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Construction of diffusion processes on fractals,
d-sets, and general metric measure spaces

By

Takashi Kumagai and Karl-Theodor Sturm

Abstract

We give a sufficient condition to construct non-trivial µ-symmetric
diffusion processes on a locally compact separable metric measure space
(M, ρ, µ). These processes are associated with local regular Dirichlet
forms which are obtained as continuous parts of Γ-limits for approximat-
ing non-local Dirichlet forms. For various fractals, we can use existing
estimates to verify our assumptions. This shows that our general method
of constructing diffusions can be applied to these fractals.

1. Introduction

According to the Central Limit Theorem, Brownian motion on R
d or on

a Riemannian manifold can be obtained as the scaling limit (as r → 0) of
canonical random walks: after an exponentially distributed time with mean
r2 the particles have to jump uniformly distributed into the ball of radius r
centered at the previous location. By an analogous procedure, many elliptic
diffusions on flat or curved spaces can be obtained. In [19], the basic idea of
this procedure was used to construct diffusion processes on arbitrary metric
measure spaces.

However, typical diffusions on fractals and also diffusions on R
d equipped

with a Cantor like speed measure have a different space-time scaling. For these
cases, the procedure in [19] leads to the constant (trivial) processes. In order
to construct or approximate them by random walks as above, one has to take
into account the specific time scale function h(r) (replacing the usual diffusive
scale r2).

Given an arbitrary metric measure space (M, ρ, µ) and an arbitrary in-
creasing function h : R+ → R+ (“time scale function”) we define approximating
Dirichlet forms Er on L2(M, µ) by

Er(u) =
1

h(r)

∫
M

1
µ(B(x, r))

∫
B(x,r)

[u(x) − u(y)]2µ(dy) µ(dx).
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308 Takashi Kumagai and Karl-Theodor Sturm

In Chapter 2 we formulate basic conditions on Er which will imply that
there exists a diffusion process associated with the scaling limits of these forms.
The crucial point here is to deduce locality of the limiting Dirichlet form (which
is equivalent to continuity of the limiting Markov process). Actually, for this
result we allow even more general frameworks. The main difficulty is the lack
of appropriate cut-off functions.

Instead of studying the above approximating Dirichlet forms on the original
metric space, in many cases it is easier to study discrete Dirichlet forms on
graphs which approximate the metric space. Chapter 3 is devoted to introduce
this concept of approximating graphs and to compare the Dirichlet forms on
these graphs with the previous ones.

In Chapter 4 we prove that suitable two-sided heat kernel estimates for
an arbitrary regular Dirichlet form on an metric measure space will imply that
the form is comparable to a scaling limit of the previous approximating forms.
This in turn allows us to verify part of our basic conditions. The main theorem
in this chapter (Theorem 4.1) extends the results in [7] which require the vol-
ume growth µ(B(x, r)) to be comparable to rα and the time scale h(r) to be
comparable to r2β for some α ≥ 1, β ≥ 1. But since the volume growth and the
time scale are not necessarily polynomial growth (see for instance [10]), such
an extension seems to be necessary.

In Chapter 5 we present two different classes of examples. The first ones
are p.c.f. (=post critically finite) self-similar sets, e.g. the Sierpinski gaskets.
By applying the known results, we characterize the domains of self-similar
local regular Dirichlet forms on them (Proposition 5.1). The second ones are
(generalized) Sierpinski carpets. For these classes, the domains of local regular
Dirichlet forms are known (cf. [15], [18]), which we restate in Proposition 5.2.
In both cases, we can verify all of our basic conditions, thus diffusions on them
can be (re)constructed through the method in Chapter 2.

2. General construction of diffusion processes

Let us fix a metric measure space (M, ρ, µ) where (M, ρ) is a locally com-
pact separable metric space and µ is a Radon measure with µ(B(x, r)) > 0
for each r > 0 and x ∈ M . Here and in the sequel, B(x, r) denotes the open
ball of radius r centered at x. Moreover, for each r > 0 we fix a measurable
nonnegative function (x, y) �→ kr(x, y) which vanishes if ρ(x, y) > r and sat-
isfies supx∈K

∫
M

[kr(x, y) + kr(y, x)] µ(dy) < ∞ for each compact K ⊂ M . In
terms of these quantities we define the approximating Dirichlet forms Er with
C0(M) ⊂ D(Er) ⊂ L2(M, µ) as follows

Er(u) :=
∫

M

∫
M

|u(x) − u(y)|2kr(x, y) µ(dy) µ(dx),

where C0(M) is a space of continuous compactly supported functions on M and
D(Er) = {u ∈ L2(M, µ) : Er(u) < ∞}. Finally, we fix throughout this chapter
a sequence (rn)n of positive numbers decreasing to 0 and put

E∗(u) := lim sup
n→∞

Ern(u)
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and

F∗ := {u ∈ C0(M) : E∗(u) < ∞}.
We will discuss limit points of the forms Er under (some of) the following:

Assumptions 1.
(A1) F∗ is dense in C0(M).
(A2) There exists δ > 0 such that

lim inf
n→∞ Ern(un) ≥ δ · E∗(u)

for all u ∈ L2(M, µ) and all (un)n ⊂ L2(M, µ) with un → u in L2(M, µ).
Occasionally, we impose instead of (A2) the stronger assumption:

(A2∗) There exists δ > 0 such that

lim inf
n→∞ Ern(un) ≥ δ · sup

n
Ern(u)

for all u ∈ L2(M, µ) and all (un)n ⊂ L2(M, µ) with un → u in L2(M, µ).

Given the sequence (Ern)n∈N we will define a form E0 as a Γ-limit in the
sense of De Giorgi. Recall that for any u ∈ L2(M, µ) we define

Γ- lim sup
n→∞

Ern(u) = lim
α→0

lim sup
n→∞

inf
v∈L2

‖u−v‖≤α

Ern(v)

and

Γ- lim inf
n→∞ Ern(u) = lim

α→0
lim inf
n→∞ inf

v∈L2

‖u−v‖≤α

Ern(v).

Here ‖.‖ denotes the norm in L2 = L2(M, µ). We say that the sequence (Ern)n

is Γ-convergent if Γ- lim supn→∞ Ern(u) = Γ- lim infn→∞ Ern(u) for each u ∈
L2(M, µ). In this case, we write Γ-limn→∞ Ern(u) for the common value of
Γ- lim supn→∞ Ern(u) and Γ- lim infn→∞ Ern(u). The functional Γ-limn→∞ Ern

on L2(X, m) is then called Γ-limit of the functionals Ern , n ∈ N. See [5] for
more details.

