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with the infinite symmetric group
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Introduction

1. Let G be a countable discrete group, K1(G) the set of all positive
definite class functions f on G normalized as f(e) = 1, and E(G) the set of
all extremal elements in the convex set K1(G), where e denotes the identity
element of G. In [Tho1], a canonical bijective correspondence between E(G)
and the set of characters of all factor representations of finite type is established
(cf. 1.2 below). In this sense every element f ∈ E(G) is called a character of
G.

The purpose of this paper is to give explicitly all the characters of the
wreath product groups G = S∞(T ) = D∞(T ) � S∞ of any finite groups T
with the infinite symmetric group S∞. This problem of determining all the
characters of factor representations of finite type, or the problem of giving a
general character formula for f ∈ E(G), was worked out in [Tho2] for G = S∞.
The result for G = GL(∞,F q) with a finite field F q was given in [Sk].

The case of infinite symmetric group attracted interests of many mathe-
maticians and we cite here, among others, works of Vershik-Kerov [VK], Kerov-
Olshanski [KO] and Biane [Bi] in which they worked principally from the point
of view of approximation from finite symmetric groups Sn (n→ ∞). Recently
in [Hi3]–[Hi4], we reexamined the case of S∞ from the standpoint of taking
limits of centralizations of positive definite functions obtained as matrix ele-
ments of simple unitary representations. Since this is one of our main ideas, let
us explain it briefly here. For a subgroup G′ of G a centralization of a function
F on G with respect to G′ is by definition

FG′
(g) =

1
|G′|

∑
g′∈G′

F (g′g g′−1) (g ∈ G).

Taking an appropriate series of increasing subgroups GN ↗ G as N → ∞,
we consider pointwise limit f(g) = limN→∞ FGN (g). Here as a function F ,
we choose a positive definite matrix element of an induced representation ρ =
IndG

Hπ of a (not necessary irreducible) unitary representation π of a subgroup
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H of wreath product type. In [Ob1]–[Ob2] and [Hi1]–[Hi2], it is shown that
appropriate choices of H and π give us a big family of irreducible unitary
representations ρ of G. However here, to get characters of G as limits f of this
kind, we found as a result that it is better to choose ρ rather far from to be
irreducible.

Next to S∞, we proceed to the case of wreath products S∞(T ) with finite
abelian groups T , and of their canonical subgroups. This case contains the
cases of infinite Weyl groups WB∞ = S∞(Z2) of type B∞/C∞ and WD∞ of
type D∞, and limits S∞(Zr) of complex reflexion groups G(r, 1, n) as n→ ∞
(for finite complex reflexion groups, cf. [Ka] and [Sh]). For this abelian case,
a general explicit formula for characters f ∈ E(G) is given in [HH1] with a
sketch of proof, and so all the factor representations of finite type are classified
for G = S∞(T ), T abelian.

Thus, we now come to the present case of S∞(T ) with any finite group T .

2. This paper is organized as follows. In §1, we define the wreath product
group G = S∞(T ), and review the theory of characters of discrete groups. In
§2, the structure of G is studied and conjugacy classes are given in Theorem 1,
and then finite-dimensional irreducible representations are classified.

In §3, a general character formula for f ∈ E(G) is given in Theorem 2 for
G = S∞(T ) with T any finite group, whose proof occupies §§7–11 and §§13–16.
Then, in §4, the case where T is abelian is treated. The character formula in
this case has a much simpler form (Theorem 3). In §5, a canonical subgroup
Ge = Se

∞(T ) = De
∞(T ) � S∞ with T abelian is treated (Theorem 4). In §6,

the infinite Weyl groups WB∞ = S∞(Z2) and its subgroup WD∞ = Se
∞(Z2)

are treated (Theorem 6 and Theorem 7 respectively).
In §7, our method of proving Theorem 2 is explained, the first part of the

proof in 7.1 and the second part in 7.2. The first part occupies §§8–11 and
§§13–14. In §8, the centralization of positive definite functions, is treated. In §9,
an inducing up of a matrix element of π to that of ρ = IndG

Hπ is discussed. In
§10, we discuss choices of H and π, refering the results in [Hi1]–[Hi2] and [Hi3]–
[Hi4]. In §11, choices of series of increasing subgroups GN ↗ G is discussed.
Actually, our choices of the series give us as pointwise limits a big set LIM of
positive definite class functions, which later turns out to be equal to E(G).

In §12, we consider, for each (ζ, ε) ∈ T̂ × { 0, 1 }, a series of a special kind
of irreducible representations ρn of Sn(T ) converging to an irreducible repre-
sentation ρ of G = S∞(T ), and calculate limits of trace characters Fζ,ε(g) :=
limn→∞ tr(ρn(g))/ dim ρn (g ∈ G) (Theorem 9). This result is applied in §16.

In §13, according to the choice in §11 of GN = SJN
(T ) = DJN

(T ) � SJN

with JN ↗ N , a partial centralization FDN of F with respect to the subgroup
DN = DJN

(T ) of GN is discussed (Proposition 10). In §14, the centralization
with respect to another subgroup SN = SJN

of GN is performed on FDN to
get finally FGN = (FDN )SN . Thus we get a set LIM of positive definite class
functions f , all of which are factorizable in the sense that f(gg′) = f(g)f(g′)
if the supports of g and g′ are mutually disjoint. The set LIM coincides with
the set FA = { fA } of class functions fA in Theorem 2 corresponding to a
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parameter A =
(
(αζ,ε)(ζ,ε)∈bT×{ 0,1 } ; µ

)
. Here every αζ,ε = (αζ,ε,i)i∈N is a

decreasing sequence of non-negative real numbers, and µ = (µζ)ζ∈bT is a set of
non-negative real numbers, which altogether satisfy the condition∑

ζ∈bT

∑
ε∈{ 0,1 }

‖αζ,ε‖ + ‖µ‖ ≤ 1 ,

with ‖αζ,ε‖ =
∑

i∈N αζ,ε,i , ‖µ‖ =
∑

ζ∈bT µζ . Since we get LIM = FA, it is
proved that every fA is positive definite (Proposition 11). This completes the
first part of the proof of Theorem 2, giving the assertion FA ⊂ K1(G).

The second part of our proof of Theorem 2 is to prove that every fA is
extremal, and that FA = E(G). In §15, generalizing Satz 1 in [Tho2], we give
a criterion for a positive definite class function f ∈ K1(G) to be extremal.
Theorem 12 says that f is extremal if and only if f is factorizable. Then we
see that every f ∈ LIM is extremal since f is factorizable, and so we have
LIM ⊂ E(G).

In §16, the converse inclusion LIM ⊃ E(G) is proved (Proposition 13).
To do so, we define a Fourier transform of a factorizable positive definite class
function f with respect to Fζ,ε and calculate it explicitly (Lemma 16.2). Thus
the second part of the proof of Theorem 2 is now completed.

In §17, we deduce Theorem 4, character formula for the subgroup Se
∞(T ) in

the case of T abelian, from Theorem 2. In §18, the wreath product A∞(T ) =
D∞(T ) � A∞ of a finite group T with the infinite alternating group A∞ is
discussed and its character formula is given in Theorem 14. In the case where
T is abelian, we have also a canonical subgroup Ae

∞(T ) and its character formula
is given in Theorem 15.

In Appendix, we give several lemmas on integrals of matrix elements and
characters for compact groups (containing finite groups).

1. Wreath product groups and characters

Let G = S∞(T ) be a wreath product of a finite group T with the infinite
symmeric group S∞. The purpose of this paper is to give all the extremal
(or indecomposable) positive definite class functions on G. The set E(G) of
such functions f , normalized as f(e) = 1, covers all the characters of factor
representations of finite type, type II1 or type In, n <∞, of G. Here e denotes
the identity element of G.

In this section, we first give a definition of wreath product groups, and
then review briefly the relation between positive definite class functions and
characters of factor representations of finite type, for countable discrete groups.

1.1. Wreath product groups with the infinite symmetric group
For a set I, denote by SI the group of all finite permutations on I. A

permutation σ on I is called finite if its support supp(σ) := { i ∈ I ; σ(i) 	= i }
is finite. The permutation group SN on the set of natural numbers N is called
the infinite symmetric group and the index N is frequently replaced by ∞. The
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symmetric group Sn is naturally imbedded in S∞ as the permutation group
of the set In := { 1, 2, . . . , n } ⊂ N .

Let T be a finite group. We consider a wreath product SI(T ) of T with a
permutation group SI as follows:

SI(T ) = DI(T ) � SI , DI(T ) =
∏′

i∈I Ti , Ti = T (i ∈ I),(1.1)

where the symbol
∏′ means the restricted direct product, and σ ∈ SI acts on

DI(T ) as

(1.2) DI(T ) 
 d = (ti)i∈I
σ�−→ σ(d) = (t′i)i∈I ∈ DI(T ), t′i = tσ−1(i) (i ∈ I).

Identifying groups DI(T ) and SI with their images in the semidirect prod-
uct SI(T ), we have σ dσ−1 = σ(d). The group SIn

(T ) is denoted as Sn(T ),
then G := S∞(T ) is an inductive limit of Gn := Sn(T ), and G = limn→∞Gn

is countably infinite.
In the case where T is abelian, we put

PI(d) =
∏
i∈I

ti ∈ T for d = (ti)i∈I ∈ DI(T ),(1.3)

and define a subgroup of SI(T ) as

Se
I(T ) = De

I(T ) � SI

with De
I(T ) := { d = (ti)i∈I ; PI(d) = eT },

(1.4)

where eT denotes the identity element of T .
This kind of wreath product groups contain the infinite Weyl groups of

classical type, WA∞ = S∞,WB∞ = S∞(Z2) and WD∞ = Se
∞(Z2), and more-

over the inductive limits S∞(Zr) = limn→∞G(r, 1, n) of complex reflexion
groups G(r, 1, n) = Sn(Zr) (cf. [Ka], [Sh]).

1.2. Characters and positive definite functions on infinite discrete
groups

Let G be an infinite discrete group. Denote by Cc(G) the ∗-algebra of all
compactly supported functions on G with the operations

(ψ1 ∗ ψ2)(g) :=
∑
h∈G

ψ1(gh−1)ψ2(h), ψ ∗(g) = ψ(g−1),(1.5)

for ψ1, ψ2, ψ ∈ Cc(G), and g ∈ G. Then it has a basis { δg ; g ∈ G }, where
δg denotes a function on G having the value 1 at g, and zero elsewhere. The
identity element of Cc(G) is given by δe . The completion of Cc(G) with respect
to a certain special norm is the C∗-algebra C∗(G) of G.

A unitary representation π ofG corresponds bijectively to a non-degenerate
representation of Cc(G) and that of C∗(G) through

π(ψ) :=
∑

g∈G ψ(g)π(g) (ψ ∈ Cc(G)).
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We refer [Di, §6] for the theory of traces and characters of representations
of C∗-algebras, and for our special case of discrete groups, we refer also [Tho1].

For a C∗-algebra, a character t is, by definition, a trace which is semifinite,
semicontinuous from below, and such that any such trace majorized by t is
proportional to t. This is translated on the level of Cc(G) as follows. A trace
t on Cc(G) is a positive definite functional satisfying

t(ψ1 ∗ ψ2) = t(ψ2 ∗ ψ1) (ψ1, ψ2 ∈ Cc(G) ).(1.6)

It is determined by a positive definite invariant (or class) function f as

t : Cc(G) 
 ψ �−→ f(ψ) :=
∑

g∈G f(g)ψ(g) ∈ C.(1.7)

A trace t is a character in the sense of C∗-algebras if and only if the corre-
sponding f is extremal or indecomposable ([Tho1, Korollar 2 to Lemma 2]).

Let us explain a little more. In general, for a non-zero positive definite
function f on G, we can associate, by GNS construction, a cyclic representation
πf as follows. Introduce in A := Cc(G) a positive semidefinite inner product as

〈ψ1, ψ2〉f :=
∑

g,h∈G

f(h−1g)ψ1(g)ψ2(h) = f(ψ ∗
2 ∗ ψ1) (ψ1, ψ2 ∈ A ).

Then, this is invariant under left G-action: (L(g0)ψ)(g) := ψ(g −1
0 g) (g0, g ∈

G). Let Jf be the kernel of 〈· , · 〉f , and take a completion of the quotient space
Af = A/Jf , we get a Hilbert space Hf , on which a unitary representation πf

is induced from L(g0) (g0 ∈ G). Let v0 ∈ V (πf ) := Hf be the image of δe ∈ A,
then it is a cyclic vector of πf , and moreover the original f is recovered as a
matrix element as f(g) = 〈πf (g)v0, v0〉.

Let K(G) be the set of all positive definite class functions on G, and K1(G)
the set of all f ∈ K(G) normalized as f(e) = 1, then K1(G) is a convex subset.
Denote by E(G) the set of all extremal points in K1(G). If we take f ∈ K1(G),
since f is invariant, the kernel Jf is a two-sided ∗-ideal and Af = A/Jf is a
∗-algebra. The left and right multiplications of Af generate respectively rep-
resentations πf (ψ), ρf (ψ) of Af and accordingly of A. They generate von
Neumann algebras Uf := πf (A)′′, Vf := ρf (A)′′, which are mutually commu-
tants of the other. The common center Uf ∩Vf reduces to C·I if and only if f
is extremal or f ∈ E(G), where I denotes the identity operator on Hf ([Tho1],
cited above).

When πf is a factor representation, it is of finite type, and the character
assosiated to it is given by t : Cc(G) 
 ψ �−→ f(ψ) ∈ C, or on the level of von
Neumann algebras by

Uf 
 πf (ψ) �−→ f(ψ) ∈ C (ψ ∈ Cc(G) ).

This character has a finite value 1 at the identity operator I ∈ Uf , since
πf (δe) = I, f(δe) = f(e) = 1. Hence, when dimπf = ∞, the factor is of type
II1, and when dimπf < ∞, it is of type In with n such that n ≤ dim πf ≤ n2

because πf is cyclic.
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Actually, for the present case of G = S∞(T ), finite-dimensional irreducible
unitary representations (= IURs) are necessarily of dimension one (by Lemma
2.3 below). Therefore, if a factor representation πf is finite-dimensional, it is
necessarily a one-dimensional character of G.

1.3. Present problem
Our present problem is to determine explicitly all elements of E(G) for

the groups G = S∞(T ) for any finite groups T . As explained above, E(G)
corresponds bijectively to the set of all characters of factor representations of
finite type of G. For the infinite symmetric group S∞, the problem was worked
out in [Tho2], and it is reexamined in [VK], [KO], [Bi] etc. from the point of
view of approximation from Sn (n→ ∞), and recently in [Hi3]–[Hi4] from the
standpoint of taking limits of centralizations of simple positive definite matrix
elements of representations induced from subgroups of wreath product type of
S∞. For the case where T is abelian, a general explicit formula for f ∈ E(G)
has been given in [HH1], and so all characters have been classified.

2. Structure of wreath product groups S∞(T ) = D∞(T ) � S∞

Fix a finite group T , and take the wreath product group S∞(T ) of T with
S∞:

(2.1) S∞(T ) = D∞(T ) � S∞, D∞(T ) :=
∏′

i∈N Ti , Ti = T (i ∈ N).

Here σ ∈ S∞ acts on d = (ti)i∈N ∈ D∞(T ) as σ(d) = (tσ−1(i))i∈N . We identify
frequently d and σ with their images in S∞(T ) respectively, then σdσ−1 = σ(d)
and

(d, σ)(d′, σ′) =
(
d(σd′σ−1), σσ′) (d, d′ ∈ D∞(T ), σ, σ′ ∈ S∞).

Notation. For d = (ti)i∈I ∈ DI(T ), I ⊂ N , put suppI(d) := { i ∈
I ; ti 	= eT } and we omit the suffix I if I = N or I is specified from the
context.

2.1. Standard decomposition of elements and conjugacy classes
An element g = (d, σ) ∈ G = S∞(T ) is called basic in the following two

cases:

Case 1: σ is cyclic and supp(d) ⊂ supp(σ);
Case 2: σ = 1 and for d = (ti)i∈N , tq 	= eT only for one q ∈ N .

Here 1 ∈ S∞ denotes the trivial permutation, and the element (d,1) in Case
2 is denoted by ξq, and put supp(ξq) := supp(d) = { q }.

For a cyclic permutation σ = (i1 i2 . . . i�) of 
 integers, we define its
length as 
(σ) = 
, and for the identity permutation 1, put 
(1) = 1 for conve-
nience. In this connection, ξq is also denoted by (tq, (q)) with a trivial cyclic
permutation (q) of length 1. In Cases 1 and 2, put 
(g) = 
(σ) for g = (d, σ),
and 
(ξq) = 1.
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An arbitrary element g = (d, σ) ∈ G, is expressed as a product of basic
elements as

g = ξq1ξq2 · · · ξqr
g1g2 · · · gm(2.2)

with gj = (dj , σj) in Case 1, in such a way that the supports of these com-
ponents, q1, q2, . . . , qr, and supp(gj) = supp(σj) (1 ≤ j ≤ m), are mutu-
ally disjoint. This expression of g is unique up to the orders of ξqk

’s and
gj ’s , and is called standard decomposition of g. Note that 
(ξqk

) = 1 for
1 ≤ k ≤ r and 
(gj) = 
(σj) ≥ 2 for 1 ≤ j ≤ m, and that, for S∞-components,
σ = σ1σ2 · · ·σm gives a cycle decomposition of σ.

