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Stability analysis of difference systems via cone
valued Liapunov’s function method

By

A. A. SOLIMAN

Abstract
Total stability for systems of ordinary differential equations, func-
tional differential equations, and difference equations was introuced. In
this paper, we will extend this notion to the so-called total ¢o-stability
for systems of difference equations. given some new criteria and results.
Our technique depends on cone-valued Liapunov’s function method.

1. Introduction

Recently, difference equations problems has been considerable interest in
studying and improving (see [2], [3], [7]-[11]). Furthermore it has been success-
fully in different approachs based on Liapunov’s direct method, and was study
with cone and cone-valued Liapunov function method (see [8]).

Our purpose in this paper is to extend total stability of [11] to new type
of stability, namely total ¢g-stability of difference equations systems which lie
somewhere between totally stability of [11] on one side and ¢o-stability of [8]
on the othere side via cone-valued Liapunov function method that was studied
in [5] and used in [1], [8].

Let R™ be the m-dimensional Euclidean real space, J = [tg,00), and ™
= [0,00). The following definitions will be needed.

Definition 1.1 ([4]). A function b(r) is said to be belong to the class
K if b(r) € C[(0, p), RT],b(0) = 0 and b(r) is strictly monotone increasing in r.

Definition 1.2 ([4]). A function a(t) is said to be belong to the class
Lifa(t) € C[J,R"],a(t) — oo as t — oo and a(t) is strictly monotone decreas-
ing in t.

Definition 1.3 ([1]). A proper subset K C R™ is called a cone if

(i) AK € K, A >0, (i) K+ K C K, (iii) K = K,
(iv) K° # 0, (v) KN (-K) =0,
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where K and K° denote the closure and interior of K respectively, and 0K

denotes the boundary of K,z € 0K <= y—x = 0 for some y € K§, Ko = K—0.
The order relation on 1™ induced by the cone K is defined as follows
Let z,y € K, then

r<gy<—y—x€K, andax <goy<<—y—xc K°.
The set K* is called the adjoint cone if
K*={¢peR™:(¢,z) >0}, for z€K,
satisfies the properties (i) — (v) of Definition 1.3.

Definition 1.4 ([1]). A function g : D — R™, D C R" is called quasi-
monotone relative to the cone K, if z,y € D and y —x € 0K, then there exists
¢o € K such that (¢o,y — ) =0 and (¢, g(y) — g(x)) > 0.

Consider system of difference equations

(1'1) z(n+1) :f(n,x(n)), x(”O) =9
and the perturbed system
(1.2) £(n+1) = f(n,2(n) + hin,(n)), 2(ng) = v

where f,h: ZTxC — R™ are continuous in z,,, y,, Z T is the set of nonnegative
integers x,y € R™, f(n,0) = h(n,0) = 0forn € ZT, so that the equations (1.1),
(1.2) always have the zero solution xz(n) =0, y(n) = 0. Let

| ¥ ||l=max | ¥(s)|: s € {-r,,—r+1,...,0}

and C = {¢ : {—r,—r+1,...,0} — R™} for positive integer r > 0, x,(s) =
x(n+ s),yn(s) = y(n + s)fors = —r,—r + 1,...,0. Furthermore for any given
ng € Z* and given initial function ¢ € C, there is a unique solutions of
x(no, ¥)(n), y(no, 1) (n) such that it satisfies (1.1), (1.2) and

x(nOu 1/’)(”0 + 8) = 1/)(5>7 y(n071/1)(n0 + S) = w(8)7 for s = -r, =T + 17 v 70‘
respectively for all integer n > ny.

Definition 1.5 ([8]). The zero solution of (1.1) is said to be ¢o-
equistable if for € > 0, ng € Z7, there exist positive functions §(ng,e) > 0
that is continuous in ng, such that for ¢y € Kj

(¢o, 2" (no,¥)) <€, for n > mng.

provided that (¢g,1) < 0, where z*,y* here and in this paper denote the
maximal solutions of (1.1) and (1.2) relative to the cone K C R™ respectively.
Other ¢g- stability can be similarly dedined.

The following definitions are somewhat new and related with that of [11].
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Definition 1.6.  The zero solution of (1.1) is said to be totally uniformly
¢o-stable if for € > 0,ny € ZT, there exist positive functions 1 (ng,€) > 0 and
d2(no, €) > 0 that is continuous in ng, such that for ¢g € K

(o, 2*(ng,)) < e, forall n >ng.
provided that (¢o, 1) < 1 and (¢, h(n,z(n))) < da.

