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Asymptotics of solutions to the fourth order
Schrödinger type equation with a dissipative

nonlinearity

By

Jun-ichi Segata
∗ and Akihiro Shimomura

Abstract

In this paper, the asymptotic behavior in time of solutions to the
one-dimensional fourth order nonlinear Schrödinger type equation with
a cubic dissipative nonlinearity λ|u|2u, where λ is a complex constant
satisfying Im λ < 0, is studied. This nonlinearity is a long-range inter-
action. The local Cauchy problem at infinite initial time (the final value
problem) to this equation is solved for a given final state with no size
restriction on it. This implies the existence of a unique solution for the
equation approaching some modified free dynamics as t → +∞ in a suit-
able function space. Our modified free dynamics decays like (t log t)−1/2

as t → ∞.

1. Introduction

We study the asymptotic behavior in time of solutions for the fourth order
nonlinear Schrödinger type equation with a cubic dissipative nonlinearity in
one space dimension:

(1.1) i∂tu− 1
4
∂4

xu = (λ1 + iλ2)|u|2u, t > 0, x ∈ R,

where ∂t = ∂/∂t, ∂x = ∂/∂x, λ1 ∈ R, λ2 < 0, and u is a complex valued
unknown function of (t, x). The nonlinearity of the equation (1.1) has a dissi-
pative property, and it is a long-range interaction. In this paper, we solve the
local Cauchy problem at infinite initial time (the final value problem) to the
equation (1.1) for a given final state u+ with no size restriction on u+, which
implies the existence of a unique solution u for the equation (1.1) approaching
some modified free dynamics ua as t → +∞ in a suitable function space. The
asymptotics ua decays like (t log t)−1/2 as t→ ∞.

We recall several known results on the asymptotic behavior of solutions to
the nonlinear Schrödinger equation
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(1.2) i∂tu+
1
2
∆u = µ|u|p−1u, t > 0, x ∈ R

n,

where p > 1, µ ∈ C \ {0} and ∆ =
∑n

j=1 ∂
2/∂x2

j is the Laplace operator with
respect to the space variable x. It is well-known that if p > 1 + 2/n, then
the nonlinearity µ|u|p−1u is a short-range interaction, that is, contribution of
the nonlinearity is negligible for large time. (For results on the short-range
scattering for the equation (1.2), see, e.g., Ginibre [4].) On the other hand, if
p ≤ 1 + 2/n, then the nonlinearity µ|u|p−1u is a long-range interaction, that
is, contribution of the nonlinear term is not negligible for large time. (More
precisely, in Barab [1], it was shown that there does not exist an asymptotically
free solution for the equation (1.2) if 1 ≤ p ≤ 1+2/n and µ ∈ R\{0}.) Therefore
we see that for the equation (1.2), the exponent p = 1+2/n is critical between
the short range case and the long range one. Recall that the solution to the
Cauchy problem of the free Schrödinger equation i∂tu+

1
2
∆u = 0, (t, x) ∈ R × R

n,

u(0, x) = φ(x), x ∈ R
n

is given by U(t)φ, where U(t) = eit∆/2, and it decays as ‖U(t)φ‖Lq ≤
Ct−n(1/2−1/q)‖φ‖Lq′ , where q ≥ 2 and 1/q+1/q′ = 1. We consider the equation
(1.2) with the critical exponent p = 1 + 2/n and µ ∈ R \ {0}. In this case,
the modified wave operators to the equation (1.2) were constructed by Ozawa
[10] for n = 1 and Ginibre-Ozawa [5] for n = 2 or 3 for small final data u+ by
a suitable phase shift, more precisely, the solution u behaves like the modified
free profile U(t)e−iS(t,−i∇)u+, where S(t, x) = µ|û+(x)|2/n log t. Ginibre and
Velo [6] proved the existence of modified wave operators to the equation (1.2)
in the case n = 1 without any size restriction of the final state u+ and extended
the above results. For p = 1+2/n and n ≤ 3, Hayashi and Naumkin [7] showed
that the small global solution for the initial value problem of the equation (1.2)
with µ ∈ R \ {0} satisfies the time decay estimate ‖u(t)‖L∞

x
= O(t−n/2), and

that the solution has a modified free profile with the above phase shift. Fur-
thermore, for p = 3 and n = 1, Carles [3] proved the existence of the modified
scattering operator via the geometric optics. Recently, when p = 1 + 2/n and
n ≤ 3, Hayashi and Naumkin [8] constructed the modified scattering operator,
and their result is an improvement of [3] in the one-dimensional case.

In the case of µ ∈ C with Imµ < 0 and the critical exponent p = 1 + 2/n,
the nonlinearity µ|u|p−1u of the nonlinear Schrödinger equation (1.2) has a
dissipative property. In this case, recently, in [15], a time decay estimate and
an asymptotic behavior of the small global solution for the initial value problem
of the equation (1.2) were obtained when the space dimension n = 1, 2 or 3.
According to [15], roughly speaking, there exists a u+ ∈ L2

x ∩L∞
x such that the

small solution to the initial value problem to the equation (1.2) with µ ∈ C,
Imµ < 0 and p = 1 + 2/n behaves like U(t)B̃(t,−i∇)u+ in L2

x as t → +∞,
where
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B̃(t, x) =
(

1 +
2|µ2|
n

|û+(x)|2/n log t
)−n/2

× exp
(
i
nµ1

2|µ2| log
(

1 +
2|µ2|
n

|û+(x)|2/n log t
))

,

and µ = µ1 + iµ2 with µ1 ∈ R and µ2 < 0. (This means that the solution has
a modified free profile not only with a phase shift but also with a correction
of amplitude.) Furthermore, in this case, the solution u of the equation (1.2)
decays like ‖u(t)‖L∞

x
= (t log t)−n/2 as t→ +∞.

