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Boundary identity principle for
pseudo-holomorphic curves
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Seong-Gi AHN

Abstract
We prove a boundary version of the Unique Continuation Principle
for pseudo-holomorphic curves. It is a consequence of the boundary
regularity of pseudo-holomorphic curves. which can be achieved by a
bootstrap method.

1. Introduction

In recent years, much interests are focused upon the study of almost com-
plex structures and the properties of pseudo-holomorphic mappings between
almost complex manifolds. The goal of this paper is to prove a boundary ver-
sion of the Unique Continuation Principle for pseudo-holomorphic mappings,
which is stated as follows:

Theorem 1.1. Let S be a connected Riemann surface with smooth
boundary 0S and let M be a smooth manifold with a smooth almost complex
structure J. Suppose that a pseudo-holomorphic map f : S — M is continuous
up to the boundary and that f is constant on an open arc v of 0S. Then f is
constant on S.

It is known that the interior Unique Continuation Principle is still valid
for pseudo-holomorphic mappings, that is, if f : § — M is constant on an
open subset of S, then f is constant on entire S. This is a consequence of
the vanishing theorem of a smooth mapping satisfying a partial differential
inequality, which is proved by N. Aronszajn ([2]) and Hartman-Wintner ([5]):

Lemma 1.1.  Let Q be a connected domain in R? containing 0. Suppose
that a smooth map f : Q — RN satisfies that

[Afl <CIDf

for a positive constant C' and that f(0) = 0. Then f =0 on Q if f vanishes to
infinite order at 0.
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Here, Af and D f represent the Laplacian and the gradient of f. To prove
Theorem 1.1., we first show that f is in fact smooth up to v by a standard
bootstrap. This yields a smooth reflection of f, which makes the problem an
interior one. Applying Lemma 1.1. to a smooth reflection of f, we can achieve
Theorem 1.1.

2. Preliminaries

Throughout this paper, an almost complex manifold means a C* smooth
manifold with a C°° smooth almost complex structure J.

Let M and M’ be almost complex manifolds with almost complex struc-
tures J and J’, respectively. A smooth map f : M — M’ is called a pseudo-
holomorphic map if its differential commutes with J and J’, that is

df o J = J odf.

Let Q be a domain in R™ and let f : @ — RY be differentiable to k-th
order on () for a nonnegative integer k. For a real number « € (0,1), we define
the (k, a)-Holder norm || f||,o of f by

I ) — I
fllka = > supD'f(@)|+ Y sup |D"f(x) — D' f(y)|

—_ «
<k ¢ | T|=k 7 o=yl

where I = (iy,...,i,) is a multi-index and D! = (9/0x,)" ---(0/0z,)"". De-
fine the (k,a)-Holder space C**(Q) on € by

CR(Q) = {f : |l < oo}

We denote by D and DT the unit disc and the upper half disc in C,
respectively, that is,

D={zeC:|z| <1}
and

DT ={zeD:Imz > 0}.

3. Proof of Theorem 1.1.

Fix zg € 7. Let p = f(29). Choosing local coordinates, we may assume
that f maps DT U~ into a neighborhood U of 0 in R?" and that f = 0 on ~
where v = {z € D : Imz = 0}. A C? function u on U is said to be strictly
J-plurisubharmonic if its Levi form L(X) := —d(J*du)(X, JX) is positive def-
inite, where J* represents the dual operator of J . We can also assume that
the complex structure J coincides with the standard complex structure Jg;
at 0 and J is sufficiently close to Js in C? sense on U so that the function
up = Y |w’|? is strictly J-plurisubharmonic on U, where (w?,...,w™") is the
standard coordinates of C® = R2?". In this situation, the following lemma
holds.
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Lemma 3.1.  There exists a constant C such that |Df(z)] <
C|Im z|~Y/2 for every z € DT, that is, f € C%Y/2(Dt U~).

Lemma 3.1. is a consequence of Theorem 1.1. in [3]. In fact, the authors of
[3] have proved the theorem in case when the target manifolds have integrable
structures. A crucial part of the proof is an estimation of the Kobayashi metric
of target manifold, which is also available for every almost complex manifold.
(See [4].) This implies that Lemma 3.1. holds by the assumption that wug is
strictly J-plurisubharmonic.

To prove the boundary regularity of f, we need some basic properties of
one variable d-equations. Let € be a domain in the complex plane C, and
take g and h in L} ., the space of locally integrable functions. We say that
0g/0%Z = h in the weak sense in Q if for every smooth function ¢ with compact

support in 2, we have
0
[ a1526) == [ bt

Lemma 3.2. A L} . function g on a domain Q is holomorphic if and

only if 0g/0z = 0 in the weak sense.

Lemma 3.3.  Take h € L*°(C) with compact support. Define a function

g by
1 h(¢) *
9(2) = 2m./C 2oL n g
for every z € C. Then the followings hold:
(a) 0g/0z = h in the weak sense.
(b) g € C%*(Q) for every 0 < o < 1 and every bounded domain 2 in C.
(c) For every non-negative integer k and every 0 < a < 1, g € C*¥+1:2(C)
whenever h € C**(C).

