3-graded decompositions of exceptional Lie algebras \mathfrak{g} and group realizations of
 $\mathfrak{g}_{e v}, \mathfrak{g}_{0}$ and $\mathfrak{g}_{e d}$
 Part II, $G=E_{7}$, Case 1

By

Toshikazu Miyashita and Ichiro Yokota

The 3-graded decompositions of simple Lie algebras \mathfrak{g},

$$
\mathfrak{g}=\mathfrak{g}_{-3} \oplus \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \oplus \mathfrak{g}_{3}, \quad\left[\mathfrak{g}_{k}, \mathfrak{g}_{l}\right] \subset \mathfrak{g}_{k+l}
$$

are classified and the types of subalgebras $\mathfrak{g}_{\text {ev }}=\mathfrak{g}_{-2} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{2}, \mathfrak{g}_{0}$ and $\mathfrak{g}_{e d}=\mathfrak{g}_{-3}$ $\oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{3}$ of \mathfrak{g} are determined. The following table is the results of $\mathfrak{g}_{\text {ev }}, \mathfrak{g}_{0}$ and $\mathfrak{g}_{e d}$ for the exceptional Lie algebras of type E_{7} ([1]).

Case 1	\mathfrak{g}	$\mathfrak{g}_{e v}$	\mathfrak{g}_{0}
		$\mathfrak{g}_{e d}$	$\operatorname{dim} \mathfrak{g}_{1}, \operatorname{dim} \mathfrak{g}_{2}, \operatorname{dim} \mathfrak{g}_{3}$
	$\mathfrak{e}_{7}{ }^{C}$	$\mathfrak{s l}(2, C) \oplus \mathfrak{s o}(12, C)$	$\mathfrak{s l}(2, C) \oplus C \oplus \mathfrak{s l}(6, C)$
		$\mathfrak{s l}(3, C) \oplus \mathfrak{s l}(6, C)$	$30,15,2$
	$\mathfrak{e}_{7(7)}$	$\mathfrak{s l}(2, \boldsymbol{R}) \oplus \mathfrak{s o}(6,6)$	$\mathfrak{s l}(2, \boldsymbol{R}) \oplus \boldsymbol{R} \oplus \mathfrak{s l}(6, \boldsymbol{R})$
		$\mathfrak{s l}(3, \boldsymbol{R}) \oplus \mathfrak{s l}(6, \boldsymbol{R})$	$30,15,2$
	$\mathfrak{e}_{7(-5)}$	$\mathfrak{s l}(2, \boldsymbol{R}) \oplus \mathfrak{s o}^{*}(12)$	$\mathfrak{s l}(2, \boldsymbol{R}) \oplus \boldsymbol{R} \oplus \mathfrak{s u}^{*}(6)$
		$\mathfrak{s l}(3, \boldsymbol{R}) \oplus \mathfrak{s u}^{*}(6)$	$30,15,2$
Case 2	\mathfrak{g}	$\mathfrak{g}_{e v}$	\mathfrak{g}_{0}
		$\mathfrak{g}_{e d}$	
	$\mathfrak{e}_{7}{ }^{C}$	$\mathfrak{s l}(2, C) \oplus \mathfrak{s o}(12, C)$	$C \oplus C \oplus \mathfrak{s l}(6, C)$
		$C \oplus \mathfrak{s l}(7, C)$	$26,16,6$
	$\mathfrak{e}_{7(7)}$	$\mathfrak{s l}(2, \boldsymbol{R}) \oplus \mathfrak{s o}(6,6)$	$\boldsymbol{R} \oplus \boldsymbol{R} \oplus \mathfrak{s l}(6, \boldsymbol{R})$
	$\boldsymbol{R} \oplus \mathfrak{s l}(7, \boldsymbol{R})$	$26,16,6$	

Received October 20, 2005
Revised March 10, 2006

Case 3	\mathfrak{g}	$\begin{aligned} & \mathfrak{g}_{e v} \\ & \mathfrak{g}_{e d} \\ & \hline \end{aligned}$	\mathfrak{g}_{0} $\operatorname{dim} \mathfrak{g}_{1}, \operatorname{dim} \mathfrak{g}_{2}, \operatorname{dim} \mathfrak{g}_{3}$
Case 4	$\mathfrak{e}_{7}{ }^{\text {C }}$	$\begin{aligned} & C \oplus \mathfrak{e}_{6}{ }^{C} \\ & C \oplus \mathfrak{s o}(12, C) \end{aligned}$	$\begin{aligned} & C \oplus C \oplus \mathfrak{s o}(10, C) \\ & 17,16,10 \end{aligned}$
	${ }^{\text {e }}$ (7)	$\begin{aligned} & \boldsymbol{R} \oplus \mathfrak{e}_{6(6)} \\ & \boldsymbol{R} \oplus \mathfrak{s o}(6,6) \end{aligned}$	$\begin{aligned} & \boldsymbol{R} \oplus \boldsymbol{R} \oplus \mathfrak{s o}(5,5) \\ & 17,16,10 \end{aligned}$
	$\mathfrak{e}_{7(-25)}$	$\begin{aligned} & \boldsymbol{R} \oplus \mathfrak{e}_{6(-26)} \\ & \boldsymbol{R} \oplus \mathfrak{s o}(2,10) \end{aligned}$	$\begin{aligned} & \boldsymbol{R} \oplus \boldsymbol{R} \oplus \mathfrak{s o}(1,9) \\ & 17,16,10 \end{aligned}$
	\mathfrak{g}	$\begin{aligned} & \mathfrak{g}_{e v} \\ & \mathfrak{g}_{e d} \end{aligned}$	\mathfrak{g}_{0} $\operatorname{dim} \mathfrak{g}_{1}, \operatorname{dim} \mathfrak{g}_{2}, \operatorname{dim} \mathfrak{g}_{3}$
Case 5	$\mathfrak{e}_{7}{ }^{\text {C }}$	$\begin{aligned} & C \oplus \mathfrak{e}_{6}{ }^{C} \\ & \mathfrak{s l}(2, C) \oplus C \oplus \mathfrak{s o}(10, C) \end{aligned}$	$\begin{aligned} & C \oplus C \oplus \mathfrak{s o}(10, C) \\ & 26,16,1 \end{aligned}$
	${ }^{\text {e }}$ (7)	$\begin{aligned} & \boldsymbol{R} \oplus \mathfrak{e}_{6(6)} \\ & \mathfrak{s l}(2, \boldsymbol{R}) \oplus \boldsymbol{R} \oplus \mathfrak{s o}(5,5) \end{aligned}$	$\begin{aligned} & \boldsymbol{R} \oplus \boldsymbol{R} \oplus \mathfrak{s o}(5,5) \\ & 26,16,1 \end{aligned}$
	$\mathfrak{e}_{7(-25)}$	$\begin{aligned} & \boldsymbol{R} \oplus \mathfrak{e}_{6(-26)} \\ & \mathfrak{s l}(2, \boldsymbol{R}) \oplus \boldsymbol{R} \oplus \mathfrak{s o}(5,5) \end{aligned}$	$\begin{aligned} & \boldsymbol{R} \oplus \boldsymbol{R} \oplus \mathfrak{s o}(1,9) \\ & 26,16,1 \end{aligned}$
	\mathfrak{g}	$\begin{aligned} & \mathfrak{g}_{e v} \\ & \mathfrak{g}_{e d} \end{aligned}$	$\begin{aligned} & \mathfrak{g}_{0} \\ & \operatorname{dim} \mathfrak{g}_{1}, \operatorname{dim} \mathfrak{g}_{2}, \operatorname{dim} \mathfrak{g}_{3} \end{aligned}$
	$\mathfrak{e}_{7}{ }^{\text {C }}$	$\begin{aligned} & \mathfrak{s l l}(8, C) \\ & \mathfrak{s l}(3, C) \oplus \mathfrak{s l}(6, C) \end{aligned}$	$\begin{aligned} & \mathfrak{s l}(3, C) \oplus C \oplus \mathfrak{s l}(5, C) \\ & 30,15,5 \end{aligned}$
	${ }^{\text {e }}$ (7)	$\begin{aligned} & \mathfrak{s l}(8, \boldsymbol{R}) \\ & \mathfrak{s l}(3, \boldsymbol{R}) \oplus \mathfrak{s l}(6, \boldsymbol{R}) \end{aligned}$	$\begin{aligned} & \mathfrak{s l}(3, \boldsymbol{R}) \oplus \boldsymbol{R} \oplus \mathfrak{s l}(5, \boldsymbol{R}) \\ & 30,15,5 \end{aligned}$

In the previous paper [7], we gave the group realizations of $\mathfrak{g}_{e v}, \mathfrak{g}_{0}$ and $\mathfrak{g}_{e d}$ for the exceptional universal linear Lie groups G of type G_{2}, F_{4} and E_{6}. In the present paper, for exceptional universal linear Lie groups G of type E_{7}, we realize the subgroups $G_{e v}, G_{0}$ and $G_{e d}$ of G corresponding to $\mathfrak{g}_{e v}, \mathfrak{g}_{0}$ and $\mathfrak{g}_{e d}$ of $\mathfrak{g}=\operatorname{Lie} G$. The result of the present paper is only shown about the case 1 , so we continue to report the remaining cases. Our results of the case 1 are as follows:

G	$G_{e v}$	G_{0}
	$G_{e d}$	
E_{7}^{C}	$(S L(2, C) \times S p i n(12, C)) / \boldsymbol{Z}_{2}$	$\left(S L(2, C) \times C^{*} \times S L(6, C)\right) /\left(\boldsymbol{Z}_{6} \times \boldsymbol{Z}_{2}\right)$
	$(S L(3, C) \times S L(6, C)) / \boldsymbol{Z}_{3}$	
$E_{7(7)}$	$(S L(2, \boldsymbol{R}) \times \operatorname{spin}(6,6)) / \boldsymbol{Z}_{2} \times 2$	$\left(S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{+} \times S L(6, \boldsymbol{R})\right) / \boldsymbol{Z}_{2} \times 2^{2}$
	$S L(3, \boldsymbol{R}) \times S L(6, \boldsymbol{R})$	
$E_{7(-5)}$	$\left(S L(2, \boldsymbol{R}) \times \operatorname{spin}^{*}(12)\right) / \boldsymbol{Z}_{2} \times 2$	$\left(S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{+} \times S U^{*}(6)\right) / \boldsymbol{Z}_{2} \times 2^{2}$
	$S L(3, \boldsymbol{R}) \times S U^{*}(6)$	

This paper is a continuation of [7], so the numbering of sections and theorems start from 4. We use the same notations as that in [7].

4. Group E_{7}

Let \mathfrak{J}^{C} (resp. \mathfrak{J}^{\prime}) be the exceptional C-Jordan algebra (resp. the split exceptional \boldsymbol{R}-Jordan algebra) and we define the C-vector space \mathfrak{P}^{C} (resp. the \boldsymbol{R}-vector space \mathfrak{P}^{\prime}) by

$$
\mathfrak{P}^{C}=\mathfrak{J}^{C} \oplus \mathfrak{J}^{C} \oplus C \oplus C \quad\left(\text { resp. } \mathfrak{P}^{\prime}=\mathfrak{J}^{\prime} \oplus \mathfrak{J}^{\prime} \oplus \boldsymbol{R} \oplus \boldsymbol{R}\right)
$$

with inner products

$$
(P, Q)=(X, Z)+(Y, W)+\xi \zeta+\eta \omega, \quad\{P, Q\}=(X, W)-(Y, Z)+\xi \omega-\eta \zeta
$$

where $P=(X, Y, \xi, \eta), Q=(Z, W, \zeta, \omega) \in \mathfrak{P}^{C}$ (resp. $\left.\mathfrak{P}^{\prime}\right)$.
For $\phi \in \mathfrak{e}_{6}{ }^{C}, A, B \in \mathfrak{J}^{C}$ and $\nu \in C$, we define the C-linear mapping $\Phi(\phi, A, B, \nu)$ of \mathfrak{P}^{C} by

$$
\Phi(\phi, A, B, \nu)\left(\begin{array}{l}
X \\
Y \\
\xi \\
\eta
\end{array}\right)=\left(\begin{array}{c}
\phi X-\frac{1}{3} \nu X+2 B \times Y+\eta A \\
2 A \times X-{ }^{t} \phi Y+\frac{1}{3} \nu Y+\xi B \\
(A, Y)+\nu \xi \\
(B, X)-\nu \eta
\end{array}\right)
$$

For $P=(X, Y, \xi, \eta), Q=(Z, W, \zeta, \omega) \in \mathfrak{P}^{C}$, we define the C-linear mapping $P \times Q$ of \mathfrak{P}^{C} by

$$
P \times Q=\Phi(\phi, A, B, \nu), \quad\left\{\begin{aligned}
\phi & =-\frac{1}{2}(X \vee W+Z \vee Y) \\
A & =-\frac{1}{4}(2 Y \times W-\xi Z-\zeta X) \\
B & =\frac{1}{4}(2 X \times Z-\eta W-\omega Y) \\
\nu & =\frac{1}{8}((X, W)+(Z, Y)-3(\xi \omega+\zeta \eta))
\end{aligned}\right.
$$

where $X \vee W \in \mathfrak{e}_{6}{ }^{C}$ is defined by $X \vee W=[\widetilde{X}, \widetilde{W}]+\left(X \circ W-\frac{1}{3}(X, W) E\right)^{\sim}$, here $\widetilde{X}: \mathfrak{J}^{C} \rightarrow \mathfrak{J}^{C}$ is defined by $\widetilde{X} Z=X \circ Z, Z \in \mathfrak{J}^{C}$.

We arrange C-linear transformations of \mathfrak{P}^{C} used later. By using the mapping $\varphi_{2}: S p\left(1, \boldsymbol{H}^{C}\right) \times S p\left(1, \boldsymbol{H}^{C}\right) \rightarrow G_{2}^{C}$,

$$
\varphi_{2}(p, q)\left(a+b e_{4}\right)=q a \bar{q}+(p b \bar{q}) e_{4}, \quad a+b e_{4} \in \boldsymbol{H}^{C} \oplus \boldsymbol{H}^{C} e_{4}=\mathfrak{C}^{C}
$$

we define C-linear transformations $\gamma, \gamma^{\prime}, \gamma_{1}, \varepsilon_{1}, \varepsilon_{2}, w_{3}$ and δ_{4} of \mathfrak{C}^{C} by

$$
\begin{gathered}
\gamma=\varphi_{2}(1,-1), \quad \gamma^{\prime}=\varphi_{2}\left(e_{1}, e_{1}\right), \quad \gamma_{1}=\varphi_{2}\left(e_{2}, e_{2}\right) \\
\varepsilon_{1}=\varphi_{2}\left(e_{1}, 1\right), \quad \varepsilon_{2}=\varphi_{2}\left(e_{2}, 1\right), \quad w_{3}=\varphi_{2}\left(1, \bar{w}_{1}\right), \quad \delta_{4}=\varphi_{2}\left(1,-e_{1}\right)
\end{gathered}
$$

where $w_{1}=e^{2 \pi e_{1} / 3} \in \mathfrak{C} \subset \mathfrak{C}^{C}$. These C-linear transformations of \mathfrak{C}^{C} are naturally extended to C-linear transformations $\gamma, \gamma^{\prime}, \gamma_{1}, \varepsilon_{1}, \varepsilon_{2}, w_{3}$ and δ_{4} of \mathfrak{P}^{C} as

$$
\gamma(X, Y, \xi, \eta)=(\gamma X, \gamma Y, \xi, \eta)
$$

etc. Then $\gamma, \gamma^{\prime}, \gamma_{1}, \varepsilon_{1}, \varepsilon_{2}, w_{3}, \delta_{4} \in\left(G_{2}{ }^{C}\right)^{\tau} \subset G_{2}{ }^{C} \subset F_{4}{ }^{C} \subset E_{6}{ }^{C} \subset E_{7}{ }^{C}$ and $\gamma^{2}=\gamma^{\prime 2}=\gamma_{1}{ }^{2}=1, w_{3}{ }^{3}=1, \varepsilon_{1}{ }^{4}=\varepsilon_{2}{ }^{4}=\delta_{4}{ }^{4}=1$.