We return to the fourth order nonlinear Schrödinger type equation (1.1).
The local well-posedness for the fourth order nonlinear Schrödinger type equa-
tion was studied in [11, 12], and by the Strichartz estimate, the global well-
posedness in L2 for the equation (1.1) was proved in the appendix in [13]. We
consider the asymptotic behavior in time of solutions to the equation (1.1).
The solution to the initial value problem of the free equation i∂tv − 1

4
∂4

xv = 0, (t, x) ∈ R × R,

v(0, x) = v0(x)

is given by v(t, ·) = V (t)v0, where V (t) = e−it∂4
x/4 is the free evolution operator.

Ben-Artzi, Koch and Saut [2] showed that the free solution V (t)v0 decays like
t−1/4 in L∞

x for v0 ∈ L1
x, that is, ‖V (t)v0‖L∞

x
≤ C‖v0‖L1

x
t−1/4. Furthermore,

it is well-known that if v0 satisfies |v̂0(ξ)| = O(|ξ|α), as |ξ| → 0, with suitable
α > 0, then the free solution V (t)v0 behaves as

1
(3it)1/2

1
| 3
√
x/t| v̂0

(
3

√
x

t

)
exp

(
3
4
ix 3

√
x

t

)

in large time, and this function decays like t−1/2 in L∞
x as for the nonlinear

Schrödinger equation (see [13]). Here v̂0 denotes the Fourier transform of v0.
In view of this, it is expected that cubic nonlinearities are critical between the
short-range and the long-range interaction as in the case of one dimensional the
nonlinear Schrödinger equation. In the case of λ2 = 0, in [13], the large time
behavior of solutions to the equation (1.1) was studied, that is, the existence of
the modified wave operator was shown for a given small final state u+ satisfying
|û+(ξ)| = O(|ξ|α) with some α > 0 as |ξ| → 0. The asymptotics at t = ±∞ of
solution in [13] is

√
2πF (t, x)û+( 3

√
x/t)e−i eS±(t,x/t), where

F (t, x) =
1
2π

∫
R

eixξ−itξ4/4 dξ

is the fundamental solution to the free equation, and

S̃±(t, x) = ±λ1

3
|û+( 3

√
x)|2

( 3
√
x)2

log |t|
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is a phase correction. Furthermore, in [14], the modified wave operator for the
fourth order Schrödinger type equation with the non-gauge-invariant nonlin-
earity λ0|u|2u + λ1u

3 + λ2uū
2 + λ3ū

3, where λ0 ∈ R and λ1, λ2, λ3 ∈ C, was
constructed.

In this paper, in the case of λ1 ∈ R and λ2 < 0, we solve the local Cauchy
problem at infinite initial time (the final value problem) to the equation (1.1)
for a given final state u+ with no size restriction on u+, that is, the existence
of a unique solution u for the equation (1.1) approaching some modified free
dynamics ua as t → +∞ in a suitable function space. Our asymptotics ua of
solution u is a modified free profile not only with a phase shift but also with
a correction of amplitude (see the definition (1.5)–(1.9) of ua below). We can
solve this problem without assuming smallness condition on the final state u+

(see (1.5)–(1.9)), since the asymptotics ua decays like (t log t)−1/2 in L∞
x , which

is faster than the free solution.

Notation. For ψ ∈ S ′, we denote the Fourier transform of ψ by ψ̂ or
Fψ. For ψ ∈ L1(Rn), ψ̂ is represented as

Fψ(ξ) = ψ̂(ξ) = (2π)−n/2

∫
Rn

ψ(x)e−ix·ξ dx.

For a space-time variable (t, x) ∈ R
2, we denote ∂0 = ∂t = ∂/∂t and ∂ = ∂x =

∂/∂x. For m, s ∈ R, we introduce the weighted Sobolev spaces:

Hm,s = Hm,s(R) = {ψ ∈ S ′; ‖ψ‖Hm,s = ‖(1 + |x|2)s/2(1 − ∂2
x)m/2ψ‖L2 <∞}.

We denote Hm,0 by Hm. Ḣm is the homogeneous Sobolev space:

Ḣm = Ḣm(R) = {ψ ∈ S ′; ‖ψ‖Ḣm = ‖(−∂2
x)m/2ψ‖L2

x
<∞}.

We introduce the following operators:

V (t) = e−it∂4
x/4, L = i∂t − 1

4
∂4

x.(1.3)

For a ∈ R, 3
√
a denotes the unique real root of the equation x3 = a. C denotes

a constant and so forth. They may differ from line to line, when it does not
cause any confusion.

Before stating the main result, we introduce the set of final states and the
asymptotic function.

