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Positive definite class functions on a topological
group and characters of factor representations
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Introduction

In this paper, we prove four important theorems in the general theory
of representations of topological groups. The first one is the combination of
Theroems 1.5.4 and 1.6.1, and the second one is Theorem 1.6.2 in Section 1.
The third and the fourth ones are Theorems 2.6.1 and 2.6.2 in Section 2. Let
us explain a little more in detail.

1. Let G be a Hausdorff topological group, P(G) the set of continuous
positive definite functions on G, K(G) the set of f € P(G) which are invariant
under inner automorphisms on G, K;(G) the set of f € K(G) normalized
as f(e) = 1 at the identity element e € G, and E(G) the set of extremal
points in the convex set K;(G). For each f € P(G) normalized as f(e) = 1,
Gelfand-Raikov [GR] constructed a cyclic continuous unitary representation (=
UR) 7y with a unit cyclic vector vy such that f(g) = (7s(g9)vo,v0) (g9 € G)
(cf. 1.2 below). Let m be a UR of G, and 4 = 7(G)” the von Neumann algebra
generated by 7(G) = {n(g); g € G}. Assume that 4 has a faithful normal finite
trace t on the set Ut of non-negative elements in 4. The unique extention of ¢
to a linear form on 4 is denoted by ¢ = ¢;, and the function

(1) flg) =9(n(9)) (9€Q)

is continuous in g (Proposition 1.5.1) and positive definite and invariant: f €
K1(QG).

Let m; and 72 be two URs of G, and ; = m;(G)"” (i = 1,2) the von Neu-
mann algebra generated by m;(G). We say that 7 and 7y are quasi-equivalent
if there exists an isomorphism @ from i{; onto i, as *-algebras such that
®(m1(g)) = ma(g) for g € G.

Theorem A (from Theorems 1.5.4 and 1.6.1).  Let m be a continuous
unitary representation (= UR) of G such that the von Neumann algebra 34 =
7(G)" has a faithful normal finite trace t on the set Ut of positive elements.
Normalize t as t(I) = 1 and put f = ¢pon € K1(G) as in (1). Then, UR «
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is quasi-equivalent to the UR my associated to f in [GR] (cf. 1.2 below). An
isomorphism @ from Y to Uy = 7;(G)" can be given explicitly.

A UR = is called factorial if 4 is a factor. If the factor is of finite type,
there exists a unique faithful finite normal trace ¢ normalized as ¢(I) = 1. Then
the function f(g) = ¢(n(g)) € K1(Q) is called a character of . Our second
main theorem (Theorem 1.6.2) says the following.

Theorem B.  For a Hausdorff topological group G, let URH(G) be the
set of all quasi-equivalence classes of URs of G, factorial of finite type. Then
there exists a canonical bijective correspondence between URH(G) and E(G)
through (1) above.

In [Dix2, 17.3], the above canonical bijection is asserted under the condition
that G is locally compact and unimodular.

2. Now let K<1(G) D K;1(G) be the set of f € K(G) such that f(e) <
1. Then the set of extremal points of K<1(G) is the union of E(G) and 0.
In the case where G is locally compact, it is known that the weak topol-
ogy o(L*>®(@),LY(G)) in K1(G) is equivalent to the compact uniform topol-
ogy (cf. [Dix2, 13.5]), and that the convex set K<1(G) is weakly compact
(cf. [Dix2, 17.3]). We extend these results to the case where G = lim,, o G,
is the inductive limit of a countable inductive system G| — Gy — --- — G,, —

- of locally compact groups, where each homomorphism from G,, into G,, 41
is assumed to be homeomorphic. In [TSH], this kind of inductive system is
called a countable LCG inductive system and there were proved that G with
the inductive limit topology 7,4 becomes a topological group and that G has
sufficiently many continuous positive definite functions and sufficiently many
unitary representations.

For this kind of group G, let C be the family of compact subsets of G, B¢
the o-ring generated by C, and M (G) be the space of bounded measures on
(G, B¢). Further let Cy(G) be the space of bounded continuous functions on
G, then Cy(G) D K(G) and we have a natural pairing of C,(G) and Mc(G)
through integration.

The principal parts of our third and fourth main theorems (Theorems 2.6.1
and 2.6.2) are stated as follows, which are generalizations of the corresponding
results in the case of locally compact groups.

Theorem C. Let G be the limit group of a countable LCG inductive
system with the inductive limit topology Tina. Then the convexr sets K<1(G)
and K1(G) are compact in the weak topology o(Cp(G), Mc(G)).

Theorem D.  Let G be as in the above theorem, and P(G) the set of all
continuous positive definite functions on G. Then, on every bounded subset of
P(G), the weak topology o(Cyp(G), Me(Q)) is equivalent to the compact uniform
topology.

By Theorem C, there holds for the compact convex set K1 (G) and the set
of its extremal points F(G) the integral expression theorem of Choquet-Bishop-
K.deLeeuw (Theorem 5.6 in [BL]), which will be applied in [HH2].
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3. We know that general theories for traces of von Neumann algebras and
C*-algebras and for characters of their factor representations have been well
studied and also well exposed in several text books such as [Dix1], [Dix2] and
[Pede]. However, for the level of topological groups, the situation is not yet
satisfactory at the point connecting the theory for representations of groups to
those of von Neumann algebras and C*-algebras. Thus we prepared this paper.

We will apply the results in this paper to our succeeding work for determin-
ing explicitly all the characters of factor representations of finite type for the
wreath product group G = 6, (T) of a compact group T with the infinite sym-
metric group &,. This group is the inductive limit of G,, = 6,,(T) 2 T" x &,
and is not locally compact if T is not discrete.

1. Positive definite functions and characters of factor representa-
tions

1.0. Positive definite functions on a topological group

Let G be a Hausdorff topological group, and P(G) the set of all continuous
positive definite functions on G. For an f € P(G), we have f(g~!) = f(g), and
Krein’s inequality [Krei]

1f(9) = F(W)? < 2f(e){f(e) = R(f(gh™")} (g9.h€G),

where e denotes the identity element of G. Define the kernel of f as Ny := {g €

G; f(g9) = f(e)}, then, f(gk) = f(kg) = f(g) (k € N¢,g € G), and especially
N¢ is a group. The intersection N = ﬂfep(G) Ny is a closed normal subgroup

of G. Introduce in the quotient group G := G/N the quotient topology, then
any f becomes a continuous positive definite function on~(~¥ , and any continuous
unitary representation (= UR) of G becomes a UR of G.

In this paper we study continuous positive definite functions on a group G
and URs of G, so it is essentially sufficient for us to consider G in place of G. The
quotient group G has sufficiently many continuous positive definite functions
and sufficiently many URs. Furthermore for any two different g, h € G, there
exists a continuous positive definite function f such that f(g) # f(h), because
they can be separated by a UR.

A Hausdorff topological group is completely regular as a topological space,
and we may ask if it has sufficiently many URs, what kind of characterization
is possible as a topological space.

1.1. Weak topologies and representations

Let G be a topological group with a Hausdorff topology 7¢, and assume
that it has sufficiently many positive definite functions. Denote by C(G) the
space of all bounded continuous functions on G, and by B(G) the o-field of
Borel measurable subsets of G. Since we do not know much about the topolog-
ical characterization of such a group, we introduce here a sub-o-field B°(G),
the smallest o-field making all ¢ € C,(G) measurable.

Denote by My(G) (resp. M (G)) the space of all bounded Borel measur-
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able (resp. BY(G)-measurable) functions on G, by M, (G) (resp. MY(G)) that
of all bounded complex Borel measures (resp. B°(G)-measures) on G, and by
§(G) the space of finite linear combinations of unit point masses J, giving a
mass 1 on a point g € G. Then M,(G) D MP(G) D Cy(G) D P(G), and P(G)
separates any two points of G. Put

[¥[] = supgeq [¥(g)] (¥ € My(G)),

2
? Il = 9Py <1 pemnn O] (1 € M(G)).
The norm ||¢|| is natural on the space Cy(G), and ||u|| is natural on the space
My (G). Put [|pllo = supj, <1 [#(p)], where ¢ varies in Cp(G), then it gives a
norm on MY (G) but may not be a norm (but seminorm) on My(G), because
functions in Cy(G) may not be able to separate two measures in 9, (G) in the
case where BY(G) & B(G). In that case, we have a question: Under what
condition, can any pu € img(G) be uniquely extended to a Borel measure in
My(G) ?