Definition 1.7.  The zero solution of (1.1) is said to be totally ¢o-stable
under permanent perturbations bounded in the mean if for € > 0,n¢9 € Z7,
there exist two positive functions d1 (ng, €) > 0 and Jz(ng, €) > 0 that is contin-
uous in ng,such that for ¢ € K§

(po, 2" (no,v)) <€, forall n>ng.

provided that (¢g, %) < d1, (¥, h(n,z(n))) < d2.
In the case of uniformly totally ¢g- stability §; and ds are independent of
to.

Definition 1.8.  The zero solution of (1.2) is said to be totally uniformly
¢Po-stable under permanent perturbations bounded in the mean if for e > 0, ng €
Z*, there exist two positive functions d;(ng,€) > 0 and da(ng,€) > 0 that is
continuous in ngy such that for the maximal solution y*(ng,)) of (1.2), and
¢o € K§

(¢07y*(n03 7/’)) <k, for all n Z ng.
provided that (¢o, ) < 61, (¥, h(n,y(n))) < d2, n > ng, where
| h(n,y(n)) |= sup| h(n,p) :ne Z7, | ¢ < e

Definition 1.9.  The zero solution of (1.2) is said to be totally uniformly
asymptotically ¢g-stable if it is uniformly asymptotically ¢g-stable provided
that for

| h(n, ) |< o(n), uniformly for || ¢ ||< p.

where o(n) — 0 as n — oo, and p is some constant.

2. Main results

In this section, we will discuss and obtain some results of total ¢g-stability
of the system (1.1)

Theorem 2.1.  Let the zero solution of (1.1) be uniformly asymptoti-
cally ¢o- stable. Assume further that

I f(n,2) = f(n,y) [I< L(n) [ 2 =y |,

for (n,z),(n,y) € Z* x K,0 < L(n) < oT,« is a positive constant.
Then there exists a cone-valued Liapunov function V (n, z) with the follow-
ing properties
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I) V(n,0) = 0,V(n,z(n)) : Z+ x C — K is continuous function and
locally Lipschitzian in x(n) relative to K, for a continuous S(n) > 0,
T1) a(go, 2*(n)) < (go, V(n, " (1)) < b{go, 2" (),
fora,be K, ¢o € Ki and (n,xz(n)) € Z+ x K.
III) (¢, AV (n,2*(n)) < —c(¢o,x*(n)),c € K, where A is the difference
operator define as

AV (n,2(n)) |11y =V(n,z(n+1)) = V(n,x)
=V(n, f(n,z)) — V(n,z).

Proof. From the hypotheses, solutions of (1.1) are exist and unique. Let
x(ng.1) be a solution of (1.1), so that z(ng, 1) = ¥. Define the function c as

clu, 2" (n) = 1 = exp(A(do, 2 ()]
where A > 0 is a constant. For
(¢o,x*(t)) =0, then %[1 —exp(A(go, z*(n)))] = 0.

This implies that ¢(0) = 0. For

(90,2%) >0, then {1 = eap(A(do, a* ()

is monotone increasing. It follows that c € K.
This proves (I).
Now, we define a cone-valued Liapunov function by

(2.1) V(n,0) = sup c[(¢o, z"(n))]x(n + 6,0, 0, (2(0, 2(n))))

5>0

1+ B§
1+0

where o, : So(p) — K, and z*(n) is the maximal solution of (1.1) relative to
the cone K C R™. For z = 0, thus from (2.1), V(n, 0)=0, and for 6 = 0, we
have

cl(¢o, 2" (n))]2(0, 0w, (2(0, 2(n))) <k V(n,z(n)).
Thus

cl(¢o, 2%)|(¢0, 2(0, 0w, (2(0, 2(n))))) <k (¢0, V(n,z(n))).
and
(2.2) cl(go, 27)]Yo(¢o, €) = al(¢o, 27)] <k (do, V(n,z"(n))).
where

Yo = min | x(ng) |,i=1,2,...s;a(r) = uo(¢o,e)c(r), and e = (1,1,...1)T.
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Since the zero solution of (1.1) is uniformly asymptotically ¢g-stable, given
€ > 0, there exist two numbers 6 = §(¢), and T = T'(¢) are independent of ng
such that

(¢o, %) < 0(¢o,z") <€, for n>T(e).
By using the fact that (14 Bd)/(1+0) < B, from (2.1) we get

1+ B6
1+0

(60.2°) = sup l(Go, )60 20 + 8,0, () [
k 1+ Bé}

1+06

1+ B§
1+6
]

< sup cl(60,*)][(d0, ) [

§>0

< sup cf(po, z¥)][(¢o, %) [

5>0
< €Bc|(o, x7)] = b[(¢o, 27)
that is
(2:3) (¢0, V(n,z%(n))) < b[(¢o,z")], beK.
Comparing this with (2.2), we have
(2.4) al(¢o, 2")] < (9o, V(n, 2% (n))) < bl(do,2")], a,be L.