Theorem 2.1. (i) Assume (A1). Then for a suitable subsequence (r′n)
of (rn) the Γ-limit

E0 := Γ- lim
n→∞ Er′

n

exists, is dominated by E∗ on L2(M, µ) and it can be extended to a regular
Dirichlet form (E ,F) on L2(M, µ) with core F∗. Hence, there exists a µ-
reversible strong Markov process associated with (E ,F).

(ii) Assume in addition (A2) and let E(c) denote the diffusion part of E .
Then F∗ = F ∩ C0(M),

E∗ ≥ E ≥ E(c) ≥ δ · E∗

on F and (E(c),F) is a strongly local regular Dirichlet form. Hence, there exists
a diffusion process associated with (E(c),F). It is µ-reversible and strongly
Markovian.
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Remark 1. a) Typical examples are kr(x, y) = r−2−d · 1B(x,r)(y) pro-
vided µ(B(x, r)) ≤ CM · rd for all r > 0 and x ∈ M or kr(x, y) = r−2 ·
µ(B(x, r))−1 ·1B(x,r)(y) provided µ satisfies the so-called doubling property (see
Assumptions 2). In these cases, (A1) is always satisfied since CLip

0 (M) ⊂ F∗

and the Dirichlet form (E ,F) can always be shown to be strongly local (see
[19]).

A detailed discussion of conditions on (M, ρ, µ) (mainly, the so-called mea-
sure contraction property) which imply (A2∗) for the latter choice of kr can be
found in [20].

b) We may weaken Assumption (A1) replacing the condition lim sup Ern <
∞ by Γ- lim sup Ern < ∞. However, in general it is not possible to replace it by
lim inf Ern < ∞ or Γ- lim inf Ern < ∞ since these conditions are not preserved
under passing to subsequences.

c) Under (A2), obviously δ · E∗ ≤ Γ- lim inf Ern ≤ lim inf Ern ≤ E∗ which
for instance in the definition of F∗ allows to replace E∗ by E∗ := lim inf Ern or
by Γ- lim inf Ern .

d) If we choose another subsequence (r̃n) to define the Γ-limit then the
resulting forms Ẽ , Ẽ(c) are equivalent to E , E(c). However, it might happen
that e.g. Ẽ is local whereas E is not local (or vice versa).

e) If δ = 1 (i.e. if the sequence (Ern) is convergent in a suitable strong
sense) then the Γ-limit coincides with the pointwise limit and is already strongly
local:

E∗ = lim
n→∞ Ern = Γ- lim

n→∞ Ern = E = E(c).

f) A slight modification of the following proof will show that under (A1,
A2): ∫

M

ϕ2(x) µ
(c)
〈u〉(dx)

≥ δ · lim sup
n→∞

∫
M

∫
M

|u(x) − u(y)|2 krn
(x, y)ϕ(x)ϕ(y) µ(dy) µ(dx)

for each u ∈ F ∩ C0(M) and ϕ ∈ C0(M).

Proof. (i) The existence of E0 := Γ- limn→∞ Er′
n as well as the fact that

it is a Dirichlet form follow from general results on Γ-convergence. Moreover,
due to (A1) its domain D(E0) := {u ∈ L2(M, µ) : E0(u) < ∞} contains F∗

since E0 ≤ E∗. Hence, (E0,F∗) is a closable Markovian form and its closure
(E ,F) is a regular Dirichlet form (with core F∗). See [5], [17], [19].

(ii) Assumption (A2) implies that E0 ≥ δ · E∗. Hence,

E∗ ≥ E0 ≥ δ · E∗

on L2(M, µ). Moreover, we know ∞ > E0 = E ≥ E(c) on F . This already
implies F∗ = F ∩ C0(M).

Now note that for each u ∈ F ∩ C0(M)

(2.1) E(c)(u) = lim
λ→∞

λ−2 · (E(cos[λu]) + E(sin[λu]))
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(which holds for each regular Dirichlet form, see [17, page 389]) and that for
each u ∈ L2(M, µ)

(2.2)

Er(cos[λu])+Er(sin[λu]) =
∫

M

∫
M

2(1−cos[λ|u(x)−u(y)|]) kr(x, y) µ(dy) µ(dx)

(simple calculation). Hence, for each u ∈ F ∩ C0(M)

E(c)(u)

= lim
λ→∞

λ−2 · (E(cos[λu]) + E(sin[λu]))

≥ δ · lim sup
λ→∞

lim sup
n→∞

λ−2 · (Ern(cos[λu]) + Ern(sin[λu]))

= δ · lim sup
λ→∞

lim sup
n→∞

∫
M

∫
M

2
λ2

(1 − cos[λ|u(x) − u(y)|])krn
(x, y)µ(dy)µ(dx)

(∗)
= δ · lim sup

n→∞

∫
M

∫
M

|u(x) − u(y)|2 krn
(x, y) µ(dy) µ(dx)

= δ · E∗(u)

where (∗) is due to the uniform continuity of u and the fact that kr(x, y) = 0
if ρ(x, y) > r. This proves

E∗(u) ≥ E(u) ≥ E(c)(u) ≥ δ · E∗(u)

for all u ∈ F ∩ C0(M) which in turn (by density) implies the same inequality
for all u ∈ F .

In particular, the forms E and E(c) are equivalent. Therefore, (E(c),F) is
closed and thus a strongly local regular Dirichlet form.

From now on, the kernel kr(x, y) will be chosen more concretely. We fix
a time scale h, i.e. a strictly increasing function h : [0,∞) → [0,∞) with
h(0) = 0, and put

(2.3) kr(x, y) :=
1

h(r)
· 1
µ(B(x, r))

1B(x,r)(y).

The approximating Dirichlet form then reads

(2.4) Er(u) =
1

h(r)

∫
M

∫
B(x,r)

− [u(x) − u(y)]2µ(dy) µ(dx)

for all u ∈ L2(M, µ). Here
∫

A
− · · ·µ(dy) := µ(A)−1

∫
A
· · ·µ(dy) denotes the

normalized integral. Moreover, we let V denote the volume growth, i.e.

V (x, r) := µ(B(x, r))

for x ∈ M and r ≥ 0. Finally, we define

Lipµ(h, 2,∞)(M) =
{

u ∈ L2(M, µ) : sup
n

Ern(u) < ∞
}

.
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Note that (A2∗) implies F∗ = Lipµ(h, 2,∞)(M) ∩ C0(M).
In the sequel, we always assume the following doubling properties for the

volume growth V and the time scale h.