The proofs of Lemma 3.2. and Lemma 3.3. may be found in [1], for
instance.

Decompose the complexified tangent bundle TU ® C into the direct sum
of eigen-subspaces of Jg, i.e.
TU@C=T""a1""

where 79 and T%! are the bundles of subspaces corresponding to the eigen-
values i and —i of Jg, respectively. Similarly,

TU®C=T)"aT9!

where T}’O and Tg’l are the bundles of eigen-subspaces corresponding to the
eigenvalues ¢ and —i of J. Since J is sufficiently close to Js; on U, there exists
a R-linear bundle map p : T%9% — T%! such that

7% = {X +pu(X): X € THO}.
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Taking conjugates, the bundle T is the graph of fi : T%! — T'0, that is,
TO = {Y +a(Y): Y e 7%},

Decompose a vector X € TU @ C by X = X0 4+ X%! with respect to the
decomposition TU®C = TH0@T%!. Then the T -component of X is Y +7i(Y)
where

(3.1) Y = (I — )~ (X0 = u(X10),

Note that I — pji is invertible since p is sufficiently small on U, where I rep-
resents the identity operator. Since f is pseudo-holomorphic on DT, it follows
that f satisfies the equation

) aof
o3 % () o

by (3.1). Define a map f € C%1/2(D) by

flz) =

: (2) ifImz>0
{ f(z) ifImz <0.

Let ¢ be the map defined by

_ 6—’;(2) ifzeD\~
¢(z)_{30 if zen.

Let i, be the restriction of p on the space T)1° for every w € U. Then p,, is
smooth in w and pg = 0. Therefore, we have that

(3-3) s = O(f(2))) = O(If (2) = f(Rez)]) = O(|lm 2[*/?)

as z — 7, since f € C%Y/2(Dt U~). It follows that ¢ € L>(D) by (3.2),
(3.3) and Lemma 3.1. For 0 < r < 1, we denote by D, the radius r disc in C.
Choose a smooth function y with compact support in D such that y = 1 on
D.,.. Define a map v by

v = o [ XM g pag

Then 1) € C%¥(D) for every 0 < a < 1 and f — 1 is holomorphic on D, \ 7 by
Lemma 3.2. and Lemma 3.3. Since f — 1) is continuous on D, it is holomorphic
on D, and hence f € C%%(D,.) for every 0 < o < 1. Take o > 1/2 and let
B=a—-1/2>0. Since

()| = O(1f(2) = f(Re 2)]) = O(|Tm 2[*)

as z — v, it follows that ¢ € C%#(D,). Then f and ¢ are in C1#(D,) by
Lemma 3.3.
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Let ¢ be a C** map on D for k > 1and 0 < o < 1. Let p < 1 be a
positive real number. If we write g,(z) = g(pz) for |z| < p~*, then

lgollk0 < llgllzo + pllgllk,a-

Now, let q(z) = pf,). Then q € C1#(D,). We have already assume that .J
is so close to Jy: that ||g||L~ is small enough. Therefore, taking dilation by a
small constant p if necessary, we may assume that ||g||1 s is sufficiently small.
Then f € C%P by [6, Proposition 2.3.6]. Therefore, ¢ € C?#, f e3P and so
on. Altogether, we have proved the following proposition.

Proposition 3.1.  Under the assumption for f : S — M imposed in
Theorem 1, f is smooth up to ~.

Again, we assume that f maps DT into U, a neighborhood of 0 in R?",
vy={2€D:Imz =0} and f = 0 on 7. Since f is pseudo-holomorphic, it
satisfies that

of _;onof

(3.9 5, =705,

on DT, where z = z + iy is the standard coordinate of C. Differentiating (3.4)
in y,

’f 0 of 0*f
(35) S = 5N+ I
In a similar way, we have

0? 0 0 ok
(3. S = UG I
Adding (3.5) to (3.6), it follows that f satisfies the equation

0 of o of

(3.7) Af—a—y(J(f))%‘F%(J(f))a—y—o

on DT. Since f is smooth up to v and f =0 on v, df/0z = 0 on 7. Therefore,
df /0y = 0 on v since f is pseudo-holomorphic. The second order derivatives
02 f /02* and 02 f /020y also vanish on v. Then 9? f /dy? vanishes on « by (3.7).
Inductively, it follows that all the derivatives of f vanish on 7. Therefore, if we
define a map f; on D by

ifImz>0
if Imz <0,

[ @)
ra=1 10

then fi is smooth on D and it vanishes to infinite order at 0. Moreover, Taking
C = 2supp+ |D(J(f))], f1 satisfies the differential inequality

IAf1] < C|D f1].
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This implies that f; vanishes identically on D by Lemma 1.1.

Now, let f be a pseudo-holomorphic map on a connected Riemann surface
S with smooth boundary 05. If f is constant on an open arc v of 95, then the
previous arguments imply that f should be constant on a neighborhood of a
point zg € . Therefore, Theorem 1.1. follows the interior Unique Continuation
Principle for pseudo-holomorphic curves.
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