This proves(II).
Now, for 6 < T'(e), where T'(e) is monotonic decreasing function, we have
from uniform asymptotic ¢g-stability that

(po, ") < e.
Hence, if § > T'(y(¢o,x*)), for v > 0, then
(¢0,£€*) < (’7(92503‘%*)) = C(QSOax*) < C(PY((ZSOP’E*))

and
(602t + 6,0, a0, m.0) [

S BC[(¢07 )](¢0,$*)

< ebef(v(do, 27))]

< (o, V(n,27(n)))
Thus

cl(éo,x™)]|z(n + 9,0, 04, (z(0,2(n))) [11—:5;6 <V(n,z)
This implies that V(n,z(n)) is defined only for 0 < § < T'(vy(¢o, z*)). As
* 14+ Bo
Vi) = s cllgo. ol +5.0.00(a(0.2(m)) | 555
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where T = T'(y(¢o, x})).
By Corollary 2.7.1 of [4], and for z(n1), x(n2) € S(p), we have

| V(n, z(n1)) = V(n,z(n2)) ||

* 1+ B¢
=, 10 clton.a" ot + 80,0 0.0 (55
* 1+ B¢
= s cl(on 2"t + 8.0, 0ol 0,200) (FEEY )
< sm_eltonan)] (155 |1 oute () 0.0t

— 0u(x(n2)(0,n, z(n2))) |
sup C[(¢0,$*)] (11+ Bd)’ <ZL ) || x nl — -’L'(TLQ) H

< k(n,w)

0<86<T

< B(n) || #(n1) = z(n2)]|-

where
1+ Bo
T L(s
00 (57 ) e (S0)

is locally Lipschitzian in x(nq) and x(ng). Therefore V(n,z(n)) is locally Lip-
schitzian in z.
Now,
[ V(n+6,2) = Viny) || <[| V(n+d2) = V(n+dy) |
(2.5) IVt 8y) = V(n+b5)n+by) |

B(n) = k(n,w)

Since V(n, x) is locally Lipschitzian in y, y is continuous in 4§, the first two terms
in the right hand side of the inequality (2.5) are small whenever || y—z || and §
are small. By using (2.1), the term tends to zero. Therefor V(n, x) is continuous
in all its arguments.

Let x = x(no,¥),z(n,) = x(n,)(n+ p,n,x), p> 0, then we have

Vin+p,z(ny)) = sup (¢, z*)]z(n+ p+0,,0,0,(x(0,z(n+ p))) {

1+ 36]
0<6<T

1+0

The continuity of V' and the unigeness of a solution od (1.1) imply that there
exists a point d, in which the upper bound is reached so that we have

1+B6]

Vi(n+p,z(n,)) = c[(¢o, 27)]z(n+ p +6,,0,00(x(0,2(n + p))) {1—_%
By putting 6, = 61 — p, and using the fact

1+B5p_[1+361][1_ (B—1)p ]
1+6, | 1+8 (14 Bdy)(146,)
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we get

V(n+p,x(n,))

= (60 el + p+ 3,000 a(0.a(-+ ) (15
(B-1)p
- [1 C (1+ B+ 5p)]
(B —1)pV (n,z)
<k V(n,z)— {(1—#351)(14—6,))] )

Since 0 <6, <T, 0 < p <1 < p+T, T is monotonic decreasing and using
(2.4), we have

V(n+p,z(n,)) —V(n,z) . _ { (B-1)V(n,z) ]
P =K A+ B (1+6,) |
Vin+p,2(ny)) = Vin,x) (B —1)(¢o, V(n,z))
(oo P ) - [ |

So that

Ao, V(n,x)))

IA

_ { (B —=1)(¢o,V(n,z)) }
(1+ BT (v(¢o,2*)))(1 + Tv(¢o,2*))) + Bp

—B(¢0, V(n,7))),B € K

—Bal(¢o, x*)] < c(do,z*),c € K.

