The ideal boundary of the Sol group

By

Sungwoon Kim

Abstract

We obtain equations of geodesic lines in the Lie group Sol and prove that the ideal boundary of the $\mathbf{S o l}$ is a set $\mathcal{R}=\{(x, y, z) \mid x y=$ 0 , and $\left.x^{2}+y^{2}+z^{2}=1\right\}$ with a degenerate Tits metric, i.e., the distance between different points equals ∞.

1. Introduction

It is well known that there are 8 three dimensional model geometries [Th]. Each of the 8 three-dimensional model geometries is isometric to a Lie group with a left invariant metric. The Sol, one of the eight model geometries, is a Lie group of dimension 3 whose underlying space is \mathbb{R}^{3}. Let (x, y, z) denote a coordinate of \mathbb{R}^{3}. Then, the multiplication rule of the Lie group, Sol, is given by

$$
\begin{equation*}
(x, y, z) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+e^{-z} x^{\prime}, y+e^{z} y^{\prime}, z+z^{\prime}\right) \tag{1.1}
\end{equation*}
$$

The ideal boundary was introduced to compactify complete Riemannian manifolds or more generally complete locally compact metric spaces (refer to [G1]). Since then, the ideal boundary has become an important part in studying the intrinsic geometry of complete Riemannian manifolds. It is particularly useful for a Hadamard manifold, which is a connected, simply connected complete Riemannian manifold of nonpositive curvature [EO]. The characterization of the ideal boundary of a manifold is a critical issue in the field of the Riemannian geometry. Recently, Valery Marenich [V] showed that the ideal boundary of Nil is $\left(\mathrm{S}^{1}, \omega\right)$ with a natural CR-structure and corresponding Carnot-Caratheodory metric ω [G2], where Nil is one of the 8 three dimensional model geometries. Now, the Sol group is the only model geometry whose ideal boundary is unknown to us; therefore, in this paper, we study the ideal boundary of the Sol. The $x z$-plane and the $y z$-plane contained in the Sol are isometric to \mathbb{H}^{2}. Moreover, we show that there are not geodesic rays which are not contained in the $x z$-plane or the $y z$-plane. Then the ideal boundary of the $\mathbf{S o l}$ can be determined and characterized completely as in the main theorem.

[^0]Theorem 1.1. The ideal boundary of the $\mathbf{S o l}$ is a $\left(\mathcal{R}, d_{\infty}\right)$ with a degenerate Tits metric, i.e., the distance between different points equals ∞, where $\mathcal{R}=\left\{(a, b, c) \mid a b=0\right.$ and $\left.a^{2}+b^{2}+c^{2}=1\right\}$.

2. Left invariant metric, Levi-Civita connection and curvature tensor of the Sol

The element zero, $\mathbf{0}=(0,0,0)$, is the unit of the $\mathbf{S o l}$ group structure and the vector fields

$$
\begin{equation*}
X_{1}=\left(e^{-z}, 0,0\right), X_{2}=\left(0, e^{z}, 0\right), X_{3}=(0,0,1) \tag{2.1}
\end{equation*}
$$

are then left-invariant fields. We define a left-invariant metric of the Sol by taking X_{1}, X_{2}, X_{3} as the orthonormal frame. The left invariant metric on the Sol is given by the formula $d s^{2}=e^{2 z} d x^{2}+e^{-2 z} d y^{2}+d z^{2}$. By direct computation, we derive the following lemmas.

