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Stability analysis of difference systems via cone
valued Liapunov’s function method

By

A. A. Soliman

Abstract

Total stability for systems of ordinary differential equations, func-
tional differential equations, and difference equations was introuced. In
this paper, we will extend this notion to the so-called total φ0-stability
for systems of difference equations. given some new criteria and results.
Our technique depends on cone-valued Liapunov’s function method.

1. Introduction

Recently, difference equations problems has been considerable interest in
studying and improving (see [2], [3], [7]–[11]). Furthermore it has been success-
fully in different approachs based on Liapunov’s direct method, and was study
with cone and cone-valued Liapunov function method (see [8]).

Our purpose in this paper is to extend total stability of [11] to new type
of stability, namely total φ0-stability of difference equations systems which lie
somewhere between totally stability of [11] on one side and φ0-stability of [8]
on the othere side via cone-valued Liapunov function method that was studied
in [5] and used in [1], [8].

Let �m be the m-dimensional Euclidean real space, J = [t0,∞), and �+

= [0,∞). The following definitions will be needed.

Definition 1.1 ([4]). A function b(r) is said to be belong to the class
K if b(r) ∈ C[(0, ρ),�+], b(0) = 0 and b(r) is strictly monotone increasing in r.

Definition 1.2 ([4]). A function a(t) is said to be belong to the class
L if a(t) ∈ C[J,�+], a(t) → ∞ as t→ ∞ and a(t) is strictly monotone decreas-
ing in t.

Definition 1.3 ([1]). A proper subset K ⊂ �m is called a cone if

(i) λK ⊂ K,λ ≥ 0, (ii) K +K ⊂ K, (iii) K = K,

(iv) K◦ �= ∅, (v) K ∩ (−K) = 0,
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where K and K◦ denote the closure and interior of K respectively, and ∂K
denotes the boundary of K,x ∈ ∂K ⇐⇒ y−x = 0 for some y ∈ K∗

0 ,K0 = K−0.
The order relation on �m induced by the cone K is defined as follows
Let x, y ∈ K, then

x ≤K y ⇐⇒ y − x ∈ K, and x ≤Ko y ⇐⇒ y − x ∈ Ko.

The set K∗ is called the adjoint cone if

K∗ = {φ ∈ �m : (φ, x) ≥ 0}, for x ∈ K,

satisfies the properties (i) − (v) of Definition 1.3.

Definition 1.4 ([1]). A function g : D → �m, D ⊂ �n is called quasi-
monotone relative to the cone K, if x, y ∈ D and y−x ∈ ∂K, then there exists
φ◦ ∈ K�

◦ such that (φ◦, y − x) = 0 and (φ◦, g(y) − g(x)) ≥ 0.
Consider system of difference equations

(1.1) x(n+ 1) = f(n, x(n)), x(n0) = ψ

and the perturbed system

(1.2) x(n+ 1) = f(n, x(n)) + h(n, x(n)), x(n0) = ψ

where f, h : Z+×C → �m are continuous in xn, yn, Z
+ is the set of nonnegative

integers x, y ∈ �m, f(n, 0) = h(n, 0) = 0 for n ∈ Z+, so that the equations (1.1),
(1.2) always have the zero solution x(n) = 0, y(n) = 0. Let

‖ ψ ‖= max | ψ(s) |: s ∈ {−r, ,−r + 1, . . . , 0}

and C = {ψ : {−r,−r + 1, . . . , 0} → �m} for positive integer r > 0, xn(s) =
x(n + s), yn(s) = y(n+ s)fors = −r,−r + 1, . . . , 0. Furthermore for any given
n0 ∈ Z+ and given initial function ψ ∈ C, there is a unique solutions of
x(n0, ψ)(n), y(n0, ψ)(n) such that it satisfies (1.1), (1.2) and

x(n0, ψ)(n0 + s) = ψ(s), y(n0, ψ)(n0 + s) = ψ(s), for s = −r,−r + 1, . . . , 0.

respectively for all integer n ≥ n0.

Definition 1.5 ([8]). The zero solution of (1.1) is said to be φ0-
equistable if for ε > 0, n0 ∈ Z+, there exist positive functions δ(n0, ε) > 0
that is continuous in n0, such that for φ0 ∈ K∗

0

(φ0, x
∗(n0, ψ)) < ε, for n ≥ n0.

provided that (φ0, ψ) < δ, where x∗, y∗ here and in this paper denote the
maximal solutions of (1.1) and (1.2) relative to the cone K ⊂ �n respectively.
Other φ0- stability can be similarly dedined.