To write down conjugacy class of g = (d, σ), there appear products of
components ti of d = (ti), where the orders of taking products are crucial when
T is not abelian. So we should fix notations well.

We denote by [t] the conjugacy class of t ∈ T , and by T/∼ the set of all
conjugacy classes of T , and t ∼ t′ denotes that t, t′ ∈ T are mutually conjugate
in T . For a basic component gj = (dj , σj) of g, let σj = (ij,1 ij,2 . . . ij,�j

) and
put Kj := supp(σj) = { ij,1, ij,2, . . . , ij,�j

} with 
j = 
(σj). For dj = (ti)i∈Kj
,

we put

(2.3) Pσj
(dj) :=

[
t′�j
t′�j−1 · · · t′2t′1

]
∈ T/∼ with t′k = tij,k

(1 ≤ k ≤ 
j).

Note that the product Pσj
(dj) is well-defined, because, for t1, t2, . . . , t� ∈

T , we have t1t2 · · · t� ∼ tktk+1 · · · t�t1 · · · tk−1 for any k, that is, the conjugacy
class does not depend on any cyclic permutation of (t1, t2, . . . , t�).

Lemma 2.1. (i) Let σ ∈ S∞ be a cycle, and put K = supp(σ). Then,
an element g = (d, σ) ∈ SK(T ) =: GK (put) is conjugate in it to g′ = (d′, σ) ∈
GK with d′ = (t′i)i∈K , t

′
i = eT (i 	= i0), [t′i0 ] = Pσ(d) for some i0 ∈ K.

(ii) Identify τ ∈ S∞ with its image in G = S∞(T ). Then we have, for
g = (d, σ),

τ gτ−1 = (τ (d), τστ−1) =: (d′, σ′),

and Pσ′(d′) = Pσ(d).

Proof. (i) We may assume that σ = (1 2 · · · 
) and so K = I� =
{ 1, 2, . . . , 
 }. Then, for s = (s1, s2, . . . , s�) ∈ DK(T ) ↪→ SK(T ), we have
s g s−1 = (d′′, σ) with d′′ = (t′′i )i∈K ,

t′′i = siti(sσ−1(i))−1 = siti(si−1)−1 (1 ≤ i ≤ 
, 0 ≡ 
).

Therefore t′′� t
′′
�−1 · · · t′′2 t′′1 = s�(t�t�−1 · · · t2t1)s −1

� , and so Pσ(d′′) = Pσ(d).
Take s� = eT , s1 = t −1

1 , s2 = (t2t1)−1, . . . , s�−1 = (t�−1 · · · t2t1)−1, then
we get t′′i = eT (1 ≤ i < 
) and t′′� = t�t�−1 · · · t2t1.

(ii) With σ above, we have τστ−1 = (τ (1) τ (2) · · · τ (
) ), and d′ =
τ (d) = (t′j)j∈K′ ,K ′ = τ (K), with t′j = tτ−1(j) and so t′τ(i) = ti (i ∈ K). Hence
t′τ(�)t

′
τ(�−1) · · · t′τ(2) t

′
τ(1) = t�t�−1 · · · t2t1. This proves the assertion.
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Applying this lemma to each basic components gj = (dj , σj) of g ∈ G in
(2.2), we get the following result.

Theorem 1. Let T be a finite group. Take an element g ∈ G = S∞(T )
and let its standard decomposition into basic elements be

g = ξq1ξq2 · · · ξqr
g1g2 · · · gm

in (2.2), with ξqk
= (tqk

, (qk) ), and gj = (dj , σj), σj cyclic, supp(dj) ⊂
supp(σj). Then the conjugacy class of g is determined by

[tqk
] ∈ T/∼ (1 ≤ k ≤ r) and (Pσj

(dj), 
(σj) ) (1 ≤ j ≤ m),(2.4)

where Pσj
(dj) ∈ T/∼ and 
(σj) ≥ 2. (Note that we put 
(ξqk

) = 1, 
(gj) =

(σj) ≥ 2.)

2.2. The case where T is abelian
In the case where T is abelian, the set T/∼ of conjugacy classes is equal to T

itself. Take g ∈ G, and take its standard decompositon (2.2). For gj = (dj , σj),
put g′j := (d′j , σj), where d′j = (t′i)i∈N with t′i0 = P (dj) =

∏
i∈Kj

ti for some
i0 ∈ Kj := supp(σj), and t′i = eT elsewhere.

Lemma 2.2. Let T be abelian. For a g = (d, σ) ∈ S∞(T ), let its
standard decomposition be g = ξq1ξq2 · · · ξqr

g1g2 · · · gm in (2.2). Define g′j (1 ≤
j ≤ m) as above and put g′ = ξq1ξq2 · · · ξqr

g′1g
′
2 · · · g′m. Then, g and g′ are

mutually conjugate in S∞(T ).

The conjugacy class of gj and g′j is characterized by the pair of P (dj) =
P (d′j) ∈ T and 
j = 
(σj) ≥ 2. Thus we get the following corollary.

Corollary. A complete set of parameters of the conjugacy classes of
non-trivial elements g ∈ S∞(T ) is given by

{ t′1, t′2, . . . , t′r } and { (uj , 
j) ; 1 ≤ j ≤ m },(2.5)

where t′k = tqk
∈ T ∗ := T \ { eT }, uj = P (dj) ∈ T , 
j ≥ 2, and r +m > 0.

2.3. Finite-dimensional irreducible representations
Let us study finite-dimensional irreducible representations (= IRs) of G =

S∞(T ).
Let π be such an IR of G. Consider a series of subgroups Gn := Sn(T ).

Then Gn ↗ G as n → ∞. Since dimπ < ∞, there exists an n such that the
restriction π|Gn

of π on Gn is already irreducible. Then, π(Gn) generates the
full operator algebra B of V (π). Take the commutant ZG(Gn) of Gn in G.
Then for any h ∈ ZG(Gn), the operator π(h) commutes with every element in
B, and so is a scalar operator.

On the other hand, any g ∈ G is conjugate under G to an element h ∈
ZG(Gn). Therefore π(g) is a scalar operator together with π(h). This means
that dimπ = 1. Thus we get the following result.
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Lemma 2.3. A finite-dimensional irreducible representation π of
S∞(T ) is a one-dimensional character, and is given in the form π = πζ,ε

with

πζ,ε(g) = ζ(P (d)) (sgnS)ε (σ) for g = (d, σ) ∈ S∞(T ) = D∞(T ) � S∞,

where ζ is a one-dimensional character of T , P (d) is a product of components
ti of d = (ti), and sgnS(σ) denotes the usual sign of σ and ε = 0, 1. (Since
ζ(P (d)) =

∏
i∈N ζ(ti), the order of taking product for P (d) has no meaning

even if T is not abelian.)

In the case where T is abelian, we can prove similarly the following fact
for the subgroup Se

∞(T ) of S∞(T ).

Lemma 2.4. Assume that T is abelian. Then, a finite-dimensional ir-
reducible representation π of Se

∞(T ) is a one-dimensional character, and is
given in the form

π(g) = (sgnS)ε (σ) for g = (d, σ) ∈ Se
∞(T ) = De

∞(T ) � S∞.

3. Characters of wreath product group S∞(T ), T finite

In this section, we give our general results on characters of a wreath prod-
uct group G = S∞(T ) for any finite group T .

First let us introduce several notations. Let T̂ be the dual of T consist-
ing of all equivalence classes of irreducible representations. We identify every
equivalence class with one of its representative. Thus ζ ∈ T̂ is an IR and denote
by χζ its character:

χζ(t) = tr(ζ(t)) (t ∈ T ),

then dim ζ = χζ(eT ). Denote by 1T the identity representation of T , and put
T̂ ∗ := T̂ \ {1T }, T ∗ := T \ { eT }. Then

|T | δeT
=
∑
ζ∈bT

(dim ζ)χζ , as functions on T,(3.1)

0 =
∑
ζ∈bT

(dim ζ)χζ and 1 = χ1T
= −

∑
ζ∈bT∗

(dim ζ)χζ , on T ∗.(3.2)

Take an element g ∈ G = S∞(T ) and let its standard decomposition into
basic components be

g = ξq1ξq2 · · · ξqr
g1g2 · · · gm ,(3.3)

where the supports of components, q1, q2, . . . , qr, and supp(gj) := supp(σj)
(1 ≤ j ≤ m), are mutually disjoint. Furthermore, ξqk

= (tqk
, (qk)), tqk

	= eT ,
with 
(ξqk

) = 1 for 1 ≤ k ≤ r, and σj is a cycle of length 
(σj) ≥ 2 and
supp(dj) ⊂ Kj = supp(σj) . For S∞-components, σ = σ1σ2 · · ·σm gives the
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cycle decomposition of σ. For dj = (ti)i∈Kj
∈ DKj

(T ) ↪→ D∞(T ), put Pσj
(dj)

as in (2.3).
For one-dimensional characters of S∞, we introduce simple notation as

χε(σ) := sgnS(σ)ε (σ ∈ S∞ ; ε = 0, 1).(3.4)

As a parameter for characters of G = S∞(T ), we prepare a set

αζ,ε (ζ ∈ T̂ , ε ∈ { 0, 1 }) and µ = (µζ)ζ∈bT ,(3.5)

of decreasing sequences of non-negative real numbers

αζ,ε = (αζ,ε,i)i∈N , αζ,ε,1 ≥ αζ,ε,2 ≥ αζ,ε,3 ≥ · · · ≥ 0 ;

and a set of non-negative real µζ ≥ 0 (ζ ∈ T̂ ), which altogether satisfy the
condition ∑

ζ∈bT

∑
ε∈{ 0,1 }

‖αζ,ε‖ + ‖µ‖ ≤ 1 ,(3.6)

with ‖αζ,ε‖ =
∑

i∈N αζ,ε,i , ‖µ‖ =
∑

ζ∈bT µζ .

Then we have the following result.

Theorem 2. Let G = S∞(T ) be a wreath product group of a finite
group T with S∞. Then, for a parameter

A :=
(
(αζ,ε)(ζ,ε)∈bT×{ 0,1 } ; µ

)
,(3.7)

in (3.5)–(3.6), the following formula determines a character fA of G: for an
element g ∈ G, let (3.3) be its standard decomposition, then

fA(g) =
∏

1≤k≤r

∑
ζ∈bT

 ∑
ε∈{ 0,1 }

∑
i∈N

αζ,ε,i

dim ζ
+

µζ

dim ζ

χζ(tqk
)


×

∏
1≤j≤m

∑
ζ∈bT

 ∑
ε∈{ 0,1 }

∑
i∈N

(
αζ,ε,i

dim ζ

)�(σj)

χε(σj)

χζ

(
Pσj

(dj)
) ,

(3.8)

where χε(σj) = sgnS(σj)ε = (−1)ε(�(σj)−1).
Conversely any character of G is given in the form of fA.

The parameter A of character is not necessarily unique because of the linear
dependence (3.2) on T ∗ of functions χζ , ζ ∈ T̂ . To establish uniqueness of
parameter, we transfer from the parameter A, to another parameter B = φ(A)
given by

B = φ(A) :=
(
(αζ,ε)(ζ,ε)∈bT×{ 0,1 } ; κ

)
,(3.9)

with κ = (κζ)ζ∈bT∗ , κζ = µζ − (dim ζ)2 µ1T
(ζ ∈ T̂ ∗).
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Then, we have from (3.1)–(3.2),∑
ζ∈bT

µζ

dim ζ
· χζ(tqk

) =
∑

ζ∈bT∗

κζ

dim ζ
· χζ(tqk

),

∑
ζ∈bT∗

κζ =
∑
ζ∈bT

µζ − |T |µ1T
,

and the uniqueness of parameter is established. However the inequality (3.6)
for the range of parameter A containing µ cannot be translated in a compact
form in the parameter φ(A) containing κ in place of µ.

Note that the multiplicative factor for ξqk
= (tqk

, (qk)) in the formula is
rewritten as∑

ζ∈bT

(‖αζ,0‖ + ‖αζ,1‖ + µζ) ·
χζ(tqk

)
dim ζ

=
∑
ζ∈bT

(‖αζ,0‖ + ‖αζ,1‖) ·
χζ(tqk

)
dim ζ

+
∑

ζ∈bT∗

κζ ·
χζ(tqk

)
dim ζ

.

In this connection, we can propose two other choices of normalization of
the parameter µ = (µζ)ζ∈bT , µζ ≥ 0 . The first one is given by taking into
account of the relation (3.2) and∑

ζ∈bT

µζ

dim ζ
χζ =

∑
ζ∈bT

µζ

(dim ζ)2
· (dim ζ)χζ ,

as the following minimum condition:

(MIN) min
{

µζ

(dim ζ)2
; ζ ∈ T̂

}
= 0 .(3.10)

The second one, in the case where T is non-trivial, is the following maxi-
mum condition on the parameter A, whose merit is that the character formula
(3.8) is valid even for tqk

= eT (not necessarily tqk
∈ T ∗), whereas this is not

the case in other normalizations:

(MAX)
∑
ζ∈bT

∑
ε∈{0,1}

‖αζ,ε‖ + ‖µ‖ = 1 .(3.11)

4. Characters of wreath product group S∞(T ), T abelian

When T is abelian, the general character formula (3.8) for S∞(T ) =
D∞(T ) � S∞ with a finite group T has a simplified form.

First let us check simplification of notations. In this abelian case, T̂ is
nothing but the dual group consisting of all one-dimensional characters of T ,
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and for each ζ ∈ T̂ , its character χζ is identified with ζ itself. The character
identities (3.1)–(3.2) are written as

|T | δeT
=
∑
ζ∈bT

ζ , as functions on T,(4.1)

0 =
∑
ζ∈bT

ζ and 1 = 1T = −
∑

ζ∈bT∗

ζ , on T ∗.(4.2)

Take an element g ∈ G = S∞(T ). Let its standard decomposition be

g = ξq1ξq2 · · · ξqr
g1g2 · · · gm ,(4.3)

with ξqk
= (tqk

, (qk)), tqk
	= eT , for 1 ≤ k ≤ r, and gj = (dj , σj) for 1 ≤ j ≤ m.

Put Kj = supp(σj), and for dj = (ti)i∈Kj
∈ DKj

(T ) ↪→ D∞(T ), put

PKj
(dj) =

∏
i∈Kj

ti , ζ(dj) := ζ(PKj
(dj)) =

∏
i∈Kj

ζ(ti) .(4.4)

As a parameter for characters of G = S∞(T ), we prepare a set

αζ,ε (ζ ∈ T̂ , ε ∈ { 0, 1 }), and µ = (µζ)ζ∈bT ,(4.5)

of decreasing sequences of non-negative real numbers αζ,ε = (αζ,ε,i)i∈N , and
a set of non-negative real µζ ≥ 0 (ζ ∈ T̂ ), which satisfy the condition∑

ζ∈bT

∑
ε∈{ 0,1 }

‖αζ,ε‖ + ‖µ‖ ≤ 1 .(4.6)

Theorem 3. Let G = S∞(T ) be a wreath product group of a finite
abelian group T with S∞. Then, for a parameter A =

(
(αζ,ε)(ζ,ε)∈bT×{ 0,1 } ; µ

)
,

in (4.5)–(4.6), the following formula determines a character fA of G: for an
element g ∈ G, let (4.3) be its standard decomposition, then

fA(g) =
∏

1≤k≤r

∑
ζ∈bT

 ∑
ε∈{ 0,1 }

∑
i∈N

αζ,ε,i + µζ

 ζ(tqk
)

(4.7)

×
∏

1≤j≤m

∑
ζ∈bT

 ∑
ε∈{ 0,1 }

∑
i∈N

(αζ,ε,i)
�(σj) · χε(σj)

 ζ(dj)

 ,

where χε(σj) = sgnS(σj)ε = (−1)ε(�(σj)−1), and ζ(dj) as in (4.4).
Conversely any character of G is given in the form of fA.

The parameter A of a character is not necessarily unique just as for Theo-
rem 2. To establish uniqueness of parameter, we transfer from A to B = φ(A)
given by

B = φ(A) :=
(
(αζ,ε)(ζ,ε)∈bT×{ 0,1 } ; κ

)
,(4.8)

with κ = (κζ)ζ∈bT∗ , κζ = µζ − µ1T
(ζ ∈ T̂ ∗).
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Then the uniqueness of parameter is established. Except the case of T = Z2

or the case of the infinite Weyl group of type B∞/C∞, the inequality (4.6) for
the range of parameter A cannot be translated in a compact form in B = φ(A).

Note that the multiplicative factor for ξqk
= (tqk

, (qk)) in the formula is
rewritten as ∑

ζ∈bT

(‖αζ,0‖ + ‖αζ,1‖ + µζ) · ζ(tqk
)

=
∑
ζ∈bT

(‖αζ,0‖ + ‖αζ,1‖) · ζ(tqk
) +

∑
ζ∈bT∗

κζ · ζ(tqk
).

Another normalization condition (MIN) for µ = (µζ), µζ ≥ 0, is written as

(MIN) min
{
µζ ; ζ ∈ T̂

}
= 0,

and one more normalization condition (MAX) is just as in (3.11).

Example 4.1. The case where αζ,ε,1 = 1 for a fixed (ζ, ε) ∈ T̂ ×{ 0, 1 }
and all other parameters in A are zero, whence αζ,ε = (1, 0, 0, . . . ), corresponds
to one-dimensional character πζ,ε of G in Lemma 2.3. Except these cases of
one-dimensional representations of G, a character fA given above corresponds
to a factor representation of G of type II1.