Assumptions 2.
(VD) There exists C1 > 0 such that V (x, 2R) ≤ C1V (x, R) for all x ∈ M and
R > 0.
(TD) There exists C2 > 0 such that h(2R) ≤ C2h(R) for all R > 0.

It is well-known and easy to see that (VD), (TD) imply the existence of
constants η1, η2 > 0 and C3, C4 > 0 such that for x, y ∈ M and 0 < r < R,

(2.5)
V (x, R)
V (y, r)

≤ C3

(
ρ(x, y) + R

r

)η1

,
h(R)
h(r)

≤ C4

(
R

r

)η2

.

Example 2.1. Assume that there exist positive constants C, C ′ and d
such that

Crd ≤ V (x, r) ≤ C ′rd

for all x ∈ M, r > 0. In this case, the set M is called a d-set and the measure
µ is called Ahlfors regular. Then (VD) is satisfied.

Moreover, put h(r) = r2β for some positive number β. Then (TD) is
satisfied. When β < 1, our Lipschitz space Lipµ(h, 2,∞)(M) coincides with
the Lipschitz space Lip(β, 2,∞; M) studied, for instance, in [12].

Lemma 2.1. (i) Assume (VD). Then the generator Ar of Er can be
written as

Arv(x) =
C

h(r)

∫
B(x,r)

v(x) − v(y)
V (x, y, r)

µ(dy) =
C

h(r)
[v(x) − qrv(x)]

with C = 1 + 2η1C3, V (x, y, r) := C[V (x, r)−1 + V (y, r)−1]−1 and a Markov
kernel qr defined by

qr(x, dy) :=
1

V (x, y, r)
1B(x,r)(y)µ(dy) +

(
1 −

∫
B(x,r)

1
V (x, z, r)

µ(dz)

)
· δx(dy).

Hence, the transition semigroup for Er is given by

(2.6) pr
t = e−Ct/h(r) ·

∞∑
k=0

(Ct/h(r))k

k!
q[k]
r

with q
[k]
r being the k-th iteration of qr. In particular,

pr
t ≥ e−Ct/h(r) · [1 + Ct/h(r) · qr].
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(ii) Assume in addition (A1), (A2∗) and that M is compact. Then E and
E(c) are conservative and∫

B

∫
M\B

pt(x, dy) µ(dx) ≥
∫

B

∫
M\B

p
(c)
t (x, dy) µ(dx)(2.7)

≥
∫

B

∫
M\B

prn

δ2t(x, dy) µ(dx)

for each measurable B ⊂ M , each t > 0 and each n. Here pt, p
(c)
t , prn

t denote
the transition semigroups associated with the Dirichlet forms E , E(c), Ern, resp.

Proof. (i) is a simple calculation and we omit the proof. For (ii), since

E ≥ E(c) ≥ δ · E ≥ δ2 · Ern

on L2(M, µ), we have exp(tA) ≤ exp(tA(c)) ≤ exp(δtA) ≤ exp(δ2tArn) and
thus∫

B

∫
B

pt(x, dy) µ(dx) ≤
∫

B

∫
B

p
(c)
t (x, dy) µ(dx) ≤

∫
B

∫
B

prn

δ2t(x, dy) µ(dx).

According to the compactness of M ,
∫

B

∫
M

p•t (x, dy) µ(dx) = µ(B) < ∞ where
p•t stands for any of the involved transition semigroups. Hence (2.7) follows.

The inequality (2.7) can be used in combination with the explicit formula
(2.6) to deduce lower bounds for

∫
B

∫
M\B

pt(x, dy) µ(dx) and
∫

B

∫
M\B

p
(c)
t (x, dy)

µ(dx) and to conclude that pt and p
(c)
t are not degenerate.

Remark 2. Let us consider the case where there exists a family of time
scales {hβ(·)}β≥0 such that each hβ satisfies (TD) and for each 0 ≤ β < β′

lim sup
r↓0

hβ′(r)/hβ(r) = 0.

Given hβ , we denote Er(u) in (2.4) as Eβ,r(u). We also denote Eβ,∗(u) =
lim supn→∞ Eβ,rn(u) and Eβ,0(u) = Γ- limn→∞ Eβ,r′

n(u). Note that (A1) for
some β implies (A1) for all β′ < β and

Eβ′,0(u) = 0 for all u ∈ L2(M, µ).

Indeed, Eβ,∗(u) < ∞ implies Eβ′,0(u) = Eβ′,∗(u) = 0 for all β′ < β. Hence,
(A1) for β implies Eβ′,0(u) = 0 on a dense subset of L2(M, µ). By lower
semicontinuity this implies Eβ′,0(u) = 0 for u ∈ L2(M, µ). Note also that (A1)
is always true for hβ(r) = r2 since then CLip

0 (M) ⊂ F∗.
There exists at most one β0 such that simultaneously:

• {u ∈ L2(M, µ) : Eβ0,∗(u) = 0} is not dense in L2(M, µ);
• {u ∈ L2(M, µ) : Eβ0,∗(u) < ∞} is dense in L2(M, µ).
(Indeed, {u ∈ L2(M, µ) : Eβ′,∗(u) = 0} ⊃ {u ∈ L2(M, µ) : Eβ′′,∗(u) < ∞} for
all β′ < β′′, as discussed above.)

In the case hβ(r) = r2β, the number dw := 2β0 is called walk dimension.
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3. Graph approximation under volume doubling

In computing concrete examples, it is often useful to work on approximat-
ing graphs instead of M itself. In this section, we will introduce a natural
sequence of approximating graphs of (M, ρ, µ) when µ satisfies (VD). We fur-
ther show that approximating forms are comparable to the original jump-type
form under some weak assumptions.

We first define graphs which approximate M . The following construction
is standard, but we write down details for completeness.

Lemma 3.1. (i) Under (VD), there exists a constant N0 ∈ N such that
for each r > 0 there exists an open covering {B(xi, r)}∞i=1 of M with the prop-
erty that no point in M is contained in more than N0 of the B(xi, r), i ∈ N.

(ii) For each x ∈ M , the number of balls B(xi, r) in (i) which intersects
with B(x, 2r) (say Lx,r) is bounded by some positive constant L0 which is in-
dependent of x, r.