The following definitions are somewhat new and related with that of [11].
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Definition 1.6. The zero solution of (1.1) is said to be totally uniformly
φ0-stable if for ε > 0, n0 ∈ Z+, there exist positive functions δ1(n0, ε) > 0 and
δ2(n0, ε) > 0 that is continuous in n0, such that for φ0 ∈ K∗

0

(φ0, x
∗(n0, ψ)) < ε, for all n ≥ n0.

provided that (φ0, ψ) < δ1 and (ψ, h(n, x(n))) < δ2.

Definition 1.7. The zero solution of (1.1) is said to be totally φ0-stable
under permanent perturbations bounded in the mean if for ε > 0, n0 ∈ Z+,
there exist two positive functions δ1(n0, ε) > 0 and δ2(n0, ε) > 0 that is contin-
uous in n0,such that for φ0 ∈ K∗

0

(φ0, x
∗(n0, ψ)) < ε, for all n ≥ n0.

provided that (φ0, ψ) < δ1, (ψ, h(n, x(n))) < δ2.
In the case of uniformly totally φ0- stability δ1 and δ2 are independent of

t0.

Definition 1.8. The zero solution of (1.2) is said to be totally uniformly
φ0-stable under permanent perturbations bounded in the mean if for ε > 0, n0 ∈
Z+, there exist two positive functions δ1(n0, ε) > 0 and δ2(n0, ε) > 0 that is
continuous in n0 such that for the maximal solution y∗(n0, ψ)) of (1.2), and
φ0 ∈ K∗

0

(φ0, y
∗(n0, ψ)) < ε, for all n ≥ n0.

provided that (φ0, ψ) < δ1, (ψ, h(n, y(n))) < δ2, n ≥ n0, where

| h(n, y(n)) |= sup| h(n, ϕ) |: n ∈ Z+, ‖ ϕ ‖< ε.

Definition 1.9. The zero solution of (1.2) is said to be totally uniformly
asymptotically φ0-stable if it is uniformly asymptotically φ0-stable provided
that for

| h(n, ϕ) |≤ σ(n), uniformly for ‖ ϕ ‖< ρ.

where σ(n) → 0 as n→ ∞, and ρ is some constant.

2. Main results

In this section, we will discuss and obtain some results of total φ0-stability
of the system (1.1)

Theorem 2.1. Let the zero solution of (1.1) be uniformly asymptoti-
cally φ0- stable. Assume further that

‖ f(n, x) − f(n, y) ‖≤ L(n) ‖ x− y ‖,
for (n, x), (n, y) ∈ Z+ ×K, 0 ≤ L(n) ≤ αT, α is a positive constant.

Then there exists a cone-valued Liapunov function V (n, x) with the follow-
ing properties
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I) V (n, 0) = 0, V (n, x(n)) : Z+ × C → K is continuous function and
locally Lipschitzian in x(n) relative to K, for a continuous β(n) > 0,

II) a(φ0, x
∗(n)) ≤ (φ0, V (n, x∗(n))) ≤ b(φ0, x

∗(n)),
for a, b ∈ K, φ0 ∈ K∗

0 and (n, x(n)) ∈ Z+ ×K.
III) (φ0,�V (n, x∗(n)) ≤ −c(φ0, x

∗(n)), c ∈ K, where � is the difference
operator define as

�(V (n, x(n)) |(1.1) = V (n, x(n+ 1)) − V (n, x)
= V (n, f(n, x)) − V (n, x).

Proof. From the hypotheses, solutions of (1.1) are exist and unique. Let
x(n0.ψ) be a solution of (1.1), so that x(n0, ψ) = ψ. Define the function c as

c(φ0, x
∗(n)) =

1
A

[1 − exp(A(φ0, x
∗(n)))],

where A > 0 is a constant. For

(φ0, x
∗(t)) = 0, then

1
A

[1 − exp(A(φ0, x
∗(n)))] = 0.