Lemma 2.1. For the covariant derivatives of the Levi-Civita connection of the left-invariant metric, defined above, the following holds:

$$
\nabla=\left(\begin{array}{ccc}
-X_{3} & 0 & X_{1} \tag{2.2}\\
0 & X_{3} & -X_{2} \\
0 & 0 & 0
\end{array}\right)
$$

where the (i, j)-element in the table above equals $\nabla_{X_{i}} X_{j}$.
Lemma 2.2. The curvature tensor of the Sol satisfies the following:

$$
\begin{array}{ll}
R\left(X_{1}, X_{2}\right) X_{1}=X_{2}, R\left(X_{1}, X_{2}\right) X_{2}=-X_{1}, & R\left(X_{1}, X_{2}\right) X_{3}=0 \\
R\left(X_{2}, X_{3}\right) X_{1}=0, \quad R\left(X_{2}, X_{3}\right) X_{2}=-X_{3}, & R\left(X_{2}, X_{3}\right) X_{3}=X_{2} \\
R\left(X_{3}, X_{1}\right) X_{1}=X_{3}, R\left(X_{3}, X_{1}\right) X_{2}=0, & R\left(X_{3}, X_{1}\right) X_{3}=-X_{1} \tag{2.5}
\end{array}
$$

From lemma 2.2, we obtain the sectional curvatures of the $\mathbf{S o l}$ as follows.

$$
\begin{equation*}
K\left(X_{1}, X_{2}\right)=1, K\left(X_{2}, X_{3}\right)=-1, K\left(X_{3}, X_{1}\right)=-1 \tag{2.6}
\end{equation*}
$$

This lemma immediately tells us that the $\mathbf{S o l}$ is not a Hadamard manifold.

3. Geodesic lines in the Sol

First we determine equations of geodesics issuing from $\mathbf{0}=(0,0,0)$. The geodesic equations are

$$
\begin{equation*}
\frac{d^{2} x_{k}}{d t^{2}}+\sum_{i, j} \Gamma_{i j}^{k} \frac{d x_{i}}{d t} \frac{d x_{j}}{d t}=0 \quad(k=1,2,3) . \tag{3.1}
\end{equation*}
$$

By direct computation, we find that $\Gamma_{11}^{3}=-e^{2 z}, \Gamma_{13}^{1}=\Gamma_{31}^{1}=1, \Gamma_{22}^{3}=$ $e^{-2 z}, \Gamma_{23}^{2}=\Gamma_{32}^{2}=-1$ and the other Christoffel symbols are zeros. Then the
geodesic equations are

$$
\begin{align*}
\ddot{x}+2 \dot{x} \dot{z} & =0, \tag{3.2}\\
\ddot{y}-2 \dot{y} \dot{z} & =0, \tag{3.3}\\
\ddot{z}-e^{2 z}(\dot{x})^{2}+e^{-2 z}(\dot{y})^{2} & =0 . \tag{3.4}
\end{align*}
$$

Let $(x(0), y(0), z(0))=(0,0,0),(\dot{x}(0), \dot{y}(0), \dot{z}(0))=(a, b, c)$ and $a^{2}+b^{2}+c^{2}=1$.
From differential equations (3.1) and (3.2), we know that

$$
\begin{equation*}
\dot{x}=a e^{-2 z}, \dot{y}=b e^{2 z} . \tag{3.5}
\end{equation*}
$$

Since a geodesic is an arc length parameterized curve, the length of the vector $(\dot{x}, \dot{y}, \dot{z})$ at (x, y, z) is 1 . By the left invariant metric $d s^{2}=e^{2 z} d x^{2}+e^{-2 z} d y^{2}+$ $d z^{2}$, we have

$$
\begin{equation*}
a^{2} e^{-2 z}+b^{2} e^{2 z}+\dot{z}^{2}=1 \tag{3.6}
\end{equation*}
$$

If one let $u=e^{2 z}$, after some easy computation one could find that

$$
\begin{align*}
\dot{x} & =\frac{a}{u}, \tag{3.7}\\
\dot{y} & =b u \tag{3.8}\\
\dot{u}^{2} & =4\left(u^{2}-a^{2} u-b^{2} u^{3}\right) . \tag{3.9}
\end{align*}
$$

In the end, we know that the geodesic lines are determined by the function u. Notice that u is an elliptic function in some values of a and b. Let's recall the elliptic function.

