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On the squarefree and squarefull numbers
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Huaning Liu and Wenpeng Zhang

Abstract

The main purpose of this paper is using the important works of
Heath-Brown, Yoichi Motohashi, Masanori Katsurada and Kohji Mat-
sumoto, and the properties of Dirichlet L-functions to study the num-
ber of squarefree primitive roots, squarefull primitive roots and square-
free quadratic residues modulo a prime p, and give three much sharper
asymptotic formulae.

1. Introduction

Let p be an odd prime. For any integer n with (p, n) = 1, the smallest
positive integer f such that af ≡ 1 mod p is called the exponent of n modulo
p. If f = p − 1, then n is called a primitive root mod p. Let prim(x) denote
the number of positive primitive roots modulo p not exceeding x. From [1] we
have

prim(x) =
φ(p − 1)

p − 1

(
x + O

(
2ω(p−1) · √p log p

))
,

where φ(q) is the Euler function, ω(q) denotes the number of all distinct prime
divisors of q and the O term is uniform in x and p.

An integer is called k-free (k ≥ 2, integer) if it is not divisible by the k-
powers of any prime. Also an integer q is called a k-full integer if it satisfies
that p|q if and only if pk|q. The properties of k-free integer and k-full integer
were studied by many authors. For example, let Qk(x) denote the number of
k-free integers ≤ x, L. Gegenbauer [2] gave the following estimate:

Qk(x) =
x

ζ(k)
+ O

(
x1/k

)
,

where ζ(k) is the Riemann zeta- function.
Now we consider the number of squarefree (squarefull) primitive roots

modulo p not exceeding x. From [1] we have the following two Propositions:
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Proposition 1.1. The number of positive squarefree primitive roots
modulo p not exceeding x equals

φ(p − 1)
p − 1

(
C1x + O

(
2ω(p−1) · p1/4 · (log p)1/2 · x1/2

))
,

where C1 =
∏
p

(
1 − 1/p2

)
.

Proposition 1.2. The number of positive primitive roots modulo p not
exceeding x which are squarefull numbers equals

φ(p − 1)
p − 1

(
C2x

1/2 + O
(
2ω(p−1) · p1/6 · (log p)1/3 · x1/3

))
,

where C2 = 2


 ∑

q squarefree

( q
p )=−1

1/q3/2



(
1 − 1

p

)
and

(
q
p

)
is the Legendre’s symbol.

If congruence x2 ≡ n mod p has a solution we say that n is a quadratic
residue modulo p. From [3] we have the following:

Proposition 1.3. Let p be a prime, 0 < a ≤ 1/128 and x > p1/4+b with
b = b(a) > 0. Then the number of squarefree numbers not exceeding x which
are quadratic residues modulo p equals

3
π2

x + O (x/pa) .

The error terms in Proposition 1.1, Proposition 1.2 and Proposition 1.3 are
not best possible. The main purpose of this paper is to show the point. In this
paper, we use the important works of Heath-Brown [4], Yoichi Motohashi [5],
Masanori Katsurada and Kohji Matsumoto [6], and the properties of Dirichlet
L-functions to give three much sharper asymptotic formulae. That is, we shall
prove the following theorems.

Theorem 1.1. The number of positive squarefree primitive roots mod-
ulo p that are ≤ x equals

pφ(p − 1)
(p2 − 1)ζ(2)

x + O
(
p9/44+εx1/2+ε

)
,

where ε is any fixed positive number.

Theorem 1.2. The number of positive primitive roots ≤ x which are
squallfull numbers equals

2C3pφ(p − 1)
(p2 − 1) ζ(2)

x1/2 + O
(
p9/44+εx1/4+ε

)
,

where C3 =

[ ∏
p1 �=p

(
1 + 1“

p
1/2
1 −1

”
(p1+1)

)
− ∏

p1 �=p

(
1 + ( p1

p )“
p
1/2
1 −( p1

p )
”
(p1+1)

)]
.
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Theorem 1.3. The number of squarefree numbers ≤ x which are
quadratic residues modulo p equals

3
π2

x + O
(
p9/44+εx1/2+ε

)
.

2. Some Lemmas

To complete the proof of the theorems, we need following several lemmas.