The connected universal linear Lie groups $E_{7}{ }^{C}, E_{7(7)}$ and $E_{7(-5)}$ are given by

$$
\begin{aligned}
E_{7}^{C} & =\left\{\alpha \in \operatorname{Iso}_{C}\left(\mathfrak{P}^{C}\right) \mid \alpha(P \times Q) \alpha^{-1}=\alpha P \times \alpha Q\right\} \\
E_{7(7)} & =\left\{\alpha \in \operatorname{Iso}_{R}\left(\mathfrak{P}^{\prime}\right) \mid \alpha(P \times Q) \alpha^{-1}=\alpha P \times \alpha Q\right\} \\
E_{7(-5)} & =\left\{\alpha \in \operatorname{Iso}_{C}\left(\mathfrak{P}^{C}\right) \mid \alpha(P \times Q) \alpha^{-1}=\alpha P \times \alpha Q,\langle\alpha P, \alpha Q\rangle_{\gamma}=\langle P, Q\rangle_{\gamma}\right\},
\end{aligned}
$$

where $\langle P, Q\rangle_{\gamma}=(\tau \gamma P, Q), P, Q \in \mathfrak{P}^{C}$.
The Lie algebra $\mathfrak{e}_{7}{ }^{C}$ of the group $E_{7}{ }^{C}$ is given by

$$
\mathfrak{e}_{7}^{C}=\left\{\Phi(\phi, A, B, \nu) \mid \phi \in \mathfrak{e}_{6}{ }^{C}, A, B \in \mathfrak{J}^{C}, \nu \in C\right\} .
$$

The Lie bracket $\left[\Phi_{1}, \Phi_{2}\right]$ of $\mathfrak{e}_{7}{ }^{C}$ is given by

$$
\begin{aligned}
& {\left[\Phi\left(\phi_{1}, A_{1}, B_{1}, \nu_{1}\right), \Phi\left(\phi_{2}, A_{2}, B_{2}, \nu_{2}\right)\right]=\Phi(\phi, A, B, \nu),} \\
& \qquad\left\{\begin{array}{l}
\phi=\left[\phi_{1}, \phi_{2}\right]+2 A_{1} \vee B_{2}-2 A_{2} \vee B_{1} \\
A=\left(\phi_{1}+\frac{2}{3} \nu_{1}\right) A_{2}-\left(\phi_{2}+\frac{2}{3} \nu_{2}\right) A_{1} \\
B=-\left({ }^{t} \phi_{1}+\frac{2}{3} \nu_{1}\right) B_{2}+\left({ }^{t} \phi_{2}+\frac{2}{3} \nu_{2}\right) B_{1} \\
\nu=\left(A_{1}, B_{2}\right)-\left(B_{1}, A_{2}\right)
\end{array}\right.
\end{aligned}
$$

In the Lie algebra $\mathfrak{e}_{7}{ }^{C}$, we use the same notations $G_{i j}, \widetilde{A}_{k}\left(e_{i}\right),\left(E_{k}-E_{l}\right) \sim$, $\widetilde{F}_{k}\left(e_{i}\right), \check{E}_{k}, \hat{E}_{k}, \check{F}_{k}\left(e_{i}\right), \hat{F}_{k}\left(e_{i}\right), \mathbf{1}$ as that used in the preceding papers [5], [6], or [7].
4.1. Subgroups of type $A_{1}{ }^{C} \oplus D_{6}{ }^{C}, A_{1}{ }^{C} \oplus C \oplus A_{5}{ }^{C}$ and $A_{2}^{C} \oplus A_{5}^{C}$ of $E_{7}{ }^{C}$

Since γ and γ_{1} are conjugate in $\left(G_{2}{ }^{C}\right)^{\tau} \subset G_{2}^{C} \subset E_{7}^{C}$ ([3], [4]), we have

$$
E_{7(7)}=\left(E_{7}^{C}\right)^{\tau \gamma} \cong\left(E_{7}^{C}\right)^{\tau \gamma_{1}}
$$

In the Lie algebra $\mathfrak{e}_{7}{ }^{C}$, let

$$
Z=\Phi\left(i\left(-2 G_{23}+G_{45}+G_{67}\right), 0,0,0\right)
$$

Theorem 4.1. The 3-graded decomposition of the Lie algebra $\mathfrak{e}_{7(7)}=$ $\left(\mathfrak{e}_{7}^{C}\right)^{\tau \gamma_{1}}\left(\right.$ or $\left.\mathfrak{e}_{7}{ }^{C}\right)$,

$$
\mathfrak{e}_{7(7)}=\mathfrak{g}_{-3} \oplus \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \oplus \mathfrak{g}_{3}
$$

with respect to $\operatorname{ad} Z, Z=\Phi\left(i\left(-2 G_{23}+G_{45}+G_{67}\right), 0,0,0\right)$, is given by

$$
\left.\left.\begin{array}{rl}
\mathfrak{g}_{0}= & \left\{\begin{array}{l}
i G_{01}, i G_{23}, i G_{45}, i G_{67}, G_{46}+G_{57}, i\left(G_{47}-G_{56}\right), \\
\widetilde{A}_{k}(1), i \widetilde{A}_{k}\left(e_{1}\right),\left(E_{1}-E_{2}\right)^{\sim},\left(E_{2}-E_{3}\right)^{\sim}, \widetilde{F}_{k}(1), i \widetilde{F}_{k}\left(e_{1}\right) \\
\check{E}_{k}, \hat{E}_{k}, \check{F}_{k}(1), i \check{F}_{k}\left(e_{1}\right), \hat{F}_{k}(1), i \hat{F}_{k}\left(e_{1}\right), k=1,2,3, \mathbf{1}
\end{array}\right\} 39
\end{array}\right\} \begin{array}{l}
G_{04}+i G_{05}, G_{06}+i G_{07}, i G_{14}-G_{15}, i G_{16}-G_{17}, \\
\left(2 G_{15}+G_{26}-G_{37}\right)-i\left(2 G_{14}+G_{27}+G_{36}\right), \\
\left(2 G_{17}-G_{24}+G_{35}\right)-i\left(2 G_{16}-G_{25}-G_{34}\right), \\
\widetilde{A}_{k}\left(e_{4}+i e_{5}\right), \widetilde{A}_{k}\left(e_{6}+i e_{7}\right), \widetilde{F}_{k}\left(e_{4}+i e_{5}\right), \widetilde{F}_{k}\left(e_{6}+i e_{7}\right), \\
\check{F}_{k}\left(e_{4}+i e_{5}\right), \check{F}_{k}\left(e_{6}+i e_{7}\right), \hat{F}_{k}\left(e_{4}+i e_{5}\right), \hat{F}_{k}\left(e_{6}+i e_{7}\right), k=1,2,3
\end{array}\right\}, ~ \begin{aligned}
& G_{02}-i G_{03}, i G_{12}+G_{13}, \\
& \mathfrak{g}_{-2}=\left\{\begin{array}{l}
\left(-2 G_{13}+G_{46}-G_{57}\right)-i\left(2 G_{12}-G_{47}-G_{56}\right), \\
\widetilde{A}_{k}\left(e_{2}-i e_{3}\right), \widetilde{F}_{k}\left(e_{2}-i e_{3}\right), \check{F}_{k}\left(e_{2}-i e_{3}\right), \hat{F}_{k}\left(e_{2}-i e_{3}\right), k=1,2,3
\end{array}\right\} \\
& \mathfrak{g}_{-3}=\left\{\left(G_{24}+G_{35}\right)+i\left(G_{25}-G_{34}\right),\left(G_{26}+G_{37}\right)+i\left(G_{27}-G_{36}\right)\right\} 2 \\
& \mathfrak{g}_{1}=\tau\left(\mathfrak{g}_{-1}\right) \tau, \mathfrak{g}_{2}=\tau\left(\mathfrak{g}_{-2}\right) \tau, \mathfrak{g}_{3}=\tau\left(\mathfrak{g}_{-3}\right) \tau
\end{aligned}
$$

Proof. We can prove this theorem in a way similar to [6, Theorem 4.5], by using [6, Lemma 4.4].

As is shown in G_{2}^{C}, F_{4}^{C} or $E_{6}^{C}([7])$, we have

$$
z_{2}=\exp \frac{2 \pi i}{2} Z=\gamma, \quad z_{4}=\exp \frac{2 \pi i}{4} Z=\delta_{4}, \quad z_{3}=\exp \frac{2 \pi i}{3} Z=w_{3}
$$

Now, since $\left(\mathfrak{e}_{7}^{C}\right)_{e v}=\left(\mathfrak{e}_{7}^{C}\right)^{z_{2}}=\left(\mathfrak{e}_{7}^{C}\right)^{\gamma},\left(\mathfrak{e}_{7}{ }^{C}\right)_{0}=\left(\mathfrak{e}_{7}{ }^{C}\right)^{z_{4}}=\left(\mathfrak{e}_{7}^{C}\right)^{\delta_{4}},\left(\mathfrak{e}_{7}{ }^{C}\right)_{e d}=$ $\left(\mathfrak{e}_{7}^{C}\right)^{z_{3}}=\left(\mathfrak{e}_{7}{ }^{C}\right)^{w_{3}}$, we shall determine the structures of groups

$$
\begin{gathered}
\left(E_{7}^{C}\right)_{e v}=\left(E_{7}^{C}\right)^{z_{2}}=\left(E_{7}^{C}\right)^{\gamma}, \quad\left(E_{7}^{C}\right)_{0}=\left(E_{7}^{C}\right)^{z_{4}}=\left(E_{7}^{C}\right)^{\delta_{4}} \\
\left(E_{7}^{C}\right)_{e d}=\left(E_{7}^{C}\right)^{z_{3}}=\left(E_{7}^{C}\right)^{w_{3}}
\end{gathered}
$$

4.1.1. Involution γ and subgroup $(S L(2, C) \times \operatorname{Spin}(12, C)) / \boldsymbol{Z}_{2}$ of $E_{7}{ }^{C}$

Let $\left(E_{7}{ }^{C}\right)^{\gamma}=\left\{\alpha \in E_{7}{ }^{C} \mid \gamma \alpha=\alpha \gamma\right\}$ and we will show

$$
\left(E_{7}^{C}\right)^{\gamma} \cong(S L(2, C) \times \operatorname{Spin}(12, C)) / \boldsymbol{Z}_{2}
$$

(Theorem 4.1.1). For this end, we have to find subgroups which are isomorphic to $S L(2, C)$ and $\operatorname{Spin}(12, C)$ in the group $\left(E_{7}^{C}\right)^{\gamma}$. As for $S L(2, C)$, by using the mapping $\varphi_{2}: S p\left(1, \boldsymbol{H}^{C}\right) \times S p\left(1, \boldsymbol{H}^{C}\right) \rightarrow G_{2}{ }^{C}$, we may prefer

$$
S p\left(1, \boldsymbol{H}^{C}\right)=\left\{\varphi_{2}(p, 1) \mid p \in S p\left(1, \boldsymbol{H}^{C}\right)\right\}
$$

which is isomorphic to $S L(2, C)$. As for $\operatorname{Spin}(12, C)$, we prefer

$$
\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}=\left\{\alpha \in E_{7}^{C} \mid \varepsilon_{1} \alpha=\alpha \varepsilon_{1}, \varepsilon_{2} \alpha=\alpha \varepsilon_{2}\right\}
$$

Since $\varepsilon_{1}{ }^{2}=\gamma$, if $\alpha \in E_{7}{ }^{C}$ satisfies $\varepsilon_{1} \alpha=\alpha \varepsilon_{1}$, then $\gamma \alpha=\alpha \gamma$ is automatically satisfied, so $\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}$ is a subgroup of $\left(E_{7}^{C}\right)^{\gamma} .\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}} \cong \operatorname{Spin}(12, C)$ will be proved in Proposition 1.1.7. In oder to show the connectedness of the group $\left(E_{7}{ }^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}$, we consider a series of subgroups

$$
\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}} \supset\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)_{\mathrm{i}} \supset\left(E_{6}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}
$$

and we will show the connectedness of these groups in the order. We will start on a study of the group $\left(E_{6}{ }^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}$.

Proposition 1.1.1. $\left(E_{6}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}} \cong S U^{*}\left(6, C^{C}\right)$.
In particular, the group $\left(E_{6}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}$ is connected.
Proof. Let $S U^{*}\left(6, \boldsymbol{C}^{C}\right)=\left\{A \in M\left(6, C^{C}\right) \mid J A=\bar{A} J, \operatorname{det} A=1\right\}, J=$ $\operatorname{diag}(J, J, J), J=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. The mapping $\varphi_{6}: S p\left(1, \boldsymbol{H}^{C}\right) \times S U^{*}\left(6, \boldsymbol{C}^{C}\right) \rightarrow$ $\left(E_{6}{ }^{C}\right)^{\gamma}$ is defined by

$$
\begin{gathered}
\varphi_{6}(p, A)(M+\boldsymbol{n})=\left(k^{-1} A\right) M\left(k^{-1} A\right)^{*}+p \boldsymbol{n}\left(k^{-1} A\right)^{-1} \\
M+\boldsymbol{n} \in \mathfrak{J}\left(3, \boldsymbol{H}^{C}\right) \oplus\left(\boldsymbol{H}^{C}\right)^{3}=\mathfrak{J}^{C}
\end{gathered}
$$

where $k: M\left(3, \boldsymbol{H}^{C}\right) \rightarrow M\left(6, \boldsymbol{C}^{C}\right)$ is defined by $k\left(\left(a+b e_{2}\right)\right)=\left(\left(\begin{array}{cc}a & b \\ -\bar{b} & \bar{a}\end{array}\right)\right), a$, $b \in \boldsymbol{C}^{C}$. Then φ_{6} induces the isomorphism $\left(E_{6}^{C}\right)^{\gamma} \cong\left(S p\left(1, \boldsymbol{H}^{C}\right) \times S U^{*}\left(6, \boldsymbol{C}^{C}\right)\right)$ $/ \boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}=\{(1, E),(-1,-E)\}$ (see [5], [7] for details). Now, we define a mapping $\varphi_{6, r}: S U^{*}\left(6, C^{C}\right) \rightarrow\left(E_{6}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}$ by

$$
\varphi_{6, r}(A)=\varphi_{6}(1, A)
$$

as the restriction mapping of $\varphi_{6}: S p\left(1, \boldsymbol{H}^{C}\right) \times S U^{*}\left(6, \boldsymbol{C}^{C}\right) \rightarrow E_{6}{ }^{C}$. It is easily verified that $\varphi_{6, r}$ is well-defined and a homomorphism. We shall show that $\varphi_{6, r}$ is onto. For $\alpha \in\left(E_{6}{ }^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}} \subset\left(E_{6}{ }^{C}\right)^{\gamma}$, there exist $p \in S p\left(1, \boldsymbol{H}^{C}\right)$ and $A \in S U^{*}\left(6, C^{C}\right)$ such that $\alpha=\varphi_{6}(p, A)$. From the condition $\varepsilon_{k} \alpha=$ $\alpha \varepsilon_{k}, k=1,2$, we see that $\alpha=\varphi_{6}(1, A)$ or $\alpha=\varphi_{6}(-1, A)$. In the latter case, $\alpha=\varphi_{6}(-1, A)=\varphi_{6}(1,-A)=\varphi_{6, r}(-A)$. Hence $\varphi_{6, r}$ is onto. It is easily obtained that $\operatorname{Ker} \varphi_{6, r}=\{E\}$. Thus we have the required isomorphism $S U^{*}\left(6, C^{C}\right) \cong\left(E_{6}{ }^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}$.