Let

(1.4) D = {ψ ∈ L2; ‖ψ‖D <∞},

where

‖ψ‖D = ‖ψ‖H0,4 +
4∑

k=0

‖xkψ‖Ḣk−12 .
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For a final state u+, we introduce the following asymptotic profile:

ua(t, x) = u1(t, x)B
(
t,
x

t

)
,(1.5)

where

u1(t, x) =
1

(3it)1/2

1
| 3
√
x/t| û+

(
3

√
x

t

)
exp

(
3
4
ix 3

√
x

t

)
,(1.6)

B(t, x) = W (t, x)e−iS(t,x),(1.7)

S(t, x) =
λ1

2|λ2| log
(

1 +
2|λ2|

3
|û+( 3

√
x)|2

( 3
√
x)2

log t
)
,(1.8)

W (t, x) =
(

1 +
2|λ2|

3
|û+( 3

√
x)|2

( 3
√
x)2

log t
)−1/2

(1.9)

for t ≥ 1 and x ∈ R. u1 is an approximate solution for the free equation

(1.10) i∂tv − 1
4
∂4

xv = 0, (t, x) ∈ R × R

with v(0, x) = u+(x). (See [13].) ua is a modified free dynamics with the
modifier B. We note that S and W are real valued.

The main result in this paper is the following theorem:

Theorem 1.1. Let λ1 ∈ R, λ2 < 0 and let u+ ∈ D be a final state,
where D is defined by (1.4). Then there exist a T ≥ 3 and a unique solution u
for the equation (1.1) satisfying

u ∈ C([T,∞);L2
x),

sup
t≥T

td(‖u(t) − ua(t)‖L2
x

+ ‖u− ua‖L8((t,∞);L∞
x )) <∞,(1.11)

where 3/8 < d < 1 and the asymptotic profile ua is defined by (1.5)–(1.9).

Remark 1. In Theorem 1.1, no smallness condition on the final state
u+ is assumed.

Remark 2. We comment on the time decay for the asymptotic profile
ua and the solution u and on the convergence rate of their difference u − ua.
Let λ1 ∈ R, λ2 < 0, u+ ∈ D and û+ 
= 0. It is easy to see by the definition
(1.5)–(1.9) of ua that

‖ua(t)‖L2
x

=
1√
3t

∥∥∥∥∥ 1
3
√
x/t

û+

(
3

√
x

t

)
W
(
t,
x

t

)∥∥∥∥∥
L2

x

=
1√
3
‖(1/ 3

√
x)û+( 3

√
x)W (t, x)‖L2

x
.

(1.12)

From the identity (1.12), the inequality

(1.13) |(1/ 3
√
x)û+( 3

√
x)W (t, x)| ≤ |(1/ 3

√
x)û+( 3

√
x)|,
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and the equality

(1.14) ‖(1/ 3
√
x)û+( 3

√
x)‖L2

x
=

√
3‖û+‖L2

x
=

√
3‖u+‖L2

x
,

we have

‖ua(t)‖L2
x
≤ ‖u+‖L2

x
.

Furthermore by the identities (1.12) and (1.14), the estimate (1.13) and
Lebesgue’s dominated convergence theorem, we see that

lim
t→+∞ ‖ua(t)‖L2 = 0.(1.15)

On the other hand, there exists a constant κ > 0 such that

(1.16) ‖ua(t)‖L2
x
(log t)1/2 ≥ κ

for sufficiently large t ≥ 3. The above estimate (1.16) follows from

‖ua(t)‖L2
x

=
1√
3
‖(1/ 3

√
x)û+( 3

√
x)W (t, x)‖L2

x

=
1√
3

∥∥∥∥∥
(

1 +
2|λ2|

3
|û+( 3

√
x)|2

( 3
√
x)2

log t
)−1/2

û+( 3
√
x)

3
√
x

∥∥∥∥∥
L2

x

=

∥∥∥∥∥
(

1 +
2|λ2|

3
|x|−2|û+(x)|2 log t

)−1/2

û+(x)

∥∥∥∥∥
L2

x

≥
∥∥∥∥∥
(

1 +
2|λ2|

3

∥∥|x|−1û+

∥∥2

L∞
x

log t
)−1/2

û+

∥∥∥∥∥
L2

x

=
(

1 +
2|λ2|

3
‖|x|−1û+‖2

L∞
x

log t
)−1/2

‖û+‖L2
x

≥
(

1 +
2|λ2|

3
‖|x|−1û+‖2

L∞
x

)−1/2

‖u+‖L2
x
(log t)−1/2,

provided log t ≥ 1, u+ ∈ L2
x and |x|−1û+ ∈ L∞

x , which follows from u+ ∈
Ḣ−1 ∩ Ḣ−2, xu+ ∈ Ḣ−1 and the embedding H1 ↪→ L∞

x . From the asymptotic
formula (1.11) and the time decay (1.15) of ‖ua(t)‖L2

x
, we see that the solution

u for the equation (1.1) obtained in Theorem 1.1 converges to zero in L2 as
t→ +∞:

lim
t→+∞ ‖u(t)‖L2 = 0.(1.17)

Similarly, by the asymptotic formula (1.11) and the lower boundedness (1.16)
of ‖ua(t)‖L2

x
(log t)1/2, we see that

(1.18) ‖u(t)‖L2
x
(log t)1/2 ≥ κ



Fourth order NLS type equations with a dissipative nonlinearity 445

for t ≥ 3. In view of the asymptotic formula (1.11) in Theorem 1.1, the de-
cay (1.17) of ‖u(t)‖L2

x
and the lower boundedness (1.18) of ‖u(t)‖L2

x
(log t)1/2,

‖u(t) − ua(t)‖L2
x

decays faster than ‖u(t)‖L2
x

as t → +∞. This means that
the modified free dynamics ua approximates the solution u for the equation
(1.1) better than “zero” as t → +∞. Finally we remark the time decay of the
asymptotics ua in L∞

x :

‖ua(t)‖L∞
x

≤ C

|λ2|1/2(t log t)1/2

for t ≥ 3, since λ2 < 0. (See Proposition 4.1 below.)