This implies that c(0) = 0. For

(φ0, x
∗) > 0, then

1
A

[1 − exp(A(φ0, x
∗(n)))]

is monotone increasing. It follows that c ∈ K.
This proves (I).
Now, we define a cone-valued Liapunov function by

(2.1) V (n, 0) = sup
δ≥0

c[(φ0, x
∗(n))]x(n+ δ, 0, σω(x(0, x(n))))

[
1 +Bδ

1 + δ

]

where σω : S0(ρ) −→ K, and x∗(n) is the maximal solution of (1.1) relative to
the cone K ⊂ �n. For x = 0, thus from (2.1), V(n, 0)=0, and for δ = 0, we
have

c[(φ0, x
∗(n))]x(0, σω(x(0, x(n))) ≤K V (n, x(n)).

Thus

c[(φ0, x
∗)](φ0, x(0, σω(x(0, x(n))))) ≤K (φ0, V (n, x(n))).

and

(2.2) c[(φ0, x
∗)]ψ0(φ0, e) = a[(φ0, x

∗)] ≤K (φ0, V (n, x∗(n))).

where

ψ0 = min | x(ni) |, i = 1, 2, . . . s; a(r) = u0(φ0, e)c(r), and e = (1, 1, . . . 1)T .
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Since the zero solution of (1.1) is uniformly asymptotically φ0-stable, given
ε > 0, there exist two numbers δ = δ(ε), and T = T (ε) are independent of n0

such that

(φ0, ψ) < δ(φ0, x
∗) < ε, for n ≥ T (ε).

By using the fact that (1 +Bδ)/(1 + δ) < B, from (2.1) we get

(φ0, x
∗) = sup

δ≥0
c[(φ0, x

∗)][(φ0, x(n+ δ, 0, σω(n, x(n))))]
[

1 +Bδ

1 + δ

]

≤ sup
δ≥0

c[(φ0, x
∗)][(φ0, x

∗)
[

1 +Bδ

1 + δ

]

≤ sup
δ≥0

c[(φ0, x
∗)][(φ0, x

∗)
[

1 +Bδ

1 + δ

]
≤ εBc[(φ0, x

∗)] = b[(φ0, x
∗)]

that is

(2.3) (φ0, V (n, x∗(n))) ≤ b[(φ0, x
∗)], b ∈ K.

Comparing this with (2.2), we have

(2.4) a[(φ0, x
∗)] ≤ (φ0, V (n, x∗(n))) ≤ b[(φ0, x

∗)], a, b ∈ L.
This proves(II).

Now, for δ ≤ T (ε), where T (ε) is monotonic decreasing function, we have
from uniform asymptotic φ0-stability that

(φ0, x
∗) < ε.

Hence, if δ ≥ T (γ(φ0, x
∗)), for γ > 0, then

(φ0, x
∗) < (γ(φ0, x

∗)) =⇒ c(φ0, x
∗) < c(γ(φ0, x

∗))

and

c[(φ0, x
∗)]x(n+ δ, 0, σω(x(0, n, x)))

[
1 +Bδ

1 + δ

]
≤ Bc[(φ0, x

∗)](φ0, x
∗)

≤ εbc[(γ(φ0, x
∗))]

≤ (φ0, V (n, x∗(n)))

Thus

c[(φ0, x
∗)]x(n+ δ, 0, σω(x(0, x(n)))

[
1 +Bδ

1 + δ

]
≤ V (n, x).

This implies that V (n, x(n)) is defined only for 0 ≤ δ ≤ T (γ(φ0, x
∗)). As

V (n, x) = sup
0≤δ≤T

c[(φ0, x
∗)]x(n+ δ, 0, σω(x(0, x(n)))

[
1 +Bδ

1 + δ

]
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where T = T (γ(φ0, x
∗
n)).

By Corollary 2.7.1 of [4], and for x(n1), x(n2) ∈ S(ρ), we have

‖ V (n, x(n1)) − V (n, x(n2)) ‖

=
∥∥∥∥ sup

0≤δ≤T
c[(φ0, x

∗)]x(n+ δ, 0, σω(x(n1)(0, x(n1))))
(

1 +Bδ

1 + δ

)

− sup
0≤δ≤T

c[(φ0, x
∗)]x(n+ δ, 0, σω(x(n2)(0, x(n2))))

(
1 +Bδ

1 + δ

)∥∥∥∥
≤
∣∣∣∣ sup
0≤δ≤T

c[(φ0, x
∗)]
(

1 +Bδ

1 + δ

)∣∣∣∣ ‖ σω(x ∗ (n1)(0, x(n1)))