Lemma 2.1. Let prime p > 2. Then

∑
k|p−1

µ(k)
φ(k)

k∑′

a=1

e
(

aindn

k

)
=




p − 1
φ(p − 1)

, if n is a primitive root of p;

0, otherwise,

where e(y) = e2πiy, µ(q) is the Möbius function, indn denotes the index of n

relative to some fixed primitive root of p, and
k∑′

a=1
demotes the summation over

a reduced residue system modulo k.

Proof. See reference [7].

The following two lemmas are the important works of Heath-Brown, Yoichi
Motohashi, Masanori Katsurada and Kohji Matsumoto on Dirichlet L-
functions.

Lemma 2.2. For any χ modulo q, we have

L(1/2 + it, χ) � (q (|t| + 1))3/16+ε
,

where L(s, χ) is the Dirichlet L-function corresponding to χ.

Proof. See reference [4].

Lemma 2.3. Let χ be any primitive character modulo a prime p, then

∫ T

0

|L(1/2 + it, χ)|2 dt − (p − 1)
p

T [log(pT/2π) + 2γ − 1 + 2(log p)/(p − 1)]

� (pT )1/3 (log pT )2 + p1/2 (log pT )3 log T,

where T ≥ 1, and γ is the Euler constant.

Proof. Yoichi Motohashi [5] treated this formula, which was developed
by Masanori Katsurada and Kohji Matsumoto [6].

Now we can get the following estimates:
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Lemma 2.4. Let χ be a primitive character modulo p and T ≥ 1, then
we have ∫ T

0

∣∣∣∣L(1/2 + it, χ)
t + 1

∣∣∣∣ dt � p9/44+ε

and ∫ T

0

∣∣∣∣ζ(1/2 + it)
t + 1

∣∣∣∣ dt � T ε.

Proof. Let 0 < u < p, from Cauchy inequality, Lemma 2.2 and Lemma
2.3 we have∫ T

0

∣∣∣∣L(1/2 + it, χ)
t + 1

∣∣∣∣ dt =
∫ u

0

∣∣∣∣L(1/2 + it, χ)
t + 1

∣∣∣∣ dt +
∫ T

u

∣∣∣∣L(1/2 + it, χ)
t + 1

∣∣∣∣ dt

� u3/16+εp3/16+ε +

(∫ T

u

1
t + 1

dt

)1/2 [∫ T

u

|L(1/2 + it, χ)|2
t + 1

dt

]1/2

� u3/16+εp3/16+ε + T ε


∫ T

u

d
(∫ t

u
|L(1/2 + is, χ)|2 ds

)
t + 1




1/2

� u3/16+εp3/16+ε +
[
p1/3+εT ε−2/3 + p1/2+εT ε−1 + p1/3+εuε−2/3 + p1/2+εuε−1

]1/2

� u3/16+εp3/16+ε + p1/4+εuε−1/2.

Now taking u = p1/11 in the above, then we have

∫ T

0

∣∣∣∣L(1/2 + it, χ)
t + 1

∣∣∣∣ dt � p9/44+ε.

Using the same methods we can get

∫ T

0

∣∣∣∣ζ(1/2 + it)
t + 1

∣∣∣∣ dt � T ε.

This proves Lemma 2.4.

Lemma 2.5. Let A denote the set of squarefree integers, and χ be any
character modulo p, then

∑
n≤x
n∈A

χ(n) =




p

p + 1
· x

ζ(2)
+ O(x1/2+ε),

if χ is principal character modulo p;

O(p9/44+εx1/2+ε),
otherwise.
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Proof. It is obvious that
∑
n≤x

n∈A

χ(n) =
∑
n≤x

µ2(n)χ(n).

Let

f(s) =
∞∑

n=1

µ2(n)χ(n)
ns

,

by the Euler product formula [8] we have

f(s) =
∏
p1

(
1 +

χ(p1)
p1

s

)
=

L(s, χ)
L(2s, χ2)

.

Note that
∣∣µ2(n)χ(n)

∣∣ ≤ 1 and
∞∑

n=1

∣∣µ2(n)χ(n)
∣∣n−σ ≤ ζ(σ). For any

complex s0 = σ0 + it0, and real number b > 0, by Perron formula [9] we have

∑
n≤x

µ2(n)χ(n)
ns0

=
1

2πi

∫ b+iT

b−iT

f(s + s0)
xs

s
ds + O

(
xbζ(b + σ0)

T

)

+ O

(
x1−σ0 min

(
1,

log x

T

))
+ O

(
x−σ0 min

(
1,

x

||x||
))

.