Proof. We first prove (i). Since M is a locally compact separable met-
ric space, there is an increasing sequence of compact sets {Kn}n≥1 such that
∪n≥1Kn = M . Now, take x1

1 ∈ K1 and choose x1
2, x

1
3, · · · ∈ K1 by letting x1

i+1

be any point in K1 \ ∪i
j=1B(x1

j , r). We do this until we can no longer pro-
ceed. Since K1 is compact, there is a finite subset {xi}l1

i=1 ⊂ {x1
i }i such that

K1 ⊂ ∪l1
i=1B(xi, r). We next choose x2

1, x
2
2, · · · ∈ K2 by letting x2

i+1 be any
point in K2 \ (∪l1

i=1B(xi, r) ∪ ∪i
j=1B(x2

j , r)). Again we do this until we can no
longer proceed. By doing this procedure iteratively, we obtain a desired open
covering of M . Note that the xi must be at least r distance apart, so that the
balls {B(xi, r/2)}i are disjoint. Now suppose y is in N of the balls B(xi, r),
i ∈ N (N may be infinite at this stage). Using (2.5), there exists N0 = C3 ·10η1

such that for each of these we have V (y, 2r)/V (xi, r/2) ≤ N0. Since B(y, 2r)
contains N disjoint balls B(xi, r/2),

V (y, 2r) ≥
∑

i:y∈B(xi,r)

V (xi, r/2) ≥ NN−1
0 V (y, 2r),

which implies N ≤ N0, independent of y and r.
We next prove (ii). If Ax,r is a set of such {xi}i, then

N0V (x, 4r) ≥
∑

xi∈Ax,r

V (xi, r) ≥ Lx,r · min
xi∈Ax,r

V (xi, r),

since each point in M is covered by at most N0 of the balls B(xi, r) and
B(xi, r) ⊂ B(x, 4r). Using (2.5) as before, we have V (x, 4r)/V (xi, r) ≤ c1,
so that N0c1 ≥ Lx,r. We can thus take L0 = N0c1.

Let Vr = {xi}i. We say that x and y are connected by bonds (which we
denote {x, y} ∈ Br) if B(x, r)∩B(y, r) 
= ∅. In this way, we can define a graph
(Vr, Br). The definition of (Vr, Br) depends on the choice of the open covering
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of M ; — in the following, for each r > 0, we choose one open covering with the
above mentioned property and fix the graph (Vr, Br). For each sequence (rm)
which converges to zero, the set ∪mVrm

is dense in M . Note that (Vr, Br) has
bounded degree, i.e. supx∈Vr

�{y ∈ Vr : {x, y} ∈ Br} < ∞.
For each r > 0, the mean value operator µr : L1(M, µ) → l(Vr) is given by

µrf(s) =
∫

B(s,r)

− f(y)µ(dy) ∀s ∈ Vr, ∀f ∈ L1(M, µ).

Here l(Vr) denotes the set of all maps f : Vr → R. We define the discrete
Dirichlet form on the graph (Vr, Br) by

(3.1) Er(f) =
1

h(r)

∑
{x,y}∈Br

(f(x) − f(y))2 · V (x, r) ∀f ∈ l(Vr).

We will show that this form is comparable with the approximating Dirichlet
form Er on the original metric space (M, ρ) under the following Poincaré in-
equality.
(PI(h)) There exists c3.1 > 0 such that for each f ∈ L2(M, µ) and each r > 0,

1
h(r)

∑
s∈Vr

∫
B(s,r)

|f(x) − µrf(s)|2µ(dx) ≤ c3.1E
0(f),

where E0(f) = Γ- lim infn→∞ Ern(µrn
f).

Lemma 3.2. Assume (VD) and (PI(h)). Then there exists c3.2 > 0
such that

Er(f) ≤ c3.2{E0(f) + Er(µrf)} ∀f ∈ L2(M, µ), ∀r > 0.

Proof. For i ≥ 1, define B
(i)
r = {{s, t} : s, t ∈ Vr, there exists {uj}L

j=0 ⊂
Vr (L ≤ i) such that s = u0, t = uL and {uj , uj+1} ∈ Br for 0 ≤ j ≤ L − 1}.
Note that if x ∈ B(s, r), s ∈ Vr and ρ(x, y) ≤ r, then y ∈ B(t, r) for some
t ∈ Vr where either t = s or {t, s} ∈ B

(L0)
r . (Recall that L0 is the number of

balls B(xi, r) which intersects with B(x, 2r).) Using this fact and (VD), we get

(3.2)

Er(f) ≤ c1

h(r)

∑
s∈Vr

∫
B(s,r)

µ(dx)
V (s, r)

∑
t∈Br :t=s

or {s,t}∈B(L0)
r

∫
B(t,r)

|f(x) − f(y)|2µ(dy).

Since the degree of (Vr, Br) is uniformly bounded with respect to r, by a simple
computation using triangle inequalities, we have

(3.3)

[LHS of (3.2)] ≤ c2

h(r)

∑
s∈Vr

∑
t∈Br :t=s

or {s,t}∈Br

∫
B(s,r)

µ(dx)
V (s, r)

∫
B(t,r)

|f(x) − f(y)|2µ(dy).
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Computing each term in the sum of the right hand side, we deduce

∫
B(s,r)

µ(dx)
V (s, r)

∫
B(t,r)

|f(x) − f(y)|2µ(dy)

=
V (t, r)
V (s, r)

∫
B(s,r)

f(x)2µ(dx) +
∫

B(t,r)

f(y)2µ(dy) − 2V (t, r)µrf(s)µrf(t)

=
V (t, r)
V (s, r)

∫
B(s,r)

|f(x) − µrf(s)|2µ(dx) +
∫

B(t,r)

|f(y) − µrf(t)|2µ(dy)

+ V (t, r)(µrf(s) − µrf(t))2.

(3.4)

Now summing up the last term of (3.4) and using (VD), we see that the right
hand side of (3.3) is greater than or equal to

c3

{
1

h(r)

∑
s∈Vr

∫
B(s,r)

|f(x) − µrf(s)|2µ(dx) + Er(µrf)

}
.

Using (PI(h)), we obtain the result.

The opposite inequality is easier.

Lemma 3.3. Assume (VD) and (TD). Then there exists c3.3 > 0 such
that

Er(µrf) ≤ c3.3Er(f) ∀f ∈ L2(M, µ), ∀r > 0.

Proof. First, by similar computations as (3.2) and (3.3), using (VD),
(TD) and the fact that {B(s, r)}s∈Vr

covers each point of M at most finite
number of times, we have Er(f) ≥ c1E4r(f) for some c1 > 0. Thus, it is enough
to prove Er(µrf) ≤ c2E4r(f).