For a real-valued ¢ € My(G), put u(¢) = (Ru)(¥) + v—1(Sp)(¢), and
define real-valued measures Ru, Su. Put |u| = |Rp|+|Su|, then ||p]] < [ pl]] <
2||u||- We consider a pairing between 9, (G) and M, (G) given by

(3)  IM(G) x My(G) 3 (1, ) — () = () = /G ¥(g) dulg) € C,

and denote by o(IMy(G), My(G)) the weak topology induced on M (G), and
also by o(9(G), Cy(G)) the one obtained by restricting My,(G) to Cy(G).

Lemma 1.1.1.  The space of point masses F(G) is everywhere dense in
M,(G) (resp. MY(Q)) in the weak topology o(My(G), My(Q)) (resp. o(MY(G),
MP(Q))). Moreover let By, be the bounded subset of My(G) (resp. MY(G))
defined by |||p||| < L, then F(G) N By, is dense in Br,.

Proof. Take a p € My(G). For a real valued function ¢ € My(G), the
integral u(y) = [, ¥(g)du(g) is defined as follows. For a < b in R, put
[a < <b ={g9 € G;a < ¥(g) < b}. For an integer n > 0, we take a
finite decomposition A,, of G given by E,; = [i/n < ¢ < (i + 1)/n], and
then corresponding to a choice of elements g, ; € E, ;, we define a Riemannian
sum as ¥, = >, V(gn,i) #(Eni). Then [,1(g) du(g) = limy, o Xa,. Put
i = (En,i), then we have ¥a, = pn (1) with p, = >, an iy, , € F(G) and
N(¢) = limy, o0 ,Un(w)-

A fundamental neighbourhood of p is given by a finite number of real
Y € My(G),1 <k < N,and € > 0 as U(y; (¢r);e) = {v € Mp(X); (1 —
v)(¢r)| < e (Vk)}. Considering a measurable decomposition of G finer than any
of {[i/n < < (i+1)/n]},1 <k <N, and a Riemannian sum corresponding
to it, we see that the neighbourhood U(u; (¢x); €) contains an element in F(G).

For the denseness of F(G) N By, in By, it is enough to note that |||u.|l| <

22 (1Rl + 1Sul) (Bn.e) = [[lulll- .
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Remark 1.1.1. A Hausdorff topological group is necessarily completely
regular, and for a point g and a closed set F' not containing g, there exists a
continuous function ¢ € Cy(G) such that ¢(g) = 0 and ¢ = 1 on F'. This means
that the weak topology o(9(G), Cp(G)) restricted on F(G) is Hausdorff.

Suppose that the weak topology o(9M,(G), Cy(G)) is not Hausdorff. Put
A(G) = {u € MG)ulg) = 0 (¢ € G(G))}. Then, AG) NF(G) = {0},
and any o(9M(G), Cp(G))-continuous linear form F on F(G) can be extended
uniquely to a continuous linear form F’ on M, (G)/R(G) and so such a one F”
on My (G) vanishing on K(G).

A unitary representation (= UR) 7 of G on a Hilbert space $ = V(x) is
by definition assumed to be weakly continuous, that is, for any vy, v € $), the
map G 2 g — (mw(g)v1,ve) € C is continuous. In other words, let 7, be the
weak topology in the space B($)) of all bounded linear operators on $, then
the map G 3 g — 7w(g) € B(H) is continuous in 7¢ and 7.

We define 7(u) for p € 9MM,(G) by the following integral which converges
in 7,:

@ (rlp)or,n) = [ (rta)or,va)duta) (on,00 € V),
Lemma 1.1.2.  The map M,(G) > p— 7(p) € B(H) is continuous in
the topologies o(IMy(G), Cu(Q)) (or (M (G), Mp(G))) and Ty.

We also consider the ultra-weak topology Ty., (resp. ultra-strong topology
Tus) o0 B($) which is defined by the family of seminorms given by

S(T) = | icicolTon i) (resp s(T) = (Dicpcne IT0i]2) )

for every series v; € 9, ;5 [[vi[|> < 00. Then, on every bounded set of B(§),
the topology T, coincides with the one 7,,. Since |7 (u)|| < |||, we see from
Lemma 1.1.2 the following.

Lemma 1.1.3.  The map p — w(p) is continuous in o(My(G), Cp(G))
(or a(M(G), Mp(Q))) and Ty, on every bounded subset (with respect to ||u|]).

For € 9My(G), put p*(v) = p(y*) with ¢¥*(g) := ¢¥(g~"'). Further we
wish to introduce in 9M,(G) (or MI(G)) a convolution product puy * ps for
fu1, o € My(G) (resp. MY(G)) by

(5) (i1 * 12) () = / [ vlon) din (o) ()

for any ¢ € My(G) (resp. ¥ € Cy(G)). If this is possible, then IM,(G) (resp.
MY (G)) becomes a *-algebra.

To check this possibility, we should analyse the measurability of the prod-
uct map A : GXG 3 (g1,92) — g192 € G. For a o-ring B(G) of subsets of G, we
say that (G, B(G)) is a measurable group if the inverse map G 39 — g ! € G



360 Takeshi Hirai and Etsuko Hirai

and the product map A are measurable. Let 9,(B(G)) and M,(B(G)) be
the spaces of bounded measures and that of bounded measurable functions on
(G, B(G)) respectively.

If B(G) x B(G) = B(G x G), then (G, B(G)) is measurable.

Lemma 1.1.4. Let (G,B(G)) be a measurable group. Assume that
My(B(G)) can separate any two points of My(B(Q)), then the formula (5)
for ¢ € My(B(G)) defines the convolution product and My(B(G)) becomes a
x-algebra.

In this case, for ¥ € M,(B(G)), the integration on G x G in the right hand
side of (5) can be rewritten as an iterated integral. Hence, for a UR 7 of G,
w — () gives a representation of x-algebra 9, (B(G)). If B(G) C B(G), then
M, (B(G)) C My(G). We have a question: Under what topological condition on
G, is (G,B(Q)) or (G,B°(G)) a measurable group ?

Note 1.1.2. (i) Representations of measurable groups were studied in
[Mack].

(ii) A weak topology similar to (9, (G), Cy(G)) is utilized in the definition
of hypergroups in [BH, §1]. However the base spaces for hypergroups are always
assumed to be locally compact.

1.2. Construction of cyclic representations

Let P1(G) be the set of f € P(G) normalized as f(e) = 1, and £(G) the
set of extremal points of the convex set P;(G). Take an f € P1(G). As in
[GR], we introduce in F(G) an inner product by

6)  (uopa)y = F(ug ) = //G ) dulon) i ()

//GXG ~lg1) dp(gy) diz(g2),

where fi3(¢) == p2(¥). Put Jp = {p;(p1,p)y = 0 (Vun € F(G))}, then Jy
is a left ideal, and a positive definite inner product, denoted by (ulf , ,u2f )£, s
induced on §(G)/Js, where le denotes the canonical image of y; in §F(G)/Jy.
Here we have

(7) (050 0g0) £ = (39, 092) 5 = flg2 ')

This inner product is invariant under left translations L(g), where L(go)u(g) =
(g0 "9) (90 € G), and the latter induces a unitary representation 7; on the
completion $ of F(G)/Js. This UR is, above all, continuous thanks to the
continuity of f, and have a unit cyclic vector vg = 6/, and f is recovered from
mr by f(g) = (m¢(g)vo, vo) s-

For an f € P1(G), the UR 7y is irreducible if and only if f is extremal in
P1(G) or f € E(Q) (|GR, Theorems 1 and 2]).

The representation 7y generates a von Neumann algebra iy = m¢(G)".
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Properties of 7;. (i) Any matrix element F,, .,(9) = (m(g)v1,v2) s
(v1,v2 € $y) is continuous in g as a uniform convergence limit of linear com-
binations of f(g, 'gg1) = (ms(9)d,,0,) (91,92 € G), and moreover F,, ,, is
bounded.