That is

∑
n≤x
n∈A

χ(n) =
1

2πi

∫ b+iT

b−iT

L(s, χ)
L(2s, χ2)

xs

s
ds + O

(
xbζ(b)

T

)

+ O

(
x min

(
1,

log x

T

))
.

(2.1)

If χ is nonprincipal character modulo p, then taking b = 1/2, T = x1/2 in
the above formula, by Lemma 2.4 we easily have

∑
n≤x
n∈A

χ(n) �
∫ T

0

∣∣∣∣L(1/2 + it, χ)
L(1 + 2it, χ2)

x1/2+ε

(t + 1)

∣∣∣∣ dt + O
(
x1/2+ε

)
� p9/44+εx1/2+ε.

On the other hand, if χ is principal character modulo p, note that L(s, χ) =
ζ(s)(1 − p−s), then taking b = 2, T = x3/2 in formula (2.1), we have

∑
n≤x
n∈A

χ(n) =
1

2πi

∫ 2+iT

2−iT

ζ(s)(1 − p−s)
ζ(2s)(1 − p−2s)

xs

s
ds + O

(
x1/2+ε

)
.
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We move the integral line from s = 2 ± iT to s = 1/2 ± iT . This time,

the function
ζ(s)(1 − p−s)

ζ(2s)(1 − p−2s)
xs

s
has a simple pole point at s = 1 with residue

p

p + 1
x

ζ(2)
. So we have

1
2πi

(∫ 2+iT

2−iT

+
∫ 1/2+iT

2+iT

+
∫ 1/2−iT

1/2+iT

+
∫ 2−iT

1/2−iT

)
ζ(s)(1 − p−s)

ζ(2s)(1 − p−2s)
xs

s
ds

=
p

p + 1
x

ζ(2)
.

Note that

ζ(σ + it) � |t|(1−σ)/2 log |t|, 0 ≤ σ ≤ 1, |t| ≥ 2,

then we get the estimates

1
2πi

∫ 1/2+iT

2+iT

ζ(s)(1 − p−s)
ζ(2s)(1 − p−2s)

xs

s
ds �

∫ 2

1/2

|ζ(σ + iT )|xσ

T
dσ

� x1/2

T 3/4−ε
+

x2

T 1−ε
� x1/2+ε

and

1
2πi

∫ 2−iT

1/2−iT

ζ(s)(1 − p−s)
ζ(2s)(1 − p−2s)

xs

s
ds �

∫ 2

1/2

|ζ(σ − iT )|xσ

T
dσ

� x1/2

T 3/4−ε
+

x2

T 1−ε
� x1/2+ε.

By Lemma 2.4 we also get

1
2πi

∫ 1/2−iT

1/2+iT

ζ(s)(1 − p−s)
ζ(2s)(1 − p−2s)

xs

s
ds �

∫ T

0

∣∣∣∣ζ(1/2 + it)
ζ(1 + 2it)

x1/2+ε

(t + 1)

∣∣∣∣ dt � x1/2+ε,

then from the above we have∑
n≤x
n∈A

χ(n) =
p

p + 1
· x

ζ(2)
+ O

(
x1/2+ε

)
, if χ is principal character modulo p.

This completes the proof of Lemma 2.5.

Lemma 2.6. Let B denote the set of squarefull integers, and χ be any
character modulo p, then

∑
n≤x

n∈B

χ(n) =




2f(χ)px1/2

(p + 1) ζ(2)
+ O(x1/4+ε),

if χ2 is principal character modulo p;

O(p9/44+εx1/4+ε),
otherwise,
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where f(χ) =
∏

p1 �=p

(
1 + χ(p1)“

p
1/2
1 −χ(p1)

”
(p1+1)

)
.

Proof. We define a new arithmetical function a(n) as follows:

a(n) =




1, if n = 1;
χ(n), if n is a squarefull number;
0, if n is not a squarefull number.