Remark 3. In the case of λ1 ∈ R and λ2 > 0, a similar result holds for
the negative time if we replace the modifiers by

S(t, x) =
λ1

2λ2
log
(

1 +
2λ2

3
|û+( 3

√
x)|2

( 3
√
x)2

log |t|
)
,

W (t, x) =
(

1 +
2λ2

3
|û+( 3

√
x)|2

( 3
√
x)2

log |t|
)−1/2

for t ≤ −1 and x ∈ R.

We briefly explain the strategy of the proof of Theorem 1.1. Put f(u) =
(λ1 + iλ2)|u|2u, where λ1 ∈ R and λ2 < 0. For T > 0 and ρ > 0, we introduce
the following function spaces

XT = {w ∈ C([T,∞);L2
x); ‖w‖XT

<∞},
X̃T (ρ) = {w ∈ C([T,∞);L2

x); ‖w‖XT
≤ ρ},

where

‖w‖XT
= sup

t≥T
td(‖w(t)‖L2

x
+ ‖w‖L8((t,∞);L∞

x )),

where 3/8 < d < 1. Let A be a function satisfying

‖A(t)‖L∞
x

≤ η(t log t)−1/2,(1.19)

‖LA(t) − f(A(t))‖L2
x
≤ ηt−1−d′

,(1.20)

where d′ > d. First, we prove that for any η > 0, there exist a T ≥ 3 and
a unique solution u to the equation (1.1) satisfying u − A ∈ XT . The main
part of the proof is to show that for any ρ > 0 and η > 0, there exists a
sufficiently large T ≥ 3 such that the equation (1.1) has a unique solution u

satisfying u−A ∈ X̃T (ρ) by using the Strichartz estimate (see Lemma 2.2) and
the contraction argument. (See Proposition 3.1.) Next, for a given final state
u+ ∈ D, we show that our asymptotics ua defined by (1.5)–(1.9) satisfies the
conditions (1.19) and (1.20) with some d′ > d (see Proposition 4.1). Note that
the asymptotics ua of solution u is a modified free profile not only with a phase
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shift but also with a correction of amplitude in order to absorb the long-range
effect of f(ua). (For how to choose an asymptotics ua, see Remark 5.) These
two steps yield Theorem 1.1.

This paper is organized as follows. In Section 2, we derive several lemmas
needed for the proof of Theorem 1.1. In Section 3, we solve the abstract final
value problem around an asymptotic function which decays like (t log t)−1/2 in
L∞

x and approximates the equation (1.1) suitably in large time. In Section 4,
we show our asymptotics ua defined by (1.5)–(1.9) satisfies the assumptions of
the final value problem in Section 3, and we prove Theorem 1.1.

2. Preliminaries

The following lemma is used in order to solve the Cauchy problem at
infinity in Section 3.

Lemma 2.1. Let a > 1 and b > 0. Then there exists a constant C > 0
such that for t ≥ 2, ∫ ∞

t

s−a(log s)−b ds ≤ Ct−a+1(log t)−b.

Proof. By the integration by parts, we see∫ ∞

t

s−a(log s)−b ds

=
[
− 1
a− 1

s−a+1(log s)−b

]∞
t

+
1

a− 1

∫ ∞

t

s−a+1(−b)(log s)−b−1s−1 ds

=
1

a− 1
t−a+1(log t)−b − b

a− 1

∫ ∞

t

s−a(log s)−b−1 ds

≤ 1
a− 1

t−a+1(log t)−b.

This proves the lemma.

We introduce the Strichartz estimate for the free equation obtained by
Kenig-Ponce-Vega [9]. We define the linear operator

(Gh)(t) =
∫ ∞

t

V (t− s)h(s) ds,

where V (t) is the free evolution of the equation operator defined by (1.3), and
h is a function of (t, x). The following lemma is needed in order to solve the
Cauchy problem at infinity by the contraction argument in the next section.

Lemma 2.2 (Kenig-Ponce-Vega [9]). Let (q, r) and (q̃, r̃) be pairs of
positive numbers satisfying 4/q = 1/2 − 1/r, 8 ≤ q ≤ ∞, 4/q̃ = 1/2 − 1/r̃
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and 8 ≤ q̃ ≤ ∞. Then G is a bounded operator from Lq̃′
t ((T0,∞);Lr̃′

x (R))
into Lq

t ((T0,∞);Lr
x(R)) with norm uniformly bounded with respect to T0, where

(q̃′, r̃′) is a pair of positive numbers satisfying 1/q̃+1/q̃′ = 1 and 1/r̃+1/r̃′ = 1.
Furthermore, if h ∈ Lq̃′

t ((T0,∞);Lr̃′
x (R)), then Gh ∈ Ct([T0,∞);L2

x(R)).