Lemma 1.1.2. (1) The Lie algebra $\left(\mathfrak{e}_{7}{ }^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}$ of the Lie group $\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}$ is given by

$$
\begin{aligned}
& \left(\mathfrak{e}_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}=\left\{\Phi(D+\widetilde{S}+\widetilde{T}, A, B, \nu) \in \mathfrak{e}_{7}^{C} \mid\right. \\
& D=\left(\begin{array}{cccccccc}
0 & d_{01} & d_{02} & d_{03} & 0 & 0 & 0 & 0 \\
-d_{01} & 0 & d_{12} & d_{13} & 0 & 0 & 0 & 0 \\
-d_{02} & -d_{12} & 0 & d_{23} & 0 & 0 & 0 & 0 \\
-d_{03} & -d_{13} & -d_{23} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & d_{1} & d_{2} & d_{3} \\
0 & 0 & 0 & 0 & -d_{1} & 0 & d_{3} & -d_{2} \\
0 & 0 & 0 & 0 & -d_{2} & -d_{3} & 0 & d_{1} \\
0 & 0 & 0 & 0 & -d_{3} & d_{2} & -d_{1} & 0
\end{array}\right) \in \mathfrak{s o}(8, C), \\
& \left.S=\left(\begin{array}{ccc}
0 & s_{3} & -\bar{s}_{2} \\
-\bar{s}_{3} & 0 & s_{1} \\
s_{2} & -\bar{s}_{1} & 0
\end{array}\right), s_{k} \in \boldsymbol{H}^{C}, T \in \mathfrak{J}\left(3, \boldsymbol{H}^{C}\right)_{0}, A, B \in \mathfrak{J}\left(3, \boldsymbol{H}^{C}\right), \nu \in C\right\} .
\end{aligned}
$$

In particular, $\operatorname{dim}_{C}\left(\left(\mathfrak{e}_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)=9+12+14+15 \times 2+1=66$.
(2) The Lie algebra $\left(\left(\mathfrak{e}_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)_{\mathrm{i}}$ of the Lie group $\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)_{\mathrm{i}}$ is given by

$$
\left(\left(\mathfrak{e}_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)_{\mathrm{i}}=\left\{\Phi(D+\widetilde{S}+\widetilde{T}, A, B, \nu) \in\left(\mathfrak{e}_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}} \mid B=0, \nu=0\right\} .
$$

The Freudenthal manifold \mathfrak{M}^{C} is defined by

$$
\begin{aligned}
\mathfrak{M}^{C} & =\left\{P \in \mathfrak{P}^{C} \mid P \times P=0, P \neq 0\right\} \\
& =\left\{\begin{array}{l|l}
P=(X, Y, \xi, \eta) \in \mathfrak{P}^{C} \left\lvert\, \begin{array}{l}
X \vee Y=0, X \times X=\eta Y, Y \times Y=\xi X \\
(X, Y)=3 \xi \eta, P \neq 0
\end{array}\right.
\end{array}\right\} .
\end{aligned}
$$

We define a submanifold $\left(\mathfrak{M}^{C}\right)_{\varepsilon_{1}, \mathrm{i}}$ of \mathfrak{M}^{C} by

$$
\begin{aligned}
\left(\mathfrak{M}^{C}\right)_{\varepsilon_{1}, \mathrm{i}} & =\left\{P \in \mathfrak{P}^{C} \mid P \times P=0, \varepsilon_{1} P=P,\{\dot{1}, P\}=1\right\} \\
& =\left\{P=(X, Y, \xi, \eta) \in \mathfrak{P}^{C} \left\lvert\, \begin{array}{l}
X \vee Y=0, X \times X=\eta Y, Y \times Y=\xi X, \\
(X, Y)=3 \xi \eta, X, Y \in \mathfrak{J}\left(3, \boldsymbol{H}^{C}\right), \\
\{\dot{1}, P\}=1
\end{array}\right.\right\} \\
& =\left\{(X, X \times X, \operatorname{det} X, 1) \mid X \in \mathfrak{J}\left(3, \boldsymbol{H}^{C}\right), X \vee(X \times X)=0\right\} .
\end{aligned}
$$

Proposition 1.1.3. $\quad\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)_{\mathrm{i}} /\left(E_{6}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}} \simeq\left(\mathfrak{M}^{C}\right)_{\varepsilon_{1}, \mathrm{i}}$.
In particular, the group $\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)_{\mathrm{i}}$ is connected.
Proof. The group $\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)_{\mathrm{i}}$ acts on $\left(\mathfrak{M}^{C}\right)_{\varepsilon_{1}, \mathrm{i}}$. We shall show that this action is transitive. To prove this, it is sufficient to show that any element $P \in\left(\mathfrak{M}^{C}\right)_{\varepsilon_{1}, \mathrm{i}}$ can be transformed to $1=(0,0,0,1) \in\left(\mathfrak{M}^{C}\right)_{\varepsilon_{1}, \mathrm{i}}$ by some $\alpha \in\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)_{\mathrm{i}}$, moreover by some $\alpha \in\left(\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)_{\mathrm{i}}\right)^{0}$ (which is the connected component subgroup of $\left.\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)_{i}\right)$. Now, for a given $P=(X, X \times$ $X, \operatorname{det} X, 1) \in\left(\mathfrak{M}^{C}\right)_{\varepsilon_{1}, \mathrm{i}}$, we see that $\Phi(0, X, 0,0) \in\left(\left(\mathfrak{e}_{7} C\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)_{\mathrm{i}}$ (Lemma 1.1.2. (2)). Hence $\alpha(X)=\exp (\Phi(0, X, 0,0)) \in\left(\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)_{i}\right)^{0}$. Operate $\alpha(X)$ on

1, then we have $\alpha(X) 1=(X, X \times X, \operatorname{det} X, 1)$. This shows the transitivity of $\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)_{\mathrm{i}}$. Since $\left(\mathfrak{M}^{C}\right)_{\varepsilon_{1}, \mathrm{i}}=\left(\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)_{\mathrm{i}}\right)^{0} 1,\left(\mathfrak{M}^{C}\right)_{\varepsilon_{1}, \mathrm{i}}$ is connected. The isotropy subgroup of $\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)_{\mathrm{i}}$ at 1 is $\left(E_{6}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}$. Thus we have the required homeomorphism $\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)_{\mathrm{i}} /\left(E_{6}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}} \simeq\left(\mathfrak{M}^{C}\right)_{\varepsilon_{1}, \mathrm{i}} .\left(\mathfrak{M}^{C}\right)_{\varepsilon_{1}, \mathrm{i}}$ and $\left(E_{6}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}$ are connected (Proposition 1.1.1), so $\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)_{i}$ is also connected.

Lemma 1.1.4. For $\Phi(0,0, B, \nu), B \in \mathfrak{J}\left(3, \boldsymbol{H}^{C}\right), \nu \in C$, there exist $Y \in$ $\mathfrak{J}\left(3, \boldsymbol{H}^{C}\right)$ and $\xi \in C, \xi \neq 0$ such that

$$
(\exp (\Phi(0,0, B, \nu))) \dot{1}=\left(\frac{1}{\xi}(Y \times Y), Y, \xi, \frac{1}{\xi^{2}}(\operatorname{det} Y)\right)
$$

Conversely, for $\left(\frac{1}{\xi}(Y \times Y), Y, \xi, \frac{1}{\xi^{2}}(\operatorname{det} Y)\right) \in \mathfrak{P}^{C}$, there exist $B \in \mathfrak{J}\left(3, \boldsymbol{H}^{C}\right)$ and $\nu \in C$ such that $\left(\frac{1}{\xi}(Y \times Y), Y, \xi, \frac{1}{\xi^{2}}(\operatorname{det} Y)\right)=(\exp (\Phi(0,0, B, \nu))) \dot{1}$.

Proof.

$$
(\exp (\Phi(0,0, B, \nu))) \mathrm{i}=\left(\begin{array}{c}
\left(e^{\nu}-2 e^{\frac{\nu}{3}}+e^{-\frac{\nu}{3}}\right) \frac{9}{4 \nu^{2}}(B \times B) \\
\left(e^{\nu}-e^{\frac{\nu}{3}}\right) \frac{3}{2 \nu} B \\
e^{\nu} \\
\left(\left(e^{\nu}-e^{-\nu}\right)-3\left(e^{\frac{\nu}{3}}-e^{-\frac{\nu}{3}}\right)\right) \frac{27 \operatorname{det} B}{8 \nu^{3}}
\end{array}\right) \in \mathfrak{P}^{C}
$$

(in the case of $\nu=0$, the parts of $\nu=0$ need to replace by $\lim _{\nu \rightarrow 0}$). Now, put $Y=\left(e^{\nu}-e^{\frac{\nu}{3}}\right) \frac{3}{2 \nu} B, \xi=e^{\nu}(*)$, then we have

$$
(\exp (\Phi(0,0, B, \nu))) \dot{1}=\left(\frac{1}{\xi}(Y \times Y), Y, \xi, \frac{1}{\xi^{2}}(\operatorname{det} Y)\right)
$$

Conversely, for $P=\left(\frac{1}{\xi}(Y \times Y), Y, \xi, \frac{1}{\xi^{2}}(\operatorname{det} Y)\right)$, we can choose $B \in \mathfrak{J}\left(3, \boldsymbol{H}^{C}\right)$ and $\nu \in C$ satisfying the condition $(*)$ above. Then we obtain $(\exp (\Phi(0,0, B, \nu)))$ $\dot{1}=P$.

We define a submanifold $\left(\mathfrak{M}^{C}\right)_{\varepsilon_{1}}$ of the Freudenthal manifold \mathfrak{M}^{C} by

$$
\begin{aligned}
\left(\mathfrak{M}^{C}\right)_{\varepsilon_{1}} & =\left\{P \in \mathfrak{P}^{C} \mid P \times P=0, \varepsilon_{1} P=P, P \neq 0\right\} \\
& =\left\{P=(X, Y, \xi, \eta) \in \mathfrak{P}^{C} \left\lvert\, \begin{array}{l}
X \vee Y=0, X \times X=\eta Y, Y \times Y=\xi X \\
(X, Y)=3 \xi \eta, X, Y \in \mathfrak{J}\left(3, \boldsymbol{H}^{C}\right), P \neq 0
\end{array}\right.\right\} .
\end{aligned}
$$

Proposition 1.1.5. $\quad\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}} /\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)_{i} \simeq\left(\mathfrak{M}^{C}\right)_{\varepsilon_{1}}$.
In particular, the group $\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}$ is connected.

Proof. The group $\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}$ acts on $\left(\mathfrak{M}^{C}\right)_{\varepsilon_{1}}$. We shall show that this action is transitive. To prove this, it is sufficient to show that any element $P \in\left(\mathfrak{M}^{C}\right)_{\varepsilon_{1}}$ can be transformed to $\dot{1}=(0,0,1,0) \in\left(\mathfrak{M}^{C}\right)_{\varepsilon_{1}}$ by some $\alpha \in$ $\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}$, moreover by $\alpha \in\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)^{0}$ (which is the connected component subgroup of $\left.\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)$.

Case (1) $P=(X, Y, \xi, \eta), \xi \neq 0$. From the condition of $\left(\mathfrak{M}^{C}\right)_{\varepsilon_{1}}$, we see

$$
X=\frac{1}{\xi}(Y \times Y), \quad \eta=\frac{1}{\xi^{2}}(\operatorname{det} Y)
$$

For these Y and ξ, choose $B \in \mathfrak{J}\left(3, \boldsymbol{H}^{C}\right)$ and $\nu \in C$ of Lemma 1.1.4, then we see $\Phi(0,0, B, \nu) \in\left(\mathfrak{e}_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}($ Lemma 1.1.2.(1)). Hence $\alpha=\exp (\Phi(0,0, B, \nu))$ $\in\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)^{0}$ and we have $\alpha \dot{1}=P$.

Case (2) $P=(X, Y, 0, \eta), Y \neq 0$. For a given P, we see $\Phi(0, \tau Y, 0,0) \in$ $\left(\mathfrak{e}_{7}{ }^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}$ (Lemma 1.1.2.(1)). Hence $\exp (\Phi(0, \tau Y, 0,0)) \in\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)^{0}$. We have

$$
(\exp (\Phi(0, \tau Y, 0,0)))(X, Y, 0, \eta)=(X+\eta(\tau Y), Y+2 \tau Y \times X,(\tau Y, Y), \eta)
$$

If $Y \neq 0$, then $(\tau Y, Y) \neq 0$. Hence this case is reduced to the case (1).
Case (3) $P=(X, 0,0, \eta), X \neq 0 . \exp (\Phi(0, E, 0,0)) \in\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)^{0}$ and we have
$(\exp (\Phi(0, E, 0,0)))(X, 0,0, \eta)=(X+\eta E,(\operatorname{tr}(X)+\eta) E-X, \operatorname{tr}(X)+\eta, 0)(*)$. If $(\operatorname{tr}(X)+\eta) E-X \neq 0$, then this is reduced to the case (2). In the case of $(\operatorname{tr}(X)+\eta) E-X=0$, we see that $(*)$ is equal to $-\frac{1}{3} \operatorname{tr}(X)(E, 0,-1,0)$, so this case is reduced to the case (1).

Case (4) $P=(0,0,0, \eta), \eta \neq 0 . \exp \left(\Phi\left(0, E_{1}, 0,0\right)\right) \in\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)^{0}$ and we have

$$
\left(\exp \left(\Phi\left(0, E_{1}, 0,0\right)\right)\right)(0,0,0, \eta)=\left(\eta E_{1}, 0,0, \eta\right)
$$

Hence this case is reduced to the case (3).
Thus the proof of the transitivity of $\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)^{0}$ on $\left(\mathfrak{M}^{C}\right)_{\varepsilon_{1}}$ is completed.
Now, the group $\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}$ acts on $\left(\mathfrak{M}^{C}\right)_{\varepsilon_{1}}$ transitively and the isotoropy subgroup of the group $\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}$ at $\dot{1}$ is $\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)_{i}$. Hence we have the homeomorphism $\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}} /\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)_{i} \simeq\left(\mathfrak{M}^{C}\right)_{\varepsilon_{1}}$. Since $\left(\mathfrak{M}^{C}\right)_{\varepsilon_{1}}=\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)^{0} 1$, $\left(\mathfrak{M}^{C}\right)_{\varepsilon_{1}}$ is connected, and $\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)_{\mathrm{i}}$ is connected (Propositions 1.1.3), hence $\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}$ is also connected.

To prove the following proposition, we use the following two mappings $\phi_{1}(\theta), \lambda$. For $\theta \in C^{*}$, we define the C-linear transformation $\phi_{1}(\theta)$ of \mathfrak{P}^{C} by

$$
\phi_{1}(\theta)(X, Y, \xi, \eta)=\left(\theta^{-1} X, \theta Y, \theta^{3} \xi, \theta^{-3} \eta\right), \quad(X, Y, \xi, \eta) \in \mathfrak{P}^{C}
$$

and we define the C-linear transformation λ of \mathfrak{P}^{C} by

$$
\lambda(X, Y, \xi, \eta)=(Y,-X, \eta,-\xi), \quad(X, Y, \xi, \eta) \in \mathfrak{P}^{C}
$$

Then $\phi(\theta), \lambda \in\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}$.
Proposition 1.1.6. The center $z\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)$ of the group $\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}$ is isomorphic to the direct product group of two cyclic groups of order 2:

$$
z\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)=\{1, \gamma\} \times\{1,-\gamma\}=\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}
$$

Proof. Let $\alpha \in z\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)$. For $\beta \in\left(E_{6}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}} \subset\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}$, we see

$$
\beta \alpha \dot{1}=\alpha \beta \dot{1}=\alpha \dot{1}
$$

Denote $\alpha \dot{1}=(X, Y, \xi, \eta)$. From $\left(\beta X,{ }^{t} \beta^{-1} Y, \xi, \eta\right)=(X, Y, \xi, \eta)$, we have

$$
\beta X=X, \quad{ }^{t} \beta^{-1} Y=Y \quad \text { for all } \beta
$$

Choose $\omega 1 \in\left(E_{6}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\left(\omega \in C, \omega^{3}=1\right)$ as β, then we have $X=Y=0$. Hence $\alpha \dot{1}$ is of the form

$$
\alpha \dot{1}=(0,0, \xi, \eta), \quad \xi, \eta \in C .
$$

From $\alpha \dot{1} \in \mathfrak{M}^{C}$, we have $\xi \eta=0$. Suppose $\xi=0$, then we see $\alpha \dot{1}=\eta, \eta \neq 0$. Since α commutes with $\phi_{1}(\theta) \in\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}$, we have

$$
\theta^{-3} \eta=\phi_{1}(\theta) \eta=\phi_{1}(\theta) \alpha \dot{1}=\alpha \phi_{1}(\theta) \dot{1}=\alpha\left(\theta^{3} \dot{1}\right)=\theta^{3} \eta
$$

for any $\theta \in C^{*}$, so that we have $\eta=0$. This is a contradiction. Hence $\xi \neq 0$, that is, $\eta=0$. Thus $\alpha \dot{1}=\dot{\xi}$. By a similar argument as above, we have $\alpha 1=\zeta$. Since $\xi \zeta=\{\dot{\xi}, \zeta\}=\{\alpha \dot{1}, \alpha!\}=\{\dot{1}, \underline{\}}\}=1$, that is, $\xi \zeta=1$, we have $\alpha \dot{1}=\dot{\xi}, \alpha 1=\xi^{-1}$. Moreover, α commutes with $\lambda \in\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}$, so we have

$$
-\xi=\lambda \dot{\xi}=\lambda \alpha \dot{1}=\alpha \lambda \dot{1}=\alpha(-1)=-\xi^{-1}
$$

Hence $\xi=\xi^{-1}$, so $\xi=1$ or $\xi=-1$.
(i) Case $\xi=1$. Since $\alpha \dot{1}=1$ and $\alpha 1=1$, we see $\alpha \in E_{6}{ }^{C}$. Hence $\alpha \in z\left(\left(E_{6}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)$. Since $\left(E_{6}{ }^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}} \cong \operatorname{SU}^{*}\left(6, C^{C}\right)$ (Proposition 1.1.1), we have

$$
\begin{aligned}
z\left(\left(E_{6}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right) & =z\left(\varphi_{6, r}\left(S U^{*}\left(6, C^{C}\right)\right)\right. \\
& =\left\{\varphi_{6, r}(c E) \mid c=1, \omega, \omega^{2},-1,-\omega,-\omega^{2}\right\}
\end{aligned}
$$

where $\omega=e^{2 \pi i / 3}$. However $\varphi_{6, r}(c E) \notin z\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)$ for $c= \pm \omega, \pm \omega^{2}$. Hence we see $\alpha=\varphi_{6, r}(E)=1$ or $\alpha=\varphi_{6, r}(-E)=\gamma$.
(ii) Case $\xi=-1$. By a similar argument as (i), we have $-\alpha \in z\left(\left(E_{6}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)$. Hence we have $-\alpha=1$ or $-\alpha=\gamma$, that is, $\alpha=-1$ or $\alpha=-\gamma$.
Therefore we get $z\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right) \subset\{1, \gamma,-1,-\gamma\}$. The converse inclusion is trivial. Thus we have $z\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)=\{1, \gamma,-1,-\gamma\}$.

