q—ikJrZ?:kHij forany 1 <k <n.

Proof.  We prove by induction on n. For n = 1, it is trivial by the defini-
tion of dj P;. We now assume that the lemma is true for n < k. For k 4+ 1, we
use the equality dj_ , Pxy1 = di P1dj Py by Lemma 3.1. Then we have

dy Py Py (u)

=di P, Z V52058 vt X Sgt - Sgth (u)

12,83,y ik 41

> AR - diP) O X diP(Sq" - Sq (w)

12 ...,ik+1
— Z ( ) . Uk 1 Ck+1<z Uq+zz+ Figp1—i quil (Sqig . ..Sqik+1 (u))>
12, skt

We have the first equality by the induction hypothesis, the second equality
by Steenrod and Epstein [8, VII, 2.6] and the naturality of dl, and the third

equality by Theorem 3.6. By deg(Sq® ---Sq™*+1(u))) = q + Z] £, ij, we have
0<ir <qg+>54 0, O

Corollary 5.3. Foru e H1(X), we have

Sp(u) = Z Sq1Sq' ... Sq'n (u) x wf“w;“ eyt

11,12,5--450n

whereogikgq—kzy:k“ij for any 0 < k < n.
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Proof. By the definition of S,, and Lemma 5.2, we see
Sp(u) = Q;,((I)d:zpn(u
= (’Ul"'Un)iq Z Uflllgz"'vfl" % Sququn(u)

11,8250y

= Z wl_le coewy ' x Sqt - St (u).

11,82, 50n

Here is a theorem which describes a relation between two iteration of S,,
and -

Theorem 5.4.
(Sm®idD[n]*)OSn = (idH*(X)®5m7n)o ntm : H (X)) — H*(X)®D[m],@D[n]..

Proof. Let u be an element in H4(X). From the definitions of S,, and
Om.n, and Corollary 5.3, we obtain

(Sm ®idpin),) © Sn(u)
= (Sm ®idppy.) Y Sg S (w) x witwy e wy

n

11,82, 4y0n

Z ST"L(‘S'q’L1 tee Sqi" (U)) X 'u)l_il w2_i2 R w;in

11,82, y0n

Z Z St - SgimSqit - Sqin () | x wiTt - wm

11,02,..050n J1sesdm

X wy twy e w

Since

S7L+7n (u) _ Z Sqil . Sqin+m (U) % wl—il . w;i:;jny
ila"'vin-l-m,

—iy,, —i2 —in+m)

e B
O (w1 wy Wy ) = Wy Wy, ™ @ Wy w,, ",

we have the result. O

In the same way as the proof of Theorem 4.2, we have the following two
commutative diagrams:

(9)

Ay A @ Ax H.H H.H® H«H
Xsn+ml lem ®xs, and 5n+ml lémmn
Sm,n 5m,n
D[n + m]« : D[m]« ® D[n]s«, D[n 4+ m]« D[m]« ® D[n].
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We define an element i in D, . by >~ §k[n], where §x[n] = 0for n < k. Then
we obtain the coproduct &,, — Z?;o 52_2 ®&; of §, induced by 0y, . We define
xs :As = Dy by 1, xs,,and S: H.H — D, , by [[, Sn. Then xg and S
preserve coproducts. Since x : A, — H, H is a Hopf algebra homomorphism,
we get the commutative diagram of formal Hopf algebra homomorphisms

A, Xs
~

Xap l D, .
-
H.H S

Remark. Since D, . is not actually a Hopf algebra, ys and S are not
Hopf algebra homomorphisms.
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