Let L be a lattice in the complex plane, by which we mean the set of all integral linear combinations of two given complex numbers ω_{1} and ω_{2}, where ω_{1} and ω_{2} do not lie on the same line through the origin.

Definition 3.1. For a given lattice L, a meromorphic function f on \mathbb{C} is said to be an elliptic function relative to L if $f(z+l)=f(z)$ for all $l \in L$.

Let $\wp\left(z ; \omega_{1}, \omega_{2}\right)$ be the Weierstrass \wp-function. It is known that

$$
\begin{equation*}
\dot{\wp}(z)^{2}=f(\wp(z)), f(x)=4 x^{3}-g_{2} x-g_{3} \in \mathbb{C}[x] . \tag{3.10}
\end{equation*}
$$

and the function f has three distinct roots. If we put $v=-b^{2} u+\frac{1}{3}$, then we obtain

$$
\begin{equation*}
\dot{v}^{2}=4 v^{3}-h_{2} v-h_{3} . \tag{3.11}
\end{equation*}
$$

from (3.9), where $h_{2}=\frac{4}{3}\left(1-3 a^{2} b^{2}\right)$ and $h_{3}=\frac{4}{27}\left(9 a^{2} b^{2}-2\right)$. If we assume that a and b are not zeros and that $1-4 a^{2} b^{2}>0$, then the cubic polynomial $4 x^{3}-$ $h_{2} x-h_{3}$ has three distinct real roots. Thus, v is a Weierstrass $\wp-$ function and ω_{2} corresponding to v is real (see p .28 in $[\mathrm{KO}]$). This means that v is a periodic function on the real line, as is u, because the linear transformation preserves the property of periodicity. We can conclude that z is a periodic function and
it will be very important property in determining whether a geodesic is a ray or not.

4. Rays in the Sol

We can not calculate a geodesic line explicitly, so we have difficulty in determining whether a geodesic line is a ray or not and, therefore, have to find useful properties of geodesic lines in the Sol group to solve this problem.

Lemma 4.1. Two geodesics issuing from $\mathbf{0}$ with initial vectors (a, b, c), $(a, b,-c)$, respectively, for $a b c \neq 0$ and $1-4 a^{2} b^{2}>0$, meet at some point.

Proof. Let's assume $\dot{z}(0)=c>0$ and $(x(t), y(t), z(t)),\left(x_{1}(t), y_{1}(t), z_{1}(t)\right)$ are geodesics issuing from $\mathbf{0}$ with initial vectors $(a, b, c),(a, b,-c)$, respectively.
$t_{0}=\min \{t \mid z(t)=0$ for $t \in(0, T]\}$ where T is the period of the function z.
Then, we claim $\dot{z}\left(t_{0}\right)=-c$. First, note that $z(T)=0$ guarantees the existence of t_{0}, and $\dot{z}\left(t_{0}\right)$ has the value either c or $-c$ from the differential equation of geodesics. If the claim does not hold, we may assume $\dot{z}\left(t_{0}\right)=c$. By the choice of t_{0}, we have $z(t) \geq 0$ for all $t \in\left[0, t_{0}\right]$. Furthermore, both $\dot{z}\left(t_{0}\right)=c>0$ and $z\left(t_{0}\right)=0$ indicate that the function z has a local minimum at t_{0}. This implies $\dot{z}\left(t_{0}\right)=0$, contradicting that $\dot{z}\left(t_{0}\right)$ has the value either c or $-c$. Thus, the above claim holds.