We define a 12 -demensional C-vector space $\left(V^{C}\right)^{12}$ by

$$
\begin{aligned}
& \left(V^{C}\right)^{12}=\left\{P \in \mathfrak{P}^{C} \mid \varepsilon_{1} P=-i P\right\} \\
& =\left\{\left.\left(\left(\begin{array}{ccc}
0 & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & 0 & x_{1} \\
x_{2} & \bar{x}_{1} & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & y_{3} & \bar{y}_{2} \\
\bar{y}_{3} & 0 & y_{1} \\
y_{2} & \bar{y}_{1} & 0
\end{array}\right), 0,0\right) \right\rvert\, x_{k}, y_{k} \in\left(\boldsymbol{H}^{C} e_{4}\right)_{\varepsilon_{1}}\right\},
\end{aligned}
$$

with a norm

$$
(P, P)_{\varepsilon_{2}}=\frac{1}{8}\left\{P, \varepsilon_{2} P\right\}
$$

where $\left(\boldsymbol{H}^{C} e_{4}\right)_{\varepsilon_{1}}=\left\{x \in \mathfrak{C}^{C} \mid x=p\left(e_{4}+i e_{5}\right)+q\left(e_{6}-i e_{7}\right), p, q \in C\right\}$. For $P \in\left(V^{C}\right)^{12}, x_{k}=p_{k}\left(e_{4}+i e_{5}\right)+q_{k}\left(e_{6}-i e_{7}\right), y_{k}=s_{k}\left(e_{4}+i e_{5}\right)+t_{k}\left(e_{6}-i e_{7}\right), k$ $=1,2,3$, the explicit form of $(P, P)_{\varepsilon_{2}}$ is given by

$$
(P, P)_{\varepsilon_{2}}=\left(p_{1} t_{1}-q_{1} s_{1}\right)+\left(p_{2} t_{2}-q_{2} s_{2}\right)+\left(p_{3} t_{3}-q_{3} s_{3}\right)
$$

Proposition 1.1.7. $\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}} \cong \operatorname{Spin}(12, C)$.
Proof. The group $\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}$ acts on $\left(V^{C}\right)^{12}$ and any element $\alpha \in\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}$ leaves invariant the norm $(P, P)_{\varepsilon_{2}}$ of $\left(V^{C}\right)^{12}$. Furthermore, the group $\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}$ is connected (Proposition1.1.5), so we can define a homomorphism $\pi:\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}$ $\rightarrow S O\left(\left(V^{C}\right)^{12}\right)=S O(12, C)$ by $\pi(\alpha)=\alpha \mid\left(V^{C}\right)^{12}$. We shall find Ker π. For this end, we will show that the kernel of the differential mapping $\pi_{*}:\left(\mathfrak{e}_{7}{ }^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}} \rightarrow$ $\mathfrak{s o}\left(\left(V^{C}\right)^{12}\right)$ of π is trivial, that is, $\operatorname{Ker} \pi_{*}=0$ (which is easily obtained). Hence $\operatorname{Ker} \pi$ is a discrete group. Moreover, the group $\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}$ is connected, so we have

$$
\operatorname{Ker} \pi \subset z\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)=\{1, \gamma,-1,-\gamma\}
$$

(Proposition 1.1.6). However $-1, \gamma \notin \operatorname{Ker} \pi$. Hence we get $\operatorname{Ker} \pi=\{1,-\gamma\}=$ \boldsymbol{Z}_{2}. Since $\operatorname{dim}_{C}\left(\left(\mathfrak{e}_{7}{ }^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}\right)=66$ (Lemma 1.1.2.(1)) $=\operatorname{dim}_{C}(\mathfrak{s o}(12, C)), \pi$ is onto. Thus we have $\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}} / \boldsymbol{Z}_{2} \cong S O(12, C)$. Therefore $\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}$ is $\operatorname{Spin}(12, C)$ as a double covering group of $S O(12, C)$.

By using the mapping $\varphi_{2}: S p\left(1, \boldsymbol{H}^{C}\right) \times S p\left(1, \boldsymbol{H}^{C}\right) \rightarrow G_{2}^{C}$, we define a mapping $\varphi_{2, l}: S p\left(1, \boldsymbol{H}^{C}\right) \rightarrow G_{2}^{C}$ by

$$
\varphi_{2, l}(p)=\varphi_{2}(p, 1)
$$

Then $\varphi_{2, l}(p) \in G_{2}^{C} \subset F_{4}^{C} \subset E_{6}^{C} \subset E_{7}{ }^{C}$.

Lemma 1.1.8. In the Lie algebra $\mathfrak{e}_{7}{ }^{C}$, the Lie algebra $\mathfrak{s p}\left(1, \boldsymbol{H}^{C}\right)$ of the Lie group $S p\left(1, \boldsymbol{H}^{C}\right)=\varphi_{2, l}\left(S p\left(1, \boldsymbol{H}^{C}\right)\right)$ is given by

$$
\begin{aligned}
\mathfrak{s p}\left(1, \boldsymbol{H}^{C}\right) & =\left\{\Phi(D, 0,0,0) \in \mathfrak{e}_{7}{ }^{C} \mid\right. \\
D & \left.=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & d_{1} J & 0 & 0 \\
0 & 0 & d_{2} J & 0 \\
0 & 0 & 0 & d_{3} J
\end{array}\right) \in \mathfrak{s o}(8, C), \quad J=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right\} .
\end{aligned}
$$

Proposition 1.1.9. The subgroups $\operatorname{Sp}\left(1, \boldsymbol{H}^{C}\right)$ and $\operatorname{Spin}(12, C)$ of $E_{7}{ }^{C}$ are commutative elementwisely.

Proof. Any $\Phi_{1} \in \mathfrak{s p}\left(1, \boldsymbol{H}^{C}\right)=\varphi_{2, l_{*}}\left(\mathfrak{s p}\left(1, \boldsymbol{H}^{C}\right)\right)\left(\varphi_{2, l_{*}}\right.$ is the defferential mapping of $\left.\varphi_{2, l}\right)$ commutes with any $\Phi_{2} \in \mathfrak{s p i n}(12, C)=\left(\mathfrak{e}_{7} C\right)^{\varepsilon_{1}, \varepsilon_{2}}:\left[\Phi_{1}, \Phi_{2}\right]=$ 0 (Lemma 1.1.8 and Lemma 1.1.2), furthermore the $\operatorname{groups} \operatorname{Sp}\left(1, \boldsymbol{H}^{C}\right)$ and $\operatorname{Spin}(12, C)=\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}$ are connected. Hence, any $\varphi_{2, l}(p), p \in S p\left(1, \boldsymbol{H}^{C}\right)$ commutes with $\beta \in \operatorname{Spin}(12, C): \varphi_{2, l}(p) \beta=\beta \varphi_{2, l}(p)$.

Now, we will prove the main theorem of this section by using the preparations above.

Theorem 4.1.1. $\left(E_{7}^{C}\right)_{e v} \cong(S L(2, C) \times \operatorname{Spin}(12, C)) / \boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}=\{(E, 1)$, $(-E, \gamma)\}$.

Proof. We define a mapping $\varphi_{\gamma}: S p\left(1, \boldsymbol{H}^{C}\right) \times \operatorname{Spin}(12, C) \rightarrow\left(E_{7}^{C}\right)^{\gamma}=$ $\left(E_{7}{ }^{C}\right)_{e v}$ by

$$
\varphi_{\gamma}(p, \beta)=\varphi_{2, l}(p) \beta
$$

$\varphi_{2, l}(p) \in\left(E_{7}^{C}\right)^{\gamma}$ is clear and $\operatorname{Spin}(12, C)=\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}$ (Proposition 1.1.7) $\subset\left(E_{7}^{C}\right)^{\gamma}$, so φ_{γ} is well-defined. Since $\varphi_{2, l}(p)$ commutes with $\beta: \varphi_{2, l}(p) \beta=$ $\beta \varphi_{2, l}(p)$ (Proposition 1.1.9), φ_{γ} is a homomorphism. $\operatorname{Ker} \varphi_{\gamma}=\{(1,1),(-1$, $\gamma)\}=\boldsymbol{Z}_{2}$. The group $\left(E_{7}^{C}\right)^{\gamma}$ is connected and $\operatorname{dim}_{C}\left(\mathfrak{s p}\left(1, \boldsymbol{H}^{C}\right) \oplus \mathfrak{s p i n}(12, C)\right)$ $=3+66=69=39+15 \times 2=\operatorname{dim}_{C}\left(\left(\mathfrak{e}_{7}^{C}\right)_{e v}\right)$ (Theorem 4.1) $=\operatorname{dim}_{C}\left(\left(\mathfrak{e}_{7}{ }^{C}\right)^{\gamma}\right)$, hence φ_{γ} is onto. Thus we have the required isomorphism $\left(E_{7}^{C}\right)_{e v} \cong\left(S p\left(1, \boldsymbol{H}^{C}\right)\right.$ $\times \operatorname{Spin}(12, C)) / \boldsymbol{Z}_{2}\left(\boldsymbol{Z}_{2}=\{(1,1),(-1, \gamma)\}\right) \cong(S L(2, C) \times \operatorname{Spin}(12, C)) / \boldsymbol{Z}_{2}$, $\boldsymbol{Z}_{2}=\{(E, 1),(-E, \gamma)\}$.
4.1.2. Automorphism δ_{4} of order 4 and subgroup $\left(S L(2, C) \times C^{*}\right.$ $\times S L(6, C)) /\left(\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{6}\right)$ of E_{7}^{C}

Let $\left(E_{7}{ }^{C}\right)^{\delta_{4}}=\left\{\alpha \in E_{7}^{C} \mid \delta_{4} \alpha=\alpha \delta_{4}\right\}$ and we will show

$$
\left(E_{7}^{C}\right)^{\delta_{4}} \cong\left(S L(2, C) \times C^{*} \times S L(6, C)\right) /\left(\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{6}\right)
$$

(Theorem 4.1.2). As for $S L(2, C)$, we may prefer $S p\left(1, \boldsymbol{H}^{C}\right)$ as in the case of $\left(E_{7}{ }^{C}\right)_{e v}$. Before we consider the remainder part $C^{*} \times S L(6, C)$, we find a subgroup of $\left(E_{7}^{C}\right)^{\delta_{4}}$ of type $G L(6, C)$, that is, consider the subgroup $\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}$ $=\left\{\alpha \in E_{7}{ }^{C} \mid \varepsilon_{1} \alpha=\alpha \varepsilon_{1}, \varepsilon_{2} \alpha=\alpha \varepsilon_{2}, \delta_{4} \alpha=\alpha \delta_{4}\right\}$ of the group $\left(E_{7}{ }^{C}\right)^{\delta_{4}}$ and we will show

$$
\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}} / \boldsymbol{Z}_{2} \cong G L(6, C)
$$

(Proposition 1.2.4). And then we decompose $G L(6, C)$ into $C^{*} \times S L(6, C)$. For this end, we need to find subgroups C^{*} and $S L(6, C)$ in the group $\left(E_{7}^{C}\right)^{\delta_{4}}$. We will start on a study of the group $\left(F_{4}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}$.

Proposition 1.2.1. $\quad\left(F_{4}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}} \cong U\left(3, C^{C}\right)$.
Proof. The mapping $\varphi_{4}: S p\left(1, \boldsymbol{H}^{C}\right) \times S p\left(3, \boldsymbol{H}^{C}\right) \rightarrow\left(F_{4}{ }^{C}\right)^{\gamma}$ is defined by

$$
\varphi_{4}(p, A)(M+\boldsymbol{n})=A M A^{*}+p \boldsymbol{n} A^{*}, \quad M+\boldsymbol{n} \in \mathfrak{J}\left(3, \boldsymbol{H}^{C}\right) \oplus\left(\boldsymbol{H}^{C}\right)^{3}=\mathfrak{J}^{C}
$$

Then φ_{4} induces the isomorphism $\left(F_{4}{ }^{C}\right)^{\gamma} \cong\left(S p\left(1, \boldsymbol{H}^{C}\right) \times S p\left(3, \boldsymbol{H}^{C}\right)\right) / \boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}$ $=\{(1, E),(-1,-E)\}$ (see [5] for details). Now, we define a mapping $\varphi_{4, r}$: $U\left(3, C^{C}\right) \rightarrow\left(F_{4}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}$ by

$$
\varphi_{4, r}(A)=\varphi_{4}(1, A)
$$

as the restriction mapping of $\varphi_{4}: S p\left(1, \boldsymbol{H}^{C}\right) \times S p\left(3, \boldsymbol{H}^{C}\right) \rightarrow\left(F_{4}^{C}\right)^{\gamma}$. It is easy to verify that $\varphi_{4, r}$ is well-defined and a homomorphism. We shall show that $\varphi_{4, r}$ is onto. For $\alpha \in\left(F_{4}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}} \subset\left(F_{4}^{C}\right)^{\gamma}$, there exist $p \in$ $S p\left(1, \boldsymbol{H}^{C}\right)$ and $A \in S p\left(3, \boldsymbol{H}^{C}\right)$ such that $\alpha=\varphi_{4}(p, A)$. From the conditions $\varepsilon_{k} \alpha=\alpha \varepsilon_{k}, k=1,2$ and $\delta_{4} \alpha=\alpha \delta_{4}$, we have $\alpha=\varphi_{4}(1, A)=\varphi_{4, r}(A)$ or $\alpha=\varphi_{4}(-1, A)=\varphi_{4, r}(-A), A \in U\left(3, C^{C}\right)$. Hence $\varphi_{4, r}$ is onto. It is easily obtained that $\operatorname{Ker} \varphi_{4, r}=\{E\}$. Thus we have the required isomorphism $U\left(3, C^{C}\right) \cong\left(F_{4}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}$.

Lemma 1.2.2. The Lie algebra $\left(\mathfrak{e}_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}$ of the Lie group $\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}$ is given by

$$
\begin{aligned}
& \left(\mathfrak{e}_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}=\left\{\Phi(D+\widetilde{S}+\widetilde{T}, A, B, \nu) \in \mathfrak{e}_{7}^{C} \mid\right. \\
& D=\left(\begin{array}{cccc}
d_{1} J & 0 & 0 & 0 \\
0 & d_{2} J & 0 & 0 \\
0 & 0 & d_{3} J & 0 \\
0 & 0 & 0 & d_{3} J
\end{array}\right) \in \mathfrak{s o}(8, C), \quad J=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \\
& \left.S=\left(\begin{array}{ccc}
0 & s_{3} & -\bar{s}_{2} \\
-\bar{s}_{3} & 0 & s_{1} \\
s_{2} & -\bar{s}_{1} & 0
\end{array}\right), s_{k} \in \boldsymbol{C}^{C}, T \in \mathfrak{J}\left(3, C^{C}\right)_{0}, A, B \in \mathfrak{J}\left(3, C^{C}\right), \nu \in C\right\} .
\end{aligned}
$$

In particular, $\operatorname{dim}_{C}\left(\left(\mathfrak{e}_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}\right)=3+6+8+9 \times 2+1=36$.