The case “αζ,ε = (αζ,ε,i)i∈N = 0 for all (ζ, ε) ∈ T̂ × {0, 1} and µ =
(µζ)ζ∈bT = 0 ” corresponds to the regular representation λG of G.

Consider the case where ‖αζ,0‖ + ‖αζ,1‖ + µζ = 1 for a fixed ζ ∈ T̂ and
all other parameters in A are zero. Put α = αζ,0, β = αζ,1, and let fα,β be the
character of S∞ given in [Tho2] (cf. (6.2) in 6.1). Denote by Ψ the natural
homomorphism from G onto S∞ ∼= G/D with normal subgroup D = D∞(T ),
and put f#

α,β := fα,β ◦ Ψ. Then the character fA(g) in this case is equal to
f#

α,β(g) ·πζ,0(g) with a one-dimensional character πζ,0 of G in Lemma 2.3 (with
ε = 0). In particular, the case where µζ = 1 for a fixed ζ ∈ T̂ , corresponds
to the induced representation IndG

DζD, where ζD(d) := ζ(P (d)), d ∈ D, is a
one-dimensional character of D = D∞(T ) (cf. 2.3). The character fA is equal
to ζD on D ↪→ G, and zero outside of D. In the case ζ = 1T , this induced
representation is nothing but the regular representation of G/D ∼= S∞.

5. Characters for the subgroup Se
∞(T ) ⊂ S∞(T ), T abelian

Assume T be abelian. For the natural subgroup Ge := Se
∞(T ) = De

∞(T )�

S∞ with

De
∞(T ) := { d = (ti)i∈N ; P (d) = eT }, P (d) :=

∏
i∈N ti,(5.1)

we deduce a general character formula from the one for G := S∞(T ).
Take an element g ∈ Ge = Se

∞(T ) and let its standard decomposition be

g = ξq1ξq2 · · · ξqr
g1g2 · · · gm(5.2)
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with ξqk
= (tqk

, (qk)) and gj = (dj , σj), dj = (ti)i∈Kj
,Kj = supp(σj). Note

that each component ξqk
does not belong to Ge, and that the component gj =

(dj , σj) belongs to Ge if and only if P (dj) =
∏

i∈Kj
ti = eT . However, after

careful discussions on the relation between Ge and G, we obtain the following
result for the subgroup Ge from the result for G.

Theorem 4. Let T be abelian, and let Ge = Se
∞(T ) be the subgroup of

G = S∞(T ) given by (5.1). Then, for a parameter

A =
(
(αζ,ε)(ζ,ε)∈bT×{ 0,1 } ; µ

)
,(5.3)

in (4.5)–(4.6), the following formula determines a character fe
A of Ge: for an

element g ∈ Ge, let (5.2) be its standard decomposition, then

fe
A(g) =

∏
1≤k≤r

∑
ζ∈bT

 ∑
ε∈{ 0,1 }

∑
i∈N

αζ,ε,i + µζ

 ζ(tqk
)

(5.4)

×
∏

1≤j≤m

∑
ζ∈bT

 ∑
ε∈{ 0,1 }

∑
i∈N

(αζ,ε,i)
�(σj) · χε(σj)

 ζ(dj)

 ,

where χε(σj) = sgnS(σj)ε = (−1)ε(�(σj)−1), and ζ(dj) as in (4.4).
Conversely any character of Ge is given in the form of fe

A.

The parameter A =
(
(αζ,ε)(ζ,ε)∈bT×{ 0,1 } ; µ

)
for fe

A is not unique even
under the normalization condition (MAX). To describe the correspondence of
parameters, we introduce a translation R(ζ0) on A by an element ζ0 ∈ T̂ as
follows:

R(ζ0)A :=
(
(α′

ζ,ε)(ζ,ε)∈bT×{ 0,1 } ; R(ζ0)µ
)

(5.5)

with α′
ζ,ε=αζζ −1

0 ,ε

(
(ζ, ε) ∈ T̂ × { 0, 1 }

)
; R(ζ0)µ = (µ′

ζ)ζ∈bT , µ′
ζ = µζζ −1

0
.

Proposition 5. Let T be abelian. Assume that two parameters for
characters

A =
(
(αζ,ε)(ζ,ε)∈bT×{ 0,1 } ; µ

)
and A′ =

(
(α′

ζ,ε)(ζ,ε)∈bT×{ 0,1 } ; µ′
)

satisfy the normalization condition (MAX) for µ and µ′ respectively. Then, they
determine the same character, that is, fe

A = fe
A′ , if and only if A′ = R(ζ0)A

for some ζ0 ∈ T̂ .

By Lemma 2.3, we know all one-dimensional characters of G = S∞(T )
= D∞(T ) � S∞. Among them take those which depend only on D∞(T )-
component d = (ti)i∈N , ti ∈ T, of g = (d, σ) ∈ G. Then they are given for
g = (d, σ) in (5.2) as

πζ,0(g) := ζ(P (d)) = ζ

(∏
i∈N

ti

)
=

∏
i∈N

ζ(ti) =
∏

1≤k≤r

ζ(tqk
)

∏
1≤j≤m

ζ(dj),
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for some ζ ∈ T̂ . Therefore we see that, as characters on G ⊃ Ge,

fA′(g) = πζ0,0(g) · fA(g) (g ∈ G) for A′ = R(ζ0)A.

6. Characters for the infinite Weyl groups

The infinite symmetric group S∞ is the Weyl group of type A∞, and the
symmetric group Sn, which is the Weyl group of type An, is imbedded in
S∞ as Sn = SIn with In := { 1, 2, . . . , n } ⊂ N . Take σ 	= 1 from S∞, and
decompose it into a product of mutually disjoint cycles (= cyclic permutations)
as

σ = σ1σ2 · · ·σm , σj = (ij,1 ij,2 . . . ij,�j
).(6.1)

By definition, 
j = 
(σj) is the length of the cycle σj , and put n�(σ) =
∣∣{ j ; 
j =


}
∣∣ the number of cycles σj with length 
. The set of multiplicities {n�(σ) ; 
 ≥

2 } determines the conjugacy class of σ.

6.1. Review of the case of infinite symmetric group S∞
The formula of characters of WA∞

∼= S∞ in [Tho2] is written as follows.
As a parameter for such a character, take (α, β) with α = (αi)i≥1, β = (βi)i≥1,
decreasing sequences of non-negative real numbers satisfying ‖α‖ + ‖β‖ ≤ 1.
Then

(6.2) fα,β(σ) =
∏
�≥2

 ∑
1≤i<∞

α �
i + (−1)�−1

∑
1≤i<∞

β �
i

n�(σ)

.

We rewrite this in the form of our formula for S∞(T ). Put

χε(σ) :=
(
sgnS(σ)

)ε (σ ∈ S∞); α0,i = αi , α1,i = βi ,

for ε = 0, 1, and i = 1, 2, . . . . For a cycle σj in the decomposition σ =
σ1σ2 · · ·σm of σ ∈ S∞, we have sgnS(σj) = (−1)�(σj)−1, and the formula
above is rewritten as

fα,β(σ) =
∏

1≤j≤m

 ∑
ε=0,1

χε(σj)
∑

1≤i<∞
(αε,i)�(σj)

 .(6.3)

In [Hi3]–[Hi4], it is shown that all these characters fα,β are obtained as
various limits of centralizations of one matrix element F = IndG

Hfπ of a uni-
tary representation ρ = IndG

Hπ, induced from one-dimensional character π of a
certain subgroup H of wreath product type (cf. [Hi4, §15], in particular).

6.2. Character formula for infinite Weyl group of type B∞/C∞
For the infinite Weyl group G = WB∞ of type B∞/C∞, all the characters

or extremal positive definite class functions are given as follows [HH1]. Recall
that G is naturally realized as a semidirect product group as

G = WB∞ = S∞(T ) = D∞(T ) � S∞ with T = Z2 .(6.4)
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A one-dimensional character of G is given as a tensor product of such ones
(sgnD)a of D = D∞(T ) and (sgnS)b of S∞: for g = (d, σ) ∈ G = D � S∞,

χa,b(g) := (sgnD)a(d) · (sgnS)b(σ) ( a, b ∈ { 0, 1 }),(6.5)

with sgnD(d) =
∏

i∈N ti for d = (ti)i∈N ∈ D.
We prepare a set of parameters (α, β, γ, δ, κ) as

α = (αi)i∈N , α1 ≥ α2 ≥ · · · ≥ 0,

β = (βi)i∈N , β1 ≥ β2 ≥ · · · ≥ 0,

γ = (γi)i∈N , γ1 ≥ γ2 ≥ · · · ≥ 0,

δ = (δi)i∈N , δ1 ≥ δ2 ≥ · · · ≥ 0,

and κ , a real number.

(6.6)

Here α, β, γ, δ and κ satisfy the condition

‖α‖ + ‖β‖ + ‖γ‖+‖δ‖ + |κ| ≤ 1 , or(6.7)

−1 + (‖α‖ + ‖β‖ + ‖γ‖ + ‖δ‖) ≤ κ ≤ 1 − (‖α‖ + ‖β‖ + ‖γ‖ + ‖δ‖),

with

‖α‖ =
∑

1≤i<∞ αi , ‖β‖ =
∑

1≤i<∞ βi ,

‖γ‖ =
∑

1≤i<∞ γi , ‖δ‖ =
∑

1≤i<∞ δi .
(6.8)

Take a g ∈ G and let

g = ξq1ξq2 · · · ξqr
g1g2 · · · gm(6.9)

be a standard decomposition with ξqk
= (tqk

, (qk)) and gj = (dj , σj). Here, for
dj = (ti)i∈N ∈ DN (T ), we have supp(dj) ⊂ Kj := supp(σj), and sgnD(dj) =
PKj

(dj) =
∏

i∈Kj
ti. Put 
(gj) = 
(σj), and by definition, 
(ξqk

) = 1. For
(a, b) ∈ { 0, 1 } × { 0, 1 }, we put

χa,b(gj) = sgnD(dj)a · sgnS(σj)b =
(∏

i∈Kj
ti

)a

· (−1)b(�(gj)−1).

Theorem 6 ([HH1]). Let G = WB∞ = S∞(T ) with T = Z2 be the
infinite Weyl group of type B∞. To a character of G, there coreseponds uniquely
a parameter (α, β, γ, δ, κ) given in (6.6)–(6.7), and it is expressed as fα,β,γ,δ,κ

in the following formula: for a g ∈ G, express it as in (6.9), then

fα,β,γ,δ,κ(g) = s r
1 ×

∏
1≤j≤m

 ∑
1≤i<∞

α
�(gj)

i + χ0,1(gj)
∑

1≤i<∞
β

�(gj)
i +

+χ1,0(gj)
∑

1≤i<∞
γ

�(gj)
i + χ1,1(gj)

∑
1≤i<∞

δ
�(gj)

i

(6.10)
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with

s1 = s1;0 + κ , s1;0 := ‖α‖ + ‖β‖ − (‖γ‖ + ‖δ‖) .(6.11)

Another expression of characters. We can rewrite the formula
(6.10) in more compact form. For a, b ∈ { 0, 1 }, put αa,b;i ≥ 0 as

(6.12) α0,0;i = αi , α0,1;i = βi , α1,0;i = γi , α1,1;i = δi (k ≥ 1).

For a basic element h = (d, σ) ∈ G with 
 = 
(h) := 
(σ), sgnD(d) = ε1 (ε = ±),
we have χa,b(h) = (ε1)a · (−1)b(�−1), and put

φ(h) =
∑

a,b∈{ 0,1 }
χa,b(h)

∑
1≤i<∞

(αa,b;i)�(h)(6.13)

=
∑

1≤i<∞

{
α �

i + (−1)�−1β �
i + (ε1)γ �

i + (−1)�−1(ε1)δ �
i

}
=: sε;� .

In case 
 = 1, we have 
(ξq) = 1, sgnD(ξq) := sgnD(tq) = −1 for ξq =
(tq, (q)), and

φ(ξq) =
∑

a,b∈{ 0,1 } χa,b(ξq)
(∑

1≤i<∞ αa,b;i

)
(6.14)

= ‖α‖ + ‖β‖ − ‖γ‖ − ‖δ‖ .

We define s−;1 adding some deviation κ to φ(ξq) as

φ(ξq) + κ =: s−;1 .(6.15)

The formula (6.10) of positive definite function fα,β,γ,δ,κ is written as

fα,β,γ,δ,κ(g) =
∏

1≤k≤r

(
φ(ξqk

) + κ
)
×

∏
1≤j≤m

φ(gj).(6.16)

For 
 ≥ 2 and ε = ±, let nε;�(g) be the multiplicity of gj = (dj , σj) with

(σj) = 
 and sgnD(dj) = ε1 :

nε;�(g) =
∣∣{ j ; 
(gj) = 
, ξ1,0(gj) = sgnD(dj) = ε1 }

∣∣ ,
and let n−;1(g) = r be the multiplicity of ξq in (6.9). Then, the formula (6.16)
is written as

fα,β,γ,δ,κ(g) = (s−;1) n−;1(g) ×
∏

ε=±,�≥2

(sε;�)nε;�(g).(6.17)

6.3. Characters for the infinite Weyl group WD∞ of type D∞
For the infinite Weyl group GD := WD∞ of type D∞, all the characters

of G are given explicitly as follows. Recall that GD is realized as a semidirect
product group as

GD = WD∞ = Se
∞(T ) = De

∞(T ) � S∞ with T = Z2 ,(6.18)

De
∞(Z2) = { d = (ti)i∈N ∈ D∞(Z2), sgnD(d) = 1 },
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where sgnD(d) =
∏

i∈N ti . For a subset I ⊂ N , we put also sgnD(d) = PI(d) =∏
i∈I ti for d = (ti)i∈I ∈ DI(Z2) ↪→ D∞(Z2).

A one-dimensional character of the group GD is given as (sgnS)b, b = 0, 1.
However we need one-dimensional characters of so-called wreath product type
subgroups H of GD, and so we keep notations in the case of the Weyl group
GB := WB∞ .

Similarly as in the case of WB∞ , we prepare a parameter (α, β, γ, δ, κ) just
as in (6.6) which satisfies the inequality (6.7).

Take a g ∈ GD and let g = ξq1ξq2 · · · ξqr
g1g2 · · · gm be a standard

decomposition with basic components ξqk
= (tqk

, (qk)) and gj = (dj , σj).
We have supp(dj) ⊂ Kj = supp(σj) , and dj = (ti)i∈Kj

∈ DKj
(Z2) ↪→

D∞(Z2), sgnD(dj) = PKj
(dj).

Note that each component ξqk
does not belong to GD but to GB, and that

gj = (dj , σj) belongs to GD if and only if sgnD(dj) = 1.

Theorem 7 ([HH1]). Let GD = WD∞ = Se
∞(Z2) be the infinite Weyl

group of type D∞. Let fα,β,γ,δ,κ be a character of GB = WB∞ = S∞(Z2) with
a parameter (α, β, γ, δ, κ) in (6.6)–(6.7), and fe

α,β,γ,δ,κ be its restriction onto
GD ⊂ GB. Then, fe

α,β,γ,δ,κ is a character of GD and is expressed by the same
formulas as (6.10)–(6.11).

Conversely any character of GD is equal to fe
α,β,γ,δ,κ for some parameter

(α, β, γ, δ, κ) in (6.6)–(6.7).
Two parameters (α, β, γ, δ, κ) and (α′, β′, γ′, δ′, κ′) determine the same

character of GD, or fe
α,β,γ,δ,κ = fe

α′,β′,γ′,δ′,κ′ , if and only if they coincide with
each other or

(α′, β′) = (γ, δ), (γ′, δ′) = (α, β), κ′ = −κ.(6.19)

7. Method of proving Theorem 2

Let us explain our method of proving Theorem 2 (for this, see also the
part 2 of Introduction). Our proof consists of two parts. The first part is to
prepare seemingly sufficiently big family of factorizable (hence extremal by the
criterion in the second part) positive definite class functions on G = S∞(T ).
The second part is to guarantee that actually all extremal positive definite class
functions or characters have been already obtained in the first part.

7.1. The first part of the proof
The first part of our proof has two important ingredients.
One is a method of taking limits of centralizations of positive definite func-

tions. This method, which will be explained in the next section, §8, has been
applied in [Hi3]–[Hi4] to the case of S∞ and reestablished the results in [Tho2],
and also applied in [HH1] to the case of the wreath product groups S∞(T ) with
T abelian to get the character formula, which is given here as Theorem 3 in §4.

The other is inducing up positive definite functions from appropriate sub-
groups. After choosing subgroups H and their representations π appropriately,
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we use their matrix elements fπ as positive definite functions on H to be in-
duced up to G, and then to be centralized.

We have constructed in [Hi1] a huge family of irreducible unitary repre-
sentations (= IURs) of a wreath product group G = S∞(T ) = D∞(T ) � S∞
with any finite group T , by taking so-called wreath product type subgroups H
in a ‘ saturated fashion ’, and their IURs π of a certain form to get IURs of G
as induced representations ρ = IndG

Hπ.
For our present purpose of getting (possibly) all extremal positive definite

class functions on G as pointwise limits of centralizations of their matrix el-
ements, we choose simpler subgroups of degenerate wreath product type and
their IURs. In this case, we get unitary representations ρ = IndG

Hπ which are
very far from being irreducible, but enough for our purpose to get a sufficiently
big set LIM of positive definite class functions, as such limits of centralizations.
This ingredient will be discussed in §§9–10.