Now, we will prove that two geodesics meet at $t=T$. Two functions $z\left(t+t_{0}\right)$ and $z_{1}(t)$ satisfy the same first-order differential equation and have the same initial values. Therefore,

$$
\begin{equation*}
z_{1}(t)=z\left(t+t_{0}\right) \tag{4.1}
\end{equation*}
$$

Clearly $z(T)=z\left(T+t_{0}\right)=z_{1}(T)=0$.

$$
\begin{align*}
x_{1}(T) & =\int_{0}^{T} a e^{-2 z_{1}(t)} d t=\int_{0}^{T} a e^{-2 z\left(t+t_{0}\right)} d t \tag{4.2}\\
& =\int_{t_{0}}^{t_{0}+T} a e^{-2 z(s)} d s=\int_{0}^{T} a e^{-2 z(s)} d s=x(T) \tag{4.3}
\end{align*}
$$

Similarly, one can obtain $y(T)=y_{1}(T)$.
Corollary 4.1. The geodesic issuing from $\mathbf{0}$, with an initial vector for $a b c \neq 0$ and $1-4 a^{2} b^{2}>0$, is not a ray.

Proof. Let $\gamma(t)$ be a geodesic satisfying conditions in the statement. Then, a geodesic different from $\gamma(t)$ exists which connects $\mathbf{0}$ and $\gamma(T)$ with a length equal to $\gamma([0, T])$ by the lemma 4.1. Then, $\gamma(t)$ is not a ray (see corollary 2.111 in [GHL]).

Lemma 4.2. The geodesic issuing from $\mathbf{0}$ with an initial vector (a, b, c) for $a b \neq 0, c=0$ and $1-4 a^{2} b^{2}>0$, is not a ray.

Proof. Let $\gamma(t)=(x(t), y(t), z(t))$ be a geodesic issuing from $\mathbf{0}$ with an initial vector $(a, b, 0)$. Choose some $t_{0}>0$, at which the value of \dot{z} is nonzero. Since the length of $\dot{\gamma}\left(t_{0}\right)$ is 1 in the $\mathbf{S o l}$, we have

$$
\begin{equation*}
a^{2} e^{-2 z\left(t_{0}\right)}+b^{2} e^{2 z\left(t_{0}\right)}+\dot{z}\left(t_{0}\right)^{2}=1 \tag{4.4}
\end{equation*}
$$

Then, we regard $\left(a e^{-z\left(t_{0}\right)}, b e^{z\left(t_{0}\right)}, \dot{z}\left(t_{0}\right)\right)$ as an unit vector at origin. Let $\gamma_{1}(t)=$ $\left(x_{1}(t), y_{1}(t), z_{1}(t)\right)$ be the geodesic issuing from $\mathbf{0}$ with this velocity vector. One can easily check that the left multiplication $L_{\gamma\left(t_{0}\right)}$ in the Lie group transforms $\gamma_{1}(0), \dot{\gamma}_{1}(0)$ to $\gamma\left(t_{0}\right), \dot{\gamma}\left(t_{0}\right)$, respectively. These two curves $\gamma\left(t+t_{0}\right)$ and $L_{\gamma\left(t_{0}\right)}\left(\gamma_{1}(t)\right)$ are geodesics sharing a common starting point and velocity vector; thus we conclude that

$$
\begin{equation*}
\gamma\left(t+t_{0}\right)=L_{\gamma\left(t_{0}\right)}\left(\gamma_{1}(t)\right) . \tag{4.5}
\end{equation*}
$$

We know that the geodesic $\gamma_{1}(t)$ is not a ray according to the previous lemma. Therefore, $t_{1}>0$ exists such that $\gamma_{1}(t)$ is not a length-minimizing curve connecting $\mathbf{0}$ and $\gamma_{1}\left(t_{1}\right)$. Let $\alpha(t)$ be a length-minimizing curve connecting $\mathbf{0}$ and $\gamma_{1}\left(t_{1}\right)$. Since the left multiplication is an isometry, $L_{\gamma\left(t_{0}\right)}(\alpha(t))$ is a lengthminimizing curve connecting $\gamma\left(t_{0}\right)$ and $\gamma\left(t_{1}+t_{0}\right)$ different from γ. Therefore, γ is not a ray.