Proposition 1.2.3. The center $z\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}\right)$ of the group $\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}$ is given by

$$
z\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}\right)=\left\{\alpha,-\alpha \mid \alpha=\varphi_{4, r}(c E), c \in U\left(1, C^{C}\right)\right\}
$$

Proof. Let $\alpha \in z\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}\right)$. Note that $\phi_{1}(\theta), \lambda \in\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}$. Then by the same argument as in Proposition 1.1.6, we have

$$
\alpha \dot{1}=(0,0, \xi, 0), \quad \xi=1 \quad \text { or } \quad \xi=-1
$$

(i) Case $\xi=1$. Since $\alpha \dot{1}=\dot{1}$ and $\alpha 1=1$, we see $\alpha \in E_{6}{ }^{C}$. Hence

$$
\alpha \in z\left(\left(E_{6}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}\right) .
$$

For $\beta \in\left(F_{4}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}} \subset\left(E_{6}{ }^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}$, we see

$$
\beta \alpha E=\alpha \beta E=\alpha E .
$$

Putting $\alpha E=Y=Y(\eta, y) \in \mathfrak{J}^{C}$, we have

$$
\beta Y=Y \quad \text { for all } \beta \in\left(F_{4}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}} .
$$

For $T=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right),\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right),\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$, we define mappings $\delta: \mathfrak{J}^{C} \rightarrow \mathfrak{J}^{C}$ by $\delta X=T X T^{-1}$, then $\delta \in\left(F_{4}{ }^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}$. From the condition of $\delta Y=Y$, we have

$$
y_{1}=y_{2}=y_{3}=0, \quad \eta_{1}=\eta_{2}=\eta_{3}(=\omega)
$$

Hence $\alpha E=\omega E, \omega \in C$. Moreover $\omega^{3}=\operatorname{det}(\omega E)=\operatorname{det} \alpha E=\operatorname{det} E=1$. So we see $\omega^{-1} \alpha E=E$, hence $\omega^{-1} \alpha \in\left(F_{4}{ }^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}$. Thus

$$
\omega^{-1} \alpha \in z\left(\left(F_{4}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}\right) .
$$

Since $\left(F_{4}{ }^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}=U\left(3, \boldsymbol{C}^{C}\right)\left(\right.$ Proposition 1.2.1) and $z\left(U\left(3, \boldsymbol{C}^{C}\right)\right)=\{c E \mid c \in$ $\left.U\left(1, \boldsymbol{C}^{C}\right)\right\}$, we see

$$
z\left(\left(F_{4}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}\right)=z\left(\varphi_{4, r}\left(U\left(3, C^{C}\right)\right)\right)=\left\{\varphi_{4, r}(c E) \mid c \in U\left(1, \boldsymbol{C}^{C}\right)\right\} .
$$

Hence there exists $c \in U\left(1, C^{C}\right)$ such that $\omega^{-1} \alpha=\varphi_{4, r}(c E)$, that is,

$$
\alpha=\omega \varphi_{4, r}(c E), \quad \omega \in C, \quad \omega^{3}=1, \quad c \in U\left(1, \boldsymbol{C}^{C}\right)
$$

The condition $\alpha \in z\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}\right)$ implies that α commutes with all elements $\Phi(\phi, A, B, \nu) \in\left(\mathfrak{e}_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}$, that is,

$$
\omega \varphi_{4, r}(c E) \Phi(\phi, A, B, \nu)=\Phi(\phi, A, B, \nu) \omega \varphi_{4, r}(c E)
$$

Hence, for all $\phi \in\left(\mathfrak{e}_{6}{ }^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}, A, B \in \mathfrak{J}\left(3, \boldsymbol{C}^{C}\right)$ (Lemma 1.2.2), we have

$$
\left\{\begin{array}{l}
\varphi_{4, r}(c E) \phi \varphi_{4, r}(\bar{c} E)=\phi \tag{1}\\
\omega \varphi_{4, r}(c E) A=A \\
\omega^{-1} \varphi_{4, r}(c E) B=B
\end{array}\right.
$$

Since $\omega \varphi_{4, r}(c E) A=\omega(c E) A(c E)^{*}=\omega(c \bar{c}) A=\omega A$, from the condition (2), we have $\omega=1$, thereby we see the condition (3). The condition (1) is always valid. Thus we see that α is of the form $\varphi_{4, r}(c E)$.
(ii) Case $\xi=-1$. By a similar argument as (i), there exists $c \in U\left(1, \boldsymbol{C}^{C}\right)$ such that $-\alpha=\varphi_{4, r}(c E)$. Hence α is of the form $-\varphi_{4, r}(c E)$.
Thus this proposition is completely proved.
We define a C-vector subspace $\left(V^{C}\right)^{6}$ of the C-vector space $\left(V^{C}\right)^{12}$ by

$$
\begin{aligned}
\left(V^{C}\right)^{6} & =\left\{P \in\left(V^{C}\right)^{12} \mid \delta_{4} P=-i P\right\} \\
& =\left\{\left.\left(\left(\begin{array}{ccc}
0 & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & 0 & x_{1} \\
x_{2} & \bar{x}_{1} & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & y_{3} & \bar{y}_{2} \\
\bar{y}_{3} & 0 & y_{1} \\
y_{2} & \bar{y}_{1} & 0
\end{array}\right), 0,0\right) \right\rvert\, x_{k}, y_{k} \in\left(\boldsymbol{H}^{C} e_{4}\right)_{\varepsilon_{1}, \delta_{4}}\right\},
\end{aligned}
$$

where $\left(\boldsymbol{H}^{C} e_{4}\right)_{\varepsilon_{1}, \delta_{4}}=\left\{x \in \mathfrak{C}^{C} \mid x=p\left(e_{4}+i e_{5}\right), p \in C\right\}$.
Proposition 1.2.4. $\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}} / \boldsymbol{Z}_{2} \cong G L(6, C), \boldsymbol{Z}_{2}=\{1,-\gamma\}$.
Proof. Let $G L(6, C)=\operatorname{Iso}_{C}\left(\left(V^{C}\right)^{6}\right)$. Any element $\alpha \in\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}$ leaves invariant the space $\left(V^{C}\right)^{6}$, so α induces an element of $G L(6, C)$. Hence we can define a mapping $g:\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}} \rightarrow G L(6, C)$ by

$$
g(\alpha)=\alpha \mid\left(V^{C}\right)^{6}, \quad \alpha \in\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}
$$

It is clear that g is a homomorphism. We shall calculate $\operatorname{Ker} g$. For this end, first, we show that the kernel of the differential mapping $g_{*}:\left(\mathfrak{e}_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}} \rightarrow$ $\mathfrak{g l}(6, C)$ of g is trivial: $\operatorname{Ker} g_{*}=\{0\}$ (which is easily obtained). Hence $\operatorname{Ker} g$ is a discrete group. Moreover since the group $\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}$ is connected (because $\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}}$ is simply connected (Proposition 1.1.7)), we have

$$
\operatorname{Ker} g \subset z\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}\right)
$$

Let $\alpha \in \operatorname{Ker} g$. Then α is of the form $\alpha=\varphi_{4, r}(c E)$ or $\alpha=-\varphi_{4, r}(c E)$ for some $c \in U\left(1, \boldsymbol{C}^{C}\right)$ (Proposition 1.2.3). $\varphi_{4, r}(c E)$ is nothing but $\varphi_{2, r}(c)=\varphi_{2}(1, c)$. Since $\varphi_{2, r}(c)\left(e_{4}+i e_{5}\right)=\bar{c}\left(e_{4}+i e_{5}\right)$, from the condition $\varphi_{2, r}(c)\left(e_{4}+i e_{5}\right)=$ $e_{4}+i e_{5}$, we see $c=1$, that is, $\alpha=1$. In the case of $\alpha=\varphi_{4, r}(c E)$, by a similar way above, we see $\alpha=-\varphi_{4, r}(-E)=-\gamma$. Hence $\operatorname{Ker} g=\{1,-\gamma\}=$ \boldsymbol{Z}_{2}. Furthermore $\operatorname{dim}_{C}\left(\left(\mathfrak{e}_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}\right)=36($ Lemma 1.2.2 $)=\operatorname{dim}_{C}(\mathfrak{g l}(6, C))$ and $\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}$ is connected, hence g is onto. Thus we have the required isomorphism $\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}} / \boldsymbol{Z}_{2} \cong G L(6, C)$.

Proposition 1.2.5. $\quad\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}} \cong\left(C^{*} \times S L(6, C)\right) / \boldsymbol{Z}_{6}, \boldsymbol{Z}_{6}=\{(a$, $\left.\left.a^{-1} E\right) \mid a \in C, a^{6}=1\right\}$.

Proof. The general linear group $G L_{1}(6, C)=\{A \in M(6, C) \mid \operatorname{det} A \neq 0\}$ is decomposable as

$$
G L_{1}(6, C)=C_{1}^{*} S L_{1}(6, C), \quad C_{1}^{*} \cap S L_{1}(6, C)=\left\{a E \mid a \in C, a^{6}=1\right\}
$$

where $C_{1}{ }^{*}=\left\{a E \mid a \in C^{*}\right\}$ which is the connected component subgroup of the center of $G L_{1}(6, C)$ and $S L_{1}(6, C)=\left\{A \in G L_{1}(6, C) \mid \operatorname{det} A=1\right\}$. On the other hand, the connected component subgroup of $\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}$ is $\left\{\varphi_{4, r}(c E) \mid c \in\right.$ $\left.U\left(1, \boldsymbol{C}^{C}\right)\right\}$ (Proposition 1.2.3). If we give the isomorphism $h: C^{*} \rightarrow U\left(1, \boldsymbol{C}^{C}\right)$ by

$$
h(a)=\frac{a+a^{-1}}{2}+\frac{a-a^{-1}}{2} i e_{1}=\iota a+\bar{\iota} a^{-1}, \quad \iota=\frac{1+i e_{1}}{2},
$$

we have

$$
\varphi_{4, r}(h(a) E) F_{k}(x)=F_{k}(a x), \quad x \in\left(\boldsymbol{H}^{C} e_{4}\right)_{\varepsilon_{1}, \delta_{4}}, \quad k=1,2,3
$$

Hereafter, for $a \in C^{*}$, we denote $\varphi_{4, r}(h(a) E)$ by $\zeta(a)$:

$$
\zeta(a)=\varphi_{4, r}(h(a) E) .
$$

Then the restriction mapping of $\zeta(a)$ to $\left(V^{C}\right)^{6}$ is given by

$$
\zeta(a)(X, Y, 0,0)=(a X, a Y, 0,0)
$$

Hence we see $g(\zeta(a))=a E$ for $a \in C^{*}$ (as for g, see Proposition 1.2.4), so g induces an isomorphism $g: C^{*} \rightarrow C_{1}{ }^{*}$. Next we will find a subgroup $S L(6, C)$ of $\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}$ which is isomorphic to the group $S L_{1}(6, C)$ under g. Consider the subgroup $\widetilde{S L}=g^{-1}\left(S L_{1}(6, C)\right)$ of $\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}$. Then $\widetilde{S L} / \boldsymbol{Z}_{2} \cong S L_{1}(6, C)$. Since $S L_{1}(6, C)$ is simply connected, $\widetilde{S L}$ is never connected. Let $S L(6, C)$ be the connected component subgroup of $\widetilde{S L}$, then $S L(6, C)$ is the requiered one. Then we have the following diagram

$$
\begin{array}{ccc}
C^{*} \times S L(6, C) & \xrightarrow{\mu} & \left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}} \\
g \quad \downarrow \quad g & & \downarrow g \\
C_{1}^{*} \times S L_{1}(6, C) & \xrightarrow{\mu_{1}} & G L_{1}(6, C),
\end{array}
$$

where μ, μ_{1} are multiplication mappings in the groups, respectively. Obviously μ is a surjective homomorphism. We shall find the kernel of μ. Let $(\zeta(a), \beta) \in$ Ker μ. From the diagram above, we have $g(\zeta(a)) g(\beta)=g((\zeta(a) \beta))=g(1)=E$. Hence we obtain $\operatorname{Ker} \mu=\left\{\left(\zeta(a), \zeta\left(a^{-1}\right) \mid a \in C, a^{6}=1\right\}=\boldsymbol{Z}_{6}\right.$. Since $g: C^{*} \rightarrow$ $C_{1}{ }^{*}$ is isomorphic, $\operatorname{Ker} \mu$ is denoted by $\left\{\left(a, a^{-1} E\right) \mid a \in C, a^{6}=1\right\}$. Thus we
have the required isomorphism $\left(E_{7}{ }^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}} \cong\left(C^{*} \times S L(6, C)\right) / \boldsymbol{Z}_{6}$.
Hereafter, we identify two groups $S L(6, C), S L_{1}(6, C)$ and $C^{*}, C_{1}{ }^{*}$, respectively.

Now, we will prove the main theorem of this section by using the preparations above.

Theorem 4.1.2. $\quad\left(E_{7}{ }^{C}\right)_{0} \cong\left(S L(2, C) \times C^{*} \times S L(6, C)\right) /\left(\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{6}\right), \boldsymbol{Z}_{2}$ $=\{(E, 1, E),(-E, 1,-E)\}, \boldsymbol{Z}_{6}=\left\{\left(E, a, a^{-1} E\right) \mid a=1, \omega, \omega^{2},-1,-\omega,-\omega^{2}\right\}$, where $\omega=e^{2 \pi i / 3}$.

Proof. We define a mapping $\varphi_{\delta_{4}}: S p\left(1, \boldsymbol{H}^{C}\right) \times C^{*} \times S L(6, C) \rightarrow S p\left(1, \boldsymbol{H}^{C}\right)$ $\times\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}} \rightarrow\left(E_{7}^{C}\right)^{\delta_{4}}=\left(E_{7}^{C}\right)_{0}$ by

$$
\varphi_{\delta_{4}}(p, a, \beta)=\varphi_{2, l}(p) \zeta(a) \beta
$$

$\varphi_{\delta_{4}}$ is well-defined because $\varphi_{2, l}(p) \in\left(E_{7}^{C}\right)^{\delta_{4}}$ and $\zeta(a), \beta \in\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \delta_{4}}$ (Proposition 1.2.5) $\subset\left(E_{7}^{C}\right)^{\delta_{4}}$. Since $\varphi_{2, l}(p)$ commutes with $\zeta(a) \beta: \varphi_{2, l}(p) \zeta(a)$ $\beta=\zeta(a) \beta \varphi_{2, l}(p)$ (Proposition 1.1.9), $\varphi_{\delta_{4}}$ is a homomorphism. It is easily obtained that $\operatorname{Ker} \varphi_{\delta_{4}}=\{(1,1,1),(-1,1, \gamma)\} \times\left\{\left(1, \zeta(a), \zeta\left(a^{-1}\right)\right) \mid a=1, \omega, \omega^{2}\right.$, $\left.-1,-\omega,-\omega^{2}\right\}=\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{6}$. Moreover $\operatorname{dim}_{C}\left(\mathfrak{s p}\left(1, \boldsymbol{H}^{C}\right) \oplus C \oplus \mathfrak{s l}(6, C)\right)=3+1+$ $35=39=\operatorname{dim}_{C}\left(\left(\mathfrak{e}_{7}^{C}\right)_{0}\right)$ (Theorem 4.1) $=\operatorname{dim}_{C}\left(\left(\mathfrak{e}_{7}{ }^{C}\right)^{\delta_{4}}\right)$, hence $\varphi_{\delta_{4}}$ is onto. Thus we have the isomorphism $\left(E_{7}^{C}\right)^{\delta_{4}} \cong\left(S p\left(1, \boldsymbol{H}^{C}\right) \times C^{*} \times S L(6, C)\right) /\left(\boldsymbol{Z}_{2} \times\right.$ $\left.\boldsymbol{Z}_{6}\right)\left(\boldsymbol{Z}_{2}=\{(1,1,1),(-1,1, \gamma)\}\right) \cong\left(S L(2, C) \times C^{*} \times S L(6, C)\right) /\left(\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{6}\right)$, $\boldsymbol{Z}_{2}=\{(E, 1, E),(-E, 1,-E)\}$.
4.1.3. Automorphism w_{3} of order 3 and subgroup $(S L(3, C) \times$ $S L(6, C)) / \boldsymbol{Z}_{3}$ of $E_{7}{ }^{C}$

Let $\left(E_{7}^{C}\right)^{w_{3}}=\left\{\alpha \in E_{7}^{C} \mid w_{3} \alpha=\alpha w_{3}\right\}$ and we will show

$$
\left(E_{7}^{C}\right)^{w_{3}} \cong(S L(3, C) \times S L(6, C)) / \boldsymbol{Z}_{3}
$$

(Theorem 4.1.3). For this end, we have to find subgroups which are isomorphic to $S L(3, C)$ and $S L(6, C)$ in the group $\left(E_{7}^{C}\right)^{w_{3}}$. As for $S L(3, C)$, we use the embedding $\varphi_{3, l}: S U\left(3, C^{C}\right) \rightarrow G_{2}^{C}$. As for $S L(6, C)$, we prefer $\left(E_{7}{ }^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}=\left\{\alpha \in E_{7}^{C} \mid w_{3} \alpha=\alpha w_{3}, \varepsilon_{1} \alpha=\alpha \varepsilon_{1}, \varepsilon_{2} \alpha=\alpha \varepsilon_{2}, \gamma_{3} \alpha=\alpha \gamma_{3}\right\}$ (Proposition 1.3.7).