Altogether the first part occupies §§8–11 and §§13–14.

7.2. The second part of the proof
The second part contains also two important ingredients.
The first one is a criterion for a positive definite class function f to be

extremal or indecomposable. Our criterion is given in §15 as Theorem 12 which
says that f is extremal if and only if it is factorizable.

The second one is a kind of partial Fourier transform of class functions on
G = D∞(T ) � S∞ with respect to the subgroup D∞(T ). We utilize it in §16
to reduce the problem “when is a factorizable class function f on G positive
definite ? ” to the level of the infinite symmetric group S∞, and then appeal
to [Tho2, Korollar 1 to Satz 2].

As the results, such a factorizable class function f is positive definite if
and only if it has the same form as fA in Theorem 2 with a parameter A =(
(αζ,ε)(ζ,ε)∈bT×{ 0,1 } ; µ

)
satisfying the same condition as in §3.

Altogether the second part occupies §§15–16, and the result in §12 is ap-
plied in §16.

8. Centralizations of positive definite functions

Let us explain our method of taking limits of centralizations of positive
definite functions. For a function f on a countable discrete group G and a
finite subgroup G′ ⊂ G, we define a centralization of f with respect to G′ as

fG′
(g) :=

1
|G′|

∑
g′∈G′

f(g′gg′−1).(8.1)

Taking an increasing sequence of finite subgroups GN ↗ G, we consider a
series fGN of centralizations of f with respect to GN and study its pointwise
convergence limit, limN→∞ fGN , which depends heavily on the choice of the
series GN ↗ G.

In our previous papers [Hi3]–[Hi4], we studied positive definite functions
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f(σ) on G = S∞ of three different types given in [Bo], [BS]: for σ ∈ G,

r|σ| (−1 ≤ r ≤ 1); q‖σ‖ (0 ≤ q ≤ 1); sgn(σ)q‖σ‖ (0 ≤ q ≤ 1),

where r and q are constants. Here |σ| denotes the usual length of a permuta-
tion σ coming from its reduced expressions by simple transpositions, and ‖σ‖
denotes the block length of σ, which is by definition the number of different
simple transpositions appearing in a reduced expression of σ. Then we have
proved the following.

Theorem 8. Let f be one of the above positive definite functions, and
GN = SN (N ≥ 1). Assume |r| < 1 or 0 < q < 1 correspondingly. Then the
series of centralizations fGN of f converges pointwise to the delta function δe
on G = S∞ as N tends to ∞.

In other words, in the topology of weak containment of unitary representa-
tions, this means that each of the representations πf , associated to f by GNS
construction, contains weakly the regular representation λG of G = S∞.

We have also calculated various limits of centralizations of positive defi-
nite matrix elements of irreducible or non-irreducible representations which are
induced from subgroups of wreath product type.

In the recent paper [HH1], we have treated the case of S∞(T ) with T any
finite abelian group, which contains the case of infinite Weyl groups WB∞ and
WD∞ .

Especially we observed in [Hi3]–[Hi4] and in [HH1] the following fact, for
the infinite symmetric group S∞ and wreath product groups S∞(T ) with T
abelian.

Observation. For a certain choice of a subgroup H and one of its uni-
tary representation π, the family of limits of centralizations of matrix elements
of the induced representation ρ = IndG

Hπ covers all the characters of the group
G.

9. Inducing up of positive definite functions

9.1. Matrix elements of induced representations
In a general setting, let G be a discrete group, and H its subgroup. Take a

unitary representation π of H on a Hilbert space V (π), and consider an induced
representation ρ = IndG

Hπ.
The representation space V (ρ) of ρ is given as follows. For a vector v ∈

V (π), and a representative g0 of a right coset Hg0 ∈ H\G, put

Ev,g0(g) =
{
π(h)v (g = hg0, h ∈ H),
0 ( g /∈ Hg0).

(9.1)

Let V be a linear span of these V (π)-valued functions on G, and define an inner
product on it as

〈Ev,g0 , Ev′,g′
0
〉 =

{
〈π(h)v, v′〉 if hg0 = g′0 (∃h ∈ H),
0 if Hg0 	= Hg′0.

(9.2)
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The space V (ρ) is nothing but the completion of V .
The representation ρ is given as ρ(g1)E(g) = E(gg1) (g1, g ∈ G,E ∈

V (ρ) ).
Now take a non-zero vector v ∈ V (π) and put E = Ev,e ∈ V (ρ). Consider

a positive definite function on H associated to π as

fπ(h) = 〈π(h)v, v〉 (h ∈ H),(9.3)

and also such a one on G associated to ρ as

F (g) = 〈ρ(g)E,E〉 (g ∈ G).(9.4)

Then, we can easily prove the following lemma.

Lemma 9.1. The positive definite function F on G in (9.4) associated
to ρ = IndG

Hπ is equal to the inducing up of the positive definite function fπ on
H associated to π: F = IndG

Hfπ , which is, by definition, equal to fπ on H and
to zero outside of H.

9.2. Centralizations of F = IndG
Hfπ

Let GN ↗ G be an increasing sequence of finite subgroups going up to G,
and consider a series of centralizations FGN of F .

Since F is zero outside of H, the value of centralization FGN (g) is 	= 0
only for elements g which are conjugate under GN to some h ∈ H. Moreover,
for h ∈ H, we get

FGN (h) =
1

|GN |
∑

g′∈GN : g′hg′−1∈H

fπ(g′hg′−1).(9.5)

The condition g′hg′
−1 ∈ H for g′ ∈ GN , is translated into certain com-

binatorial conditions, and to get the limit as N → ∞, we have to calculate
asymptotic behavior of several ratios of combinatorial numbers.

The details in the case of G = S∞ are given in [Hi3]–[Hi4]. For the
infinite Weyl groups, G = WB∞ and WD∞ , and moreover for wreath product
groups G = S∞(T ) with T any finite abelian groups, essential parts of these
calculations are sketched in [HH1].

10. Subgroups and their representations for S∞(T )

10.1. IURs of S∞(T ), T a finite group, as induced representations
In the previous paper [Hi1], we have constructed a big family of IURs by

the method of inducing up from wreath product type subgroups. Let us review
it briefly.

Take a subgroup H of G = S∞(T ) of the form

H = H0 ×
∏′

p∈P Hp , H0 = SI0(T ),

Hp = SIp
(Tp) = DIp

(Tp) � SIp
,

(10.1)
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where I0 is a finite subset (we admits empty set), and Ip’s are infinite subsets
of N all mutually disjoint, and Tp’s are subgroups of T . Thus H is determined
by the datum

c :=
(
I0, (Ip, Tp)p∈P

)
and is denoted also by Hc. To get IURs as induced representations from H =
Hc, we assume that H is “saturated ” in G in the sense that N = I0�(�p∈P Ip)
is a partition of N .

As an IUR of H, we take so-called factorizable one:

π = π0 ⊗
(
⊗b

p∈Pπp

)
for H0 ×

∏′
p∈P Hp .(10.2)

Here b = (bp)p∈P , bp ∈ V (πp), ‖bp‖ = 1, is a reference vector to take ten-
sor product of πp’s, when P is infinite, and IURs π0 and πp are given as
follows. First choose an IUR ζp ∈ T̂p (resp. ζ0 ∈ T̂ ). Then, for the sub-
group DIp

(Tp) (resp. DI0(T ) ), we take an IUR given as a tensor product
πD

p := ⊗ap

i∈Ip
ζp,i , ζp,i = ζp (resp. πD

0 := ⊗i∈I0ζ0,i , ζ0,i = ζ0 ), where
ap = (ap,i)i∈Ip

, ap,i ∈ V (ζp,i), ‖ap,i‖ = 1, is a reference vector with respect to
which the infinite tensor product of ζp,i = ζp (i ∈ Ip) is taken. Then, a σ ∈ SIp

acts on the space V := ⊗ap

i∈Ip
V (ζp,i) as a permutation of components as

I(σ) : V 
 v = ⊗i∈Ip
vi �−→ ⊗i∈Ip

v′i ∈ V, v′i = vσ−1(i) ,(10.3)

where vi ∈ V (ζp,i), i ∈ Ip. Take a one-dimensional character χS
p of SIp

, then
we get an IUR πp of Hp = SIp

(Tp) by the formula:

πp

(
(d, σ)

)
:= πD

p (d) I(σ)χS
p (σ)

(
(d, σ) ∈ DIp

(Tp) � SIp

)
,

and similarly for H0 = SI0(T ). In case ζp is one-dimensional or P is finite, the
reference vector ap or b is not necessary.

Thus the IUR π of H = Hc is determined by the datum (c, d) with

d :=
(
(ζ0, χS

0 ) , (ζp, ap, χ
S
p )p∈P ; b

)
,

and is denoted also by π(c, d). We know in [Hi1] that, under the saturation
condition: N = I0 � (�p∈P Ip), the induced representation

ρ(c, d) = IndG
Hπ(c, d)

is irreducible, and equivalence relations among these IURs are also clarified
there.

In the previous paper [HH1], we gave Conjecture 2002-5 to generalize this
method of constructing IURs. One point is that, to have the irreducibility for
induced representation ρ = IndG

Hπ, we may start with π coming from Hp and
πp in (10.2) such that the full group T is taken as Tp, and a cyclic representation
of T as ζp, and ap = (ap,i)i∈Ip

with cyclic vectors ap,i ∈ V (ζp,i) = V (ζp).
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10.2. Subgroups and their representations for matrix elements fπ

In place of the purpose in [Hi1] of getting IURs, our present purpose is
to get all the characters of G = S∞(T ) as limits of centralizations of matrix
elements F = IndG

Hfπ of ρ = IndG
Hπ, where fπ is a positive definite matrix

element of a UR π of H. To this purpose, we look for the best choice of a pair
of H and π, following principally the case of [Hi1], but simplifying the situation
without paying attention on irreducibility of the induced representation.

To give such subgroups H, we take first a partition of N as

N =
(⊔

(ζ,ε)∈bT×{ 0,1 }

(⊔
p∈Pζ,ε

Ip

))⊔(⊔
ζ∈bT

Iζ

)⊔
Ie ,(10.4)

where each Pζ,ε is an infinite index set, and the subsets I∗ are all infinite.
Corresponding to this partition, we define a subgroup

H =
(∏

(ζ,ε)∈bT×{ 0,1 }

(∏′
p∈Pζ,ε

Hp

))
×
(∏

ζ∈bT Hζ

)
×He ,(10.5)

with Hp = SIp
(T ), Hζ = DIζ

(T ), He = { e }.

Here e is the identity element of G, and we consider He as a trivial subgroup
of SIe

(T ). We call this kind of subgroups of degenerate wreath product type.
For a representation π of H to be induced up to G, we take

π =
(
⊗(ζ,ε)∈bT×{ 0,1 }

(
⊗bζ,ε

p∈Pζ,ε
πp

))
⊗
(
⊗ζ∈bT πζ

)
⊗ 1He

.(10.6)

Here bζ,ε = (bp)p∈Pζ,ε
is a reference vector with bp ∈ V (πp), ‖bp‖ = 1 (p ∈ Pζ,ε),

and for p ∈ Pζ,ε, πp for Hp = SIp
(T ) is given as

πp

(
(d, σ)

)
=

(
⊗ap

i∈Ip
ζi(ti)

)
I(σ) sgnS(σ)ε

for d = (ti)i∈Ip
∈ DIp

(T ), σ ∈ SIp
,

(10.7)

where ap = (ai)i∈Ip
is a reference vector with ai ∈ V (ζi), ‖ai‖ = 1, and ζi = ζ

as a representation of Ti = T (i ∈ Ip), and I(σ) as in (10.3); and for ζ ∈ T̂ , πζ

for Hζ = DIζ
(T ) is given as

πζ(d) = ⊗aζ

i∈Iζ
ζi(ti) for d = (ti)i∈Iζ

∈ Hζ ,(10.8)

where aζ = (ai)i∈Iζ
is a reference vector with ai ∈ V (ζi), ‖ai‖ = 1, and ζi = ζ

as a representation of Ti = T (i ∈ Iζ).

11. Increasing sequences of subgroups GN ↗ G = S∞(T ).

Depending on the choice of increasing series GN ↗ G of subgroups, we get
various positive definite class functions of G as limits of centralizations FGN

for F = IndG
Hfπ , which turn out to be characters. We choose a series GN as

GN = SJN
(T ), JN ↗ N , and demand an asymptotic condition as

|Ip ∩ JN |
|JN | → λp (p ∈ P ),

|Iζ ∩ JN |
|JN | → µζ (ζ ∈ T̂ ),(11.1)
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where P := �(ζ,ε)∈bT×{ 0,1 }Pζ,ε is the union of index sets. Note that even in
this case, limN→∞ |Ie ∩ JN |/|JN | may not exist. Anyhow we have∑

p∈P λp +
∑

ζ∈bT µζ ≤ 1 .(11.2)

For each (ζ, ε) ∈ T̂×{ 0, 1 }, let reorder the numbers {λp ; p ∈ Pζ,ε } in the
decreasing order and put it as αζ,ε := (αζ,ε,i)i∈N , and also put µ := (µζ)ζ∈bT .
Then, ∑

(ζ,ε)∈bT×{0,1}

‖αζ,ε‖ + ‖µ‖ ≤ 1 ,

which is nothing but the condition (3.6). As a pointwise limit of the series of
centralizations FGN , we obtain the character fA with

A =
(
(αζ,ε)(ζ,ε)∈bT×{ 0,1 } ; µ

)
in Theorem 2. The calculation will be given later in §§13–14, and it is also
explained in detail in [Hi3]–[Hi4] in the case of S∞.

Finally we remark that, to obtain all the characters of G, it is actually
sufficient for us to use only one set of H and π above, and this means that the
induced representation ρ = IndG

Hπ contains weakly all the factor representations
of finite type of G.

Example 11.1. Non-existence of limN→∞ |JN ∩ Ie|/|JN | happens due
to |P | = ∞. Let us give an example. Let the index set P be equal to N .
We define JN as a disjoint union of J ′

N ⊂ ∪n∈NIn and J
′′
N ⊂ Ie (we put Iζ ’s

aside, for simplicity). Choose J ′
N in such a way that

∣∣J ′
N ∩ In

∣∣ = N − n (n <
N) ;

∣∣J ′
N ∩ In

∣∣ = 0 (n ≥ N). Then, |J ′
N | = N(N − 1)/2 and so

0 ≤ λn = lim
N→∞

|JN ∩ In|
|JN | ≤ lim

N→∞

|J ′
N ∩ In|
|J ′

N | = 0 (∀n ).

To define J
′′
N , we determine N1 < N2 < · · · inductively as follows. Put

N1 = 1 and J
′′
1 = ∅, and for Nk < N < Nk+1, put J

′′
N = J

′′
Nk

. Here Nk+1 is
the first integer N > Nk for which eN := |JN ∩ Ie|/|JN | = |J ′′

Nk
|/(|J ′

N |+ |J ′′
Nk

|)
becomes smaller than 1/10k+1. Then put J

′′
Nk+1

= J
′′
Nk

� J ′′′
k , where J

′′′
k ⊂ Ie

is so taken as

ak+1 :=
|JNk+1 ∩ Ie|
|JNk+1 |

=
|J ′′

Nk
| + |J ′′′

k |
|J ′

Nk+1
| + |J ′′

Nk
| + |J ′′′

k | ≥ 1
2
.

Since eN for Nk < N < Nk+1 decreases from ak to ≤ 1/10k+1, we have
limN→∞eN = limk→∞ak ≥ 1/2, and limN→∞eN = 0.
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12. Limits of trace characters of representations of Sn(T )

In certain cases, we can calculate characters of G = S∞(T ) as limits of
trace characters of representations of Gn = Sn(T ) as n → ∞. This result will
be applied later.

First we take IURs of a degenerate form. Take a ζ ∈ T̂ , and put I = N .
Define tensor product representation of DI(T ) as

⊗a
i∈Iζi with ζi = ζ for Ti = T (i ∈ I = N)

with respect to a reference vector a = (ai)i∈I , ai ∈ V (ζi), ‖ai‖ = 1, for which
the representation space is V = ⊗a

i∈IV (ζi). For σ ∈ S∞, put

I(σ)
(
⊗a

i∈I vi

)
:= ⊗a

i∈Ivσ−1(i) with vi ∈ V (ζi), vi = ai (i� 1).

Then, for (ζ, ε) ∈ T̂ × { 0, 1 }, we get an IUR ρ of G: for g = (d, σ) ∈ G, d =
(ti)i∈I ,

ρ(g) = ρ
(
(d, σ)

)
:=

(
⊗a

i∈I ζi(ti)
)
I(σ) sgn(σ)ε.(12.1)

Now for In = { 1, 2, . . . , n }, we take a similar representation ρn of Gn.
This is given on the space Vn := ⊗i∈In

V (ζi) and, for g = (d, σ) ∈ Gn =
Sn(T ) = DIn

(T ) � Sn,

ρn(g) = ρn

(
(d, σ)

)
=
(
⊗i∈In

ζi(ti)
)
I(σ) sgn(σ)ε.(12.2)

Then, we may consider as Vn ↗ V , and then ρn ↗ ρ acccording to Gn ↗
G.