− σω(x(n2)(0, n, x(n2))) ‖

≤ k(n,w)
∣∣∣∣ sup
0≤δ≤T

c[(φ0, x
∗)]
(

1 +Bδ

1 + δ

)∣∣∣∣ exp
(

s=n∑
s=0

L(s)

)
‖ x(n1) − x(n2) ‖

≤ β(n) ‖ x(n1) − x(n2)‖.
where

β(n) = k(n,w)
∣∣∣∣ sup
0≤δ≤T

c(φ0, x
∗)
(

1 +Bδ

1 + δ

)∣∣∣∣ exp
(

s=n∑
s=0

L(s)

)

is locally Lipschitzian in x(n1) and x(n2). Therefore V (n, x(n)) is locally Lip-
schitzian in x.

Now,

‖ V (n+ δ, x) − V (n, y) ‖ ≤‖ V (n+ δ, x) − V (n+ δ, y) ‖
+ ‖ V (n+ δ, y) − V (n+ δ, y)(n+ δ, y)) ‖
+ ‖ V (n+ δ, y) − V (n, y) ‖

(2.5)

Since V (n, x) is locally Lipschitzian in y, y is continuous in δ, the first two terms
in the right hand side of the inequality (2.5) are small whenever ‖ y−x ‖ and δ
are small. By using (2.1), the term tends to zero. Therefor V (n, x) is continuous
in all its arguments.

Let x = x(n0, ψ), x(nρ) = x(nρ)(n+ ρ, n, x), ρ > 0, then we have

V (n+ ρ, x(nρ)) = sup
0≤δ≤T

c[(φ0, x
∗)]x(n+ ρ+ δρ, 0, σω(x(0, x(n+ ρ)))

[
1 +Bδ

1 + δ

]

The continuity of V and the uniqeness of a solution od (1.1) imply that there
exists a point δρ in which the upper bound is reached so that we have

V (n+ ρ, x(nρ)) = c[(φ0, x
∗)]x(n+ ρ+ δρ, 0, σω(x(0, x(n+ ρ)))

[
1 +Bδ

1 + δ

]
.

By putting δρ = δ1 − ρ, and using the fact

1 +Bδρ
1 + δρ

=
[

1 +Bδ1
1 + δ1

] [
1 − (B − 1)ρ

(1 +Bδ1)(1 + δρ)

]
,
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we get

V (n+ ρ, x(nρ))

= c[(φ0, x
∗)]x(n+ ρ+ δρ, 0, σω(x(0, x(n+ ρ)))

(
1 +Bδ1
1 + δ1

)

×
[
1 − (B − 1)ρ

(1 +Bδ1)(1 + δρ)

]

≤K V (n, x) −
[

(B − 1)ρV (n, x)
(1 +Bδ1)(1 + δρ)

]
.

Since 0 ≤ δρ < T, 0 < ρ < δ1 ≤ ρ + T, T is monotonic decreasing and using
(2.4), we have

V (n+ ρ, x(nρ)) − V (n, x)
ρ

≤K −
[

(B − 1)V (n, x)
(1 +Bδ1)(1 + δρ)

]
.(

φ0,
V (n+ ρ, x(nρ)) − V (n, x)

ρ

)
≤K −

[
(B − 1)(φ0, V (n, x))

1 +Bδ1)(1 + δρ)

]
.

So that

�(φ0, V (n, x))) ≤ −
[

(B − 1)(φ0, V (n, x))
(1 +BT (γ(φ0, x∗)))(1 + Tγ(φ0, x∗))) +Bρ

]
≤ −β(φ0, V (n, x))), β ∈ κ

≤ −βa[(φ0, x
∗)] ≤ c(φ0, x

∗), c ∈ K.

This proves (III), and the proof is completed.

Theorem 2.2. Let the hypotheses og Theorem 2.1 be satisfied. Then
the zero solution of (1.1) is totally φ0-stable.

Proof. From Theorem 2.1, property (I) holds. Let ε > 0 be given, choose
δ1 = δ1(ε) such that

a(ε) > b(δ1(ε)), a, b ∈ K.
Let x(n) = x(n, ψ) be a solution of (1.1) such that

(φ0, ψ) < δ1 and (φ0, h(n, x)) < δ2, for δ2 = δ2(ε) > 0.

By (II) of Theorem 2.1, we have V (n0, ψ) = b(δ1(ε)).
Now, we claim that

(φ0, V (n, x)) < a(ε), n ≥ 0.