Note that if x ∈ B(s, r) and {s, t} ∈ Br, then B(t, r) ⊂ {y ∈ M : ρ(x, y) <
4r}. Since {B(s, r)}s∈Vr

covers each point of M at most finite number of times,
using (VD), we have

(3.5) E4r(f) ≥ c3

h(4r)

∑
{s,t}∈Br

∫
B(s,r)

µ(dx)
V (s, r)

∫
B(t,r)

|f(x) − f(y)|2µ(dy).

Now by the same computation as (3.4) and using (TD), we obtain that the right
hand side of (3.5) is greater than or equal to c4E

r(µrf) for some c4 > 0.

As in the case of Er, for a sequence (rn)n of positive numbers decreasing
to 0, put

E∗(u) := lim sup
n→∞

Ern(µrn
u), F ∗ := {u ∈ C0(M) : E∗(u) < ∞}.
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Assumptions 3.
(B1) F ∗ is dense in C0(M).
(B2) There exists δ > 0 such that for all u ∈ L2(M, µ) and all (un)n ⊂
L2(M, µ) that converges to u in L2,

lim inf
n→∞ Ern(µrn

un) ≥ δ · E∗(u).

(B2∗) There exists δ > 0 such that for all u ∈ L2(M, µ) and all (un)n ⊂
L2(M, µ) that converges to u in L2,

lim inf
n→∞ Ern(µrn

un) ≥ δ · sup
n

Ern(µrn
u).

Our main result in this section is that the Assumptions 3 together with
(PI(h)) for the discrete Dirichlet forms on the induced graphs (Vr, Br) imply
the Assumptions 1 for the Dirichlet forms on the abstract metric space M .

Proposition 3.1. Asume (VD), (TD) and (PI(h)). Then (B1) ⇒ (A1),
(B2) ⇒ (A2), and (B2∗) ⇒ (A2∗).

Proof. The first implication is clear from Lemma 3.2 and the fact that
E0(u) ≤ E∗(u). For the second one, note that by (B2) and Lemma 3.2,
we have E∗(u) ≤ c1Γ- lim inf Ern(µrn

u). By this and Lemma 3.3, we have
E∗(u) ≤ c2Γ- lim inf Ern(u) so that (A2) holds. The last inequality can be
proved similarly.

4. Domains of Dirichlet forms with two-sided heat kernel estimates

In the following, we will prove that if a heat kernel of a regular Dirichlet
form satisfies suitable two-sided estimates, then the domain of the form is the
Lipschitz space. We assume that the heat kernel satisfies the following estimate
for all 0 < t ≤ 1, x, y ∈ M ,

(4.1)
1

V (x, h−1(t))
Φ1

(
h(ρ(x, y))

t

)
≤ pt(x, y) ≤ 1

V (x, h−1(t))
Φ2

(
h(ρ(x, y))

t

)
,

where h−1 is a inverse function of h and Φ1, Φ2 are monotone decreasing positive
functions on [0,∞). (We will assume that Φ2 decay sufficiently fast at +∞ in
Theorem 4.1). Note that we only assume short time heat kernel estimates.

Moreover, we impose the following “fast time growth” condition:
(FTG) There exists η3 > 0 and C1 > 0 such that h(T )/h(t) ≥ C1(T/t)η3 for
all 0 < t < T .

Our main theorem in this section is the following.

Theorem 4.1. Let (M, ρ, µ) be a metric measure space. Assume that
(VD) holds for µ and that a time scale h is given which satisfies (TD) and
(FTG). Assume further that there is a local regular Dirichlet form (E ,F) on



�

�

�

�

�

�

�

�

318 Takashi Kumagai and Karl-Theodor Sturm

L2(M, µ) with the following properties: there exists a symmetric transition den-
sity pt(x, y) for (E ,F) with respect to µ which satisfies (4.1). Here we assume
that the function ϕ(s) := s(η1+η2)/η3Φ2(s) is monotone decreasing in [s0,∞)
for some s0 > 0 and

(4.2)
∫ ∞

1

Φ2(s)s
η1+η2

η3
−1ds < ∞.

Then, for all α > 1 there exist c4.1(α), c4.2 > 0 such that the following holds.

(4.3) c4.1(α)E(f) ≤ lim sup
m→∞

Eα−m

(f) ≤ sup
r>0

Er(f) ≤ c4.2E(f) for f ∈ F .

Here Er is the approximating Dirichlet form as defined in (2.4). In particular,

F = Lipµ(h, 2,∞)(M).

Remark 3. By (4.3), we see that (A1) holds. Thus, by Theorem 2.1 i),
E0 := Γ- limn→∞ Er′

n exists. If in addition

(4.4) E0(f) ≥ c4.3E(f) for f ∈ F

or

(4.5) E0(f) := Γ- lim inf
n→∞ Ern(µrn

f) ≥ c4.3E(f) for f ∈ F

holds, then by (4.3) and Lemma 3.3, we see that (A2*) (thus (A2)) holds. We
note that this theorem is an extension of [7, Theorem 4.2] and [18, Theorem 1].

Proof. We first prove supr>0 Er(f) ≤ c1E(f) which in turn immediately
will imply F ⊂ Lip. For t ≤ 1 and f ∈ L2(M, µ), let Et(f) := 1

t (f − Ptf, f)L2 ,
where Pt is the semigroup corresponding to (E ,F). Then,

Et(f) =
1
2t

∫ ∫
M×M

(f(x) − f(y))2pt(x, y)µ(dx)µ(dy)

≥ 1
2t

∫ ∫
ρ(x,y)≤h−1(t)

(f(x) − f(y))2pt(x, y)µ(dx)µ(dy)

≥ Φ1(1)
2t

∫ ∫
ρ(x,y)≤h−1(t)

(f(x) − f(y))2

V (x, h−1(t))
µ(dx)µ(dy),

(4.6)

where we use the lower bound of (4.1) in the last inequality. Taking t = h(r)
for r > 0, we see that the RHS of (4.6) is equal to 1

c1
Er(f) for some c1 > 0. It

is well known that Et(f) ↗ E(f) as t ↓ 0 ([6, Lemma 1.3.4]). Thus the claim
follows.

We next prove c2E(f) ≤ supm∈N Eα−m

(f) which then will imply F ⊃ Lip.
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For each t ≤ 1 and g ∈ Lip,

Et(g) =
1
2t

∫ ∫
M×M

(g(x) − g(y))2pt(x, y)µ(dx)µ(dy)

=
1
2t

∫ ∫
x,y∈M

ρ(x,y)>1

(g(x) − g(y))2pt(x, y)µ(dx)µ(dy)

+
1
2t

∫ ∫
x,y∈M

ρ(x,y)≤1

(g(x) − g(y))2pt(x, y)µ(dx)µ(dy) =: A(t) + B(t).