Take a g ∈ G. Then, starting from a certain n, g belongs to Gn, and so we
can consider the limit of trace characters as limn→∞ trace

(
ρn(g)

)
. As a result,

it is better to consider the normalized one as trace
(
ρn(g)

)
/ dim ρn.

Theorem 9. Let ρn be an IUR of Gn = Sn(T ) constructed from (ζ, ε)
∈ T̂ ×{ 0, 1 } as above. Then, there exists a pointwise limit Fζ,ε on G = S∞(T )
given as follows. For g = (d, σ) ∈ G, let

g = ξq1ξq2 · · · ξqr
g1g2 · · · gm, ξq =

(
tq, (q)

)
, gj = (dj , σj),

be a standard decomposition, i.e., a decomposition into mutually disjoint basic
elements. Then,

Fζ,ε(g) := lim
n→∞

trace
(
ρn(g)

)
dim ρn

=
∏

1≤k≤r

χζ(tqk
)

dim ζ
×

∏
1≤j≤m

χζ

(
Pσj

(dj)
)

(dim ζ)�(σj)
sgn(σj)ε,

(12.3)

where, for σj = (i1 i2 . . . i�j
) with 
j = 
(σj), and dj = (ti)i∈Kj

with
Kj := supp(σj),

Pσj
(dj) :=

[
t′�j
t′�j−1 · · · t′2t′1

]
∈ T/∼ with t′k = tik

.
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Proof. Since ζ is unitary, we have an orthonormal basis { e1, e2, . . . , em }
with m = dim ζ of the representation space V (ζ). Then, a basis of Vn is given
by {

eM ; M = (j1, j2, . . . , jn), j1, j2, . . . , jn ∈ Im

}
with eM = ej1 ⊗ ej2 ⊗ · · · ⊗ ejn

.

Take a basic element g′ = (d′, σ′) ∈ Sn(T ) = DIn
(T ) � Sn with a cycle

σ′ = (1 2 . . . n) and d′ = (ti)i∈In
. On the space Vn, it operates as

ρn(g′) = ρn((d′, σ′)) =
(
⊗i∈In

ζi(ti)
)
I(σ′) sgn(σ′)ε.

Let us calculate the trace of ρn(g′). Recall that I(τ )eM = eτM with τM :=
(jτ−1(1), jτ−1(2), . . . , jτ−1(n)). Let the matrix elements of ζ(t) with respect to
the basis { ej ; 1 ≤ j ≤ m } be ζjk(t), that is, ζ(t)ek =

∑
1≤j≤m ζjk(t)ej . Then,

taking into account of σ−1(i) = i−1 (1 ≤ i ≤ n, 0 ≡ n), we get for g′ = (d′, σ′),

trace
(
ρn(g′)

)
=
∑
M

〈ρn(g′)eM , eM 〉

= sgn(σ′)ε
∑

1≤j1≤m

∑
1≤j2≤m

· · ·
∑

1≤jn≤m

∏
i∈In

〈ζ(ti)ejσ−1(i)
, eji

〉

= sgn(σ′)ε
∑

1≤j1≤m

∑
1≤j2≤m

· · ·
∑

1≤jn≤m

ζj1,jn
(t1) ζj2,j1(t2) · · · ζjn,jn−1(tn)

= sgn(σ′)ε trace
(
ζ(tntn−1 · · · t2t1)

)
= sgn(σ′)ε χζ

(
Pσ′(d′)

)
.

The calculation is similar for other choice of cycle σ′, and the proof is now
complete.

Note 12.1. (i) The positive definite class function Fζ,ε is a special case
of fA in (3.8) in Theorem 2, for which αζ,ε = (1, 0, 0, . . .) and other parameters
αζ′,ε′ and µζ′ are all zero.

(ii) For ζ = 1T ∈ T̂ , the trivial representation of T , we have F1T ,ε(g) =
sgn(σ)ε for g = (d, σ) ∈ G, and for any ζ ∈ T̂ , Fζ,ε(g) = Fζ,0(g)F1T ,ε(g) (g ∈
G).

13. Partial centralization with respect to DJN
(T )

As an increasing sequence GN ↗ G = S∞(T ) of subgroups, we have
chosen GN = SJN

(T ) = DJN
(T ) � SJN

with JN ↗ N . Put DN = DJN
(T )

and SN = SJN
for simplicity, then GN = DN � SN , and we identify d′ ∈ DN

and σ′ ∈ SN with their images in GN respectively. Our task is to calculate
centralizations FGN of a positive definite matrix element F = IndG

Hfπ of ρ =
IndG

Hπ, and to determine their limits. From the formula (9.5) for FGN and the
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explicit form of the subgroup H in (10.5), we see that for h ∈ H,

FGN (h) =
1

|GN |
∑

g′∈GN : g′hg′−1∈H

fπ(g′hg′−1)

=
1

|SN |
∑

σ′∈SN : σ′hσ′−1∈H

f̃π(σ′hσ′−1),
(13.1)

where f̃π is a partial centralization of fπ with respect to DN
∼= T JN defined as

f̃π(h′) =
∫

DN

fπ(d′h′d′−1) dµDN
(d′) (h′ ∈ H),(13.2)

with the normalized Haar measure dµDN
on DN . (Hereafter we apply the

notations in the case of compact groups by using the integration instead of the
summation.)

Note that for a finite number of h′ ∈ H, the partial centralization f̃π(h′)
is stable as N is sufficiently large. To calculate it, we apply the explicit form of
representation π of H given in (10.6)–(10.7). Then we see that it is essentially
enough to treat two cases of basic elements:

(i) h′ = ξq = (tq, (q)) with tq ∈ T ∗, and
(ii) h′ = (d′, σ′) with σ′ a cycle and supp(d′) ⊂ supp(σ′).
For this, we prepare two lemmas, one for a compact group T , and the other

for a wreath product group Sn(T ) of a compact group T with the symmetric
group Sn.

Lemma 13.1. Let T be a compact group and ζ ∈ T̂ . Take v, w ∈ V (ζ),
then ∫

T

〈ζ(sts−1)v, w〉 dµT (s) =
χζ(t)
dim ζ

〈v, w〉,(13.3)

where dµT denotes the normalized Haar measure on T .

Put K = { 1, 2, . . . , 
 }, and let σ = (1 2 . . . 
) be a cycle with supp(σ) =
K and g = (d, σ) a basic element in SK(T ) with d = (ti)i∈K . Then, for
d′ = (si)i∈K ∈ DK(T ), we have

d′gd′
−1 = (d′′, σ)

with d′′ = d′d · σ(d′−1) = (sitis
−1

i−1 )i∈K (0 ≡ 
).
(13.4)

On the other hand, for a decomposable vector v = ⊗i∈Kvi ∈ V
(
⊗i∈K ζi

)
with vi ∈ V (ζi), ζi = ζ, the subrepresentation Π of πp for SK(T ) ⊂ SIp

(T ) is
given as

Π(g)v =
⊗

i∈K

(
ζ(ti)vσ−1(i)

)
=
⊗

i∈K

(
ζ(ti)vi−1

)
.

Therefore the partial centralization with respect to DK(T ) is given as
follows.



�

�

�

�

�

�

�

�

574 Takeshi Hirai and Etsuko Hirai

Lemma 13.2. Let ⊗i∈Kζi be a tensor product representation of DK(T )
∼= TK of ζi = ζ of Ti = T (i ∈ K), and take decomposable vectors v = ⊗i∈Kvi

and w = ⊗i∈Kwi from V
(
⊗i∈K ζi

)
with vi, wi ∈ V (ζi). Then, as an integration

with respect to the normalized Haar measure dµDK(T )(s) =
∏

i∈K dµT (si), s =
(si)i∈K ∈ TK ∼= DK(T ), we have∫

DN (T )

〈Π(sgs−1)v, w〉 dµDK(T )(s)

=
∫

DK(T )

〈
⊗i∈K

(
ζ(sitis

−1
i−1

)
vi−1

)
,⊗i∈Kwi

〉
dµDK(T )(s)

=
∫

T

· · ·
∫

T

〈ζ(s1t1s −1
� )v�, w1〉〈ζ(s2t2s −1

1 )v1, w2〉 · · · 〈ζ(s�t�s
−1

�−1 )v�−1, w�〉

dµT (s1) dµT (s2) · · · dµT (s�)

=
χζ(t�t�−1 · · · t2t1)

(dim ζ)�

∏
i∈K

〈vi, wi〉 =
χζ

(
Pσ(d)

)
(dim ζ)�

∏
i∈K

〈vi, wi〉.

For a proof, see Lemma A.5 in Appendix.
Take v = ⊗i∈Kvi with unit vectors vi ∈ V (ζi), and put w = v in Lemma

13.2, then we get χζ

(
Pσ(d)

)
/(dim ζ)� as the result of partial centralization

above.

Let H be a subgroup of G given by (10.4)–(10.5), and π its unitary
representation given in (10.6)–(10.8). For a unit vector v ∈ V (π), we put
fπ(h) = 〈π(h)v, v〉 (h ∈ H). Since we are now concerned with centralizations
with respect to finite subgroups GN , the role of reference vectors is not im-
portant, and we may take v as a tensor product of unit vectors from V (ζi) for
i ∈ Ip, p ∈ Pζ,ε , for every (ζ, ε), and similarly for Iζ ’s. Then, by Lemmas 13.1
and 13.2, we get the following result.

Proposition 10. Take a g = (d, σ) from H and let

g = ξq1ξq2 · · · ξqr
g1g2 · · · gm, ξq =

(
tq, (q)

)
, gj = (dj , σj),

be a standard decomposition. Then, the partial centralization f̃π(g) of matrix
element fπ is given as follows. Let K(ζ) be the set of k, 1 ≤ k ≤ r, such
that ξqk

∈ Hp with p ∈ �ε∈{0,1}Pζ,ε or ξqk
∈ Hζ , and J(ζ, ε) be the set of

j, 1 ≤ j ≤ m, such that gj = (dj , σj) ∈ Hp with p ∈ Pζ,ε. Then,

f̃π(g) =

=

∏
ζ∈bT

∏
k∈K(ζ)

χζ(tqk
)

dim ζ

 ∏
(ζ,ε)∈bT×{0,1}

∏
j∈J(ζ,ε)

χζ

(
Pσj

(dj)
)

(dim ζ)�(σj)
sgn(σj)ε

 ,

(13.5)

where, for σj = (i1 i2 . . . i�j
) with 
j = 
(σj) and dj = (ti)i∈Kj

with Kj :=
supp(σj),

Pσj
(dj) :=

[
t′�j
t′�j−1 · · · t′2t′1

]
∈ T/∼ with t′k = tik

.
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14. Limits of centralizations of positive definite functions

We are now on the way of calculating centralizations of FGN of a positive
definite matrix element F = IndG

Hfπ of ρ = IndG
Hπ with respect to GN =

DJN
(T ) � SJN

, and to determine their limits. Recall the formula (13.1) as

FGN (g) =
1

|SN |
∑

τ∈SN : τgτ−1∈H

f̃π(τgτ−1) (g ∈ H),(14.1)

where SN = SJN
, and the partial centralization f̃π with respect to DN =

DJN
(T ) is defined by (13.2) and is calculated in Proposition 10.

14.1. Limit of centralizations for a ‘ monomials ’ term
For any element in G, there exists an element in H conjugate to it. There-

fore it is enough for us to determine the value FGN on H. Take g = (d, σ) ∈ H
and let g = ξq1ξq2 · · · ξqr

g1g2 · · · gm, ξq =
(
tq, (q)

)
, gj = (dj , σj), be its stan-

dard decomposition. Put P =
⊔

(ζ,ε)∈bT×{ 0,1 } Pζ,ε, then,

H =
(∏′

p∈P Hp

)
×
(∏

ζ∈bT Hζ

)
×He,

and the condition g ∈ H means that each ξqk
belongs to one of Hp and Hζ ,

and that each gj belongs to one of Hp. Furthermore, the latter condition can
be expressed by means of supports as

supp(ξqk
) = { qk } ⊂ Ip or ⊂ Iζ

and Kj = supp(gj) = supp(σj) ⊂ Ip.
(14.2)

For p ∈ P , choose (ζ, ε) such that p ∈ Pζ,ε, and put for basic elements
ξq = (tq, (q)) and gj = (dj , σj) in Hp,

χp(ξq) =
χζ(tq)
dim ζ

for tq ∈ T ∗ ;

χp(gj) =
χζ

(
Pσj

(dj)
)

(dim ζ)�(σj)
sgn(σj)ε.

(14.3)

Then the formula (13.5) for f̃π(g) is rewritten as

f̃π(g) =

=
∏
ζ∈bT

 ∏
k : qk∈Iζ

χζ(tqk
)

dim ζ

×
∏
p∈P

 ∏
k : qk∈Ip

χp(ξqk
) ×

∏
j : Kj⊂Ip

χp(gj)

 ,

(14.4)

where 1 ≤ k ≤ r, 1 ≤ j ≤ m. The term corresponding to ζ in the first product
comes from ξqk

∈ Hζ , and the term corresponding to p ∈ P in the second
product comes from ξqk

∈ Hp and gj ∈ Hp.
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Let Q(g, Iζ) be the union of supports { qk } = supp(ξqk
) ⊂ Iζ , and

QK(g, Ip) be the union of supports { qk } ⊂ Ip and Kj = supp(gj) ⊂ Ip.
Since g ∈ H, they give a partition of supp(g). Let their orders be n(ζ) and
n(p) respectively, then(∑

ζ∈bT Q(g, Iζ)
)⊔(∑

p∈P QK(g, Ip)
)

= supp(g),∑
ζ∈bT n(ζ) +

∑
p∈P n(p) = |supp(g)|.

(14.5)

Now, for τ ∈ S∞, put τg = τgτ−1, τξq = τξqτ
−1, and τgj = τgjτ

−1.
Then, the standard decomposition of τg into mutually disjoint basic elements
is given as

τg = τξq1
τξq2 · · · τξqr

τg1
τg2 · · · τgm,

τξq =
(
tq, (τ (q))

)
, τgj = (τ (dj), τσjτ

−1).

For ξq, we have χp(τξq) = χp(ξq) if τξq is still in Hp, or equivalently
if τ (q) ∈ Ip. For dj = (ti)i∈Kj

, recall that τ (dj) = (tτ−1(i′))i′∈τ(Kj), and
Pτσjτ−1(τ (dj)) = Pσj

(dj) and so χp(τgj) = χp(gj) if τgj is still in Hp, or
equivalently if τ (Kj) ⊂ Ip.

Let us now consider a partial sum of (14.1), where τ ∈ SN = SJN
runs

over all such elements that it preserves Qζ := Q(g, Iζ) and QKp := QK(g, Ip)
inside of Iζ and Ip respectively.

Suppose that N is sufficiently large so that g is contained in H ∩GN , then
this condition on τ ∈ SN is written as

τ (Qζ) ⊂ Iζ ∩ JN , τ (QKp) ⊂ Ip ∩ JN .(14.6)

Put Q := {Qζ (ζ ∈ T̂ ), QKp (p ∈ P ) }, and denote by T (Q, N) the set of
τ ∈ SN = SJN

satisfying the condition (14.6). Then, for τ ∈ T (Q, N), we see
from the above consideration that f̃π(τg) = f̃π(g). Therefore the partial sum
over τ ∈ T (Q, N) is calculated as

1
|SN |

∑
τ∈T (Q,N)

f̃π(τg) =
|T (Q, N)|

|JN |! f̃π(g).(14.7)

Let us calculate the order |T (Q, N)|. For n(ζ) numbers of i ∈ Qζ , τ (i)’s
can be freely chosen inside of Iζ ∩JN . Therefore the number of possible choices
is

N(ζ) := |Iζ ∩ JN |
(
|Iζ ∩ JN | − 1

)(
|Iζ ∩ JN | − 2

)
· · ·

(
|Iζ ∩ JN | − n(ζ) + 1

)
.

Similarly, the number of possible choices of τ (i), i ∈ QKp, inside of Ip ∩ JN is
equal to

N(p) := |Ip ∩ JN |
(
|Ip ∩ JN | − 1

)(
|Ip ∩ JN | − 2

)
· · ·

(
|Ip ∩ JN | − n(p) + 1

)
.

Recall that the union ofQζ ’s and QKp’s is supp(g). After choosing τ (i), i ∈
supp(g), we can choose τ (i) for i ∈ JN \ supp(g) freely from JN \ τ (supp(g)).
Hence the number of possible choices is |JN \ supp(g)|!.
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Thus we can evaluate, under the asymptotic condition (11.1),

|T (Q, N)|
|JN |! =

1
|JN |!

∏
ζ∈bT

N(ζ) ×
∏
p∈P

N(p) × |JN \ supp(g)|!

=
∏
ζ∈bT

N(ζ)
|JN |n(ζ)

×
∏
p∈P

N(p)
|JN |n(p)

× |JN ||supp(g)|

|JN |
(
|JN | − 1

)
· · ·

(
|JN | − |supp(g)| + 1

)
−→

∏
ζ∈bT

µ
n(ζ)
ζ ×

∏
p∈P

λ n(p)
p .