(ii) For p € My (G), the operator ms(p) is defined weakly by (m(u)vi, va) ¢
= Jo Fo 0,(9) du(g). Since (m(u)vi,mp(g')va)s is continuous in ¢’ and is
bounded, we have for v € M, (G),

(8) (e (v, mp(v)va) s Z/de*(g')/GFvl,vz(g’g) dp(g)-

Proposition 1.2.1. (i) For p € My(G), the integral [ f(g'g) du(g) is
bounded and continuous in ¢’ € G, and for p,v € My(G),

(9) /Gdu*(g')/cf(g’y) dp(g) = (mp(u)vo, mp()vo) s = |ms(w)voll f = 0,
(10) (1 ()0, 7 ()0} s = /G dv(g) /G £(d'9) dulg).

(ii) The integrals (9) and (10) can be rewritten as a double integral on
G x G if f(g'g) is (B(G) x B(G))-measuradble in (¢',g), and it is the case if
A7LY(BY(G)) C B(G) x B(G) orif (G,B(G)) is a measurable group.

Remark 1.2.1 (Equivalence to GNS construction). Let G be locally
compact and C.(G) the space of continuous functions on G with compact
supports. Denote by dg a left-invariant Haar measure on G and let A(h) =
d(gh)/dg (h € G) be the modular function. Introduce in C.(G) two operations

o) =A@ P, prlg) = /G o(h~tg) () dh,

for ¢, € Cu(G). Then, "1y = llells, o+ wlls < il 1]l for the Li-norm
|- |l1, and C.(G) is a *-subalgebra of the »-Banach algebra L(G). The spaces
C.(G) and L*(G) are embedded naturally into 9, (G) through v(g) — ¥ (g)dg,
and the norm |[¢)(g)dg|| is equivalent to ||9)||;.

In this case, the so-called GNS construction of a cyclic representation,
associated to an f € P1(G), is given by using integration with respect to a
Haar measure. We remark here that the UR obtained by GNS construction is
equivalent to the previous Gelfand-Raikov representation (7s, ) constructed
by using §(G) but not integration.

Fix an f € P1(G). Introduce in C.(G) a positive semidefinite inner product
as

(1, )y = / /G 0T @RI dgdh (v € CAG) )

Let J} be the kernel of (-, - )’f, and take a quotient C'C(G)/J}. Completing it
with respect to the positive definite inner product, we get a Hilbert space f)'f.
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The left multiplication of C.(G) generates a representation 7' of Cc(G) and
also a UR of G on .‘?)’f.

We define a linear map ®’ of C,(G) into $y, the completion of F(G)/Jy,
as follows. As an operator-valued function on G, G 3 g — 7s(g) is weakly
continuous and, since 7¢(g)’s are unitary, is strongly continuous. So, for ev-
ery ¢ € C.(G), the operator-valued integration (1)) = [, ms(g)(g)dg is
strongly convergent and ||7s(¢)| < ||¢]]1. It defines a representation of -
algebra C.(@) and also of L'(G) on the space $¢. For vg = §/ € 9y, put
(I),(w) = Wf(w)v()- Thena for 1#171/)2 € CC(G),

(@' (1), B (1h2)) = /G /G 1(9) B2(h) {5 (g)vo, 7 (R)uo) 5 dg dh
- /G /G Un(9) Do () f(h—Yg) dgdh = (r, 1)

Hence @' induces a linear map ®” from C.(G)/J} into $; which can be ex-
tended to an isomorphism @ : Y)’f — ¢ of two Hilbert spaces.

(o) The extended linear map ® : 'y — $Hy intertwines two unitary repre-
sentations ' and 7y of G as @ -7i(g) = ms(g)- P (g € G).

The inverse isomorphism ®~! from § to 9’ is given already in [GR]. Let
{V'} be the net of all relatively compact neighbourhoods of e € G with the
order of inclusion. Take functions ¢y € C.(G) such that ¥y > 0, supp(¢y) C
V. Jg¥v(9)dg=1. Then,

I (v Yoo—voll? = / /G wpla)un o, my (k) —oa) vy (g)v (W) dg i — 0

in Hy as V — e. Corresponding to this strong convergence of 7 (¢y )vg to vg,
through the isomorphism ®~!, the image of ¥y in C.(G)/J J’c converges strongly
to an element £y = @71 (vg) € 9. To prove directly this strong convergence of
Yv + J} in H is not so simple and it is given in the proof of [GR, Theorem 4,
p.7].

1.3. Normal traces on von Neumann algebras

Let $ be a von Neumann algebra contained in the algebra B($) of all
bounded linear operators on a Hilbert space $), and 4T be its subset consisting
of all non-negative operators. A trace t on 4" is by definition a map to R>q U
{400} such that t(S+T) = t(S)+t(T) (S,T € U™), t(A\T) = \(T) (A >0,T €
UT) and t({UTU 1) = ¢(T) for any unitary element U € L. It is called finite
if t(9) < +oo for any S € UT, and semifinite if, for each S € U*, ¢(S) is the
supremum of ¢(T') for those T' € Ut such that 7' < S and ¢(T) < co. It is called
faithful if £(S) = 0 for an S € YT implies S = 0.

A semifinite trace t on 4T is called normal if, for each increasing net T,, of
Ut with supremum S € UT, ¢(S) is the supremum of ¢(7,). A positive linear
form ¢ on 4 is called normal if ¢ = ¢|y+ is normal. A trace ¢’ is said to be
majorized by t (notation: ¢ < t) if ¢/(T) < ¢(T) (T € U*) or t — ¢’ is again a
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trace. A finite trace ¢t on YT can be extended uniquely to a linear form ¢ = ¢,
on L.

On a factor, two semifinite faithful normal traces are proportional ([Dix1,
1.6.4]).

Lemma 1.3.1 ([Dix1, 1.4.2]).  For a positive linear form ¢ on a von
Neumann algebra U, the following conditions are mutually equivalent:

(i) ¢ is normal;

(ii) ¢ is ultra-weakly continuous;

(i) 6(9) = ¥y o (Svir0i) (S € 1) with 3, o, loi]2 < oo.

Lemma 1.3.2 ([Dix1, 1.6.4]).  Let 3 be the center of il and t a semifinite
normal trace on UT. For a fized A € 3,0 < A < I, put to(T) = t(AT) (T €
UT). Then it is a normal trace majorized by t : t4 < t. Conversely any normal
trace majorized by t is given in this form.

Moreover we need the following fact which we quote from [Dix1] for exact-
ness:

Lemma 1.3.3 (from [Dix1, 1.3.3, Theorem 1]).  Let M be a ultra-weakly
closed linear subspace of B(9), M* the dual of the Banach space M, M, the
ball |T|| <7 of M, and ¢ a linear form on M. Put wy o(T) = (Tx,y) (z,y €
9).

i) The following conditions are equivalent:
i1) ¢ is weakly continuous;
i2) ¢ is strongly continuous;

13) ¢ = Zﬁnite Wai,y; -

(
(
(
(
(ii) The following conditions are equivalent:
(iil) ¢ is ultra-weakly continuous;
(ii2) ¢ is ultra-strongly continuous;
(l3) @ =D 1cicoo Wriwr With 31 0 lzi]|* < +o0, Di<icoo lyall> <
~+00;

(ii4) [resp. (iib)] The restriction of ¢ on My is ultra-weakly (resp. weakly)
continuous;

(ii6) [resp. (ii7)] The restriction of ¢ on My is ultra-strongly (resp.
strongly) continuous.

1.4. Factoriality of the representation 7y

For an f € P(G), we give in 1.2 a cyclic UR 7y on the Hilbert space $,
which is the completion of §(G)/J¢, with J; the kernel of the Hermitian form
(,v)p = f(v" x ), p,v € F(G) (cf. [GR]).

Let K(G) be the set of all continuous positive definite invariant functions
on G, K;(G) the subset of K(G) consisting of all normalized ones as f(e) =1,
and E(G) the set of all extremal points in the convex set K1(G). For two
positive definite functions f and f’, we say that [’ is majorized by f (notation:
fr < f)if f— f is again positive definite. If f is continuous, then any f’
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majorized by f is automatically continuous [GR, p.3]. For f, f’ € K(G), we
say that f’ is majorized by f (notation: f' < f) if f — f’ is again in K(QG).