We first estimate A(t). (Note that this part is empty if diam(M) ≤ 1.) Since

A(t) =
1
2t

∞∑
m=0

∫ ∫
αm<ρ(x,y)≤αm+1

(g(x) − g(y))2pt(x, y)µ(dx)µ(dy),

for α > 1, using the fact (a + b)2 ≤ 2(a2 + b2) and the symmetry, we have

A(t) ≤ 2
t

∞∑
m=0

∫
M

g(x)2µ(dx)
∫

αm<ρ(x,y)≤αm+1
pt(x, y)µ(dy).

Set Hm = {y ∈ M : αm < ρ(x, y) ≤ αm+1}. By (4.1), we have∫
Hm

pt(x, y)µ(dy) ≤
∫

Hm

1
V (x, h−1(t))

Φ2

(
h(αm)

t

)
µ(dy)

≤ µ(Hm)
V (x, h−1(t))

Φ2

(
c3α

mη3

t

)
≤ V (x, αm+1)

V (x, h−1(t))
Φ2

(
c3α

mη3

t

)
,

where we use (FTG) and the fact 0 < h(1) < ∞ in the second inequality.
Using (2.5), we have V (x, αm+1)/V (x, h−1(t)) ≤ c4(αm/h−1(t))η1 . Note that
by (FTG), if t′ is small we have h(1)/h(t′) ≥ c5/t′η3 . Taking t = h(t′), we have
1/h−1(t) ≤ c6/t1/η3 . Combining these facts, we have

A(t) ≤ c7

t
‖g‖2

L2

∞∑
m=0

(
αmη3

t

)η1/η3

Φ2

(
c3α

mη3

t

)
=:

c8

t
‖g‖2

L2

∞∑
m=0

F (t, m),

for small t ≤ 1. for small t > 0. By a simple calculation, we have F (t, m) =
ϕ(c3α

mη3/t) · (αmη3/t)−η2/η3 ≤ ϕ(c3/t)tη2/η3/αmη2 . By the assumption that ϕ
is monotone decreasing and (4.2), we have lims→∞ ϕ(s) = 0. Thus, noting that
η2 ≥ η3, we obtain

(4.7) A(t) ≤ c′‖g‖2
L2ϕ(c3/t)tη2/η3−1

for small t and thus A(t) t→0−→ 0.
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Next we estimate B(t). By (4.1) again, we have

B(t)

≤ 1
2t

∞∑
m=1

∫
µ(dx)

∫
H−m

1
V (x, h−1(t))

Φ2

(
h(α−m)

t

)
(g(x) − g(y))2µ(dy)

≤ c9

t

∞∑
m=1

∫
µ(dx)

V (x, α1−m)
V (x, h−1(t))

∫
B(x,α1−m)

− Φ2

(
h(α−m)

t

)
(g(x) − g(y))2µ(dy)

≤ c9

(
sup
m∈N

Eα−m

(g)
) ∞∑

m=1

{
c10

(
α1−m

h−1(t)

)η1

∨ 1
}

h(α1−m)
t

Φ2

(
h(α−m)

t

)
=: I1,

where we use (2.5) in the last inequality. We now compute the sum in I1.
Note that by (2.5) and (FTG), we have c11(z′/z)η3 ≤ h(z′)/h(z) ≤ c12(z′/z)η2

for z′ ≥ z and h(z′)/h(z) ≤ c13(z′/z)η3 for z′ < z. Let t′ = h−1(t) and take
m0 = m0(t′) so that α−m0−1 < t′ ≤ α−m0 . Then,

I1

≤ c14

(
sup
m∈N

Eα−m

(g)
)

m0∨0∑
m=1

(
α−m

t′

)η1+η2

Φ2

(
c15

(
α−m

t′

)η3)

+
∞∑

m=(m0+1)∨1

(
α−m

t′

)η3


≤ c16

(
sup
m∈N

Eα−m

(g)
)

∫ ∞

c17

Φ2(s)s
η1+η2

η3
−1ds +

∞∑
m=(m0+1)∨1

(
α−m

t′

)η3


≤ c18 · sup

m∈N

Eα−m

(g),

where we use (4.2) in the last inequality. Combining this with (4.7), we obtain

Et(g) ≤ c′‖g‖2
L2ϕ(c3/t)tη2/η3−1 + c18 · sup

m∈N

Eα−m

(g)

for small t ≤ 1. Thus, E(g) = limt→0 Et(g) ≤ c18 · supm∈N
Eα−m

(g).
Now replacing A(t) and B(t) in the previous argument by

Ak(t) =
1
2t

∫ ∫
ρ(x,y)>α−k

(g(x) − g(y))2pt(x, y)µ(dx)µ(dy)

and

Bk(t) =
1
2t

∫ ∫
ρ(x,y)≤α−k

(g(x) − g(y))2pt(x, y)µ(dx)µ(dy)

yields E(g) ≤ c18 · supm≥k Eα−m

(g) for each k ∈ N and thus

E(g) ≤ c18 · lim sup
m→∞

Eα−m

(g).
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5. Examples

In this section, we present some examples where we can obtain non-trivial
processes by the knowledge of the last section. We begin with the definition of
a self-similar space: see [1], [14] for more details and examples.

Let I = {1, 2, . . . , N}. The one-sided shift space Σ is defined by Σ = IN.
For w ∈ Σ, we denote the i-th element in the sequence by wi and write w =
w1w2w3 · · · .

Definition 5.1. 1) Let M be a compact metrizable space and for each
s ∈ I, Fs : M → M be a continuous injection. Then, L = (M, I, {Fs}s∈I) is
said to be a self-similar structure on M if there exists a continuous surjection
π : Σ → M such that π ◦ σ̃s = Fs ◦ π for every s ∈ I, where σ̃s : Σ → Σ is
defined by σ̃sw = sw for s ∈ I.
2) Let L = (M, I, {Fs}s∈I) be a self-similar structure on M . Then, C(L) (the
critical set of L) and P (L) (the post critical set of L) are defined by

C(L) = π−1

 ⋃
s,t∈I,s 
=t

(Fs(M) ∩ Ft(M))

 , P (L) =
⋃
n≥1

σn(C(L)),

where σ : Σ → Σ is the left shift map, i.e. σw = w2w3 · · · if w = w1w2 · · · .
Set V0 = π(P (L)); we call V0 the boundary of M . A Bernoulli (probability)

measure on M is a measure µ on M such that µ(Fi(M)) = µi > 0, where∑N
i=1 µi = 1.