To estimate asymptotic functions, the following two lemmas are needed in
Section 4.

Lemma 2.3. Let a ≥ 1/3. Then the identity

‖|x|−aψ( 3
√
x)‖L2

x
=

√
3‖|x|1−3aψ‖L2

x

holds if |x|1−3aψ ∈ L2
x.

Proof. By the change of variables y = 3
√
x in the integral, we have

‖|x|−aψ( 3
√
x)‖L2

x
=
(∫

R

|x|−2a|ψ( 3
√
x)|2 dx

)1/2

=
(∫

R

|y|−6a|ψ(y)|2(3y2) dy
)1/2

=
√

3
(∫

R

|y|2−6a|ψ(y)|2 dy
)1/2

,

which implies this lemma.

Lemma 2.4. Let g be a measurable function on R, and let g̃(x) =
g( 3
√
x)/| 3

√
x|. Then the identity

‖g̃‖L2
x

=
√

3‖g‖L2
x

holds for g ∈ L2
x, and there exists a constant Ck > 0 such that

‖∂k
x g̃‖L2

x
≤ Ck

k∑
j=0

‖|x|−3k+j∂j
xg‖L2

x
, k = 1, 2, 3, 4

if the right hand sides are finite.

Proof. The first identity follows from Lemma 2.3 immediately. Using the
Leibniz rule and Lemma 2.3, we can show the second inequality by a simple
calculation.

3. The final value problem

In this section, we solve the abstract Cauchy problem at infinite initial
time for the equation (1.1). Let A be a given asymptotic profile of the equation
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(1.1), namely an approximate solution for that equation as t → +∞. We put
our nonlinearity by f(u):

(3.1) f(u) = λ|u|2u,
where λ = λ1 + iλ2, λ1 ∈ R and λ2 < 0. We introduce the following function:

R = LA− f(A),(3.2)

where L is the operator defined by (1.3). The function R is difference between
the left hand sides and the right hand ones in the equation (1.1) substituted
u = A.

For T > 0, we introduce the following function space

XT = {w ∈ C([T,∞);L2
x); ‖w‖XT

<∞},
where

‖w‖XT
= sup

t≥T
td(‖w(t)‖L2

x
+ ‖w‖L8((t,∞);L∞

x )),

where 3/8 < d < 1. For ρ > 0 and T > 0, we define

X̃T (ρ) = {w ∈ C([T,∞);L2
x); ‖w‖XT

≤ ρ}.

XT is a Banach space with the norm ‖ · ‖XT
and X̃T (ρ) is a complete metric

space with the ‖ · ‖XT
-metric.

Proposition 3.1. Let λ1 ∈ R and λ2 < 0, and let d be a constant
satisfying 3/8 < d < 1. Assume that there exists a constant η > 0 such that for
t ≥ 3,

‖A(t)‖L∞
x

≤ η(t log t)−1/2,

‖R(t)‖L2
x

= ‖LA(t) − f(A(t))‖L2
x
≤ ηt−1−d′

,

where d′ is a constant satisfying d′ > d. Then there exist a T ≥ 3 and a unique
solution u for the equation (1.1) satisfying

u ∈ C([T,∞);L2
x),

sup
t≥T

td(‖u(t) −A(t)‖L2
x

+ ‖u−A‖L8((t,∞);L∞
x )) <∞.

Proof. We put v = u−A. Then the equation (1.1) is equivalent to

(3.3) Lv = f(v +A) − f(A) −R,

where R is defined by (3.2). The associate integral equation to the equation
(3.3) is

(3.4) v(t) = i

∫ ∞

t

V (t− s)[{f(v(s) +A(s)) − f(A(s))} −R(s)] ds.
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It is sufficient to show the existence of a unique solution v to the equation
(3.4) in XT for sufficiently large T ≥ 3. Our main task is to show that for
any ρ > 0 and η > 0, there exists a T ≥ 3 such that the equation (3.4) has a
unique solution in X̃T (ρ) by the contraction argument. Namely we define the
nonlinear operator K by

(Kv)(t) = i

∫ ∞

t

V (t− s)[{f(v(s) +A(s)) − f(A(s))} −R(s)] ds

for v ∈ X̃T (ρ), and we show that for any ρ > 0 and η > 0, K is a contraction
map on X̃T (ρ) if T ≥ 3 is sufficiently large. Let ρ > 0 be arbitrary, and T ≥ 3
which will be determined below. Let v ∈ X̃T (ρ) and t ≥ T . By the assumptions,
Hölder’s inequality, Lemmas 2.1, 2.2 and the fact 3/8 < d < min{1, d′}, we see

‖(Kv)(t)‖L2
x

+ ‖Kv‖L8((t,∞);L∞
x )

≤C(‖|v|3‖L8/7((t,∞);L1
x) + ‖|A||v|2‖L1((t,∞);L2

x)

+ ‖|A|2|v|‖L1((t,∞);L2
x) + ‖R‖L1((t,∞);L2

x))

≤C(‖v‖L8((t,∞);L∞
x )‖|v|2‖L4/3((t,∞);L1

x)