The mapping $\varphi_{3, l}: S U\left(3, C^{C}\right) \rightarrow G_{2}{ }^{C}$ is defined by

$$
\varphi_{3, l}(A)(a+\boldsymbol{m})=a+A \boldsymbol{m}, \quad a+\boldsymbol{m} \in \boldsymbol{C}^{C} \oplus\left(\boldsymbol{C}^{C}\right)^{3}=\mathfrak{C}^{C}
$$

Then $\varphi_{3, l}$ induces the isomorphism $S U\left(3, C^{C}\right) \cong\left(G_{2}{ }^{C}\right)^{w_{3}}$ (see [2] for details). By using this mapping $\varphi_{3, l}: S U\left(3, C^{C}\right) \rightarrow G_{2}^{C}$, we define a C-linear transformation γ_{3} of \mathfrak{C}^{C} by

$$
\gamma_{3}=\varphi_{3, l}\left(\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\right)
$$

Then $\gamma_{3} \in G_{2}{ }^{C} \subset F_{4}{ }^{C} \subset E_{6}{ }^{C} \subset E_{7}{ }^{C}$ and $\gamma_{3}{ }^{3}=1$. Note that using the mapping $\varphi_{3, l}$, the C-linear transformations ε_{1} and w_{3} are expressed as follows:

$$
\varepsilon_{1}=\varphi_{3, l}\left(\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e_{1} & 0 \\
0 & 0 & -e_{1}
\end{array}\right)\right), \quad w_{3}=\varphi_{3, l}\left(\left(\begin{array}{ccc}
w_{1} & 0 & 0 \\
0 & w_{1} & 0 \\
0 & 0 & w_{1}
\end{array}\right)\right)
$$

We use the mappings h and φ_{3} of [2], so we will review of these mappings. First, the mapping $h: M\left(3, \boldsymbol{C}^{C}\right) \times M\left(3, \boldsymbol{C}^{C}\right) \rightarrow M\left(3, \boldsymbol{C}^{C}\right)$ is defined by

$$
h(A, B)=\frac{A+B}{2}+\frac{A-B}{2} i e_{1}=\iota A+\bar{\iota} B, \quad \iota=\frac{1}{2}\left(1+i e_{1}\right) .
$$

The mapping $\varphi_{3}: S U\left(3, \boldsymbol{C}^{C}\right) \times S U\left(3, \boldsymbol{C}^{C}\right) \times S U\left(3, \boldsymbol{C}^{C}\right) \rightarrow\left(E_{6}{ }^{C}\right)^{w_{3}}$ is defined by

$$
\begin{gathered}
\varphi_{3}(P, A, B)(X+M)=h(A, B) X h(A, B)^{*}+P M \tau h(A, B)^{*} \\
X+M \in \mathfrak{J}\left(3, C^{C}\right) \oplus M\left(3, C^{C}\right)=\mathfrak{J}^{C}
\end{gathered}
$$

Then φ_{3} induces the isomorphism $\left(E_{6}{ }^{C}\right)^{w_{3}} \cong\left(S U\left(3, C^{C}\right) \times S U\left(3, C^{C}\right) \times\right.$ $\left.S U\left(3, \boldsymbol{C}^{C}\right)\right) / \boldsymbol{Z}_{3}, \boldsymbol{Z}_{3}=\left\{(E, E, E),\left(w_{1} E, w_{1} E, w_{1} E\right),\left(w_{1}^{2} E, w_{1}^{2} E, w_{1}^{2} E\right)\right\}$. The mapping φ_{3} is an extension of the mapping $\varphi_{3, l}: S U\left(3, C^{C}\right) \rightarrow G_{2}^{C}$, that is, the following holds.

$$
\varphi_{3, l}(A)=\varphi_{3}(A, E, E), \quad A \in S U\left(3, C^{C}\right)
$$

Now, we will begin on a study of the group $\left(E_{6}{ }^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}$.
Proposition 1.3.1. $\quad\left(E_{6}{ }^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}} \cong S U\left(3, \boldsymbol{C}^{C}\right) \times S U\left(3, \boldsymbol{C}^{C}\right)$.
In particular, the group $\left(E_{6}{ }^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}$ is connected.
Proof. We define a mapping $\varphi_{3, r}: S U\left(3, \boldsymbol{C}^{C}\right) \times S U\left(3, \boldsymbol{C}^{C}\right) \rightarrow$ $\left(E_{6}{ }^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}$ by

$$
\varphi_{3, r}(A, B)=\varphi_{3}(E, A, B)
$$

as the restriction mapping of $\varphi_{3}: S U\left(3, \boldsymbol{C}^{C}\right) \times S U\left(3, \boldsymbol{C}^{C}\right) \times S U\left(3, \boldsymbol{C}^{C}\right) \rightarrow$ $\left(E_{6}{ }^{C}\right)^{w_{3}}$. It is not difficult to verify that $\varphi_{3, r}$ is well-defined and a homomorphism. We shall show that $\varphi_{3, r}$ is onto. For $\alpha \in\left(E_{6}{ }^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}} \subset\left(E_{6}{ }^{C}\right)^{w_{3}}$, there exist $P, A, B \in S U\left(3, C^{C}\right)$ such that $\alpha=\varphi_{3}(P, A, B)$. From the conditions of $\varepsilon_{k} \alpha=\alpha \varepsilon_{k}, k=1,2$ and $\gamma_{3} \alpha=\alpha \gamma_{3}$, we have $\alpha=\varphi_{3}(E, A, B)=$ $\varphi_{3, r}(A, B)$. Hence $\varphi_{6, r}$ is onto. It is easily obtained that $\operatorname{Ker} \varphi_{3, r}=\{(E, E)\}$. Therefore we have the required isomorphism $S U\left(3, C^{C}\right) \times S U\left(3, C^{C}\right) \cong$ $\left(E_{6}{ }^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}$.

Lemma 1.3.2. (1) The Lie algebra $\left(\mathfrak{e}_{7}{ }^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}$ of the Lie group
$\left(E_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}$ is given by

$$
\begin{aligned}
& \left(\mathfrak{e}_{7}{ }^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}=\left\{\Phi(D+\widetilde{S}+\widetilde{T}, A, B, \nu) \in \mathfrak{e}_{7}{ }^{C} \mid\right. \\
& D=\left(\begin{array}{cccc}
d_{1} J & 0 & 0 & 0 \\
0 & d_{2} J & 0 & 0 \\
0 & 0 & d_{2} J & 0 \\
0 & 0 & 0 & d_{2} J
\end{array}\right) \in \mathfrak{s o}(8, C), \quad J=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
& \left.S=\left(\begin{array}{ccc}
0 & s_{3} & -\bar{s}_{2} \\
-\bar{s}_{3} & 0 & s_{1} \\
s_{2} & -\bar{s}_{1} & 0
\end{array}\right), s_{k} \in C^{C}, T \in \mathfrak{J}\left(3, C^{C}\right)_{0}, A, B \in \mathfrak{J}\left(3, C^{C}\right), \nu \in C\right\}
\end{aligned}
$$

In particular, $\operatorname{dim}_{C}\left(\left(\mathfrak{e}_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}\right)=2+6+8+9 \times 2+1=35$.
(2) The Lie algebra $\left(\left(\mathfrak{e}_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}\right)_{\mathrm{i}}$ of the Lie group $\left(\left(E_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}\right)_{\mathrm{i}}$ is given by $\left(\left(\mathfrak{e}_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}\right)_{i}=\left\{\Phi(D+\widetilde{S}+\widetilde{T}, A, B, \nu) \in\left(\mathfrak{e}_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}} \mid B=0, \nu=0\right\}$.

We define a submanifold $\left(\mathfrak{M}^{C}\right)_{w_{3}, \varepsilon_{1}, i}$ of the Freudenthal manifold \mathfrak{M}^{C} by

$$
\begin{aligned}
&\left(\mathfrak{M}^{C}\right)_{w_{3}, \varepsilon_{1}, \mathrm{i}}=\left\{P \in \mathfrak{P}^{C} \mid P \times P=0, w_{3} P=P, \varepsilon_{1} P=P,\{\dot{1}, P\}=1\right\} \\
&=\left\{\begin{array}{l}
\left.P=(X, Y, \xi, \eta) \in \mathfrak{P}^{C} \left\lvert\, \begin{array}{l}
X \vee Y=0, X \times X=\eta Y \\
Y \times Y=\xi X,(X, Y)=3 \xi \eta \\
X, Y \in \mathfrak{J}\left(3, C^{C}\right),\{\dot{1}, P\}=1
\end{array}\right.\right\} \\
\end{array}\right\} \\
&=\left\{(X, X \times X, \operatorname{det} X, 1) \mid X \in \mathfrak{J}\left(3, C^{C}\right), X \vee(X \times X)=0\right\}
\end{aligned}
$$

Proposition 1.3.3. $\left(\left(E_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}\right)_{\mathrm{i}} /\left(E_{6}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}} \simeq\left(\mathfrak{M}^{C}\right)_{w_{3}, \varepsilon_{1}, \mathrm{i}}$. In particular, the group $\left(\left(E_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}\right)_{\mathrm{i}}$ is connected.

Proof. We can prove this proposition in a way similar to Proposition 1.1.3 by replacing \boldsymbol{H}^{C} by \boldsymbol{C}^{C}.

We define a submanifold $\left(\mathfrak{M}^{C}\right)_{w_{3}, \varepsilon_{1}}$ of the Freudenthal manifold \mathfrak{M}^{C} by

$$
\begin{aligned}
& \left(\mathfrak{M}^{C}\right)_{w_{3}, \varepsilon_{1}}=\left\{P \in \mathfrak{P}^{C} \mid P \times P=0, w_{3} P=P, \varepsilon_{1} P=P, P \neq 0\right\} \\
& =\left\{\begin{array}{l|l}
P=(X, Y, \xi, \eta) \in \mathfrak{P}^{C} & \begin{array}{l}
X \vee Y=0, X \times X=\eta Y, Y \times Y=\xi X, \\
(X, Y)=3 \xi \eta, X, Y \in \mathfrak{J}\left(3, C^{C}\right), P \neq 0
\end{array}
\end{array}\right\} .
\end{aligned}
$$

Proposition 1.3.4. $\quad\left(E_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}} /\left(\left(E_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}\right)_{\mathrm{i}} \simeq\left(\mathfrak{M}^{C}\right)_{w_{3}, \varepsilon_{1}}$. In particular, the group $\left(E_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}$ is connected.

Proof. We can prove this proposition in a way similar to Proposition 1.1.5 by replacing \boldsymbol{H}^{C} by \boldsymbol{C}^{C}.

Proposition 1.3.5. The center of $z\left(\left(E_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}\right)$ of the group $\left(E_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}$ is the cyclic group of order 6 :

$$
z\left(\left(E_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}\right)=\left\{1, w_{3}, w_{3}^{2},-1,-w_{3},-w_{3}^{2}\right\}=\boldsymbol{Z}_{6} .
$$

Proof. Let $\alpha \in z\left(\left(E_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}\right)$. Note that $\phi_{1}(\theta), \lambda \in\left(E_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}$. Then by the same argument as in Proposition 1.1.6, we have

$$
\alpha \dot{1}=(0,0, \xi, 0), \quad \xi=1 \quad \text { or } \quad \xi=-1 .
$$

(i) Case $\xi=1$. Since $\alpha \dot{1}=\dot{1}$ and $\alpha 1=1$, we see $\alpha \in E_{6}{ }^{C}$. Hence

$$
\alpha \in z\left(\left(E_{6}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}\right)
$$

Since $\left(E_{6}{ }^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}=S U\left(3, \boldsymbol{C}^{C}\right) \times S U\left(3, \boldsymbol{C}^{C}\right)$ (Proposition 1.3.1), we have

$$
\begin{aligned}
z\left(\left(E_{6}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}\right) & =z\left(\varphi_{3, r}\left(S U\left(3, \boldsymbol{C}^{C}\right) \times S U\left(3, \boldsymbol{C}^{C}\right)\right)\right) \\
& =\left\{\varphi_{3, r}\left(w E, w^{\prime} E\right) \mid w, w^{\prime} \in \boldsymbol{C}, w^{3}=w^{3}=1\right\}
\end{aligned}
$$

We shall find the the condition $\varphi_{3, r}\left(w E, w^{\prime} E\right) \in z\left(\left(E_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}\right.$. For this end, we shall find the condition that $\varphi_{3, r}\left(w E, w^{\prime} E\right)$ commutes with all elements $\Phi(\phi, A, B, \nu) \in\left(\mathfrak{e}_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}$, that is,

$$
\varphi_{3, r}\left(w E, w^{\prime} E\right) \Phi(\phi, A, B, \nu)=\Phi(\phi, A, B, \nu) \varphi_{3, r}\left(w E, w^{\prime} E\right)
$$

Hence, for all $\phi \in\left(\mathfrak{e}_{6}{ }^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}, A, B \in \mathfrak{J}\left(3, C^{C}\right)$ (Lemma 1.3.2.(1)), we have

$$
\left\{\begin{array}{l}
\varphi_{3, r}\left(w E, w^{\prime} E\right) \phi \varphi_{3, r}\left(w E, w^{\prime} E\right)^{-1}=\phi \tag{1}\\
\varphi_{3, r}\left(w E, w^{\prime} E\right) A=A \\
\tau \varphi_{3, r}\left(w E, w^{\prime} E\right) \tau B=B
\end{array}\right.
$$

From the condition (2),

$$
\begin{aligned}
\varphi_{3, r}\left(w E, w^{\prime} E\right) A & =h\left(w E, w^{\prime} E\right) A h\left(w E, w^{\prime} E\right)^{*} \\
& =h\left(w E, w^{\prime} E\right) A h\left(\bar{w}^{\prime} E, \bar{w} E\right)=\left(\iota\left(w \bar{w}^{\prime}\right)+\bar{\iota}\left(w^{\prime} \bar{w}\right)\right) A
\end{aligned}
$$

we have $\iota\left(w \bar{w}^{\prime}\right)+\bar{\iota}\left(w^{\prime} \bar{w}\right)=1$. This relation implies $w \bar{w}^{\prime}=1$, that is, $w=w^{\prime}=$ $1, w_{1}$ or w_{1}^{2}. We get the same result from the condition (2). Furthermore, from $\varphi_{3, r}\left(w E, w^{\prime} E\right)=\varphi_{3, r}\left(w_{1} E, w_{1} E\right)=w_{3}^{2}$, the condition (1) is clear. Thus we see that an element of $z\left(\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \gamma_{3}, w_{3}}\right)$ is either one of the following

$$
\varphi_{3, r}(E, E)=1, \quad \varphi_{3, r}\left(w_{1} E, w_{1} E\right)=w_{3}^{2}, \quad \varphi_{3, r}\left(w_{1}^{2} E, w_{1}^{2} E\right)=w_{3}
$$

(ii) Case $\xi=-1$. By a similar argument as (i), we see that an element of $z\left(\left(E_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}\right)$ is either one of the following

$$
-\varphi_{3, r}(E, E)=-1, \quad-\varphi_{3, r}\left(w_{1} E, w_{1} E\right)=-w_{3}^{2},-\varphi_{3, r}\left(w_{1}^{2} E, w_{1}^{2} E\right)=-w_{3}
$$

Thus we have $z\left(\left(E_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}\right) \subset\left\{1, w_{3}, w_{3}^{2},-1,-w_{3},-w_{3}{ }^{2}\right\}$. The converse inclusion is trivial. Therefore we have $z\left(\left(E_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}\right)=\left\{1, w_{3}, w_{3}{ }^{2}\right.$, $\left.-1,-w_{3},-w_{3}{ }^{2}\right\}=\boldsymbol{Z}_{6}$.

Proposition 1.3.6. $\quad\left(\mathfrak{e}_{7}{ }^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}} \cong \mathfrak{s u}\left(6, C^{C}\right)$.
Proof. The mappings $\phi_{C}: \mathfrak{s u}\left(3, \boldsymbol{C}^{C}\right) \oplus \mathfrak{s u}\left(3, \boldsymbol{C}^{C}\right) \rightarrow \mathfrak{e}_{6}{ }^{C}$ and $h_{C}: M(3$, $\left.C^{C}\right) \rightarrow \mathfrak{J}\left(3, C^{C}\right)$ are defined by

$$
\begin{aligned}
\phi_{C}(A, B) X & =h(A, B) X+X h(A, B)^{*}, \quad X \in \mathfrak{J}\left(3, C^{C}\right) \\
h_{C}(L) & =\frac{L^{*}+L}{2}+i e_{1} \frac{L^{*}-L}{2}=\iota L^{*}+\bar{\iota} L, \quad \iota=\frac{1+i e_{1}}{2},
\end{aligned}
$$

respectively. Now, the mapping $\varphi_{*}: \mathfrak{s u}\left(6, C^{C}\right) \rightarrow\left(\mathfrak{e}_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}$

$$
\varphi_{*}\left(\left(\begin{array}{cc}
B & L \\
-L^{*} & C
\end{array}\right)+\frac{\nu}{3}\left(\begin{array}{cc}
E & 0 \\
0 & -E
\end{array}\right)\right)=\Phi\left(\phi_{C}(B, C), h_{C}(L),-\tau h_{C}(L),-i e_{1} \nu\right)
$$

where $B, C \in \mathfrak{s u}\left(3, \boldsymbol{C}^{C}\right), L \in M\left(3, \boldsymbol{C}^{C}\right), \nu \in e_{1} C$, gives the isomorphism (see [2] for details).

Proposition 1.3.7. $\left(E_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}} \cong S U\left(6, C^{C}\right)$.