In the following, we will demonstrate two classes of connected self-similar
sets (M, I, {Fs}s∈I), which have non-trivial processes under the framework of
the last section.

5.1. P.c.f. self-similar sets
We call the self-similar set (M, I, {Fs}s∈I) a post critically finite (p.c.f. for

short) self-similar sets if the post critical set P (L) is a finite set. This condition
implies that M is finitely ramified.

These sets were introduced by Kigami ([13]). It is shown that, provided a
‘regular harmonic structure’ exists, (which roughly means there exists a non-
degenerate fixed point for a non-linear renormalization map), then a local regu-
lar Dirichlet form exists. There are many fractals which satisfy this assumption
(typical example is the Sierpinski gasket). We will make this assumption for
p.c.f. self-similar sets and introduce the results we need concerning the prop-
erties of their Dirichlet forms.

The resistance R(p, q) between points p 
= q ∈ M can be defined using the
Dirichlet form (E ,F), by

R(p, q) = (inf{E(f, f) : f(p) = 0, f(q) = 1})−1
,
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where we set inf ∅ = ∞. We set R(p, p) = 0 for p ∈ M . Then, the function
R(·, ·) determines a metric, which we call the (effective) resistance metric, on
M .

Theorem 5.1 ([14]). 1) There exists a local regular Dirichlet form (E ,F)
on L2(M, µ) which has the following property:

|f(p) − f(q)|2 ≤ R(p, q)E(f, f) for f ∈ F , p, q ∈ M,(5.1)

E(f, g) =
N∑

i=1

ρiE(f ◦ Fi, g ◦ Fi) for f, g ∈ F ,(5.2)

where ρi > 1 (i ∈ I). Especially, all the elements in F are continuous functions.
Further, if we set E(β)(·, ·) = E(·, ·) + β(·, ·)L2(M,µ) for β > 0, then, E(β) admits
a positive symmetric continuous reproducing kernel.
2) Let Lµ be the self-adjoint operator on L2(M, µ) associated with the Dirichlet
form (E ,F), and define nµ(x) = #{λ : λ is an eigenvalue of −Lµ ≤ x.}. Let
de

s(µ) > 0 be the unique positive number satisfying
∑N

i=1(µi/ρi)de
s(µ)/2 = 1,

then

0 < lim inf
x→∞ nµ(x)/xde

s(µ)/2 ≤ lim sup
x→∞

nµ(x)/xde
s(µ)/2 < ∞.

Further, let ν be the Bernoulli measure satisfying

(5.3) νi = ρ−S
i for all i ∈ I,

where S is the unique constant which satisfies
∑N

i=1 ρ−S
i = 1. Then the maxi-

mum of de
s(µ)/2 over Bernoulli measures on M is attained only at ν, and the

maximum value is S/(S + 1).

For this special case, (i.e. µ = ν) detailed estimates on the heat kernel
pt(x, y) are obtained in [8]. In the following, we will explain a version of the
result of [8].

Theorem 5.2. There exists a jointly continuous symmetric transition
density pt(x, y) for (E ,F) with respect to ν which satisfies the following,

c5.1t
− S

S+1 exp
(
−c5.2

(
R(x, y)S+1

t

)γ1)
≤ pt(x, y)(5.4)

≤ c5.3t
− S

S+1 exp
(
−c5.4

(
R(x, y)S+1

t

)γ2)
for all 0 < t ≤ 1, x, y ∈ M , where 0 < γ2 ≤ γ1 and c5.1, . . . , c5.4 are positive
constants which depend only on M .

Proof. This can be obtained by a simple modification of [8, Corollary 1.2]
i.e.,

pt(x, y) ≤ c1t
− S

S+1 exp

(
−c2

(
R(x, y)S+1

t

)dc
k(m,t)(x,y)/(S+1−dc

k(m,t)(x,y))
)

,
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for all x, y ∈ M with e−m−1 ≤ R(x, y) < e−m and all 0 < t ≤ 1, with the same
lower bound (with different constants c3 and c4). Here

(5.5) dc
k(x, y) :=

1
k

log Nm+k(x, y),

Nm(x, y) is the shortest path counting function for the resistance metric at
level m (see [8] for detailed definition), and

(5.6) k = k(m, t) := inf{j : Nm+j(x, y)e−(S+1)(m+j) < t}.

It is enough to estimate dc
k(x, y) uniformly from above and below when

R(x, y)S+1/t is (thus k is) large. Now, using self-similarity, Lemma 3.3, Lemma
3.4 and (3.11) of [8], we have

c5 exp(k) ≤ Nm+k(x, y) ≤ c6 exp
(

(S + 1)k
2

)
.

(From this we see that S ≥ 1.) Substituting this to (5.5), we have

1 − c7

k
≤ dc

k(x, y) ≤ S + 1
2

+
c8

k
,

and the result holds.

We remark that we cannot take γ1 = γ2 in general, as shown in [8, Section
6].

We now show that the domain F of the Dirichlet form is the Lipschitz
space. First, note that F is embedded in the space of continuous functions on
M and it is independent of the choice of µ. We thus take µ = ν. Then, by
(5.4), we can apply Theorem 4.1 with ρ(·, ·) = R(·, ·), β0 = dw/2 = (S + 1)/2,
h(t) = tS+1 and c1r

S ≤ V (x, r) ≤ c2r
S . We thus have the following.

Proposition 5.1.

F = Lipν

(
S + 1

2
, 2,∞

)
(M).

Further, the Lipschitz norm is comparable to E in the sense of (4.3).

Note that we can also prove this proposition by the similar way as [15,
Theorem 4.3], but as we have detailed estimates (5.4) of the heat kernel, the
proof in Theorem 4.1 is much easier. Using (5.4) again, we can prove that for
all β > (S + 1)/2, Lipν(β, 2,∞)(M) consists only of constant functions (cf. [7,
Theorem 4.2] and [18, Proposition 2]).

By this proposition, (A1) holds. In this case, E(f) is a monotone increasing
limit of quadratic forms on approximating graphs. Further, elements of the
domains of the forms are continuous functions. We thus obtain E0(f) :=
Γ- limn→∞ Ern(f) = E(f) (cf. [8, Section 3]), in particular (4.5) holds.Therefore
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(A2*) (thus (A2)) holds in this case.