+ ‖v‖L8((t,∞);L∞
x )‖Av‖L8/7((t,∞);L2

x)

+ ‖|A|2v‖L1((t,∞);L2
x) + ‖R‖L1((t,∞);L2

x))

≤C
{
‖v‖L8((t,∞);L∞

x )

(∫ ∞

t

‖v(s)‖8/3
L2

x
ds

)3/4

+ ‖v‖L8((t,∞);L∞
x )

(∫ ∞

t

‖A(s)‖8/7
L∞

x
‖v(s)‖8/7

L2
x
ds

)7/8

+
∫ ∞

t

(‖A(s)‖2
L∞

x
‖v(s)‖L2

x
+ ‖R(s)‖L2

x
) ds
}

≤C
{
ρt−d

(∫ ∞

t

ρ8/3s−8d/3 ds

)3/4

+ ρt−d

(∫ ∞

t

η8/7(s log s)−4/7ρ8/7s−8d/7 ds

)7/8

+
∫ ∞

t

(η2(s log s)−1ρs−d + ηs−1−d′
) ds
}

≤Ct−d(ρ3t−2d+3/4 + ρ2ηt−d+3/8(log t)−1/2

+ ρη2(log t)−1 + ηt−(d′−d)).

Therefore we obtain

(3.5) ‖Kv‖XT
≤ C(ρ3T−2d+3/4 + ρη2(logT )−1 + ηT−(d′−d)).
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In the same way as above, for v1, v2 ∈ X̃T (ρ), we can show

‖Kv1 −Kv2‖XT

≤C((‖v1‖2
XT

+ ‖v2‖2
XT

)T−2d+3/4 + η2(log T )−1)‖v1 − v2‖XT

≤C(ρ2T−2d+3/4 + η2(log T )−1)‖v1 − v2‖XT
.

(3.6)

We note that for ρ > 0 and η > 0, there exists a sufficiently large T ≥ 3 such
that

C(ρ3T−2d+3/4 + ρη2(log T )−1 + ηT−(d′−d)) ≤ ρ,

C(ρ2T−2d+3/4 + η2(log T )−1) ≤ 1
2
,

since 3/8 < d < d′. From this fact, the estimates (3.5) and (3.6), we see that
the operator K is a contraction map on X̃T (ρ) for sufficiently large T ≥ 3.
Therefore for any ρ > 0 and η > 0, there exist a T ≥ 3 and a unique solution
to the integral equation (3.4) in X̃T (ρ). The uniqueness of solutions to the
equation (3.4) in XT for sufficiently large T ≥ 3 (which depends only on η > 0)
follows from the first inequality of the estimate (3.6) for solutions v1 ∈ XT and
v2 ∈ XT , (i.e., Kvj = vj , j = 1, 2). Hence for any η > 0, there exists a T ≥ 3
such that the equation (3.4) has a unique solution in XT . This completes the
proof of this proposition.

Remark 4. In Proposition 3.1, no size restriction on η > 0 is assumed.

4. Proof of Theorem 1.1

In this section, we show Theorem 1.1, by proving that the asymptotic
profile ua defined by (1.5)–(1.9) satisfies the assumptions in Proposition 3.1.

Let u+ ∈ D be a final state, where D is defined by (1.4), and let ua be the
asymptotics defined by (1.5)–(1.9). f(u) is our nonlinearity defined by (3.1).

The main task of this section is to show the following proposition, namely
we show that ua satisfies the assumption of Proposition 3.1. Theorem 1.1
immediately follows from Propositions 3.1 and 4.1.

Proposition 4.1. Let λ1 ∈ R, λ2 < 0, u+ ∈ D and ua be the asymp-
totics defined by (1.5)–(1.9). Then there exist a polynomial P (‖u+‖D) of ‖u+‖D
and a positive integer k such that for t ≥ 3,

‖ua(t)‖L∞
x

≤ C|λ2|−1/2(t log t)−1/2,(4.1)

‖Lua(t) − f(ua(t))‖L2
x
≤ CP (‖u+‖D)t−2(log t)k.(4.2)

The inequality (4.1) follows from the definition of ua immediately. (See
the proof of Proposition 4.1 below.) Our main task is the proof of the estimate
(4.2).
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Let t ≥ 3, x ∈ R, and we denote (∂0h)(t, x) = (∂th)(t, x). By the definition
of the asymptotics ua and the Leibniz rule, we have

Lua = (Lu1)B
(
t,
x

t

)
+ u1i∂t

(
B
(
t,
x

t

))
− (∂3

xu1)∂x

(
B
(
t,
x

t

))
− 3

2
(∂2

xu1)∂2
x

(
B
(
t,
x

t

))
− (∂xu1)∂3

x

(
B
(
t,
x

t

))
− 1

4
u1∂

4
x

(
B
(
t,
x

t

))
= u1i(∂0B)

(
t,
x

t

)
+ (Lu1)B

(
t,
x

t

)
− 1
t

(
ix

t
u1 + ∂3

xu1

)
(∂xB)

(
t,
x

t

)
− 3

2
1
t2

(∂2
xu1)(∂2

xB)
(
t,
x

t

)
− 1
t3

(∂xu1)(∂3
xB)

(
t,
x

t

)
− 1

4
1
t4
u1(∂4

xB)
(
t,
x

t

)
.