Proof. The group $\left(E_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}$ is connected (Proposition 1.3.4). Hence, from Proposition 1.3.6, the group $\left(E_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}$ is isomorphic to either one of the following groups

$$
S U\left(6, \boldsymbol{C}^{C}\right), \quad S U\left(6, \boldsymbol{C}^{C}\right) / \boldsymbol{Z}_{2}, \quad S U\left(6, \boldsymbol{C}^{C}\right) / \boldsymbol{Z}_{3} \quad \text { or } \quad S U\left(6, \boldsymbol{C}^{C}\right) / \boldsymbol{Z}_{6}
$$

Since $z\left(\left(E_{7}{ }^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}\right)=\boldsymbol{Z}_{6}$ (Proposition 1.3.5), it cannot but become that $\left(E_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}} \cong S U\left(6, C^{C}\right)$.

Lemma 1.3.8. In the Lie algebra $\mathfrak{e}_{7}{ }^{C}$, the Lie algebra $\mathfrak{s u}\left(3, \boldsymbol{C}^{C}\right)$ of the Lie group $S U\left(3, \boldsymbol{C}^{C}\right)=\varphi_{3, l}\left(S U\left(3, \boldsymbol{C}^{C}\right)\right)$ is given by

$$
\begin{aligned}
& \mathfrak{s u}\left(3, C^{C}\right)=\left\{\Phi(D, 0,0,0) \in \mathfrak{e}_{7}^{C} \mid\right. \\
& D=\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & d_{23} & d_{24} & d_{25} & d_{26} & d_{27} \\
0 & 0 & -d_{23} & 0 & -d_{25} & d_{24} & -d_{27} & d_{26} \\
0 & 0 & -d_{24} & d_{25} & 0 & d_{45} & d_{46} & d_{47} \\
0 & 0 & -d_{25} & -d_{24} & -d_{45} & 0 & -d_{47} & d_{46} \\
0 & 0 & -d_{26} & d_{27} & -d_{46} & d_{47} & 0 & d_{67} \\
0 & 0 & -d_{27} & -d_{26} & -d_{47} & -d_{46} & -d_{67} & 0
\end{array}\right) \in \mathfrak{s o (8 , C)} \\
& \left.d_{i j} \in C, d_{23}+d_{45}+d_{67}=0\right\}
\end{aligned}
$$

Now we will prove the main theorem of this section by using the preparations above.

Theorem 4.1.3. $\left(E_{7}^{C}\right)_{e d} \cong(S L(3, C) \times S L(6, C)) / \boldsymbol{Z}_{3}, \boldsymbol{Z}_{3}=\{(E, E)$, $\left.(\omega E, \omega E),\left(\omega^{2} E, \omega^{2} E\right)\right\}$, where $\omega=e^{2 \pi i / 3}$.

Proof. We define a mapping $\varphi_{w_{3}}: S U\left(3, C^{C}\right) \times S U\left(6, C^{C}\right) \rightarrow\left(E_{7}^{C}\right)^{w_{3}}=$ $\left(E_{7}^{C}\right)_{e d}$ by

$$
\varphi_{w_{3}}(A, \beta)=\varphi_{3, l}(A) \beta
$$

$\varphi_{w_{3}}$ is well-defined because $\varphi_{3, l}(A) \in\left(E_{7}^{C}\right)^{w_{3}}$ and $\beta \in S U\left(6, C^{C}\right) \cong$ $\left(E_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}$ (Proposition 1.3.7) $\subset\left(E_{7}{ }^{C}\right)^{w_{3}}$. Any $\Phi_{1} \in \mathfrak{s u}\left(3, C^{C}\right)$ commutes with any $\Phi_{2} \in \mathfrak{s u}\left(6, \boldsymbol{C}^{C}\right):\left[\Phi_{1}, \Phi_{2}\right]=0$ (Lemma 1.3.2.(1) and Lemma 1.3.8) and groups $S U\left(3, \boldsymbol{C}^{C}\right)$ and $S U\left(6, \boldsymbol{C}^{C}\right)$ are connected, so $\varphi_{3, l}(A)$ commutes with β : $\varphi_{3, l}(A) \beta=\beta \varphi_{3, l}(A)$. Hence $\varphi_{w_{3}}$ is a homomorphism. It is obtained that $\operatorname{Ker} \varphi_{w_{3}}=\left\{(E, 1),\left(w_{1} E, \varphi_{3, l}\left(w_{1}^{2} E\right)\right),\left(w_{1}^{2} E, \varphi_{3, l}\left(w_{1} E\right)\right)\right\}\left(\right.$ in $S U\left(3, C^{C}\right) \times$ $\left.\left(E_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}\right) \cong\left\{(E, E),\left(w_{1} E, w_{1} E\right),\left(w_{1}^{2} E, w_{1}^{2} E\right)\right\}\left(\right.$ in $S U\left(3, C^{C}\right) \times S U(6$, $\left.\left.\boldsymbol{C}^{C}\right)\right)=\boldsymbol{Z}_{3}$. Moreover $\operatorname{dim}_{C}\left(\mathfrak{s u}\left(3, \boldsymbol{C}^{C}\right) \oplus \mathfrak{s u}\left(6, \boldsymbol{C}^{C}\right)\right)=8+35=43=$ $39+2 \times 2=\operatorname{dim}_{C}\left(\left(\mathfrak{e}_{7}{ }^{C}\right)_{e d}\right)$ (Theorem 4.1) $=\operatorname{dim}_{C}\left(\left(\mathfrak{e}_{7}{ }^{C}\right)^{w_{3}}\right)$, hence $\varphi_{w_{3}}$ is onto. Thus we have the required isomorphism

$$
\begin{aligned}
\left(E_{7}^{C}\right)^{w_{3}} & \cong\left(S U\left(3, \boldsymbol{C}^{C}\right) \times S U\left(6, \boldsymbol{C}^{C}\right)\right) / \boldsymbol{Z}_{3} \\
\boldsymbol{Z}_{3} & =\left\{(E, E),\left(w_{1} E, w_{1} E\right),\left(w_{1}^{2} E, w_{1}^{2} E\right)\right\}
\end{aligned}
$$

Since the group $S U\left(6, C^{C}\right)$ is isomorphic to $S L(6, C)$ under the mapping

$$
f: S L(6, C) \rightarrow S U\left(6, C^{C}\right), \quad f(A)=\iota A+\bar{\iota}^{t} A^{-1}, \quad \iota=\frac{1+i e_{1}}{2}
$$

we have the isomorphism $\left(E_{7}^{C}\right)^{w_{3}} \cong(S L(3, C) \times S L(6, C)) / \boldsymbol{Z}_{3}, \boldsymbol{Z}_{3}=\{(E, E)$, $\left.(\omega E, \omega E),\left(\omega^{2} E, \omega^{2} E\right)\right\}$. Note that ωE is transformed to $w_{1} E$ under the isomorphism f.
4.2. \quad Subgroups of type $A_{1(1)} \oplus D_{6(6)}, A_{1(1)} \oplus \boldsymbol{R} \oplus A_{5(5)}$ and $A_{2(2)} \oplus A_{5(5)}$ of $E_{7(7)}$

Since $\left(\mathfrak{e}_{7(7)}\right)_{e v}=\left(\mathfrak{e}_{7}^{C}\right)_{e v} \cap\left(\mathfrak{e}_{7}^{C}\right)^{\tau \gamma_{1}}=\left(\mathfrak{e}_{7}^{C}\right)^{\gamma} \cap\left(\mathfrak{e}_{7}^{C}\right)^{\tau \gamma_{1}},\left(\mathfrak{e}_{7(7)}\right)_{0}=\left(\mathfrak{e}_{7}{ }^{C}\right)_{0} \cap$ $\left(\mathfrak{e}_{7}^{C}\right)^{\tau \gamma_{1}}=\left(\mathfrak{e}_{7}^{C}\right)^{\delta_{4}} \cap\left(\mathfrak{e}_{7}^{C}\right)^{\tau \gamma_{1}},\left(\mathfrak{e}_{7(7)}\right)_{e d}=\left(\mathfrak{e}_{7}{ }^{C}\right)_{e d} \cap\left(\mathfrak{e}_{7}{ }^{C}\right)^{\tau \gamma_{1}}=\left(\mathfrak{e}_{7}^{C}\right)^{w_{3}} \cap$ $\left(\mathfrak{e}_{7}{ }^{C}\right)^{\tau \gamma_{1}}$, we shall determine the structures of groups

$$
\begin{aligned}
\left(E_{7(7)}\right)_{e v} & =\left(E_{7}^{C}\right)_{e v} \cap\left(E_{7}^{C}\right)^{\tau \gamma_{1}}=\left(E_{7}^{C}\right)^{\gamma} \cap\left(\mathfrak{e}_{7}^{C}\right)^{\tau \gamma_{1}} \\
\left(E_{7(7)}\right)_{0} & =\left(E_{7}^{C}\right)_{0} \cap\left(E_{7}^{C}\right)^{\tau \gamma_{1}}=\left(E_{7}^{C}\right)^{\delta_{4}} \cap\left(E_{7}^{C}\right)^{\tau \gamma_{1}} \\
\left(E_{7(7)}\right)_{e d} & =\left(E_{7}^{C}\right)_{e d} \cap\left(E_{7}^{C}\right)^{\tau \gamma_{1}}=\left(E_{7}^{C}\right)^{w_{3}} \cap\left(E_{7}^{C}\right)^{\tau \gamma_{1}}
\end{aligned}
$$

Theorem 4.2. (1) $\left(E_{7(7)}\right)_{e v} \cong(S L(2, \boldsymbol{R}) \times \operatorname{spin}(6,6)) / \boldsymbol{Z}_{2} \times\{1, \gamma\}, \boldsymbol{Z}_{2}$ $=\{(E, 1),(-E, \gamma)\}$.
(2) $\left(E_{7(7)}\right)_{0} \cong\left(S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{+} \times S L(6, \boldsymbol{R})\right) / \boldsymbol{Z}_{2} \times\left\{1, \gamma, \gamma^{\prime}, \gamma \gamma^{\prime}\right\}, \boldsymbol{Z}_{2}=$ $\{(E, 1, E),(-E, 1,-E)\}$.
(3) $\left(E_{7(7)}\right)_{e d} \cong S L(3, \boldsymbol{R}) \times S L(6, \boldsymbol{R})$.

Proof. (1) For $\alpha \in\left(E_{7(7)}\right)_{e v} \subset\left(E_{7}^{C}\right)_{e v}=\left(E_{7}^{C}\right)^{\gamma}$, there exist $p \in$ $\operatorname{Sp}\left(1, \boldsymbol{H}^{C}\right)$ and $\beta \in \operatorname{Spin}(12, C)$ such that $\alpha=\varphi_{\gamma}(p, \beta)=\varphi_{2, l}(p) \beta$ (Theorem 4.1.1). From the condition $\tau \gamma_{1} \alpha \gamma_{1} \tau=\alpha$, that is, $\tau \gamma_{1} \varphi_{2, l}(p) \beta \gamma_{1} \tau=\varphi_{2, l}(p) \beta$, we have $\varphi_{2, l}\left(\tau \gamma_{1} p\right) \tau \gamma_{1} \beta \gamma_{1} \tau=\varphi_{2, l}(p) \beta$. Hence

$$
\left\{\begin{array} { l }
{ \tau \gamma _ { 1 } p = p } \\
{ \tau \gamma _ { 1 } \beta \gamma _ { 1 } \tau = \beta }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
\tau \gamma_{1} p=-p \\
\tau \gamma_{1} \beta \gamma_{1} \tau=\gamma \beta
\end{array}\right.\right.
$$

In the former case, from $\tau \gamma_{1} p=p$, we have $p \in S p\left(1, \boldsymbol{H}^{\prime}\right)$. The group $\{\beta \in$ $\left.\operatorname{Spin}(12, C) \mid \tau \gamma_{1} \beta \gamma_{1} \tau=\beta\right\}=\operatorname{Spin}(12, C)^{\tau \gamma_{1}}=\left(E_{7}{ }^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \tau \gamma_{1}}$ acts on the \boldsymbol{R} vector space

$$
\begin{aligned}
V^{6,6} & =\left\{P \in \mathfrak{P}^{C} \mid \varepsilon_{1} P=-i P, \tau \gamma_{1} P=P\right\} \\
& =\left\{\left.\left(\left(\begin{array}{ccc}
0 & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & 0 & x_{1} \\
x_{2} & \bar{x}_{1} & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & y_{3} & \bar{y}_{2} \\
\bar{y}_{3} & 0 & y_{1} \\
y_{2} & \bar{y}_{1} & 0
\end{array}\right), 0,0\right) \right\rvert\, x_{k}, y_{k} \in\left(\boldsymbol{H}^{C} e_{4}\right)_{\varepsilon_{1}, \tau \gamma_{1}}\right\},
\end{aligned}
$$

with the norm

$$
(P, P)_{\varepsilon_{2}}=\frac{1}{8}\left\{P, \varepsilon_{2} P\right\}
$$

where $\left(\boldsymbol{H}^{C} e_{4}\right)_{\varepsilon_{1}, \tau \gamma_{1}}=\left\{x \in \mathfrak{C}^{C} \mid x=p\left(e_{4}+i e_{5}\right)+q\left(e_{6}-i e_{7}\right), p, q \in \boldsymbol{R}\right\}$. Since $\operatorname{Spin}(12, C)$ is simply connected, $\operatorname{Spin}(12, C)^{\tau \gamma_{1}}$ is connected, so we can define a homomorphism $\pi: \operatorname{Spin}(12, C)^{\tau \gamma_{1}} \rightarrow O\left(V^{6,6}\right)^{0}=O(6,6)^{0}$ (which is the connected component subgroup of $O(6,6))$ by $\pi(\alpha)=\alpha \mid V^{6,6}$. It is easily obtained that $\operatorname{Ker} \pi=\{1,-\gamma\}$. Moreover $\operatorname{dim}\left(\mathfrak{s p i n}(12, C)^{\tau \gamma_{1}}\right)=\operatorname{dim}\left(\left(\mathfrak{e}_{7(7)}\right)_{e v}\right)-$ $\operatorname{dim}\left(\mathfrak{s p}\left(1, \boldsymbol{H}^{\prime}\right)\right)=39+15 \times 2-3($ Theorem 4.1$)=66=\operatorname{dim}(\mathfrak{o}(6,6))$, hence π is onto. Therefore $\operatorname{Spin}(12, C)^{\tau \gamma_{1}}$ is denoted by $\operatorname{spin}(6,6)$ as a covering group of $O(6,6)^{0}$. Therefore the group of the former case is $\left(\operatorname{Sp}\left(1, \boldsymbol{H}^{\prime}\right) \times \operatorname{spin}(6,6)\right) / \boldsymbol{Z}_{2}$ $\left(\boldsymbol{Z}_{2}=\{(1,1),(-1, \gamma)\}\right) \cong(S L(2, \boldsymbol{R}) \times \operatorname{spin}(6,6)) / \boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}=\{(E, 1),(-E, \gamma)\}$. In the latter case, $p=e_{1}, \beta=\varepsilon_{1}$ satisfy the conditions, and $\varphi_{\gamma}\left(e_{1}, \varepsilon_{1}\right)=$ $\varphi_{2}\left(e_{1} e_{1}, 1\right)=\varphi_{2}(-1,1)=\gamma$. Thus we have the required isomorphim $\left(E_{7(7)}\right)_{e v} \cong$ $(S L(2, \boldsymbol{R}) \times \operatorname{spin}(6,6)) / \boldsymbol{Z}_{2} \times\{1, \gamma\}, \boldsymbol{Z}_{2}=\{(E, 1),(-E, \gamma)\}$.
(2) For $\alpha \in\left(E_{7(7)}\right)_{0} \subset\left(E_{7}^{C}\right)_{0}=\left(E_{7}^{C}\right)^{\delta_{4}}$, there exist $p \in S p\left(1, \boldsymbol{H}^{C}\right), a \in$ C^{*} and $\beta \in S L(6, C)$ such that $\alpha=\varphi_{\delta_{4}}(p, a, \beta)=\varphi_{2, l}(p) \zeta(p) \beta$ (Theorem 4.1.2). Note that $\tau \gamma_{1} \varphi_{2, l}(p) \gamma_{1} \tau=\varphi_{2, l}\left(\tau \gamma_{1} p\right)$ and $\tau \gamma_{1} \zeta(a) \gamma_{1} \tau=\tau \gamma_{1} \varphi_{4, r}(h(a) E)$ $\gamma_{1} \tau=\varphi_{4, r}\left(h\left(\tau \gamma_{1} a \gamma_{1} \tau\right) E\right)=\varphi_{4, r}(h(\tau a) E)=\zeta(\tau a)$. Now, from the condition $\tau \gamma_{1} \alpha \gamma_{1} \tau=\alpha$, that is, $\tau \gamma_{1} \varphi_{2, l}(p) \zeta(a) \beta \gamma_{1} \tau=\varphi_{2, l} \zeta(a) \beta$, we have $\varphi_{2, l}\left(\tau \gamma_{1} p\right) \zeta(\tau a)$ $\tau \gamma_{1} \beta \gamma_{1} \tau=\varphi_{2, l}(p) \zeta(a) \beta$. Hence
(i) $\left\{\begin{array}{l}\tau \gamma_{1} p=p \\ \zeta(\tau a)=\zeta(a) \\ \tau \gamma_{1} \beta \gamma_{1} \tau=\beta,\end{array}\right.$
(ii) $\left\{\begin{array}{l}\tau \gamma_{1} p=-p \\ \zeta(\tau a)=\zeta(a) \\ \tau \gamma_{1} \beta \gamma_{1} \tau=\gamma \beta,\end{array}\right.$
(iii) $\left\{\begin{array}{l}\tau \gamma_{1} p=p \\ \zeta(\tau a)=\gamma \zeta(a) \\ \tau \gamma_{1} \beta \gamma_{1} \tau=\gamma \beta,\end{array}\right.$
(iv) $\left\{\begin{array}{l}\tau \gamma_{1} p=-p \\ \zeta(\tau a)=\gamma \zeta(a) \\ \tau \gamma_{1} \beta \gamma_{1} \tau=\beta,\end{array}\right.$
(v) $\left\{\begin{array}{l}\tau \gamma_{1} p=p \\ \zeta(\tau a)=\zeta\left(\pm \omega^{k}\right) \zeta(a) \\ \tau \gamma_{1} \beta \gamma_{1} \tau=\zeta\left(\pm \omega^{-k}\right) \beta \\ k=1,2,\end{array}\right.$
(vi) $\left\{\begin{array}{l}\tau \gamma_{1} p=-p \\ \zeta(\tau a)=\zeta\left(\pm \omega^{k}\right) \zeta(a) \\ \tau \gamma_{1} \beta \gamma_{1} \tau=\zeta\left(\pm \omega^{-k}\right) \gamma \beta \\ k=1,2 .\end{array}\right.$