One can easily notice that the $x z$-plane and $y z$-plane are isometric to \mathbb{H}^{2}, and thus geodesics for $a b=0$ are rays.

Lemma 4.3. The geodesic issuing from $\mathbf{0}$ with an initial vector (a, b, c) for $1-4 a^{2} b^{2}=0$ is not a ray.

Proof. The inequality $a^{2}+b^{2} \leq 1$ means that the solution for $1-4 a^{2} b^{2}=0$ is only $a^{2}=b^{2}=\frac{1}{2}$. Let's assume $a=b=\frac{1}{\sqrt{2}}$. Then, the geodesic corresponding to the vector $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$ can be easily derived from the geodesic equations as $\gamma(t)=\frac{1}{\sqrt{2}}(t, t, 0)$. Let's calculate the Jacobi field along γ with $J(0)=0$ and $\dot{J}(0)=(1,-1,0)$ and set $J(t)=f_{1}(t) X_{1}+f_{2}(t) X_{2}+f_{3}(t) X_{3}$. The Jacobi equation is

$$
\begin{align*}
\ddot{J}+ & R(\dot{\gamma}, J) \dot{\gamma}=\ddot{J}+\frac{1}{2} R\left(X_{1}+X_{2}, f_{1} X_{1}+f_{2} X_{2}+f_{3} X_{3}\right)\left(X_{1}+X_{2}\right) \tag{4.6}\\
& =\ddot{J}+\frac{1}{2}\left\{f_{2}\left(X_{2}-X_{1}\right)+f_{3}\left(-X_{3}\right)+f_{1}\left(-X_{2}+X_{1}\right)+f_{3}\left(-X_{3}\right)\right\} \tag{4.7}\\
& =\left(\ddot{f}_{1}+\frac{f_{1}-f_{2}}{2}\right) X_{1}+\left(\ddot{f}_{2}+\frac{f_{2}-f_{1}}{2}\right) X_{2}+\left(\ddot{f}_{3}-f_{3}\right) X_{3}=0 . \tag{4.8}
\end{align*}
$$

In sum, the components of the Jacobi equation satisfy

$$
\begin{align*}
2 \ddot{f_{1}}+f_{1}-f_{2} & =0, \tag{4.9}\\
2 \ddot{f}_{2}+f_{2}-f_{1} & =0, \tag{4.10}\\
\ddot{f_{3}}-f_{3} & =0 . \tag{4.11}
\end{align*}
$$

Through this simple calculation, we have $\ddot{f}_{1}(t)+f_{1}(t)=0, \ddot{f}_{3}(t)-f_{3}(t)=0$ and $f_{1}(t)+f_{2}(t)=0$. One can easily find that $f_{1}(t)=\sin t, \quad f_{3}(t)=0$ are solutions of each equation with each initial value. Therefore, we have the following Jacobi field

$$
\begin{equation*}
J(t)=(\sin t,-\sin t, 0) \tag{4.12}
\end{equation*}
$$

Thus γ is not a ray, because J has a conjugate point at $t=\pi$. Since $f(x, y, z)=$ $(\pm x, \pm y, z)$ is an isometry, the other four geodesics are not rays.

Theorem 4.1. The set \mathcal{R} of directions of all rays issuing from $\mathbf{0}$ in the Sol is

$$
\begin{equation*}
\mathcal{R}=\left\{(a, b, c) \mid a b=0, a^{2}+b^{2}+c^{2}=1\right\} . \tag{4.13}
\end{equation*}
$$

5. Ideal boundary of the Sol

Recall the definition of the ideal boundary $\left(M(\infty), d_{\infty}\right)$ of an open manifold $\left(M, d_{M}\right)$. For two rays $l_{1}(t)$ and $l_{2}(t)$ issuing from some fixed point of M denote

$$
\begin{equation*}
\widetilde{d}_{\infty}\left(l_{1}, l_{2}\right)=\lim _{t \rightarrow \infty} \frac{d_{M}\left(l_{1}(t), l_{2}(t)\right)}{t} . \tag{5.1}
\end{equation*}
$$