Suppose f € K(G) C P(G). Then the kernel Jy is a two-sided ideal
and the inner product is invariant not only under left translations but also
under right translations R(go), where R(go)u(g) = p(g9g0). They induce a UR
on 5 denoted by py, which generates von Neumann algebra By = p¢(G)”
(bicommutant). It is proved that U is equal to the commutant algebra (Lly)’
of y = m4(G)"” (cf. Remark 1.4.1). The common center 35 = Uy N Vs of Ly
and Uy is descrived as follows (cf. [Tho, Lemma 2]).

Lemma 1.4.1.  Let 3}' be the set of positive hermitian operators in 35 =

UrNBy. Then there exists a bijective correspondence between 3}' and the subset
M(f) C K(G) given as

(11) M(f)={f € K(G); f' 2 \f for some A >0}.

The correspondence C — ' is given by f'(ps' % p1) = (1, p2) pr = (Cpuf, ,u2f>f.
Proof. Take an f' € M(f), then A\f — f' € K(G) for some A > 0, and
50 0 < (p, ) ;7 < A, ). Therefore there exists a unique positive hermitian

operator 0 < C' < A on $y such that (p1,p2)s = (Cufi ,,u2> (1, o €
(@)). Then, for py, pe € §(G) and g € G,

(L(g)pa, L(g)p2) g = (pa, p2) g5 (R(G)pr, R(g)p2) pr = (pas p2) 7

Therefore C' € Wy NV, = By Nty = 3¢, whence C € 3f+.
Conversely take a C’ c 3 . Put

£'(9) = (Cms(g)vo,v0) s = (m(9)VCrvo, VCuo)y (g €G)

with vg = 6ef . Then f’ is continuous and positive definite. Since C' and so v/C
commute with left translations m¢(go), go € G, we have

f f
(12) f/(g) = <\/57Tf(gog)6efa \/aﬂ-f(go)aef>f = <\/6(6909) ’ \/5(590) >f
Since v/C' commutes with right translations ps(g1), g1 € G, and since R(g1)d, =
0 -1, we get

f'(9) = (VC(,5-1) VT8, )Y, = Flrg97"),

by (12), whence f’ is invariant. Moreover, ||C|| f—f"is posmve definite because,

(ICN f = £')(g) = (m(g) Dvo, Dvo) § with D = /[[C[[ I — C. Hence f" € M(f).
O

Thus the center 37 = U;NY is reduced to CT if and only if any f' € K(G)
majorized by f is a scalar multiple of f. This gives us a criterion for that the
representation 7y is factorial or the von Neumann algebra iUy = 7¢(G)" is a
factor. Recall that a von Neumamm algebra 4 is called a factor if its center
SN is trivial.
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Theorem 1.4.2.  Let f € K{(G). Then the representation my is fac-
torial (of finite type) if and only if f is extremal or f € E(G). If my is fac-
torial, then it is of finite type, and the unique normalized faithful finite nor-
mal trace of Uy = mp(G)" is given as ¢(T) = (Tvo,vo)s, and there holds
f(u) = (mp(p)vo, vo) s (1 € My(G)) with vo = 5.

For a von Neumann algebra U on a Hilbert space ), a vector a € §) is
called in [Dix1, 1.6.3] a trace-element for U if w,(T) := (Ta,a) (T € V) is a
trace on Y. Thus the unit vector vg = ./ is a trace-element for 8y = 7;(G)".

Remark 1.4.1.  For the completeness, we give a proof for ({s)" = Uy.
Let A be an associative algebra over C' with an involutive anti-automorphism
x — x*, and a positive definite inner product (x|y) which makes it a pre-
Hilbert space. We call A a Hilbert algebra if it satisfies the following axioms
([Dix1, L.5)):

(i) (zly) = (y"|z");

(il) (zylz) = (ylz*2);

(iii) For any x € A, the map A 3 y — ay € A is continuous ;

(iv) The set of elements xy (z,y € A) is total in A.

Denote by $ the Hilbert space obtained by completing 4. The mappings
y — xy, y — yx extend uniquely to elements U,,V, in B(H) respectively. By
(iv), the weak closure of the set U, (resp. V,.), z € A, gives a von Neumann
algebra $1(.A) (resp. U(A)). Theorem 1 in [Dix1, 1.5.2] asserts that

(13) SU(A) = B(A), B(A) = U(A).

In our present situation, for a fixed f € K(G), put A = §(G)/Jy with the
two-sided ideal J; and, for z = py and y = p init, (xfy) = (u, u2f>f. For
the axiom (iii), put z = v, then U,z = zz = v/ pf = (vspy)f = 7rf(1/),u1f and

(zzly) = /G ()i, )5 dv(g),
(zeely)] < /G (s (@ud 1) 51 dlv|()

< /G i N5l U5 dll(g) = Co Nl 1yl

with C, = [v|(G) and |lz]| = [|u||s. We see from |(zzly)| < C, ||| |y| that
lzz|| < C, ||z|| and so |U,|| < C,, whence the axiom (iii).

In this case, we have U(A) = Uy, B(A) = Uy, and (13) above gives (L) =
U as is desired.

1.5. Standard realization of URs with finite normal traces

Let m be a UR of G and 4 = 7(G)” the von Neumann algebra generated
by 7(G), and 3 the center of 4. Take a finite trace t on 4T, if exists, and extend
it uniquely to a linear form ¢ = ¢, on 4 and put

(14) flg)=¢(x(9) (9€0).
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Proposition 1.5.1.  The function f = ¢ omw on G is positive definite
and invariant. Suppose t or eqivalently ¢ is normal. Then f is continuous and
s0 f € K(G), and for ji € M(G), we have d(r(1)) = f() = [, f(9) du(g).

Proof. The positive definiteness of f comes from that of ¢. Further, since
$(5192) = $(5251), we have f(g192) = f(g2g1) (91,92 € G), or f(g1929, ") =

f(g2).
For the second assertion, note that the map G > g — w(g) € B(9) is

weakly continuous, and that ¢ is ultra-weakly continuous by Lemma 1.3.1 and
so weakly continuous on every bounded set by Lemma 1.3.3 (ii). Then f is
continuous, as a composition of two continuous maps.

The map M (G) 3 u — w(w) € B(H) is continuous for o (M (G), My(G))
and 7, on the bounded set By by Lemma 1.1.3. Then, by Lemma 1.3.3 (ii),
the linear map p +— ¢(m(n)) is continuous on Br. On the other hand, the map
w— f(u) is continuous by itself. Two maps ¢(7(u)) and f(u), both continuous
on By, coincide with each other on the subspace §(G), and since By, NF(G) is
dense in By, by Lemma 1.1.1, they are identical. O

Let m be a UR of G, t its faithful normal finite trace on U = w(G)"
normalized as t(I) = 1, ¢ = ¢, and f = pom € K1(G). Let us compair these
things with the corresponding ones for the cyclic representation (7, ) in 1.2
associated to f.

First introduce in 4 a Hermitian inner product by

(15) <T1,T2>¢ = ¢(T2*T1) = ¢(T1T2*) (T],TQ S 11)

Then, since ¢ is faithful, we have ||T||¢2 =(T,T)y =t(T*T) > 0 for any T # 0.
Therefore i becomes a pre-Hilbert space which we denote by 4% and a T € U
considered as an element of 4% is denoted by T'¢ (but we omit the superfix ¢ if it
is too cumbersome). The Hilbert space obtained by completing 4? is denoted
by $%. Note that if ||T|| < M, then 0 < T*T < M? [ with I the identity
operator, and 0 < ¢(T*T) < ¢(M?1) = M? $(I) = M2, whence ||T||s < ||T.
The identical injective map T — T¢ = T from (84, - ||) into (9%, - ||4) is
continuous with dense image.

On 4, we have the right regular representation Ug and the left regular
anti-representation Vg (S € 4l) as

(16) Us(T) := ST, Vs(T):=TS (T € ),
and, on the level of group representations, L,(g) and R;(g) given by
(A7) Lx(9)T :=n(9)T, Ra(9)T :=Tn(9~")=Tn(g9)" (g€ Q).
Then we have, for S € i such that ||S|| < M,
[Us(D)||§ = &((ST)*(ST)) = ¢(TT*S*S) < (M - TT*) < M*¢(TT™),

whence [|Us(T)||y < M ||T| g, because 0 < TT*S*S < M?-TT*. This means
that ||Us(T?)|ls < ||IS|||T?]l4, and so ||Us|| < ||S||, where ||Us|| denotes the
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operator norm on the Hilbert space $®. Hence Ug is _continuous in the norm
|l - llg- Its natural extension onto $¢ is denoted by Us. Similarly we have a
natural extension Vg of Vs onto $%. On the other hand, L,(g) and Ry (g) are
both unitary on ue, and can be extended respectively to unitary representations
L.(g) = Unr(g) and R.(g) = Vw(g)* on H?.