This claim leads to

a(φ0, x
∗) < (φ0, V (n, x)) < a(ε).
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Then (φ0, x
∗) < ε, and this show that the trivial solution of (1.1) is totally φ0-

stable.
Now, we justify this cliam. Define

T (n) = (φ0, V (n, x)).

Suppose that this claim is false, then there exist two numbers n1 and n2 with
n0 < n1 < n2 such that

T (n1) = b(δ1(ε)), T (n2) = a(ε), and T (n) ≥ b(δ1(ε)) for n1 ≤ n ≤ n2.

This show that T (n) is nondecreasing in [n1, n2] and, we have

(2.6) �T (n1) ≥ 0

From (II)and (III) of Theorem 2.1 and for any c∗ ∈ κ, we have

�(φ0, V (n, x)) ≤ −c∗(φ0, V (n, x)).

This implies that

�T ≤ −c∗(T ) +M [(φ0, h(n, x))],M > 0
≤ −c∗(T ) +Mδ2

≤ −c∗(b(δ1(ε))) +Mδ2

= −b∗(δ1(ε)) +Mδ2,

where c∗(b(r)) = b∗(r) ∈ K. Now, we choose

δ2 = b∗
(
δ1
M

)
. =⇒ �T < 0.

This contradicts (2.6) and our claim is justfied. Therefore the zero solution of
(1.1) is totally φ0-stable, and the proof is completed.

Theorem 2.3. Let the hypotheses og Theorem 2.1 be satisfied. Then the
zero solution of (1.1) is totally φ0-stable under permanent perturbation bounded
in the mean.

Proof. From Theorem 2.1, the property (I) holds. Let x(n) = x(n0, ψ)
be a solution of (1.1) such that

(φ0, ψ) < δ1 and (φ0, h(n, x)) ≤ γ(n), where
s=n0+T∑

s=n0

γ(s)ds < δ2.

Now, we are continuous as in the proof of Theorem 2.2, we arrive the inequality
(2.6). From (I), (II), and(III), we have

�T ≤ −c∗(T ) ≤ −c∗(T ) +M |(φ0, h(n, x))|,M < 0
≤ −c∗(T ) +Mγ(n).
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Integrating on [n0, T
∗], we get

T (n) ≤ −
T∗∑
n

c∗(T (s))ds+M
s=T∗∑
s=n

γ(s)ds

≤ −
s=T∗∑
s=n

c∗(T (s))ds+Mδ2.

Now, if we choose

δ2 = M−1
s=T∗∑
s=n

c∗(T (s))ds,

then T < 0, that is (φ0, V (n, x)) < 0. But this is impossible since the properties
(II),

(φ0, V (n, x)) ≥ a(φ0, x
∗), a ∈ K.

Therefore the result is immediated.

Theorem 2.4. Let the hypotheses of Theorem 2.1 be satisfied,and as-
sume further that h(n, x) is locally Lipschitzian in x relative to the cone K ⊂
�n, for each t ∈ �+. Then the zero solution of (1.1) is uniformly totally φ0-
stable.

Proof. From Theorem 2.1, it follows that

�(φ0, V (n, x)) ≤ −c∗[(φ0, V (n, x))] +M [(φ0, h(n, x))]
≤ −c∗[(φ0, V (n, x))] +Mσ(n),M > 0.

since σ ∈ �L, then there exists T = T (ε) sufficiently large such that for t ≥ T (ε),
we have that σ −→ 0. Therefore

�(φ0, V (n, x)) ≤ −c∗[(φ0, V (n, x))].

From (II), we have

�(φ0, V (n, x)) ≤ −c∗[(φ0, V (n, x))] +Mσ(n) = c∗[(φ0, x
∗)],

where c∗, a ∈ Kandc∗[a(r)] = c(r) so that c ∈ K. Now, by using the condition
(I), (II) and (III), we see that the conditions of Theorem 3.1 of [1] are satisfied.
Since

‖ h(n, x) − h(n, y) ‖≤ L(n) ‖ x− y ‖, for x, y ∈ K,

then putting y = 0, we get

‖ h(n, x) ‖≤ L(n) ‖ x ‖,
when x = 0, we have ‖ h(n, x) ‖= 0. Therefore from Theorem 3.4 of [1], and
definition of uniformly totally φ0-stable, the result is immediated.
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