Rays are equivalent if $\widetilde{d}_{\infty}\left(l_{1}, l_{2}\right)=0$. The class of equivalence of l we denote by $[l]$ and the set of all classes of equivalent rays by \mathcal{R} / \sim. The metric $\widetilde{d}_{\infty}\left(l_{1}, l_{2}\right)$ in a standard way defines lengths of continuous curves in \mathcal{R} / \sim, which in turn generates the so-called inner metric $d_{\infty}\left(\left[l_{1}\right],\left[l_{2}\right]\right)$ which is by definition the infimum of lengths of all continuous curves in \mathcal{R} / \sim connecting $\left[l_{1}\right]$ and $\left[l_{2}\right]$. Finally, the metric space $\left(\mathcal{R} / \sim, d_{\infty}\right)$ of classes of equivalent rays issuing from some fixed point of M is the ideal boundary of a manifold $\left(M, d_{M}\right)$. For instance, the ideal boundary of the hyperbolic plane \mathbb{H}^{2} of constant curvature -1 is a circle with so-called Tits metric, where the distance between different points equals $\infty[\mathrm{BP}]$. By theorem 4.1, the set of rays in the $\mathbf{S o l}$ is

$$
\begin{equation*}
\mathcal{R}=\left\{(a, b, c) \mid a b=0 \text { and } a^{2}+b^{2}+c^{2}=1\right\} . \tag{5.2}
\end{equation*}
$$

In other words, it is the collection of unit parameterized geodesics issuing from $\mathbf{0}$ contained in the $x z$-plane or $y z$-plane. The metric d_{∞} on \mathcal{R} is a Tits metric on the ideal boundary of \mathbb{H}^{2}.

Theorem 5.1. The ideal boundary of the $\mathbf{S o l}$ is a $\left(\mathcal{R}, d_{\infty}\right)$ with a Tits metric, where the distance between different points equals ∞, and where $\mathcal{R}=$ $\left\{(a, b, c) \mid a b=0\right.$ and $\left.a^{2}+b^{2}+c^{2}=1\right\}$.

Acknowledgements. I would like to thank the refree for his(her) useful suggestions.

Department of Mathematics
Korea Advanced Institute of Science and Technology
Daejon 373-1, Korea
e-mail: pbksw@kaist.ac.kr

References

[BGS] W. Ballmann, M. Gromov and V. Schroeder, Manifolds of Nonpositive Curvature, Progress in Mathematics 61, 1985.
[BP] R. Benedetti and C. Petronio, Lectures on Hyperbolic Geometry, Springer-Verlag, Berlin, Heidelberg, 1992.
[EO] P. Eberlein and B. O’Neil, Visibility manifolds, Pac. J. Math. 46 (1973), 45-110.
[G1] M. Gromov, Hyperbolic manifolds, groups and actions, In: Riemann surfaces and related topics, Stonybrook Conference, Ann. of Math. Studies 97, Princeton University Press.
[G2] , Carnot-Caratheodory spaces seen from whin, preprint IHES, 1994.
[GHL] S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry, SpringerVerlag, Berlin, Heidelberg 1987, 1990.
[KO] N. Koblitz, Introduction to elliptic curves and modular forms, SpringerVerlag, 1984.
[M] G. D. Mostow, Strong rigidity of locally symmetric spaces, Ann. of Math. Studies 78, Princeton University Press.
[P] P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401-487.
[Th] W. P. Thurston, The geometry and topology of three manifolds, Princeton University Mathematics Department, 1979.
[V] V. Marenich, Geodesics in Heinsenberg Groups, Geometriae Dedicata 66 (1997), 175-185.

[^0]: Received December 19, 2003
 Revised February 7, 2005