(4.3)

By the definition (1.7)–(1.9) of the modifier B, we note that B satisfies the
following ordinary differential equation:

(4.4) i∂tB(t, x) = (λ1 + iλ2)
1
3t

|û+( 3
√
x)|2

( 3
√
x)2

|B(t, x)|2B(t, x)

for t > 1 and x ∈ R. On the other hand, it follows from the definitions of
asymptotics ua and the nonlinearity f(u) that

f(ua) =
λ1 + iλ2

3t
1

( 3
√
x/t)2

∣∣∣∣û+

(
3

√
x

t

)∣∣∣∣2
×
∣∣∣B (t, x

t

)∣∣∣2B (t, x
t

)
u1.

(4.5)

From the equalities (4.4) and (4.5), we see that

(4.6) u1i(∂0B)
(
t,
x

t

)
= f(ua).

Therefore by the equations (4.3) and (4.6), we obtain

Lua − f(ua) = (Lu1)B
(
t,
x

t

)
− 1
t

(
ix

t
u1 + ∂3

xu1

)
(∂xB)

(
t,
x

t

)
− 3

2
1
t2

(∂2
xu1)(∂2

xB)
(
t,
x

t

)
− 1
t3

(∂xu1)(∂3
xB)

(
t,
x

t

)
− 1

4
1
t4
u1(∂4

xB)
(
t,
x

t

)
.

(4.7)

Remark 5. Here we remark how to choose a modifier B = We−iS .
Solving the ordinary differential equation (4.4) with B(1, x) = 1, we determine
our modifier B so that B satisfies the equality (4.6). By using the equality
(4.6), we can cancel contribution of the long-range term f(ua) in Lua − f(ua).
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We estimate the right hand side of the equality (4.7).

Lemma 4.1. Let λ1 ∈ R, λ2 < 0, u+ ∈ D, and u1 and B be defined
by (1.6) and (1.7)–(1.9), respectively. Then there exist a constant C > 0, a
polynomial P (‖u+‖D) of ‖u+‖D and a positive integer k such that for t ≥ 3,

‖∂j
xu1(t)‖L∞

x
≤ C‖u+‖Dt−1/2, j = 0, 1, 2,(4.8)

‖Lu1(t)‖L2
x
≤ C‖u+‖Dt−2,(4.9) ∥∥∥∥ ixt u1(t) + ∂3

xu1(t)
∥∥∥∥

L2
x

≤ C‖u+‖Dt−1,(4.10)

‖∂j
xB(t)‖L2

x
≤ P (‖u+‖D)(log t)k, j = 0, 1, 2, 3, 4,(4.11)

‖∂j
xB(t)‖L∞

x
≤ P (‖u+‖D)(log t)k, j = 0, 1.(4.12)

Proof. Putting φ(x) = û+( 3
√
x)/| 3

√
x| and using the Leibniz rule, Hölder’s

inequality, the relations ‖ψ(x/t)‖L∞
x

= ‖ψ‖L∞
x

and ‖ψ(x/t)‖L2
x

= t1/2‖ψ‖L2
x

for t ∈ R \ {0}, Lemmas 2.3 and 2.4, and the Sobolev embedding theorem
H1(R) ↪→ L∞(R), we can show the estimates (4.8), (4.11) and (4.12) by a
direct calculation. Hereafter we describe the proof of the estimates (4.9) and
(4.10).

Let

φ(x) =
1

| 3
√
x| û+( 3

√
x), q(t, x) =

3
4
x 3

√
x

t
.

Then

u1(t, x) =
1

(3it)1/2
φ
(x
t

)
eiq(t,x).

We note that

∂xe
iq = i∂xqe

iq, ∂2
xe

iq = (i∂2
xq − (∂xq)2)eiq,(4.13)

∂3
xe

iq = (i∂3
xq − 3(∂xq)(∂2

xq) − i(∂xq)3)eiq,(4.14)

∂4
xe

iq = (i∂4
xq − 4(∂xq)(∂3

xq) − 3(∂2
xq)

2 − 6i(∂xq)2(∂2
xq) + (∂xq)4)eiq(4.15)

and

∂xq(t, x) =
(x
t

)1/3

, ∂2
xq(t, x) =

1
3

1
t

(x
t

)−2/3

,(4.16)

∂3
xq(t, x) = −2

9
1
t2

(x
t

)−5/3

, ∂4
xq(t, x) =

10
27

1
t3

(x
t

)−8/3

.(4.17)

We show the estimate (4.9). By the Leibniz rule, we have

1
4
∂4

xu1 =
1

(3it)1/2

{
1

4t4
(∂4φ)

(x
t

)
eiq

+
1
t3

(∂3φ)
(x
t

)
∂xe

iq +
3

2t2
(∂2φ)

(x
t

)
∂2

xe
iq

+
1
t
(∂φ)

(x
t

)
∂3

xe
iq +

1
4
φ
(x
t

)
∂4

xe
iq

}
.