Here we quote for exactness two fundamental facts from [Dix1] as follows.
For von Neumann algebras A4 and B, a map ® from A into B is called a ho-
momorphism (resp. anti-homomorphism) if it is a homomorphism (resp. anti-
homomorphism) for the x-algebra structures of 4 and B.

Lemma 1.5.2 ([Dix1, I.1.5, Proposition 8]).  Let A and B be von Neu-
mann algebras and ® a homomorphism or anti-homomorphism of A into B.
Then,

(i) @(A") c BF;

(ii) If E is a projection of A, ®(E) is a projection of B;

(iii) For each S € A, we have || ®(S)|| < ||S|; if ® is injective, we have
@S = [I5];

(iv) If S is a hermitian operator of A, then ®(S) is an hermitian operator

of B. If h is a (complex-valued) continuous function of a real variable such that
h(0) = 0, then ®(h(S)) = h(®(9)).

Lemma 1.5.3 ([Dix1, 1.3.4, Theorem 2(i)]).  Let A be a x-algebra of op-
erators in a Hilbert space §, and Ay the unit ball of A. Then the following eight
conditions are equivalent:

(1) (resp. (2)) A (resp. A1) is weakly closed,

(3) (resp. (4)) A (resp. Ay) is strongly closed;

(5) (resp. (6)) A (resp. A1) is ultra-weakly closed;

(7) (resp. (8)) A (resp. A1) is ultra-strongly closed.

By Lemma 1.5.3, we know that 4l is a strong closure of 7(F(G)). For any
fixed T' € 4, take a net A, = m(v,) € 7(F(G)) strongly convergent to T. Then
there exists an M > 0 such that ||A.]], ||T|| < M, and we have for vy, vy € 9,

[((Aa = T)"(Aa = T)vr,v2)| < [[(Aa = T)vr| - [[(Aa — T)va| — 0,
whence (A —T)*(Aq — T) converges weakly to 0. Therefore, by Lemma 1.3.3
(ii), ¢((Aa = T)*(Aq — 1)) = [|Aa — T|| — 0. This means that Ay — T¢
in 4, and that 7(F(G))? = {A%; A € 7(F(G))} is dense in U?®. in the norm

Il lle-
Now consider the dense subspace 7(F(G))? D m(G)? of $?. Then, for

g1,92 € Ga

(18)  (m(91)?.7(92)%)p = (m(91),m(92))s = H(m(g2)*m(91)) = (g2 'g1)-

On the other hand, f(gy "g1) = (3g,,8g,)5 = <5§175§2> So (m(g1)?, m(g2)?) =
(61,51}, and accordingly (r(11)%, m(12)%)s = (i 1) (1, 12 € 7(3(G))).
This means that the map

(19) L a(§(G)? > m(w)? — ul €9y
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is an isomorphism from the subspace 7(F(G))? of 4% into §¢. Hence by natural
extension we get an isomorphism of Hilbert spaces from 9% onto ¢. Denote
it again by T. L _ _

Let us transform through I" the representations Ug, Vs and L, (g), R (g)
from the space $? onto the space $ ¢- The following is one of our main results
in Section 1.

Theorem 1.5.4.  Let w be a UR of G with a faithful normal finite trace
t on h=m(G)". Normalize t as t(I) =1 and put ¢ = ¢, f = pom € K1(G).

(i) The UR L (g) (resp. Rx(g)) of G on the space $¢ is equivalent to the
UR 7y (resp. ps) on the space $f through I': for g € G,

r. z‘n'(g) T =T (771‘(9) T = 7Tf(g)v

(20) - . - .
L' Re(g) T =T Vi -T7" = ps(g).

The UR EW of G generates the von Neumann algebra 1 isomorphic to Uy =
w#(G)". Similarly for the UR R, and Vs =ps(G)'.

(ii) The map ® : S — T -Ug-T~! (resp. ® : 8 — T -Vg-T~1) is a quasi-
isomorphism (resp. quasi-anti-isomorphism) from the von Neumann algebra {4
onto the von Neumann algebra iy (resp. V) which has a trace-element and
also is cyclic. Moreover

o(r(g)) =7s(9), ¥ (7(9)") =rsl9) (9€G)

Proof. (i) Note that the subset m(G)? = {m(h)?;h € G} of U? is to-
tal in $¢. The UR L,(g) is expressed for the element w(h)? as m(h)? —
(W(g)w(h))¢ = 7(gh)®. Through the isomorphism T, this is written as 5hf —
(6gn)! = Wf(g)(éhf). This means that I' - Ly(g) - ! = 7#(g). Similarly for
R (g) and 7 (g). B

From this, the statement for the isomorphism of { and &y is now clear.

(ii) Since Uy is isomorphic to {1, it is sufficient for us to prove that the
map Q:4U> 85 — (75 e gives a quasi-isomorphism. To this, it is enough
to get Q(Ll) = il. For calculations here, we introduce a compact notation as
Qg = US We know that any projection £ € U is mapped to a projection
®F ¢ 4, and that ||*S|| = ||Us|| = ||S||, by Lemma 1.5.2 (ii) and (iii). Note
further that if S, — S strongly in 4, then ¢S, — ©S strongly in il by Lemma
1.5.5 below.

On the other hand, the set of unitary operators {m(g);g € G} (resp.
{Q (9) = Ur(g); 9 € G}) generates strongly the von Neumann algebra { (resp.
11), by Lemma 1.5.3. By Lemma 1.5.7 below, we know that the image Q(8f) C
is a von Neumann algebra. It contains the generating subset 7 (G) of £, whence
QU) = 4. O

Note that the theorem above shows that the Gelfand-Raikov represen-
tation 7y, which has a trace-element and is cyclic, is standard among URs
corresponding to the same f € K1(G) (cf. Remark 1.5.1 below).
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Lemma 1.5.5.  Suppose that S, — S strongly in U. Then, 25, — 28
strongly in .

Proof. First note that {S,} is bounded. For vy, vy € §,
[((Sa = 8)"(Sa = S)vi,v2)| < [[(Sa = S)va ]| [[(Sa = S)va|| — 0,

whence (S, —5)*(So —5) — 0 weakly and is bounded in Y. Therefore we have
T*(Sa—9)*(Sa—5)T — 0 weakly. Thus we get ¢(T*(Sa—S5)*(Sa—S9)T) — 0.
On the other hand, [[(*Sy — *S)T?|| 7 = ¢(T*(Sa — S)*(Sa — S)T). Hence
[(4Sy — 28)T?||, — 0. Note that {2S,} is bounded and that {7} is dense
in $?, we see that S, — S strongly. ([

Lemma 1.5.6 ([Dixl, I.4.1, Lemma 4]).  Let A be a x-algebra of opera-
tors in $ containing the identity operator Ig on $). Every positive linear form
¢ on A defines a Hilbert space R, a linear mapping I' of A onto a dense linear
subspace of R, and a norm-decreasing homomorphism ® of A into B(R), such
that, if we put x =T'(Ig) € R, we have T(T) = ®(T)xz and ¢(T) = (®(T)x, )
for each T € A. Furthermore, ®(I1g) = Ig. If ¢ is faithful, ® is an isomorphism
of A onto ®(A), and z is separating for ®(A).

Definition 1.5.1. Let A and B be von Neumann algebras. A linear
mapping ® of A into B is said to be positive if ®(AT) C BT. We say that
® is normal positive if, further, for every increasing filtering set F C A with
supremum 7' € AT, ®(F) C B has a supremum ®(T").

Lemma 1.5.7 ([Dix1, 1.4.3, Proposition 1]).  Let A be a von Neumann
algebra, ¢ a normal positive linear form on A, and ® the canonical homomor-
phism defined above by ¢. Then, ® is normal and ®(A) is a von Neumann
algebra.