5.2. Sierpinski carpets and their Dirichlet forms
Let H0 = [0, 1]d, and let l ∈ N, l ≥ 2 be fixed. Set Q = {Πd

i=1[(ki −
1)/l, ki/l] : 1 ≤ ki ≤ l, ki ∈ N (1 ≤ i ≤ d)}, let l ≤ N ≤ ld and let Fi,
1 ≤ i ≤ N be orientation preserving affine maps of H0 onto some element
of Q. (We assume that F1(x) = l−1x for x ∈ H0 and that the sets Fi(H0)
are distinct.) Set H1 = ∪i∈IFi(H0). Then, there exists a unique non-empty
compact set M ⊂ H0 such that M = ∪i∈IFi(M) and (M, I, {Fs}s∈I) is a self-
similar structure. M is called a Sierpinski carpet if the following holds:
(SC1) (Symmetry) H1 is preserved by all the isometries of the unit cube H0.
(SC2) (Connected) H1 is connected.
(SC3) (Non-diagonality) Let B be a cube in H0 which is the union of 2d distinct
elements of Q. (So B has side length 2l−1.) Then if Int(H1 ∩B) is non-empty,
it is connected.
(SC4) (Borders included) H1 contains the line segment {x : 0 ≤ x1 ≤ 1, x2 =
· · · = xd = 0}.

Here (see [3]) (SC1) and (SC2) are essential, while (SC3) and (SC4) are
included for technical convenience. The main difference from p.c.f. self-similar
sets is that Sierpinski carpets are infinitely ramified: the critical set C(L) in
Definition 5.1 is infinite, and M cannot be disconnected by removing a finite
number of points. In fact, for the classical Sierpinski carpet in R

d with l = 3
and N = 3d −1 we have V0 = ∂[0, 1]d. Write D = log N/ log l for the Hausdorff
dimension of M with respect to the Euclidean metric. Let

Hn :=
⋃

i1,...,in∈I

Fi1 ◦ · · · ◦ Fin
(H0), Mpre :=

⋃
n≥0

lnHn and M̃ :=
⋃
n≥0

lnM.

Mpre is called a pre-carpet and M̃ is called an unbounded carpet (see [3]).
We write ν for the Bernoulli measure with weights νi = 1/N : ν is a multiple

of the Hausdorff measure on M . In [2], [16], [3], [9] a non-degenerate Dirichlet
form E ′ on L2(M, ν) is constructed on these spaces, with the property that
E ′ is invariant under local isometries of M – and in particular E ′ is the same
on each k-complex. The uniqueness of E ′ is an open problem – see [3]. If E ′

were unique then (5.2) would follow immediately. However, without requiring
uniqueness, in [16] (see also [3, Remark 5.11]) a compactness argument is used
to construct a Dirichlet form E with the same invariances as E ′ and in addition
satisfying (5.2) in the case when, for a constant ρM depending on M ,

ρi = ρM , for all 1 ≤ i ≤ N.

Let tM = NρM and let X̂ = (X̂t, t ≥ 0) be the diffusion associated with E
and L2(M, ν). We define dw = log tM/ log l, the walk dimension of M , and
ds = 2 log N/ log tM , the spectral dimension of M . In [4] (together with the
results in [2], [3]), it is proved that X̂ enjoys the following transition density
estimates.
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c5.5t
− ds

2 exp

(
−c5.6

(‖x − y‖dw

t

) 1
dw−1

)
≤ pt(x, y)

≤ c5.7t
− ds

2 exp

(
−c5.8

(‖x − y‖dw

t

) 1
dw−1

)(5.7)

for all 0 < t ≤ 1, x, y ∈ M , where c5.5, . . . , c5.8 are positive constants which
depend only on M and ‖ · − · ‖ is the Euclidean metric. Thus, we can apply
Theorem 4.1 with ρ(·, ·) = ‖ ·− · ‖, β0 = dw/2 =, h(t) = tdw and c1r

log N/ log l ≤
V (x, r) ≤ c2r

log N/ log l and we have the following (cf. [15], [18]).

Proposition 5.2.

F = Lipν

(
dw

2
, 2,∞

)
(M).

Further, the Lipschitz norm is comparable to E in the sense of (4.3).

By this proposition, (A1) holds in this case. Further, (4.5) holds by Propo-
sition 5.2 and Theorem 5.4 in [16] (in general, Lemma 4.1 and Lemma 4.3 in
[9]). Therefore (A2*) (thus (A2)) holds in this case.

For the pre-carpet Mpre, one can construct a reflected Brownian motion
on Mpre since its interior is a Lipschitz domain. Let (Epre,Fpre) be the cor-
responding Dirichlet form. Then the transition density with respect to the
Lebesgue measure m satisfies

c5.9t
− d

2 exp
(
−c5.10

‖x − y‖2

t

)
≤ ppre

t (x, y) ≤ c5.11t
− d

2 exp
(
−c5.12

‖x − y‖2

t

)
for all 0 < t ≤ 1, x, y ∈ Mpre, and it satisfies (5.7) for t ≥ 1 ∨ ‖x − y‖, x, y ∈
Mpre (see [3, Theorem 1.4]). Thus, by Theorem 4.1, we have

Fpre = Lipm(1, 2,∞)(Mpre).

For the unbounded carpet M̃ , let ν̃ be the normalized Hausdorff measure.
Then, one can construct a local regular Dirichlet form (Ẽ , F̃) on L2(M̃, ν̃) which
satisfies

Ẽ(f, g) = ρM Ẽ(f ◦ F1, g ◦ F1) for f, g ∈ F̃ .

The corresponding diffusion enjoys the transition density estimate (5.7) for all
t > 0, x, y ∈ M̃ (cf. [4], [2], [3]). Thus, by Theorem 4.1, we have

(5.8) F̃ = Lipν̃

(
dw

2
, 2,∞

)
(M̃).

In [15], F̃ is characterized as {u ∈ L2(M̃, ν̃) : supn∈Z
Eα−n

(u) < ∞}. By (4.3),
we see that this space coincides with the right hand side of (5.8) and supn∈Z

can be replaced by lim supn→∞.
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Statistics: Ecole d’été de probabilités de Saint-Flour XXV, Springer, New
York, 1998.

[2] M. T. Barlow and R. F. Bass, The construction of Brownian motion on
the Sierpinski carpet, Ann. Inst. H. Poincaré 25 (1989), 225–257.

[3] , Brownian motion and harmonic analysis on Sierpinski carpets,
Canad. J. Math. 51 (1999), 673–744.

[4] M. T. Barlow, R. F. Bass and T. Kumagai, Stability of parabolic Harnack
inequalities on metric measure spaces, preprint, 2004.

[5] G. Dal Maso, An introduction to Γ-convergence, Birkhäuser, Boston, 1993.
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