(14.8)

Applying the formulas (14.7) and (14.4), we obtain

lim
N→∞

1
|SN |

∑
τ∈T (Q,N)

f̃π(τg) = lim
N→∞

|T (Q, N)|
|JN |! f̃π(g)

=
∏
ζ∈bT

 ∏
k : qk∈Iζ

µζ

dim ζ
χζ(tqk

)


×

∏
p∈P

 ∏
k : qk∈Ip

λpχp(ξqk
)

∏
j : Kj⊂Ip

λ �(σj)
p χp(gj)

 ,

where for p ∈ Pζ,ε, (ζ, ε) ∈ T̂ × {0, 1},

λpχp(ξqk
) =

λp

dim ζ
χζ(tqk

),

λ �(σj)
p χp(gj) =

(
λp

dim ζ

)�(σj)

χζ

(
Pσj

(dj)
)
sgn(σj)ε.

The above calculation for a partial sum over τ ∈ T (Q, N) ⊂ SJN
can be

applied to other partial sums. These partial sums come from possible cases of
τg corresponding to which of Iζ or Ip contains supp(τξqk

) = τ (qk), and which
of Ip contains supp(τgj) = τ (Kj). All these cases give us limits of partial
centralizations similarly as above, and they correspond altogether exactly to
all the ‘ monomial ’ terms of the expansion of the right hand side of (3.8) in
Theorem 2 into ‘ monomials ’ as explained below.

14.2. Summing up all ‘ monomial ’ terms to the whole formula
Put newly Pζ,ε = {(ζ, ε, i); i ∈ N} for (ζ, ε) ∈ T̂ × {0, 1}, and P =

�(ζ,ε)∈bT×{0,1}Pζ,ε. For p ∈ P , put Xp(ξq) for ξq = (tq, (q)) and Xp(gj) for
gj = (dj , σj) as in (14.3), then

(14.9) |Xζ(ξq)| ≤ 1 , |Xp(ξq)| ≤ 1 , |Xp(gj)| ≤
1

(dim ζ)�(σj)−1
≤ 1.
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Let further {λp; p ∈ Pζ,ε} be a reordering of {αζ,ε,i; i ∈ N}. Then by (3.6) we
have ∑

ζ∈bT µζ +
∑

p∈P λp ≤ 1,(14.10)

and the formula (3.8) of fA(g) is rewritten as

fA(g) =

=
∏

1≤k≤r

∑
p∈P

λpXp(ξqk
) +

∑
ζ∈bT

µζ Xζ(ξqk
)

 ·
∏

1≤j≤m

∑
p∈P

λ �(σj)
p Xp(gj)

 .

(14.11)

Note that by (14.9) each multiplicative factor in (14.11) is evaluated in its
absolute value as ≤ 1.

Let Pm be the set of all partitions δ = {Jp (p ∈ P )} indexed by P of the
set of indices j ∈ Im = {1, 2, . . . ,m} of gj ’s, and Qr be the set of all partitions
γ = {Kζ (ζ ∈ T̂ ),Kp (p ∈ P )} be the set of partitions indexed by T̂ � P of the
set of indices k ∈ Ir of ξqk

’s. Put γ · δ := {Kζ (ζ ∈ T̂ ), Kp, Jp (p ∈ P ) },
and let KJ be the set of all these γ · δ. Then the expansion of fA(g) of the
right hand side of (14.11) into monomial terms are parametrized by the set
γ · δ ∈ KJ as

fA(g) =
∑

γ·δ∈KJ
Ξγ·δ(g),

Ξγ·δ(g) =
∏
ζ∈bT

∏
k∈Kζ

µζ Xζ(ξqk
)

×
∏
p∈P

 ∏
k∈Kp

λpXp(ξqk
) ·

∏
j∈Jp

λpXp(gj)


=

∏
ζ∈bT

∏
k∈Kζ

Xζ(ξqk
) ·

∏
p∈P

 ∏
k∈Kp

Xp(ξqk
)
∏

j∈Jp

Xp(gj)


×

∏
k∈Kζ

µ
n(ζ)
ζ ·

∏
p∈P

λn(p)
p ,

(14.12)

where the product over p ∈ P are actually finite, and

n(ζ) = |Kζ |, n(p) = |Kp| +
∑

j∈Jp

(σj) = |Kp| +

∑
j∈Jp

|supp(gj)|.

Now we come back to the centralization FGN in 14.1. Take γ · δ =
{Kζ (ζ ∈ T̂ ), Kp, Jp (p ∈ P ) }, and put

Y N
γ·δ(g) :=

1
|SN |

∑
τ∈T (γ·δ)

f̃π(τg) with

T (γ · δ):={τ ∈ SN ; τξqk
∈ Hζ (k ∈ Kζ), τξqk

∈ Hp (k ∈ Kp), τgj ∈ Hp (j ∈ Jp)}.
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Then, by a similar calculation as in 14.1, we have

FGN (g) =
∑

γ·δ∈KJ
Y N

γ·δ(g),(14.13)

Y N
γ·δ(g) =

∏
ζ∈bT

∏
k∈Kζ

Xζ(ξqk
) ·

∏
p∈P

 ∏
k∈Kp

Xp(ξqk
)
∏

j∈Jp

Xp(gj)

×
CN

γ·δ
|JN |! ,

where CN
γ·δ := |T (γ ·δ)|. Note that T (γ ·δ) is defined by the following condition

on τ ∈ SN :

τqk ∈ Iζ ∩ JN (k ∈ Kζ), τqk ∈ Ip ∩ JN (k ∈ Kp),
τ (supp(gj)) ⊂ Ip ∩ JN (j ∈ Jp).

Then, similarly as in 14.1, the order CN
γ·δ = |T (γ · δ)| can be calculated as in

(14.8) and so

CN
γ·δ

|JN |! −→
∏
ζ∈bT

λ
n(ζ)
ζ ×

∏
p∈P

λ n(p)
p .(14.14)

We note that, for Q = {Qζ (ζ ∈ T̂ ), QKp (p ∈ P ) } in 14.1, there corre-
sponds a γ · δ = {Kζ (ζ ∈ T̂ ), Kp, Jp (p ∈ P ) } given by

Kζ = {k ∈ Ir ; ξqk
∈ Hζ},

Kp = {k ∈ Ir ; ξqk
∈ Hp}, Jp = {j ∈ Im ; gj ∈ Hp}.

Now we can prove the following proposition, a half of Theorem 2.

Proposition 11. Let T be a finite group. Let fA be the class function
on G = S∞(T ) given by the formula (3.8) in Theorem 2, with parameter in
(3.7):

A :=
(
(αζ,ε)(ζ,ε)∈bT×{ 0,1 } ; µ

)
.

(i) If the parameter A satisfies the conditions (3.5)–(3.6), then fA is ob-
tained as a pointwise limit of centralizations of a positive definite function
F = IndG

Hfπ with (H,π) given above. The limit is taken according to an
appropriate increasing sequence of subgroups GN = SJN

(T ) with JN ↗ N
obeying the asymptotic condition (11.1). Moreover if the equality holds in (3.6)
or

∑
(ζ,ε)∈bT×{0,1} ‖αζ,ε‖ + ‖µ‖ = 1, then the limit is obtained according to any

such increasing sequence.
(ii) All the class functions fA thus obtained are positive definite under the

conditions (3.5)–(3.6).

Proof. Note that the equality in (3.6) is nothing but the equality in
(14.10). Under this equality condition we evaluate |fA(g) − FGN (g)| as fol-
lows. The case where the inequality holds in (3.6) or in (14.10) can be treated
after these discussions in the equality case.
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(1) Let εn ↘ 0 (n → ∞) be a decreasing sequence of positive numbers.
Let Pn ⊂ P be a finite subset such that∑

ζ∈bT µζ +
∑

p∈Pn
λp > 1 − εn.(14.15)

Put λζ,N =
|Iζ ∩ JN |

|JN | , λp,N =
|Ip ∩ JN |

|JN | , then
∑

ζ∈bT µζ,N +
∑

p∈P λp,N =

1. Since µζ,N → λζ , λp,N → λp (N → ∞) by assumption, we can take Nn

sufficiently large so that for any N ≥ Nn∑
ζ∈bT |µζ − µζ,N | +

∑
p∈Pn

|λp − λp,N | < εn.(14.16)

Then we have ∑
p
∈Pn

λp < εn,
∑

p
∈Pn
λp,N < 2εn.(14.17)

(2) Let KJ n be the set of γ · δ = {Kζ (ζ ∈ T̂ ), Kp, Jp (p ∈ P ) } such
that Kp = Jp = ∅ for p 	∈ Pn. Then KJ n is finite. In the formula (14.12) of
fA(g), we divide the sum over γ · δ ∈ KJ of Ξγ·δ(g) into two cases depending
on γ · δ belongs to KJ n or not as

fA(g) = fn
A(g) + f n

A (g),(14.18)

fn
A(g) :=

∑
γ·δ∈KJ n

Ξγ·δ(g), f n
A (g) :=

∑
γ·δ/∈KJ n

Ξγ·δ(g).

Similarly, in the formula (14.13) of FGN (g), we divide the sum over γ · δ ∈ KJ
of Y N

γ·δ(g) into two cases according as γ · δ ∈ KJ n or γ · δ /∈ KJ n as above, and
express FGN as

FGN (g) = FGN ,n(g) + FGN ,n(g),(14.19)

Then we have

|fA(g) − FGN (g)| ≤ |fn
A(g) − FGN ,n(g)| + |f n

A (g)| + |FGN ,n(g)|.

(3) We denote by R1,N , R2,N and R3,N the first, the second and the third
term in the right hand side respectively. Then R1,N is a finite sum of the
terms Ξγ·δ(g)−Y N

γ·δ(g) each of which tends to 0 as N → ∞. So we can choose
N ′

n ≥ Nn such that, for any N ≥ N ′
n, we have R1,N < εn.

For the second term R2,N , using the evaluation (14.9) and the note just
after (14.11), we get

R2,N ≤
∑

1≤k≤r

( ∑
p/∈Pn

λp

)
+

∑
1≤j≤m

( ∑
p/∈Pn

λ �(σj)
p

)
< (r +m)εn.

For the third term R3,N , first evaluate each |Y N
γ·δ(g)| as

|Y N
γ·δ(g)| ≤ CN

γ·δ/|JN |! ≤ C ·
∏

ζ∈bT λ
n(ζ)

ζ,N ·
∏

p∈P λ
n(p)

p,N ,
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where C is a constant, for example, we can take C = 2|supp(g)| ifN ≥ 2|supp(g)|.
Then, a similar evaluation as that for R2,N (using λζ,N , λp,N instead of λζ , λp

respectively) gives us R3,N < C (r +m) · 2εn.
Thus altogether we get for any N ≥ N ′

n,

|fA(g) − FGN (g)| < {1 + (r +m) + 2C(r +m)} εn.

15. Criterion for extremal positive definite class functions

In this section, we give a criterion for extremality as follows (cf. [Tho2,
Satz 1]). This is the first ingredient of the second part of the proof of Theorem
2.

Theorem 12. Let T be a finite group, and f a positive definite class
function on G = S∞(T ) normalized as f(e) = 1. Then f is extremal if and
only if it has one of the following properties which are mutually equivalent:

(FTP) [ Factorizability Property ] For any g = (d, σ) ∈ G, let

g = ξq1ξq2 · · · ξqr
g1g2 · · · gm, ξq =

(
tq, (q)

)
, gj = (dj , σj),

be a standard decomposition. Then,

f(g) =
∏

1≤k≤r f(ξqk
) ×

∏
1≤j≤m f(gj).(15.1)

(FTP′) For any two elements g, g′ ∈ G with disjoint supports, f(gg′) =
f(g)f(g′).

Let us rewrite these conditions in another form. As is proved in Theorem
1, conjugacy classes of basic elements in G is given by the set Ω of the following
objects ω:

ω = ([t], 
 = 1) with [t] ∈ T ∗/∼ ,

and ω = ([t], 
 ) ∈ (T/∼) × { 
 ≥ 2 },
(15.2)

and the conjugacy class of g ∈ G \ { e } with the above standard decomposition
is determined by the collection of

([tqk
], 
 = 1) (1 ≤ k ≤ r)

and (Pσj
(dj), 
(σj) ) (1 ≤ j ≤ m).

(15.3)

Denote by nω(g) the multiplicity of ω ∈ Ω for g = ξq1ξq2 · · · ξqr
g1g2 · · · gm.

Put Z≥0 := {n ∈ Z ; n ≥ 0 } and denote by (Z≥0)(Ω) the set of all n =
(nω)ω∈Ω, nω ∈ Z≥0, with nω = 0 for almost all ω. Then, n(g) := (nω(g))ω∈Ω

is an element of (Z≥0)(Ω), and the correspondence

Φ : G/∼ 
 [g] �−→ n(g) ∈ (Z≥0)(Ω)
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gives a bijective map from the set of all conjugacy classes [g] of g ∈ G, g 	= e,
onto (Z≥0)(Ω).

For ω = ([t], 
) ∈ Ω, put ω−1 := ([t−1], 
). Then, if ω is the conjugacy
class of ξq = (tq, (q)) or of gj = (dj , σj), then ω−1 is that of ξ −1

q or of g −1
j

respectively. Hence, nω(g−1) = nω−1(g), and the transformation [g] �→ [g−1]
in the set G/∼ of conjugacy classes of elements in G induces an involutive
transformation ι on (Z≥0)(Ω) given as

ι : (Z≥0)(Ω) 
 n = (nω)ω∈Ω �−→ n′ = (n′
ω)ω∈Ω with n′

ω = nω−1 (ω ∈ Ω).

For a positive definite class function f on G, put s(f) = (sω)ω∈Ω with
sω = f(gω), where gω denotes a basic element in the class ω. Then, since ω−1

is represented by g −1
ω , and since f(g−1) := f(g), g ∈ G, we have

sω−1 = sω (complex conjugate).(15.4)

Define a positive definite class function f by f(g) = f(g) (g ∈ G), then
s(f) = s(f). Here, for s = (sω)ω∈Ω, we put s := (sω)ω∈Ω with sω = sω for
ω ∈ Ωre := {ω ∈ Ω ; ω−1 = ω }.

Put Ωc := {ω ∈ Ω ; ω−1 	= ω }, then Ω = Ωre � Ωc. Let Iω := [−1, 1] ⊂ R
for ω ∈ Ωre, and Dω := { z ∈ C ; |z| ≤ 1 } ⊂ C for ω ∈ Ωc, and put
S := Sre × Sc with

(15.5) Sre :=
∏

ω∈Ωre

Iω , Sc :=

{
(zω)ω∈Ωc

∈
∏

ω∈Ωc

Dω ; zω−1 = zω (∀ω)

}
.

Every s = (sω)ω∈Ω ∈ S defines a function Ψs on (Z≥0)(Ω) ∼= G/∼ by

Ψs : (Z≥0)(Ω) 
 n = (nω)ω∈Ω �−→
∏
ω∈Ω

s nω
ω ∈ K,

where K = R or C according as Ωc = ∅ or 	= ∅. Then we get a class function
fs := Ψs ◦ Φ on G satisfying fs(g−1) = fs(g).

Now the condition (FTP) above is rewritten in these notations as follows:

(FTP′′) There exists an s = (sω)ω∈Ω in S = Sre×Sc such that f = fs, that
is, that for a g ∈ G with standard decomposition g = ξq1ξq2 · · · ξqr

g1g2 · · · gm,
let nω(g) be the multiplicity of ω ∈ Ω in these basic components, then

f(g) =
∏

ω∈Ω s
nω(g)

ω , where s 0
ω := 1.(15.6)

Proof of Theorem 12.
1. The proof of “ only if ” part is carried out similarly as for [Tho2, Satz

1] with several appropriate changes.

2. For the proof of “ if ” part, we utilize a kind of Stone-Weierstrass theo-
rem on the uniform convergence of continuous functions on a compact set. For
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any pair {ω, ω−1 } in Ωc, choose once for all a representative, say ω, from the
pair, and denote by Ω′

c the set of all such representatives. Put

S′ := Sre × S′
c with S′

c :=
∏

ω∈Ω′
c
Dω, and Ω′ = Ωre � Ω′

c ,

then S′ is isomorphic to S = Sre × Sc as a compact space through an isomor-
phism Γ : S 
 s = (sω)ω∈Ω �→ s′ = (sω)ω∈Ω′ ∈ S′. Let C(S′) be the space of
all K-valued continuous functions F on the compact set S′ = Sre × S′

c.
For an element n = (nω)ω∈Ω ∈ (Z≥0)(Ω), consider Ψs(n) =

∏
ω∈Ω s nω

ω as
a function of s′ = (sω)ω∈Ω′ ∈ S′, we have a monomial function

Pn(s′) =
∏

ω∈Ωre

s nω
ω ×

∏
ω∈Ω′

c

(s nω
ω sω

nω−1 ) .

Lemma 15.1. The set P of the following monomial functions in s′ =
(sω)ω∈Ω′ ∈ S′

Pn(s′), n = (nω)ω∈Ω ∈ (Z≥0)(Ω),

is total in C(S′) with uniform convergence norm.

Let K1(G) be the set of all positive definite class functions f on G nor-
malized as f(e) = 1, and E(G) the set of all extremal points of the convex set
K1(G). With the pointwise convergence topology K1(G) is compact. Then,
we can apply here the Choquet-Bishop-de Leeuw representation theorem ([BL,
Theorem 5.6]) for the compact convex subset X := K1(G) in a real locally
convex linear space (spanned by K(G)) and the set Xe := E(G) of its extremal
points. Denote by B the σ-ring generated by Xe and the Baire subset of X.
Each f0 ∈ X has a representation of the form

f0 =
∫

X

f dµ(f)

with respect to a non-negative measure µ on B such that µ(X) = µ(Xe) = 1.
Let M ⊂ K1(G) be the subset consisting of factorizable f or of the form

fs = Ψs ◦Φ with s ∈ S, then it is closed and so compact. By the “ only if ” part
mentioned above, we have E(G) ⊂M . The above measure µ can be considered
as a measure on M such that µ(M) = µ(E(G)) = 1. We map M ⊂ K1(G) into
S by f �→ s through f = fs (put s = s(f)), then M is homeomorphic to its
image M̃ in S. Let Ẽ be the image of E(G).