Remark 1.5.1. Let G be a compact group and 7 a multiple of an ir-
reducible UR § with multiplicity m, 1 < m < oco. Then, t corresponds to the
normalized character xs(g)/dim . The representation 7 has a trace-element, if
and only if m > dim d, and it is cyclic if and only if m < dim . The represen-
tation L, (= 7y) on U® = §? is equivalent to (dim §)-multiple of § acting on
the space of matrix elements of §. Therefore, in this case, the transition from 7
to L, is nothing but an adjustment of multiplicity (from m to dim d), to have
a trace-element and at the same time to be cyclic.

Remark 1.5.2.  The von Neumann algebra ${ = 7(G)" with a faithful
trace t is a typical example of Hilbert algebras in [Dix1, 1.5], when it is equipped
with the innner product (-,-), with ¢ = ¢,. However, in our discussions, the
detailed result in [Dix1, I1.6.2] on traces of Hilbert algebras is not necessary.

1.6. Extremal positive definite class functions as characters

By the discussions until now, we see that the x-algebra F(G) plays a de-
cisive role. Therefore we apply the definition of quasi-equivalence in [Dix2,
V.5.3.2] for the x-algebra A = F(G).
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Definition 1.6.1.  Let 7y and 72 be two URs of G. Put i; = m;(G)” =
mi(A)” (i = 1,2). Then, 1 and 7y are said to be quasi-equivalent if there exists
an isomorphism & (for the x-algebra structures) from ${; onto s such that
®(m1(a)) = ma(a) for a € A = F(G), or equivalently ®(m1(g)) = m=2(g) for
g €G.

With this notion of quasi-equivalence, we see easily from Theorem 1.5.4
the following.

Theorem 1.6.1.  Let the assumptions and the notations be as in The-
orem 1.5.4. Then, the unitary representation L of G is equivalent to 7y, and
is quasi-equivalent to the original ™. So  is quasi-equivalent to my.

According to [Dix2, 5.3], we know that a UR quasi-equivalent to a fac-
tor representation is also factorial, and that a factor representation is quasi-
equivalent to a subrepresentation on any non-zero invariant closed subspace,
and so quasi-equivalent to a cyclic one. Our second main theorem in Section 1
is given as follows.

Theorem 1.6.2.  For a Hausdorff topological group G, let URH(G) be
the set of all quasi-equivalence classes of continuous URs of G, factorial of
finite type. Then there exists a canonical bijection between URMH(G) and E(G)
through (21) below.

Let m be a UR of G, factorial of finite type, and ¢t the unique faithful finite
normal trace on 4 normalized as t(I) = 1, where U = 7(G)"”. We put

(21) f(g) =¢(n(9)) (9€G),

with ¢ = ¢; the linear extension of ¢ to {. The quasi-equivalence calss [r] €
URfF(G) of 7 corresponds bijectively to f € E(G). In this connection, every
element f in F(QG) is called a character of G of finite type. For an f € E(G),
the Gelfand-Raikov representation 7 is a standard representative of the quasi-
equivalent class in URff(G) having the character f, and 7, has a trace-element
which is also a cyclic vector.

Note 1.6.1. In [Dix2, 17.3], the above canonical bijective correspon-
dence is asserted under the condition that G is locally compact and unimodular
(cf. also [Gode]).

2. Topologies on the spaces of continuous positive definite func-
tions P(G) and of such class functions K<(G), Ki(G)

2.1. Weak topologies and compact uniform topology

In this section, we study topologies in P(G) D K(G) D K<1(G) D K1(G),
several weak topologies and also compact uniform topology. Our final aim is
to establish Theorems 2.6.1 and 2.6.2.
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First take the weak topology o(Cy(G),M,(G)) and its restrictions onto
K(G) C P(G) C Cy(G). For p € My(G), put D, = {z € C;lz| < ||lul}
and then put D = Hueimb(G)D#’ which is compact with the product topology.
We can define a map ¥ : K<;(G) — D as ¥(f) = (u(f))uem, (), because
() < fle)llpll < |jull. Through the map ¥, the set K<q(G) with the weak
topology is homeomorphically imbedded into the compact set D.

We ask if the image ¥(K<1(G)) is closed or equivalently if it is compact.

For a boundary point b = (b(u)) of it, we see that the map p — b(u) is a
linear map on My, (G), continuous in the norm, since |[b(w)| < ||u||. Furthermore
it is positive and invariant in the sense that b(p**pu) > 0, b(u1*pue) = b(uaxp1),
if the convolution product here is well-defined. For p = §, € F(G), we get a
positive definite, invariant function g — b(d,) on G. The above question is
devided into two questions as follows:

(a) Is g — b(d4) continuous on G ?

(b) For p € My(G), is b(w) given by an integral as b(pu) = [, b(dy) du(g) ?

We also introduce other weak topologies in certain restricted cases,
and compair them with the compact uniform topology in P(G) and K(G) D
K<i(G).

2.2. Case of locally compact groups and its generalization

From now on we restrict ourselves to the case of locally compact groups
G and also to the case of limit groups G = lim,_ .. G, of countable LCG
inductive systems (G, )n>1. In these cases we introduce another weak topology
more suitable to the situation, and compair it later with the compact uniform
topology in the bounded subsets P<(G) and K< (G) defined by f(e) < M.

Let G be as above. Denote by C the family of all compact subsets of
G, and by B¢ the o-ring of subsets of G generated by C. Note that every
B € B¢ is covered by a o-compact set. Let D¢ (G) be the set of all bounded
complex measures on (G, B¢). When G is locally compact, its Haar measures
are regular measures defined on B¢ but not on the whole of B(G) when G is
not o-compact (cf. Remark 2.2.2).

For a p € Mc(G), there exists a (not necessarily unique) set A € B¢ such
that (B \ A) = 0 for any B € B¢. In this case, we say that p is supported
by A. For every ¢ € Cy(G), its restriction on a measurable subset A € Be
is Be-measurable on A. For a measure p € Mc(G), take a measurable set
A € B¢ supporting p. Then the integral [, ¢(g) du(g) is independent of the
choice of A, and is denoted simply by fG o(g) du(g).

We have a natural pairing

Me(G) x Cp(Q) 3 (1, ) ¥ ple) = p(p) = /Gw(g) du(g),

and so get a weak topology o(Cy(G),Mc(G)) which we restrict on P(G) and
K(G). Replacing M,(G) by Mc(G), we have similar assertions as Lemmas
1.1.1, 1.1.2, 1.1.3 in Section 1, and Lemma 2.2.1 below.

Lemma 2.2.1.  Let G be locally compact. The space of measures on G



372 Takeshi Hirai and Etsuko Hirai

corresponding to LY(G) is everywhere dense in Mc(G) in the topology
o(Me(G), Co(G)).

Proof. Take an approximate identity given as follows. For a compact
neighbourhood V' of e, let ¥y (g) > 0 be a continuous function with sup-
port contained in V such that [, ¥v(g)dg = 1. Then vy (g)dg converges in
o(Mc(G), Cp(G)) to the delta measure d, supported by {e}. For a fixed gy € G,
put L(go)¥(g) := ¥(gy *g) (g € G). Then the net {L(go)yvdg} converges to
84, Hence the weak closure of L' (G) contains §(G).

On the other hand, we can prove as for Lemma 1.1.1 that §(G) is every-
where dense in M¢(G). O

According to the restriction of p from 9 (G) to Me(G), we modify the
homeomorphic imbedding ¥ into D as follows. Put ¥’ : K<1(G) — D’ as

D= [ Duw V()= @)uemec):

HEMc(G)

We take a boundary point b = (b(u)) of U'(K<1(G)) in D’ similarly as for D
and V.

Remark 2.2.1.  Let M2(G) be the set of bounded complex measures
won (G, Bc) such that p is regular [Halm, Chapter X] in case G is locally
compact, and such that p|q,, is regular for any n in case G = lim,, o0 G-

If G is locally compact, it is known that the space of compactly-supported
continuous functions C.(G) can separate two elements of M2 (G) and so the
weak topology o (I (G), Cy(G)) is Hausdorff, and that the convolution product
in MY(G) can be naturally defined (cf. [Halm, §51, Theorem EJ).