IN N

This proves (III), and the proof is completed. O

Theorem 2.2.  Let the hypotheses og Theorem 2.1 be satisfied. Then
the zero solution of (1.1) is totally ¢o-stable.

Proof. From Theorem 2.1, property (I) holds. Let € > 0 be given, choose
01 = 01(€) such that

a(e) > b(d1(e)), a,be k.
Let z(n) = z(n, 1) be a solution of (1.1) such that

(¢0,9) <01 and (g0, h(n,x)) < d2, for dz =da(e) > 0.

By (IT) of Theorem 2.1, we have V(ng, 1) = b(d1(€)).
Now, we claim that

(¢o,V(n,z)) < a(e),n > 0.
This claim leads to

a(go, %) < (¢o, V(n,x)) < ale).



72 A. A. Soliman

Then (g, 2*) < €, and this show that the trivial solution of (1.1) is totally ¢o-
stable.
Now, we justify this cliam. Define

T(n) = (¢Oa V(?’L, l’))

Suppose that this claim is false, then there exist two numbers ny; and no with
ng < ny < ng such that

T(n1) =b(01(e)), T(n2) =a(e), and T'(n) > b(d1(e)) for ng <n < no.
This show that T'(n) is nondecreasing in [n1,ns] and, we have
(2.6) AT(n1) >0
From (IT)and (III) of Theorem 2.1 and for any ¢* € k, we have
Ao, V(1. 2)) < —¢ (J0, V(n, 7).
This implies that

AT c*(T) + M[(¢o, h(n,z))], M >0

—c"(T)
—c*(T) + M5,

e (b5 (€))) + Mo
—b*(51(€)) =+ M(SQ,

IAIACIA

where ¢*(b(r)) = b*(r) € K. Now, we choose

b
62:b*(Ml>. — AT < 0.

This contradicts (2.6) and our claim is justfied. Therefore the zero solution of
(1.1) is totally ¢o-stable, and the proof is completed. O

Theorem 2.3.  Let the hypotheses og Theorem 2.1 be satisfied. Then the
zero solution of (1.1) is totally ¢g-stable under permanent perturbation bounded
in the mean.

Proof. From Theorem 2.1, the property (I) holds. Let z(n) = x(ng,¥)
be a solution of (1.1) such that

s=no+T

(¢o,7) <61 and (¢, h(n,z)) < v(n), where Z v(s)ds < 3.

S=ng

Now, we are continuous as in the proof of Theorem 2.2, we arrive the inequality
(2.6). From (I), (II), and(III), we have

AT < —c*(T) c*(T) + M|(¢o, h(n,z))|, M <0

S —
< —c*(T) + M~(n).
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Integrating on [ng, T*], we get

s=T*

-
T(n) <= " (T(s))ds + M Y ~(s)ds

s=T~"
<= (T(s))ds + Mé,.

Now, if we choose

s=T"

S =M1 " (T(s))ds,

then T' < 0, that is (¢g, V(n,z)) < 0. But this is impossible since the properties
(ID),
(¢o, V(n,z)) > al(¢o,z"),a € K.

Therefore the result is immediated. O

Theorem 2.4.  Let the hypotheses of Theorem 2.1 be satisfied,and as-
sume further that h(n,x) is locally Lipschitzian in x relative to the cone K C
R", for each t € RY. Then the zero solution of (1.1) is uniformly totally ¢o-
stable.

Proof. From Theorem 2.1, it follows that

A(¢o, V(n,x)) < =c*[(¢o, V(n, z))] + M[(do, h(n, z))]
< —c* (¢, V(n,2))]+ Mo(n), M > 0.

since o € L, then there exists T' = T'(e) sufficiently large such that for ¢t > T'(e),
we have that 0 — 0. Therefore

A(¢o, V(n, z)) < =c*[(¢o, V(n, 2))]-
From (II), we have
A(¢o, V(n,x)) < —=c*[(¢o, V(n, 2))] + Mo(n) = ¢*[(¢o, 27)],

where ¢*;a € Kandc*[a(r)] = ¢(r) so that ¢ € K. Now, by using the condition
(I), (IT) and (III), we see that the conditions of Theorem 3.1 of [1] are satisfied.
Since

| h(n,z) = h(n,y) [|< L(n) |z —y |, for z,y€kK,
then putting y = 0, we get
I h(n,z) < Ln) || 2 |,

when = = 0, we have || h(n,z) ||= 0. Therefore from Theorem 3.4 of [1], and
definition of uniformly totally ¢o-stable, the result is immediated. O
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