Now take f0 = fs0 ∈ M and prove that f0 is extremal or f0 ∈ E(G).
Through the correspondence f �→ s(f), we discuss this in the space S. So, it
should be proved that s0 = s(f0) ∈ M̃ actually belongs to Ẽ. Corresponding
to the integral expression of f0 given above, we have, as functions on (Z≥0)(Ω),
s0 is expressed as an integral on M̃ with respect to a measure µ̃ for which
µ̃(M̃) = µ̃(Ẽ) = 1:

s0 =
∫

fM

s dµ̃(s) or Ψs0 =
∫

fM

Ψs dµ̃(s).
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Evaluate the latter integral at each point n = (nω)ω∈Ω ∈ (Z≥0)(Ω), and rewrite
it on S′ through the isomorphism Γ : S 
 s �→ s′ ∈ S′, and with a probability
measure µ̃′ := µ̃ ◦ Γ−1 on a compact subset Γ(M̃) of S′, supported by Γ(Ẽ),
we have

Pn((s0)′) =
∫

Γ(fM)

Pn(s′) dµ̃′(s′) for n = (nω)ω∈Ω ∈ (Z≥0)(Ω).

By Lemma 15.1, it follows from this that

F ((s0)′) =
∫

Γ(fM)

F (s′) dµ̃′(s′) for any F ∈ C(S′).

From this, we see that µ̃′ is supported by one point set { (s0)′ }. This means
that (s0)′ ∈ Γ(Ẽ) or s0 ∈ Ẽ and so f0 = fs0 ∈ E(G).

Thus the proof of the “ if ” part of Theorem 12 is now complete.

16. Final step of the proof of Theorem 2

By the “ only if ” part of the proof of Theorem 12, for each f ∈ E(G), there
corresponds an element s ∈ S such that f = fs = Ψs ◦ Φ. As the final step of
the proof of Theorem 2, we specify the parameter s = (sω)ω∈Ω and prove the
following.

Proposition 13. An extremal positive definite class function (or a
character) f on G = S∞(T ), normalized as f(e) = 1, is given in the form of fA

in the formula (3.8) in Theorem 2, with parameter A =
(
(αζ,ε)(ζ,ε)∈bT×{ 0,1 } ; µ

)
in (3.7) satisfying the condition (3.6).

Proof. By the “ only if ” part already proved, we should examine a positive
definite class function f of the form (15.6). We define a class function on T by
putting

X(t) =
{

1 for t = eT ,
s([t],1) for t ∈ T ∗,

where s([t],1) = sω for ω = ([t], 1) ∈ Ω. Then, since X is a class function on T ,
it is expressed as a linear combination of χζ , ζ ∈ T̂ , as

X(t) =
∑
ζ∈bT

bζ χζ(t) (t ∈ T )(16.1)

with bζ =
∫

T

X(t)χζ(t) dµT (t),
∑
ζ∈bT

(dim ζ) bζ = 1 .(16.2)

For 
 ≥ 2, we define also a class function Y�(t) on T by putting

Y�(t) = s([t],�) (t ∈ T ),
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where s([t],�) = sω for ω = ([t], 
) ∈ Ω. Then, similarly as for X, it is expressed
as

Y�(t) =
∑
ζ∈bT

aζ,� χζ(t) (t ∈ T )(16.3)

with aζ,� =
∫

T

Y�(t)χζ(t) dµT (t).(16.4)

Then, for g = ξq1ξq2 · · · ξqr
g1g2 · · · gm , we have from (15.1) and (15.6)

(16.5) f(g) =
∏

i≤k≤r

∑
ζ∈bT

bζ χζ(tqk
)

 ×
∏

1≤j≤m

∑
ζ∈bT

aζ,�(σj) χζ(Pσj
(dj))

 .

Now we apply the following lemma.

Lemma 16.1. (i) Let f1 and f2 be positive definite functions on a group
G, then the product (f1f2)(g) := f1(g)f2(g) (g ∈ G) is again positive definite.

(ii) Let D be a compact normal subgroup of a locally compact group G. For
a continuous positive definite function f on G, put

fo(g) :=
∫

D

f(gd) dµD(d),

where dµD denotes the normalized Haar measure on D. Suppose that for each
g ∈ G, the automorphism D 
 d �→ gdg−1 ∈ D is measure-preserving. Then,
fo gives a continuous positive definite function on the quotient group G/D, and
it is also expressed as fo(g) :=

∫
D
f(d′g) dµD(d′).

Proof. Let us prove (ii). Take g1, g2, . . . , gn ∈ G, d1, d2, . . . , dn ∈ D and
λ1, λ2, . . . , λn ∈ C. Then,∑

1≤i,j≤n

λi λj f(gidid
−1
j g −1

j ) ≥ 0 .

Integrate this inequality with respect to dµD(d1) dµD(d2) · · · dµD(dn), then
we get

0 ≤
∑

1≤i,j≤n

λi λj

∫
D

f(gidg
−1

j ) dµD(d)

=
∑

1≤i,j≤n

λi λj

∫
D

f(gig
−1

j d) dµD(d).

This proves that the function fo is positive definite.

Fix a (ζ0, ε) ∈ T̂ × { 0, 1 }, and take a positive definite class function Fζ0,ε

in (12.3) in Theorem 9: for g = ξq1ξq2 · · · ξqr
g1g2 · · · gm, ξq =

(
tq, (q)

)
, gj =

(dj , σj),

Fζ0,ε(g) =
∏

1≤k≤r

χζ0(tqk
)

dim ζ0
×

∏
1≤j≤m

χζ0

(
Pσj

(dj)
)

(dim ζ0)�(σj)
sgn(σj)ε.



�

�

�

�

�

�

�

�

586 Takeshi Hirai and Etsuko Hirai

Then the product f ′(g) :=
(
f Fζ0,ε

)
(g) = f(g)Fζ0,ε(g) is positive definite.

Take a subgroup Dn := DIn
(T ) with n sufficiently large so that supp(g) ⊂ In.

Fourier transform Fζ0,ε;n(f) of f with respect to Fζ0,ε is by definition the
integral of f ′ with respect to Dn:

Fζ0,ε;n(f)(g) :=
∫

Dn

f(d′g)Fζ0,ε(d′g) dµDn
(d′).

Let us calculate Fζ0,0;n(f)(g). Taking multiplicative factors of Fζ0,0, we
put

Xζ0(t) =
χζ0(t)
dim ζ0

, Y�,ζ0(t) =
χζ0(t)

(dim ζ0)�
(t ∈ T ).

Then, by (16.1)–(16.4), we need the following formulas. Firstly,∫
T

X(t) Xζ0(t) dµT (t) =
bζ0

dim ζ0
.

Secondly, for a basic element (d′, σ′) with d′ = (t1, t2, . . . , t�), σ′ = (1 2 · · · 
),
we have Pσ′(d′) = t�t�−1 · · · t2t1, and therefore∫

T �

(
Y� Y�,ζ0

)(
t�t�−1 · · · t2t1

)
dµT (t1)dµT (t2) · · · dµT (t�) =

aζ0,�

(dim ζ0)�
.

Lemma 16.2. Let f be a factorizable positive definite class function
f in (15.6) given as f(g) =

∏
ω∈Ω s

nω(g)
ω . Then, through (16.1)–(16.3), it is

expressed as in (16.5), and the Fourier transform Fζ0,0;n(f) of f with respect
to Fζ0,0 is given as follows: for σ ∈ Sn, let σ = σ1σ2 · · · σm be its decomposition
into mutually disjoint cycles, then

Fζ0,0;n(f)(σ) =
(

bζ0

dim ζ0

)n−|supp(σ)|
×

∏
1≤j≤m

aζ0,�(σj)

(dim ζ0)�(σj)
.

By Lemma 16.1(ii), the Fourier transform Fζ0,0;n(f) is a positive definite
class function on the symmetric group Sn for any n.

We continue the proof of Proposition 13. For σ ∈ S∞, let n�(σ) be as in
§6, the multiplicity in σ of disjoint cycles of length 
. For a series of complex
numbers s = (s1, s2, . . .), consider a class function αn

s on each subgroup Sn

given by

αn
s (σ) := s

n−|supp(σ)|
1 s

n2(σ)
2 · · · s n�(σ)

� (σ ∈ Sn),

where 2n2(σ)+3n3(σ)+ · · ·+ 
 n�(σ) = |supp(σ)| ≤ n. Then, [Tho2, Korollar
1 of Satz 2] says that

(�) The class function αn
s is positive definite on Sn for all n ≥ 1 if and only

if there exist series of non-negative real numbers α = (αi)i∈N , β = (βi)i∈N

with ‖α‖ < +∞, ‖β‖ < +∞, such that

‖α‖ + ‖β‖ ≤ s1, s� =
∑
i∈N

α �
i + (−1)�−1

∑
i∈N

β �
i (
 ≥ 2).
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In our case, by (�), we have α = (αi)i∈N , β = (βi)i∈N (naturally de-
pending on ζ0) such that

‖α‖ + ‖β‖ ≤ bζ0

dim ζ0
,∑

i∈N

α �
i + (−1)�−1

∑
i∈N

β �
i =

aζ0,�

(dim ζ0)�
(
 ≥ 2).

Rearrange αi’s and βi’s in decreasing order and put

αζ0,0,i = (dim ζ0)2 αi, αζ0,1,i = (dim ζ0)2 βi,

αζ0,0 = (αζ0,0,i)i∈N , αζ0,1 = (αζ0,1,i)i∈N ,

µζ0 = (dimζ0) bζ0 − ‖αζ0,0‖ − ‖αζ0,1‖.

Then we have

‖αζ0,0‖
dimζ0

+
‖αζ0,1‖
dimζ0

+
µζ0

dimζ0

= bζ0 ,∑
i∈N

(
αζ0,0,i

dim ζ0

)�

+ (−1)�−1
∑
i∈N

(
αζ0,1,i

dim ζ0

)�

= aζ0,� (
 ≥ 2).

Now put A =
(
(αζ,ε)(ζ,ε)∈bT×{ 0,1 } ; µ

)
with µ = (µζ)ζ∈bT . Then we have

from (16.2) ∑
ζ∈bT

∑
ε∈{0,1}

‖αζ,ε‖ + ‖µ‖ = 1 ,

which is nothing but the maximum condition (MAX) in (3.11) on the parameter
A.

Finally we get the following. For ω = ([t], 1) with t ∈ T ∗, the value
sω = f(ξq) for ξq = (t, (q)) is given by

sω = f(ξq) =
∑
ζ∈bT

(
‖αζ,0‖
dim ζ

+
‖αζ,1‖
dim ζ

+
µζ

dim ζ

)
χζ(t) ,

and for ω = ([t], 
), 
 ≥ 2, the value sω = f((d, σ)) for a basic (d, σ), with
Pσ(d) = [t] and 
(σ) = 
, is given by

sω = f((d, σ)) =
∑
ζ∈bT

{∑
i∈N

(
αζ,0,i

dim ζ

)�

+ (−1)�−1
∑
i∈N

(
αζ,1,i

dim ζ

)�
}
χζ(t) .

This completes the proof of Proposition 13.

Hence the proof of Theorem 2 is now complete.
(For a historical reason, we add here the reference [ASW] in addition to

[Tho2].)
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17. Deduction from S∞(T ) to Se
∞(T ), T abelian

17.1. Proof of Theorem 4
To prove Theorem 4, first we quote some results from [Tho1]. As a general

setting, let G be a countable discrete group and N its normal subgroup. Let
K1(G), E(G), F (G) be as in §15, and further let K1(N,G) be the set of positive
definite class functions f on N which is normalized as f(e) = 1, and invariant
underG, and let E(N,G) be the set of all extremal points in the convex compact
set K1(N,G). Then, [Tho1, Lemma 14 and Lemma 16] assert respectively the
following.

(1) For an F ∈ E(G), its restriction f = F |N on N belongs to E(N,G).
(2) Let f ∈ E(N,G) and F = IndG

Nf ∈ K1(G) the trivial inducing up of f .
Express F as an integral on the closure F (G) of E(G) as F =

∫
F (G)

F ′ dµ(F ′),
where µ is a measure on the compact set F (G) such that µ(F (G) \E(G)) = 0.
Denote by supp(F ) the support of the measure µ. Then, each F ′ ∈ supp(F )
is an extension of f onto G. In particular, F ′ ∈ supp(F ) ∩ E(G) 	= ∅ is an
extremal extension of f .

Now we apply these results to the case of G = S∞(T ) and N = Ge. Then,
we see that every element in E(N,G) is a restriction of some element in E(G).

On the other hand, remark that a conjugacy class in G is either disjoint
with N or equals to a conjugacy class in N = Ge. This means that K1(N,G) =
K1(N) and so E(N,G) = E(N).

Therefore, each element of E(N) = E(Ge) is equal to a restriction of some
element in E(G). This proves Theorem 4.

17.2. Proof of Proposition 5
To prove Proposition 5, we study the surjective correspondence

E(G) 
 fA �−→ fe
A := (fA)|Ge ∈ E(Ge),

in detail and prove that fA|Ge = fA′ |Ge if and only if A′ = R(ζ0)A, or if and
only if fA′(g) = πζ0,0(g) fA(g) (g ∈ G), when the condition (MAX) in (3.11) is
assumed both for A and A′. For g ∈ G, let

(17.1) g = ξq1ξq2 · · · ξqr
g1g2 · · · gm , ξqk

= (tqk
, (qk)), gj = (dj , σj),

be its standard decomposition. Denote the number m of disjoint cycles in σ
by m(g) = m(σ), then it is a class function on G and also on S∞. Here the
supports of components, q1, q2, . . . , qr, and supp(gj) := supp(σj) (1 ≤ j ≤ m),
are mutually disjoint, and σj is a cycle of length 
(σj) ≥ 2 and supp(dj) ⊂
supp(σj) =: Kj . For A =

(
(αζ,ε)(ζ,ε)∈bT×{ 0,1 } ; µ

)
in (3.5), we assume the

condition (MAX), instead of (3.6), that is,

(17.2) (MAX)
∑

(ζ,ε)∈bT×{0,1}

‖αζ,ε‖ + ‖µ‖ = 1 .
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The formula of a character fA of G in Theorem 2 is rewritten as

fA(g) =
∏

1≤k≤r

Y1(tqk
) ×

∏
1≤j≤m

Y�j
(PKj

(dj)),(17.3)

where 
j = 
(σj), PKj
(dj) =

∏
i∈Kj

ti for dj = (ti)i∈Kj
, and Y�(t) (
 ≥ 1, t ∈

T ), are the multiplicative factors of fA given as

Y1(t) =
∑
ζ∈bT

 ∑
ε∈{ 0,1 }

∑
i∈N

αζ,ε,i + µζ

 ζ(t),

Y�(t) =
∑
ζ∈bT

 ∑
ε∈{ 0,1 }

∑
i∈N

(αζ,ε,i)
� (−1)ε(�−1)

 ζ(t) (
 ≥ 2).

Since the condition (MAX) is assumed for A, the above formula is valid even
in the case where tqk

= eT because Y1(eT ) = 1.

For another A′ :=
(
(α′

ζ,ε)(ζ,ε)∈bT×{ 0,1 } ; µ′
)

a character fA′ of G is given
similarly as

fA′(g) =
∏

1≤k≤r

Y ′
1(tqk

) ×
∏

1≤j≤m

Y ′
�j

(PKj
(dj)),(17.4)

Y ′
� (t) (
 ≥ 1, t ∈ T ), are similarly given corresponding to the parameter A′.

Now assume that fA|Ge = fA′ |Ge . Put n = r + m, and denote newly by
{ (
s, ts) ; 1 ≤ s ≤ n }, 
s ≥ 1, ts ∈ T, the set of the pairs (1, tqk

), 1 ≤ k ≤ r
(here 
 = 1), and (
j , t′j), 1 ≤ j ≤ m, with 
j ≥ 2, t′j = PKj

(dj) ∈ T , we see
that the above condition is equivalent to∏

1≤s≤n

Y�s
(ts) =

∏
1≤s≤n

Y ′
�s

(ts) under
∏

1≤s≤n

ts = eT ,(17.5)

for any choice of pairs (
s, ts) ∈ N × T (1 ≤ s ≤ n) satisfying the condition∏
1≤s≤n ts = eT .

Put T (
) = { t ∈ T ; Y�(t) 	= 0 }. Then, T (
) is stable under the map
t �→ t−1 because Y�(t−1) = Y�(t). Moreover, T (
) is just the set of such t ∈ T
that Y ′

� (t) 	= 0, because Y�(t)Y�(t−1) = Y ′
� (t)Y ′

� (t−1). Put χ�(t) = Y ′
� (t)/Y�(t)

on T (
), then |χ�(t)| = 1, χ�(t−1) = χ�(t)−1. For a set of elements ts ∈
T (
s), 1 ≤ s ≤ n, the equality (17.5) gives us∏

1≤s≤n

χ�s
(ts) = 1 if

∏
1≤s≤n

ts = eT .