Consider the case of G = lim,_ ., G,. Note that any compact subset
is contained in some G,. Moreover any ¢, € C.(G,) can be extended to a
Ont1 € Co(Gpy1) in such a way that ||onllee = [[¢@n+1lleo, and accordingly
we get ¢ = limg_ pr € Cp(G) extending @,,. This means that Cp(G) can
separate two elements of I (G).

For p,v € MA(G), we can choose an A € B¢ supporting both of y and
v which is a union of countable number of compact sets C;,7 > 1. Then the
convolution p * v, supported by AA = U; j>1 C;C}, can be defined as follows:
Put D; = C; \ Ui<k<i Cy C C; and for ¢ € Cb(G)

| @@= [[ P9l dvlo)

4,521

Choose a Gy, D D;, Dj, then the integral ffDxD_ can be considered on G,, X
i J
G, because ¢(g'g) is mesurable in (¢', g) € G, X G, With respect to (g, ) ¥
(v|a,,), thanks to the regularity of u|q,,,v|q,,. Moreover this integral is equal
to the repeated integral [, [}, .
i J

Remark 2.2.2. In the case where G is not o-compact, the whole space
G does not belong to B¢, and a continuous function on G is not necessarily
Be-measurable.
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Let G be locally compact. A left invariant Haar measure dg on (G, Be)
is o-finite if and only if G is o-compact. When G is not o-compact, to give
the dual space L'(G)* of L'(G), which contains C,(G) naturally, we should
be careful. We call a function f Bg¢-locally-measurable if f|p is measurable for
any B € Beg.

For 1 < p < oo, LP(G) is defined as the space of functions such that
f is measurable (and so Sy := {g € G;f(z) # 0} € B¢), and |f], :=

1
(fsf [f(g)P dg) r < 0. The space LP(G) is its quotient space under the
equivalence relation ~, where fi ~ fo if f1 = fo almost everywhere (a.e.).

For p = o0, let L (G) be the space of all B¢-locally-measurable functions
for which ||f]leo := sup{||flgllw; B € Be} < oo, where || f|g| o denotes the
L>-norm of f|p on a set B. The equivalence relation needed here is f1 ~ fa,
rougher than f; ~ fy (i.e., fi ~ fo implies f; &~ f5), given as follows. For
two Bec-locally-measurable functions f1 and fs, if fi|p = f2|s (a.e.) for any
B € B¢, we say that fi is equal to fa Bc-locally-almost-everywhere, and denote
this equivalence relation by f1 & fo. The quotient space £L>(G)/= is denoted
by L>®(G), and it is naturally isomorphic to the dual space L!(G)*.

In Dixmier’s book [Dix2, 17], the dual space L'(G)* of L'(G) is denoted
simply by L*>(G) eventhough G is not assumed to be o-compact. Therefore
L>(G) there is equal to L>®(@G) above.

2.3. Problem in the case of a locally compact G
In this case, a kind of affirmative answers to the problems (a) and (b) were
obtained already in [GR] and is exposed in [Dix2] as follows.

Proposition 2.3.1 ([GR, Theorem 4], [Dix2, 13.4.5 (i)]). Let f € L*>(G)
and put w(p) = [ f(9)¥(9)dg (¥ € LY(G)) with a left-invariant Haar measure
dg, the continuous linear form defined by f. Then w is positive if and only
if [ coincides with a continuous positive definite function Bc-locally-almost-
everywhere (cf. Remark 2.2.2).

Proposition 2.3.2 ([GR, Theorem 5|, [Dix2, 13.5.2]).  For a locally
compact group G, the weak topology o(L>®°(G), L*(G)) on the set P1(G) = {f €
P(G); f(e) = 1} coincides with the compact uniform topology.

However we consider here another weak topology o(Cy(G),Mc(G)) in
K <1(G) stronger than o(L>®(G), L(G)). A boundary point b of ¥/(K<1(G)) C
D’ gives a positive linear form on L!(G), continuous in the norm. Then, by
Proposition 2.3.1, the latter coincides with a linear form given by a continuous
positive definite function f® on G in such a way that b(u) = fG (g)v(g)dg
for = 1(g)dg with ¢ € LY(G). Actually f° is an element of K<1(G).

In turn, f° gives a positive invariant linear form f° : pu +— fo(u) =
Jo: 12(9) dpu(g) on Me(G), which coincides with p — b(u) on L (G)(— Me(G)),
and is continuous in the weak topology o(M¢(G), Cp(G)). By Lemma 2.2.1 we
see that the linear form p — b(u) on L'(G) has a unique extension to a weakly

continuous one f* on M (G).
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We ask if the linear form p — b(u) coincides with fb on the whole of
M (G), and especially if there holds that f(g) = b(d,) (g € G).

2.4. Problem for G = lim,_,,, G, of a countable LCG inductive sys-
tem

Let (Gp)n>1 be a countable LCG inductive system and G = lim,,—.o Gy,
its limit group equipped with the inductive limit topology 7;nq. Here it is
assumed by definition that G,,’s are locally compact and each homomorphism
G, — Gp41 is homeomorphic into. Note that, by [TSH, Theorem 5.7], G has
sufficiently many continuous positive definite functions. Note further that the
space of measures M¢(G,,) on Gy, is canonically imbedded into Me(G).

Take a boundary element b of ¥/(K<1(G)) C D’. Then, discussing only
on G,, we get for each n a continuous positive definite class function f,, €
K<i1(Gp) such that b(k) = [ fn(9n) ¥n(gn)dgn for du(gn) = 1n(gn)dgn (¥n €
LY(G;dgy)), where dgn (9n € G,) denotes a left invariant Haar measure on

ne

We ask 1
functions {fn(gn)}n21~

G, = fn holds for the system of

2.5. Topologies in P(G) and K(G) for a locally compact group G

Proposition 2.5.1.  Let G be locally compact, and M > 0.

(i) On P<m(G) = {f € P(G)|lfIl = f(e) < M}, the weak topology
o(Ch(G), Mc(G)) is weaker than or equivalent to the compact uniform
topology Tey -

(ii)  On P<m(G), the weak topology o(Cy(G), Cé. + L*(G)) is stronger than
or equivalent to Ty

Proof. (i) Take a neighbourhood of 0 in the topology o(Cy(G), Mc(G))
as

U((ni)i<isnie) = {f € Co(G); |na(f)] <e (1 <i < N)},

where pq, o, ..., un € Me(G) and € > 0. Then, for any & > 0, there exists
a compact set C' such that |p;|(B\ C) < €’ for any ¢« and B € B¢, where
lil = |R(pi)| + 1S(ps)|. Take a B € B¢ which supports any of u;. Suppose
that maxgec |f(g)] < €, then

()] < ]/ 9) dus( )] M ul(B\C) < £ (juil(B) + M),

If &'(Jus|(B) + M) < e, then f belongs to the neighbourhood U((pi)1<i<n;e)-
(ii) (After the proof of [Dix2, 13.5.2]) Let us prove that, for a fixed fo

€ P<m(G) and a compact set C C G, there exists a neighbourhood

U((pi)i=1.2;€") of 0 in o(Cy(G), Cé. + LY(G)) with py = 6. and puz = 1(g)dg

with at € L1(G), such that | f(9)—fo(9)| < e (g € O)if f—fo € U((1i)i=1,2;€").
First there exists a compact neighbourhood V' of e € G such that

|fole) = folg)l <& (geV).
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Let pu; = 6. and po = a~txy(g)dg, where yy is the characteristic function of
V and a = [, dg. Let U be a neighbourhood of fy in 0(Cy(G), Cé. + L' (G))
defined by the following conditions on f € P<n(G):

i (f — fo)l = 1£(e) — fole)] <
a(f = fo)l = a~" /V (F(9) - fo(g))dg’ <.

Then, for f € U, we have a=* | [i,(f(e) — f(g)) dg| < 3¢’
On the other hand, take an f € Y. Then, for any g € G,

(a2 £)(g) — £(9)
[ g - f(g))dh‘ <o [ 1079) — sl dn.
1% \%

=a

By Krein’s inequality, we have |f(h=1g)— f(g)|?> < 2f(e){f(e)—Rf(h)}, whence
the right hand side is majorized by

a—l\/ﬁ/v |f(e) —Rf(h)|*?dh

<o ([ |f<e>—%f<h>|dh)1/2 (f dh)m

< a VoM V3ae' vJa = V6Me,

because 0 < f(e)—Rf (h) = R(f(e)—f (). Hence, |(uz+f)(9)—f(9)| < VGME.