(4.18)
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By the identities (4.13)–(4.17) and (4.18), Hölder’s inequality and Lemmas 2.3
and 2.4, we can write (1/4)∂4

xu1 as

1
4
∂4

xu1 =
1

(3it)1/2

1
4
φ
(x
t

)
(∂xq)4eiq

− 1
(3it)1/2

3i
2
φ
(x
t

)
(∂xq)2(∂2

xq)e
iq

− 1
(3it)1/2

i

t
(∂φ)

(x
t

)
(∂xq)3eiq − 1

t5/2
Y
(x
t

)
eiq

=
1
4

1
(3it)1/2

φ
(x
t

)(x
t

)4/3

eiq − i

2(3i)1/2

1
t3/2

φ
(x
t

)
eiq

− i

(3i)1/2

1
t3/2

(∂φ)
(x
t

) x
t
eiq − 1

t5/2
Y
(x
t

)
eiq,

(4.19)

where Y is some complex valued function on R satisfying

(4.20)
1
t1/2

∥∥∥Y (x
t

)∥∥∥
L2

x

= ‖Y ‖L2
x
≤ C‖u+‖D

with some constant C > 0. On the other hand, by a simple calculation, we
have

i∂tu1 =
1
4

1
(3it)1/2

φ
(x
t

)(x
t

)4/3

eiq − i

2(3i)1/2

1
t3/2

φ
(x
t

)
eiq

− i

(3i)1/2

1
t3/2

(∂φ)
(x
t

) x
t
eiq.

(4.21)

From the identities (4.19) and (4.21), we obtain

(4.22) Lu1 =
1
t5/2

Y
(x
t

)
eiq.

The equality (4.22) and the estimate (4.20) imply the estimate (4.9).
Finally we prove the estimate (4.10). By the Leibniz rule, we have

∂3
xu1 =

1
(3it)1/2

{
1
t3

(∂3φ)
(x
t

)
eiq +

3
t2

(∂2φ)
(x
t

)
∂xe

iq

+
3
t
(∂φ)

(x
t

)
∂2

xe
iq + φ

(x
t

)
∂3

xe
iq

}
.

(4.23)

By the identities (4.13)–(4.14), (4.16)–(4.17) and (4.23), Hölder’s inequality
and Lemmas 2.3 and 2.4, we can write ∂3

xu1 as

∂3
xu1 =

1
(3it)1/2

φ
(x
t

)
(−i(∂xq)3)eiq +

1
t3/2

Z
(x
t

)
eiq,

= − ix

t

1
(3it)1/2

φ
(x
t

)
eiq +

1
t3/2

Z
(x
t

)
eiq,

= − ix

t
u1 +

1
t3/2

Z
(x
t

)
eiq,

(4.24)
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where Z is some complex valued function on R satisfying

(4.25)
1
t1/2

∥∥∥Z (x
t

)∥∥∥
L2

x

= ‖Z‖L2
x
≤ C‖u+‖D

with some constant C > 0. The estimate (4.10) follows from the identity (4.24)
and the inequality (4.25). This lemma is proved.

Remark 6. According to the estimate (4.9), Lu1(t) decays in L2
x with

respect to t, though u1(t) does not decay. (Note that ‖u1(t)‖L2 = ‖û+‖L2 .)
This is because u1 is an approximate solution of the free equation (1.10).

We prove Proposition 4.1.

Proof of Proposition 4.1. Let t ≥ 3. By the definition of ua, we see that

|ua(t, x)| =
∣∣∣u1(t, x)W

(
t,
x

t

)∣∣∣
=

1
(3t)1/2

∣∣∣∣∣ 1
3
√
x/t

û+

(
3

√
x

t

)∣∣∣∣∣
×
(

1 +
2|λ2|

3
1

( 3
√
x/t)2

∣∣∣∣û+

(
3

√
x

t

)∣∣∣∣2 log t

)−1/2

.

The above equality and the fact supy∈R
(|y|(1 + ay2)−1/2) = a−1/2 for a > 0

imply the estimate (4.1).
We show the estimate (4.2). By the identity (4.7), Hölder’s inequality, the

relations ‖ψ(x/t)‖L∞
x

= ‖ψ‖L∞
x

and ‖ψ(x/t)‖L2
x

= t1/2‖ψ‖L2
x

for t ∈ R \ {0}
and Lemma 4.1, we see that

‖Lua(t) − f(ua(t))‖L2
x

≤ ‖Lu1(t)‖L2
x
‖B(t)‖L∞

x
+

1
t

∥∥∥∥ ixt u1(t) + ∂3
xu1(t)

∥∥∥∥
L2

x

‖∂xB(t)‖L∞
x

+
3
2

1
t2
‖∂2

xu1(t)‖L∞
x
t1/2‖∂2

xB(t)‖L2
x

+
1
t3
‖∂xu1(t)‖L∞

x
t1/2‖∂3

xB(t)‖L2
x

+
1
4

1
t4
‖u1(t)‖L∞

x
t1/2‖∂4

xB(t)‖L2
x

≤ P (‖u+‖D)t−2(log t)k

with some polynomial P (‖u+‖D) of ‖u+‖D and some positive integer k. This
yields the estimate (4.2).

Now we prove Theorem 1.1.

Proof of Theorem 1.1. Suppose that all the assumptions in Theorem 1.1
are satisfied. Namely, assume that u+ ∈ D, λ1 ∈ R and λ2 < 0. Let ua
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be defined by (1.5)–(1.9). Then by Proposition 4.1, we see that the asymp-
totic profile ua satisfies the the assumptions in Proposition 3.1. Theorem 1.1
immediately follows from Proposition 3.1.
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