From this we obtain in particular χ�(t) = χ�′(t) for t ∈ T (
) ∩ T (
′).
Putting χ(t) = χ�(t) for t ∈ T (
), and taking into account of the above equality,
we see that χ on T ′ := ∪�≥1T (
) can be extended to a one-dimensional chatacter
on the group 〈T ′〉 ↪→ T generated by T ′.
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Since 〈T ′〉 is determined by the parameter A, we denote it by TA. Put
D∞(TA) :=

∏′
i∈N TA,i, TA,i = TA (i ∈ N), then the character fA of G vanishes

outside of S∞(TA) = D∞(TA) � S∞ ⊂ G. Since TA′ = TA, we have similar
fact for fA′ . The formulas (17.3) and (17.4) gives us

fA′(g) = χ(g) · fA(g) (g ∈ S∞(TA) ) with χ(g) := χ(P (d)) for g = (d, σ).

Take a one-dimensional character ζ0 ∈ T̂ extending χ on TA to T , then we
get fA′(g) = ζ0(P (d)) · fA(g) for g = (d, σ) ∈ G. Since πζ0,0(g) = ζ0(P (d)) by
definition, this is written as fA′ = πζ0,0 · fA , as desired.

The proof of Proposition 5 is now complete.

17.3. The case where the parameter A is unique for fe
A

As seen above, the parameter A =
(
(αζ,ε)(ζ,ε)∈bT×{ 0,1 } ; µ

)
for the char-

acter fe
A = fA|Ge is not unique in general, even under the condition (MAX)

on µ = (µζ)ζ∈bT . However, in a very special case of A, the parameter becomes
unique. This case is characterized by

R(ζ0)A = A ( ∀ζ0 ∈ T̂ ).

Let us study the explicit form of the character fA in this special case. From
the above condition on A, we have αζ,ε = α1T ,ε, µζ = µ1T

for any ζ ∈ T̂ .
Then put

α = (αi)i∈N := α1T ,0, β = (βi)i∈N := α1T ,1, ν = µ1T
.

Then, by the condition (MAX) on A, we have

|T | (‖α‖ + ‖β‖ + ν) = 1 or |T | (‖α‖ + ‖β‖) ≤ 1.(17.6)

Hence the multiplicative factors Y�(t) in this case are

Y1(t) = (‖α‖ + ‖β‖ + ν)
∑

ζ∈bT ζ(t) = δeT
(t) ,

Y�(t) =
(∑

i∈N α �
i + (−1)�−1

∑
i∈N β �

i

)∑
ζ∈bT ζ(t)

= |T |
(∑

i∈N α �
i + (−1)�−1

∑
i∈N β �

i

)
δeT

(t) (
 ≥ 2),

where δeT
denotes the delta function on T supported by the unit element eT .

It follows from these formulas for multiplicative factors Y1 and Y� that, for
g ∈ G in (17.1), the value of the character fA(g) is not zero only if r = 0, and
for each j, 1 ≤ j ≤ m, the DKj

(T )-component dj of gj = (dj , σj) has product
PKj

(dj) = eT . This condition on g means exactly that g = (d, σ) is conjugate
to σ ∈ S∞ ↪→ G, so that fA is supported by the set of conjugacy classes having
representatives from S∞. Thus we have

fA(g) =

{
|T |m(σ)fα,β(σ) if g = (d, σ) is conjugate to σ ∈ S∞,

0 if g is not conjugate to any τ ∈ S∞,
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where m(σ) denotes the number of disjoint cycles in σ, and fα,β(σ) denotes the
character of S∞ in 6.1 with parameter (α, β).

18. Wreath product of a finite group with A∞

18.1. The case of the group A∞(T )
Let us consider a normal subgroup A∞(T ) := D∞(T )�A∞ of G = S∞(T )

for the infinite alternating group A∞. Here we prove the following result.

Theorem 14. All the characters of the group G′ := A∞(T ) are given
as restrictions of those of the group G = S∞(T ).

For two characters fA and fA′ on G with parameters

A =
(
(αζ,ε)(ζ,ε)∈bT×{ 0,1 } ; µ

)
and A′ =

(
(α′

ζ,ε)(ζ,ε)∈bT×{ 0,1 } ; µ′
)

as in (3.5) respectively, their restrictions on G′ coincide with each other if and
only if fA′ = (sgnS)afA (a = 0 or 1), or, under the condition (MAX) for both
of A and A′, if and only if A′ = A or A′ = tA, where

tA =
(
(α′′

ζ,ε)(ζ,ε)∈bT×{ 0,1 } µ′′
)

is defined as

α′′
ζ,0 = αζ,1 , α′′

ζ,1 = αζ,0 (ζ ∈ T̂ ), and µ′′ = µ.

Proof. The first assertion can be proved just as in 17.1.
For the second assertion, if the above condition holds between A and A′,

then we see easily that the equality fA|G′ = fA′ |G′ holds. Therefore it rests
only to prove the converse.

Suppose fA|G′ = fA′ |G′ . For the parameter A, put for ζ ∈ T̂ ,

ZA
ζ,1 = ‖αζ,0‖ + ‖αζ,1‖ + µζ ,

ZA
ζ,� =

∑
ε∈{ 0,1 }

∑
i∈N

(−1)ε(�−1) (αζ,ε,i)
� (
 ≥ 2),

and similarly put ZA′
ζ,� (
 ≥ 1) for A′.

1. Firstly take a basic element g = ξq = (t, (q)) ∈ D∞(T ) ⊂ G′ and write
down the relation fA(g) = fA′(g), then we have∑

ζ∈bT

ZA
ζ,1

χζ(t)
dim ζ

=
∑
ζ∈bT

ZA′
ζ,1

χζ(t)
dim ζ

(t ∈ T ).

2. Secondly take a basic element g = (d, σ) with σ a cycle and supp(d) ⊂
supp(σ). Suppose 
 = 
(σ) is odd, then g ∈ G′. Put t = Pσ(d), then the
relation fA(g) = fA′(g) gives us∑

ζ∈bT

ZA
ζ,�

χζ(t)
(dim ζ)�

=
∑
ζ∈bT

ZA′
ζ,�

χζ(t)
(dim ζ)�

(t ∈ T ).
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3. Thirdly take g = (d1, σ1)(d2, σ2) a product of two basic elements with

k = 
(σk) both even and Pσk

(dk) = tk, then g ∈ G′. We get from fA(g) =
fA′(g) the following:

∏
k=1,2

∑
ζ∈bT

ZA
ζ,�k

χζ(tk)
(dim ζ)�k

 =
∏

k=1,2

∑
ζ∈bT

ZA′
ζ,�k

χζ(tk)
(dim ζ)�k

 (t1, t2 ∈ T ).

From these equations, we get

‖αζ,0‖ + ‖αζ,1‖ + µζ = ‖α′
ζ,0‖ + ‖α′

ζ,1‖ + µ′
ζ ,(18.1)

ZA
ζ,� = ZA′

ζ,� (
 ≥ 2 , odd)(18.2)

ZA
ζ1,�1 Z

A
ζ2,�2 = ZA′

ζ1,�1 Z
A′
ζ2,�2 (ζ1, ζ2 ∈ T̂ ; 
1, 
2 even).

From the third equation, there exists a = 0, 1 such that

ZA
ζ,� = (−1)aZA′

ζ,� (
 even).(18.3)

The equations (18.1)–(18.3) prove that fA′ = (sgnS)afA.
Furthermore, fix ζ and put α = αζ,0, β = αζ,1 and α′ = α′

ζ,0, β
′ = α′

ζ,1.
Then, ‖α‖+ ‖β‖ ≤ 1, ‖α′‖+ ‖β′‖ ≤ 1, and the equations (18.2)–(18.3) give us
for a = 0 or 1 respectively, as meromorphic functions on C,∑

i≥1

α 2
i

1 − αiz
−

∑
i≥1

β 2
i

1 + βiz
=
∑
i≥1

(α′
i)

2

1 − α′
iz

−
∑
i≥1

(β′
i)

2

1 + β′
iz

;

or
∑
i≥1

α 2
i

1 − αiz
−

∑
i≥1

β 2
i

1 + βiz
= −

∑
i≥1

(α′
i)

2

1 + α′
iz

+
∑
i≥1

(β′
i)

2

1 − β′
iz
.

Comparing poles in both sides, we can conclude for i ≥ 1, αi = α′
i, βi = β′

i,
or αi = β′

i, βi = α′
i, according as a = 0 or 1. Hence, α′

ζ,ε = αζ,ε for any (ζ, ε),
or α′

ζ,0 = αζ,1 , α
′
ζ,1 = αζ,0, according as a = 0 or 1. In any case we get

µ′
ζ = µζ (ζ ∈ T̂ ).

This complets the proof of Theorem 14.

Example 18.1. Let us study the case where the restriction fA|G′ has
its unique parameter A. By Theorem 14, this corresponds to the case of A such
that tA = A. Then, αζ,1 = αζ,0 (ζ ∈ T̂ ). From the formula (3.8), we have
in this case the following expression of fA. For g = (d, σ) ∈ G with standard
decomposition g = ξq1ξq2 · · · ξqr

g1g2 · · · gm, ξq =
(
tq, (q)

)
, gj = (dj , σj) with


(σj) ≥ 2,

fA(g) = 0, if some of 
(σj) is even; and otherwise,

fA(g) =
r∏

k=1

∑
ζ∈bT

(
2‖αζ,0‖ + µζ

)χζ(tqk
)

dim ζ

×

×
m∏

j=1

∑
ζ∈bT

∑
i∈N

2
(
αζ,0,i

dim ζ

)�(σj)

χζ

(
Pσj

(dj)
) .
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18.2. The case of the group Ae
∞(T ), T abelian

Assume T be abelian, then we have another normal subgroup

Ae
∞(T ) = { g = (d, σ) ∈ S∞(T ) ; sgnS(σ) = 1, P (d) = eT }

of G = S∞(T ). For this group, we can prove the following result, analogously
as for Ge = Se

∞(T ) and G′ = A∞(T ).

Theorem 15. Let T be abelian. Then for the normal subgroup G′e =
Ae

∞(T ) of G = S∞(T ), every character of G′e is given as the restriction of
some characters of G.

Two characters fA and fA′ of G with parameters

A =
(
(αζ,ε)(ζ,ε)∈bT×{ 0,1 } ; µ

)
and A′ =

(
(α′

ζ,ε)(ζ,ε)∈bT×{ 0,1 } ; µ′
)

have the same restriction on G′e if and only if fA′ = πζ0,afA with a one-
dimensional character

πζ0,a(g) = ζ0
(
P (d)

)
(sgnS)a(σ) for g = (d, σ) ∈ D∞(T ) � S∞,

in Lemma 3, where ζ0 ∈ T̂ , a = 0, 1. This corresponds to the following relation
between parameters A and A′ both satisfying the condition (MAX),

A′ = R(ζ0)A in (5.5) in case a = 0,

A′ = R(ζ0)(tA) in case a = 1.

19. Appendix: Lemmas for compact groups

A finite group T is a kind of compact group, and we see in our discussions
above that it is sometimes simpler to use notations and notions for the case of
compact groups. For example, the notations

1
|T |

∑
t∈T

F (t) and
∫

T

F (t) dµ(t),

when T is finite or compact respectively, can be unified with the latter one.
Here |T | denotes the number of elements in T , and dµ denotes the nomalized
Haar measure on a compact group T . The Haar measure µ on a finite group T
is given by µ({ t }) = 1/|T | (t ∈ T ).

In the present paper, when induced representations ρ = IndG
Hπ from sub-

groups H of wreath product type are taken as ingredients, we have chosen rep-
resentations π of H in (10.5) constructed as in (10.6)–(10.7) from irreducible
representations ζ ∈ T̂ of components ∼= T . However, as we remarked in 10.1,
some IURs ρ of G can be constructed starting from π given by means of cyclic
representations of T . Therefore it is worthwhile to check what happens when
we use, in our discussions, cyclic representations � of T instead of irreducible
ones ζ ∈ T̂ . Actually we have done the calculations for this cyclic case on
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the way of preparing this paper, and on doing this, the following lemmas on
representations of compact groups were utilized. So, we expose them here in a
little more general form than directly necessary in the present paper.

Now let T be a compact group and any representation of T treated here
is assumed to be unitary. An equivalence class in T̂ is identified with a repre-
sentation in that class.

Take a finite dimensional representation (�,V (�)) of T with represen-
tation space V (�). Its character, denoted by χ�, is a positive definite class
function on T . For a ζ ∈ T̂ , denote by m(ζ) = [� : ζ] the multiplicity of ζ
in �, and by Vζ the subspace of V (�) consisting of vectors on which T acts
according to a multiple of ζ, then an irreducible decomposition of � is given as

V (�) =
⊕
ζ∈bT

Vζ , Vζ =
⊕

1≤k≤m(ζ)

V k
ζ ,(19.1)

where V k
ζ denote mutually orthogonal subspaces isomorphic to V (ζ) as T -

modules.

Lemma A.1. Let v, w ∈ V (�) and vζ , wζ ∈ Vζ (ζ ∈ T̂ ) be their com-
ponents in the direct sum decomposition (19.1). Then∫

T

〈�(sts−1)v, w〉 dµ(s) =
∑
ζ∈bT

χζ(t)
dim ζ

〈vζ , wζ〉.(19.2)

Lemma A.2. Let ζ ∈ T̂ and v1, v2, w1, w2 ∈ V (ζ). Then,

(19.3)
∫

T

〈ζ(s)v1, w1〉 〈ζ(s−1)v2, w2〉 dµ(s) =
1

dim ζ
〈v1, w2〉〈v2, w1〉.

Lemma A.3. Let vi, wi ∈ V (�) (i = 1, 2) and vk
i,ζ , w

k
i,ζ ∈ V k

ζ (ζ ∈
T̂ , 1 ≤ k ≤ m(ζ)) be their components in the finer direct sum decomposition
(19.1): vi =

∑
ζ∈bT

∑
1≤k≤m(ζ) v

k
i,ζ etc. Denote by v̂k

i,ζ the image of vk
i,ζ under

a fixed equivalence map from V k
ζ onto V (ζ). Then∫

T

〈�(st)v1, w1〉〈�(s−1)v2, w2〉 dµ(s) =

=
∑
ζ∈bT

1
dim ζ

∑
1≤k1,k2≤m(ζ)

〈ζ(t)v̂k1
1,ζ , ŵ

k2
2,ζ〉〈v̂

k2
2,ζ , ŵ

k1
1,ζ〉.(19.4)

Proof. It is enough to prove the equality for t = eT , the identity element
of T . Then,∫

T

〈�(s)v1, w1〉〈�(s−1)v2, w2〉 dµ(s) =

=
∑
ζ∈bT

∫
T

∑
1≤k1,k2≤m(ζ)

〈ζ(s)v̂k1
1,ζ , ŵ

k1
1,ζ〉〈ζ(s

−1)v̂k2
2,ζ , ŵ

k2
2,ζ〉 dµ(s).

Here we apply Lemma A2.
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Lemma A.4. Let vi, wi ∈ V (�) (1 ≤ i ≤ 
) and vk
i,ζ , w

k
i,ζ ∈ V k

ζ (ζ ∈
T̂ , 1 ≤ k ≤ m(ζ)) be respectively their components in the finer direct sum
decomposition (19.1). Then

∫
T

· · ·
∫

T

〈�(s1t1s −1
� )v1, w1〉〈�(s2t2s −1

1 )v2, w2〉 · · · 〈�(s�t�s
−1

�−1 )v�, w�〉

dµ(s1) dµ(s2) · · · dµ(s�)

=
∑
ζ∈bT

χζ(t�t�−1 · · · t2t1)
(dim ζ)�

∑
1≤k1,k2,...,k�≤m(ζ)

〈v̂k�

�,ζ , ŵ
k�−1
�−1,ζ〉〈v̂

k�−1
�−1,ζ , ŵ

k�−2
�−2,ζ〉 · · ·

· · · 〈v̂k2
2,ζ , ŵ

k1
1,ζ〉〈v̂

k1
1,ζ , ŵ

k�

�,ζ〉.

For the proof, we apply Lemmas A2 and A3.

Lemma A.5. Let vi ∈ V (�) (1 ≤ i ≤ 
) and vi,ζ ∈ Vζ (ζ ∈ T̂ ) be their
components in the direct sum decomposition (19.1). Then

∫
T

· · ·
∫

T

〈�(s1t1s −1
� )v�, v1〉〈�(s2t2s −1

1 )v1, v2〉 · · · 〈�(s�t�s
−1

�−1 )v�−1, v�〉

dµ(s1) dµ(s2) · · ·dµ(s�)

=
∑
ζ∈bT

χζ(t�t�−1 · · · t2t1)
(dim ζ)�

∏
1≤i≤�

‖vi,ζ‖2.

Proof. Let vk
i,ζ ∈ V k

ζ (ζ ∈ T̂ , 1 ≤ k ≤ m(ζ)) be the components in the
finer direct sum decomposition (19.1). By Lemma A4, the integral is equal to

∑
ζ∈bT

χζ(t�t�−1 · · · t2t1)
(dim ζ)�

∑
1≤k1,k2,...,k�≤m(ζ)

‖v̂k�−1
�−1,ζ‖

2 ‖v̂k�−2
�−2,ζ‖

2 · · · ‖v̂k1
1,ζ‖

2 ‖v̂k�

�,ζ‖
2.
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