Here we apply [Dix2, 13.5.1] which we quote below as Lemma 2.5.2 for
the convenience of the reader. Then, there exists a neighbourhood U’ of fy
in P<p(G) in the weak topology o(L>®(G), L*(G)) such that f € U’ gives for
p2 = a”'xv(g) dg,

n2 * f(9) —p2* folg)l <’ (g€C).
Thus we get for f eUU NU’,
1f(9) = folg)l <" +2v6Me"  (g€C).
O

Lemma 2.5.2 (from [Dix2, 13.5.1]). Let B be a bounded subset of
L>®(Q), and ¢ € LY(G). If f € B converges to fo € B in the weak topol-
ogy o(L>=(Q), LY(Q)), then 1 * f converges to 1 x fo in the compact uniform
topology Tey -

It follows immediately from Proposition 2.5.1 the following variant of
Proposition 2.3.2.

Theorem 2.5.3. Let G be locally compact. On every bounded set of
P(G), the weak topology o(Cyp(G), Mc(Q)) is equivalent to the compact uniform
topology Tey -
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We slitely generalize the following result (Theorem 2.5.4) in [Dix2] and get
Theorem 2.5.5 below.

Theorem 2.5.4 ([Dix2, 17.3.5]).  Let G be locally compact and unimod-
ular.
(i) The conver set K<1(G) is compact in the weak topology o(L>*(G),
LY(@)).
(ii) The extremal points of K<1(G) are 0 and characters of finite type equal
tol ate.
(i) K<1(G) is the weakly closed convex hull of 0 and the set of characters
E(G) of finite type normalized as f(e) =

Theorem 2.5.5.  Let G be locally compact.
(i) The convex sets K<1(G) and Ki(G) are compact in the weak topology
a(Cp(G), Me(G)).
(ii) The set of extremal points of K<1(G) is {0} U E(G).
(i) K<1(G) (resp. K1(G)) is the closed convexr hull of {0} U E(G) (resp.
E(Q)) in the weak topology o(Cy(G), M (G)).

Proof. (i) Imbed K<;(G) homeomorphically into D' by ¥ : f — (u(f))
(1 € Mc(Q)). We denote u(f) also by f(p). Take a boundary pomt b= (b(w))
of Im(¥") C D’. Then there exists a net f, € K<1(G) for which ¥'(f,) =
(fa(p)) converges to b, or equivalently, for any w, lim, fo (1) = b(w).

Since |b(p)| < ||pll, the map LY(G) 3 o — F(¢) := b(v(g)dg) gives an
invariant positive linear form on L'(G) such that |F(v)| < ||%||. Then by
Proposition 2.3.1 it is given by an f* € K<1(G) as F(¢) = Ja 1b(9) ¥ (g)dg =
Fo(p) with = 9(g)dg. In K<1(G) C Cy(G), fa converges to f° in the topology
a(Cy(G), Mc(Q)), and therefore f, converges to f° in K<;(G) C P<1(G) in
the topology o(Cy(G),Cé. + L'(G)). Hence, by (ii) of Proposition 2.5.1, f,
converges to f° uniformly on every compact.

Take a p € Me(G). Then there exists an A € Be such that |u|(B\ A) =0
for any B € B¢. Moreover, for an € > 0, there exists a compact set C. such
that [u|(A\ C.) < e. Since fa, f* € K<1(G), we have |f,(g)| < fa(e) <1 and

/ fa(g) dp(g)
A\C.

and similarly for f°. Hence |f®(u) — fa(ut)| is majorized by

/ fa(g) dp(g)
A\C.

< |ul(A) x sup |f*(g) = fa(g)| + 2.
geCe

< [ul(ANCe) <,

/ (fbfa)(g)du(g)‘+ [ e
ANC. A\C.

Therefore we see that lim,, f, (1) = f(1), whence b(u) = f°(u). This means
that b = (b(u) = (/*(8) = V(") € V(K<i(G)), and so ¥'(K<1(G)) is
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compact in D’. This proves the compactness of K<1(G) and so the assertion
(i).

We omit the proofs of the assertions (ii) and (iii). O

2.6. The case of the limit of a countable LCG inductive system
Let G = lim,,_,, G, be the limit group of a countable LCG inductive sys-
tem (Gp)n>1. Then Me(G,,) C Me(Gpt1) C -+ C Me(G). Take a boundary
point b = (b(p))eme(a) of ¥ (K<1(G)) in D'. Restricting the range of in-
dices p of b(p) from the whole M (G) to the subspace Mie(G),), we get a point
b = (b(1) peme(n) of I come(q,) Pu- Working for G, and b, as a case of
a locally compact group, we can apply Theorem 2.5.5 or its proof for (i), and
get a continuous positive definite class function f,, € K<1(Gy) on G,, for which

bn = (fn())peme(a,) or
ba (1) = b(u) = /G Fulgn) di(gn) (Vi1 € Me(G)).

Comparing this expression for M¢ (G, ) and that for Me(Gp41), we see from the
inclusion Me(G,) C Me(Gry1) that the consistency condition fri1la, = fa
holds, and we get a function f = lim,,_, f, on the whole G. With respect to
the inductive limit topology 7;nq on G, f is continuous because f, = f|q, is
continuous on G,, for each n, and then f € K<;(G). Thus b = U’(f). Hence
we have proved that U/(K<1(G)) is closed in D" and consequently that K< (G)
is compact in the weak topology o(Cy(G), Mc(G)).
In this way we get one of our main results in this section as follows.

Theorem 2.6.1. Let G = lim,,_., G, be the inductive limit of a count-
able LCG inductive system (Gp)n>1. Then the assertions (i), (ii) and (iii) of
Theorem 2.5.5 hold for G too.

Theorem 2.6.1 above answers affirmatively to the questions (a) and (b) in
2.1 in the case of the limit group G of a countable LCG inductive system.

Remark 2.6.1. The wreath product G = &, (T) of a compact group
T with the infinite symmetric group & is considered as the limit of a count-
able LCG inductive system of compact groups G, = 6,(T) 2 T" x &, the
wreath product of T with the n-th symmetric group &,,. The topological group
(G, Tina) is o-compact but not locally compact except when T is finite.

By Theorem 2.6.1, there holds for the compact convex set K;(G) and the
set of its extremal points E(G) the integral expression theorem of Choquet-
Bishop-K. de Leeuw (Theorem 5.6 in [BL]), which will be applied in [HH2] suc-
ceeding [HH1].

For the topologies in the set of continuous positive definite functions P(G),
we have another main theorem, a similar result as Theorem 2.5.3.

Theorem 2.6.2.  Let G be as in Theorem 2.6.1. On every bounded set of
P(G), the weak topology o(Cyp(G), Mc(Q)) is equivalent to the compact uniform

topology Tey -
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Proof. Let us consider topologies on a bounded set P</(G). First note
that any compact subset C' of G = lim,,_, o, G}, is contained in some G,, (cf. e.g.,
Proposition 6.5 in [HSTH]). Then we see from Theorem 2.5.3 applied to G,
that the uniform convergence of a net f, to f on C comes from the convergence
of fulc, to fla, in the weak topology o(Cy(Gr), Mc(Gy)). Thus 7, is weaker
than or equivalent to o(Cy(G), Mc(G)).

Conversely fix a u € Me(G). Take an A € B¢ supporting it. Then, for
any € > 0, there exists a compact subset C. such that |u|(A\ C:) < €, and we
have

o= Dl <2Me+ [ 1falg) - £(9)l dlul(9)

AnC.
Hence, if |fo(g9) — f(g)| < &' on C¢, then |u(fo — f)| < 2Me + |u|(A)e’. This
evaluation proves that 7, is stronger than or equivalent to o(Cy(G), M (G)).
o

Added in Proof. Very recently we found a counter example to Theorem
2.5.5. We thank Prof. J. Faraut for suggesting it to the first author. At the
present moment, we should withdraw Theorem 2.5.5 and 2.6.1 and accordingly
Theorem C in Introduction, and we hope that we can present correct versions
of them in near future.
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