It is clear that ∑
n≤x
n∈B

χ(n) =
∑
n≤x

a(n).

Let

f(s) =
∞∑

n=1

a(n)
ns

,

by the Euler product formula [8] we have

f(s) =
∏
p1

(
1 +

χ2(p1)
p1

2s
+

χ3(p1)
p1

3s
+ · · ·

)
=
∏
p1

(
1 +

χ2(p1)
p2s
1

· ps

ps − χ(p)

)

=
∏
p1

(
1 +

χ2(p1)
p2s
1

)∏
p1

(
1 +

χ3(p1)
(ps

1 − χ(p)) (p2s
1 + χ2(p))

)

=
L(2s, χ2)
L(4s, χ4)

∏
p1

(
1 +

χ3(p1)
(ps

1 − χ(p)) (p2s
1 + χ2(p))

)
.

Note that |a(n)| ≤ 1 and
∞∑

n=1
|a(n)|n−σ ≤ ζ(σ). For any complex s0 =

σ0 + it0, and real number b > 0, by Perron formula [9] we have

∑
n≤x

a(n)
ns0

=
1

2πi

∫ b+iT

b−iT

f(s + s0)
xs

s
ds + O

(
xbζ(b + σ0)

T

)

+ O

(
x1−σ0 min

(
1,

log x

T

))
+ O

(
x−σ0 min

(
1,

x

||x||
))

.

That is

∑
n≤x
n∈B

χ(n)=
1

2πi

∫ b+iT

b−iT

L(2s, χ2)
L(4s, χ4)

∏
p1

(
1 +

χ3(p1)
(ps

1 − χ(p)) (p2s
1 + χ2(p))

)
xs

s
ds

+ O

(
xbζ(b)

T

)
+ O

(
x min

(
1,

log x

T

))
.
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Using the same methods in Lemma 2.5 we can have

∑
n≤x

n∈B

χ(n) =




2f(χ)px1/2

(p + 1) ζ(2)
+ O(x1/4+ε),

if χ2 is principal character modulo p;

O(p9/44+εx1/4+ε),
otherwise.

This completes the proof of Lemma 2.6.

3. Proof of the theorems

In this section, we complete the proof of the theorems. First we prove
Theorem 1.1. Let C denote the set of primitive roots modulo p. Note that

χa,k(n) = e
(

aindn

k

)
is a character modulo p, and χa,k is principal character

if and only if k = 1. So from Lemma 2.1 and Lemma 2.5 we have

∑
n≤x

n∈A
n∈C

1 =
φ(p − 1)

p − 1

∑
k|p−1

µ(k)
φ(k)

k∑′

a=1

∑
n≤x

n∈A
(n,p)=1

e
(

aindn

k

)

=
φ(p − 1)

p − 1

∑
k|p−1

µ(k)
φ(k)

k∑′

a=1

∑
n≤x
n∈A

χa,k(n)

=
pφ(p − 1)

(p2 − 1)ζ(2)
x + O

(
p9/44+εx1/2+ε

)
.

This proves Theorem 1.1.
Now we prove Theorem 1.2. Note that χ2

a,k is principal character if and
only if k = 1 or k = 2. So from Lemma 2.1 and Lemma 2.6 we have

∑
n≤x

n∈B
n∈C

1 =
φ(p − 1)

p − 1

∑
k|p−1

µ(k)
φ(k)

k∑′

a=1

∑
n≤x

n∈B
(n,p)=1

e
(

aindn

k

)

=
φ(p − 1)

p − 1

∑
k|p−1

µ(k)
φ(k)

k∑′

a=1

∑
n≤x
n∈B

χa,k(n)

=
2C3pφ(p − 1)
(p2 − 1) ζ(2)

x1/2 + O
(
p9/44+εx1/4+ε

)
.

This completes the proof of Theorem 1.2.
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Let D denote the set of quadratic residues modulo p, then from [2] and
Lemma 2.5 we have

∑
n≤x
n∈A
n∈D

1 =
∑
n≤x
n∈A

1
2

(
1 +
(

n

p

))
=

x

2ζ(2)
+

1
2

∑
n≤x
n∈A

(
n

p

)
=

3
π2

x+O
(
p9/44+εx1/2+ε

)
.

This completes the proof of Theorem 1.3.
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