Case (i) From $\tau \gamma_{1} p=p$, we have $p \in S p\left(1, \boldsymbol{H}^{\prime}\right)$, and from $\zeta(\tau a)=\zeta(a)$, that is, $\tau a=a$, hence we have $a \in \boldsymbol{R}^{*}$. To determine the structure of the group $\left\{\beta \in S L(6, C) \mid \tau \gamma_{1} \beta \gamma_{1} \tau=\beta\right\}=S L(6, C)^{\tau \gamma_{1}}$, consider an \boldsymbol{R}-vector space

$$
V^{6}=\left\{P \in\left(V^{C}\right)^{6} \mid \tau \gamma_{1} P=P\right\}
$$

and let $G L(6, \boldsymbol{R})=\operatorname{Iso}_{R}\left(V^{6}\right)$. Then by the correspondence

$$
\alpha \in \operatorname{Iso}_{C}\left(\left(V^{6}\right)^{C}\right)^{\tau \gamma_{1}} \rightarrow \alpha \mid V^{6} \in \operatorname{Iso}_{R}\left(V^{6}\right)
$$

we have the isomorphism $\operatorname{Iso}_{C}\left(\left(V^{6}\right)^{C}\right)^{\tau \gamma_{1}} \cong \operatorname{Iso}_{R}\left(V^{6}\right)$, so that $G L(6, C)^{\tau \gamma_{1}}$ $\cong G L(6, \boldsymbol{R})$ and so we have $S L(6, C)^{\tau \gamma_{1}} \cong S L(6, \boldsymbol{R})$. Hence for $\alpha \in\left(E_{7(7)}\right)_{0}$, there exist $p \in S p\left(1, \boldsymbol{H}^{\prime}\right), a \in \boldsymbol{R}^{*}$ and $\beta \in S L(6, \boldsymbol{R})$ such that $\alpha=\varphi_{\delta_{4}}(p, a, \beta)$. Denote the group of (i) by $G_{(\mathrm{i})}$. The mapping $\varphi_{\delta_{4}}: S p\left(1, \boldsymbol{H}^{\prime}\right) \times \boldsymbol{R}^{*} \times S L(6, \boldsymbol{R})$ $\rightarrow G_{(\mathrm{i})}$ is a surjective homomorphism and $\operatorname{Ker} \varphi_{\delta_{4}}=\{(1,1,1),(-1,-1,1)\} \times$ $\{(1,1,1),(-1,1, \gamma)\}=\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}$. Therefore we have the isomorphism $G_{(\mathrm{i})} \cong$ $\left(S p\left(1, \boldsymbol{H}^{\prime}\right) \times \boldsymbol{R}^{*} \times S L(6, \boldsymbol{R})\right) /\left(\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}\right) \cong\left(S p\left(1, \boldsymbol{H}^{\prime}\right) \times \boldsymbol{R}^{+} \times S L(6, \boldsymbol{R})\right) / \boldsymbol{Z}_{2}$ $\left(\boldsymbol{Z}_{2}=\{(1,1,1),(-1,1, \gamma)\}\right) \cong\left(S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{+} \times S L(6, \boldsymbol{R})\right) / \boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}=\{(E, 1$, $E),(-E, 1,-E)\}$.

Case (ii) $\varphi_{\delta_{4}}\left(e_{1}, 1, \delta_{4}\right)=\varphi_{2}\left(e_{1}, 1\right) \varphi_{2}\left(1,-e_{1}\right)=\varphi_{2}\left(e_{1},-e_{1}\right)=\gamma \gamma^{\prime}$.
Case (iii) $\quad \varphi_{\delta_{4}}\left(1, i, \delta_{4}\right)=\varphi_{2}\left(1,-e_{1}\right) \varphi_{2}\left(1,-e_{1}\right)=\varphi_{2}(1,-1)=\gamma$.
Case (iv) $\varphi_{\delta_{4}}\left(e_{1},-i, 1\right)=\varphi_{2}\left(e_{1}, 1\right) \varphi_{2}\left(1, e_{1}\right)=\varphi_{2}\left(e_{1}, e_{1}\right)=\gamma^{\prime}$.
Cases (v) and (vi) are impossible. Because there exists no element $a \in C^{*}$ satisfying the condition $\tau a=\left(\pm \omega^{k}\right) a$ for $k=1,2$.
Thus we have the required isomorphism $\left(E_{7(7)}\right)_{0} \cong\left(S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{+} \times S L(6, \boldsymbol{R})\right)$ $/ \boldsymbol{Z}_{2} \times\left\{1, \gamma, \gamma^{\prime}, \gamma \gamma^{\prime}\right\}, \boldsymbol{Z}_{2}=\{(E, 1,1),(-E, 1,-E)\}$.
(3) For $\alpha \in\left(E_{7(7)}\right)_{e d} \subset\left(E_{7}^{C}\right)_{e d}=\left(E_{7}^{C}\right)^{w_{3}}$, there exist $A \in S U\left(3, C^{C}\right)$ and $\beta \in S U\left(6, C^{C}\right)$ such that $\alpha=\varphi_{w_{3}}(A, \beta)=\varphi_{3, l}(A) \beta$ (Theorem 4.1.3).

From $\tau \gamma_{1} \alpha \gamma_{1} \tau=\alpha$, that is, $\tau \gamma_{1} \varphi_{3, l}(A) \beta \gamma_{1} \tau=\varphi_{3, l}(A) \beta$, we have $\varphi_{3, l}\left(\tau \gamma_{1} A\right) \tau \gamma_{1}$ $\beta \gamma_{1} \tau=\varphi_{3, l}(A) \beta$. Hence
(i) $\left\{\begin{array}{l}\tau \gamma_{1} A=A \\ \tau \gamma_{1} \beta \gamma_{1} \tau=\beta,\end{array}\right.$
(ii) $\left\{\begin{array}{l}\tau \gamma_{1} A=w_{1} A \\ \tau \gamma_{1} \beta \gamma_{1} \tau=w_{1} \beta,\end{array}\right.$
(iii) $\left\{\begin{array}{l}\tau \gamma_{1} A=w_{1}{ }^{2} A \\ \tau \gamma_{1} \beta \gamma_{1} \tau=w_{1}{ }^{2} \beta .\end{array}\right.$

Case (i) From $\tau \gamma_{1} A=A$, we have $A \in S U\left(3, \boldsymbol{C}^{\prime}\right)$. To determine the structure of the group $\left\{\beta \in S U\left(6, \boldsymbol{C}^{C}\right) \mid \tau \gamma_{1} \beta \gamma_{1} \tau=\beta\right\}=S U\left(6, \boldsymbol{C}^{C}\right)^{\tau \gamma_{1}}$, we use the following fact.

$$
\left(\mathfrak{e}_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}, \tau \gamma_{1}} \cong \mathfrak{s u}\left(6, C^{\prime}\right) .
$$

In fact, since the C-Lie isomorphism $\varphi_{*}: \mathfrak{s u}\left(6, C^{C}\right) \rightarrow\left(\mathfrak{e}_{7}{ }^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}$ of Proposition 1.3.6 satisfies

$$
\begin{aligned}
\tau \gamma_{1} \varphi_{*}\left(\left(\begin{array}{cc}
B & L \\
-L^{*} & C
\end{array}\right)+\frac{\nu}{3}\left(\begin{array}{cc}
E & 0 \\
0 & -E
\end{array}\right)\right) & \gamma_{1} \tau \\
& =\varphi_{*}\left(\tau \gamma_{1}\left(\left(\begin{array}{cc}
B & L \\
-L^{*} & C
\end{array}\right)+\frac{\nu}{3}\left(\begin{array}{cc}
E & 0 \\
0 & -E
\end{array}\right)\right)\right)
\end{aligned}
$$

φ_{*} induces a Lie isomorphism $\varphi^{\prime}: \mathfrak{s u}\left(6, C^{\prime}\right) \rightarrow\left(\mathfrak{e}_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}, \tau \gamma_{1}}$,

$$
\varphi_{*}^{\prime}\left(\left(\begin{array}{cc}
B & L \\
-L^{*} & C
\end{array}\right)+\frac{\nu}{3}\left(\begin{array}{cc}
E & 0 \\
0 & -E
\end{array}\right)\right)=\Phi\left(\phi_{C}(B, C), h_{C}(L),-\tau h_{C}(L),-i e_{1} \nu\right)
$$

$B, C \in \mathfrak{s u}\left(3, \boldsymbol{C}^{\prime}\right), L \in M\left(3, \boldsymbol{C}^{\prime}\right), \nu \in e_{1}(i \boldsymbol{R})$. Therefore we have the required isomorphism $\mathfrak{s u}\left(6, \boldsymbol{C}^{\prime}\right) \cong\left(\mathfrak{e}_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}, \tau \gamma_{1}}$.

Now, the group $\left(E_{7}{ }^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}, \tau \gamma_{1}}$ is connected (because $\left(E_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}}$ $\cong S U\left(6, C^{C}\right)$ (Proposition 1.3.7) $\cong S L(6, C)$ is simply connected). Furthermore $\left(\mathfrak{e}_{7}{ }^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}, \tau \gamma_{1}}=\mathfrak{s u}\left(6, C^{\prime}\right)$, hence the group $\left(E_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}, \tau \gamma_{1}}$ is isomorphic to either one of the groups

$$
S U\left(6, \boldsymbol{C}^{\prime}\right) \quad \text { or } \quad S U\left(6, \boldsymbol{C}^{\prime}\right) / \boldsymbol{Z}_{2}
$$

Moreover, since it is easily obtained that $z\left(\left(E_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}, \tau \gamma_{1}}\right) \supset\{1,-1\} \cong$ \boldsymbol{Z}_{2}, we have

$$
\left(E_{7}^{C}\right)^{w_{3}, \varepsilon_{1}, \varepsilon_{2}, \gamma_{3}, \tau \gamma_{1}} \cong S U\left(6, C^{\prime}\right) .
$$

Therefore the group of case (i) is $S U\left(3, \boldsymbol{C}^{\prime}\right) \times S L\left(6, \boldsymbol{C}^{\prime}\right)$.
Case (ii) $\quad \varphi_{w_{3}}\left(w_{1} E, w_{1} E\right)=1$.
Case (iii) $\varphi_{w_{3}}\left(w_{1}^{2} E, w_{1}^{2} E\right)=1$.
Thus we have the required isomorphism $\left(E_{7(7)}\right)_{e d} \cong S U\left(3, \boldsymbol{C}^{\prime}\right) \times S U\left(6, \boldsymbol{C}^{\prime}\right)$ $\cong S L(3, \boldsymbol{R}) \times S L(6, \boldsymbol{R})$.
4.3. \quad Subgroups of type $A_{1(1)} \oplus D_{6(-6)}, A_{1(1)} \oplus \boldsymbol{R} \oplus A_{5(-7)}$ and $A_{2(2)} \oplus A_{5(-7)}$ of $E_{7(-5)}$

Since γ and γ_{1} are conjugate in $\left(G_{2}^{C}\right)^{\tau} \subset\left(E_{7}{ }^{C}\right)^{\tau \lambda} \subset E_{7}^{C}$, we have

$$
E_{7(-5)}=\left(E_{7}^{C}\right)^{\tau \lambda \gamma} \cong\left(E_{7}^{C}\right)^{\tau \lambda \gamma_{1}} .
$$

Theorem 4.3. The 3-graded decomposition of the Lie algebra $\mathfrak{e}_{7(-5)}$ $=\left(\mathfrak{e}_{7}{ }^{C}\right)^{\tau \lambda \gamma_{1}}\left(\right.$ or $\left.\mathfrak{e}_{7}{ }^{C}\right)$,

$$
\mathfrak{e}_{7(-5)}=\mathfrak{g}_{-3} \oplus \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \oplus \mathfrak{g}_{3}
$$

with respect to $\operatorname{ad} Z, Z=\Phi\left(i\left(-2 G_{23}+G_{45}+G_{67}\right), 0,0,0\right)$, is given by

$$
\begin{aligned}
\mathfrak{g}_{0}=\left\{\begin{array}{l}
i G_{01}, i G_{23}, i G_{45}, G_{46}, i G_{47}, i G_{67} \\
\widetilde{A}_{k}(1), i \widetilde{A}_{k}\left(e_{i}\right), i\left(E_{1}-E_{2}\right)^{\sim}, i\left(E_{2}-E_{3}\right)^{\sim}, i \widetilde{F}_{k}(1), \widetilde{F}_{k}\left(e_{1}\right) \\
\check{E}_{k}-\hat{E}_{k}, i\left(\check{E}_{k}+\hat{E}_{k}\right), \check{F}_{k}(1)-\hat{F}_{k}(1), i\left(\check{F}_{k}(1)+\hat{F}_{k}(1)\right), \\
\check{F}_{k}\left(e_{1}\right)+\hat{F}_{k}\left(e_{1}\right), i\left(\check{F}_{k}\left(e_{1}\right)-\hat{F}_{k}\left(e_{1}\right)\right), k=1,2,3, i \mathbf{1}
\end{array}\right\} \\
\mathfrak{g}_{-1}=\left\{\begin{array}{l}
G_{04}+i G_{05}, G_{06}+i G_{07}, i G_{14}-G_{15}, i G_{16}-G_{17}, \\
\left(G_{24}-G_{35}\right)-i\left(G_{25}+G_{34}\right),\left(G_{26}-G_{37}\right)-i\left(G_{27}+G_{36}\right), \\
\widetilde{A}_{k}\left(e_{4}+i e_{5}\right), \widetilde{A}_{k}\left(e_{6}+i e_{7}\right), i \widetilde{F}_{k}\left(e_{4}+i e_{5}\right), i \widetilde{F}_{k}\left(e_{6}+i e_{7}\right), \\
\check{F}_{k}\left(e_{4}+i e_{5}\right)-\hat{F}_{k}\left(e_{4}+i e_{5}\right), i\left(\check{F}_{k}\left(e_{4}+i e_{5}\right)+\hat{F}_{k}\left(e_{4}+i e_{5}\right)\right), \\
\check{F}_{k}\left(e_{6}+i e_{7}\right)-\hat{F}_{k}\left(e_{6}+i e_{7}\right), i\left(\check{F}_{k}\left(e_{6}+i e_{7}\right)+\hat{F}_{k}\left(e_{6}+i e_{7}\right)\right), \\
k=1,2,3
\end{array}\right\} 30 \\
\mathfrak{g}_{-2}=\left\{\begin{array}{l}
G_{02}-i G_{03}, i G_{02}+G_{13},\left(G_{46}-G_{57}\right)+i\left(G_{47}+G_{56}\right), \\
\widetilde{A}_{k}\left(e_{2}-i e_{3}\right), \check{F}_{k}\left(e_{2}-i e_{3}\right)-\hat{F}_{k}\left(e_{2}-i e_{3}\right), \\
\widetilde{F}_{k}\left(e_{2}-i e_{3}\right), i\left(\check{F}_{k}\left(e_{2}-i e_{3}\right)+\hat{F}_{k}\left(e_{2}-i e_{3}\right)\right), k=1,2,3
\end{array}\right\} 15 \\
\mathfrak{g}_{-3}=\left\{\begin{array}{l}
\left.\left(G_{24}+G_{35}\right)+i\left(G_{25}-G_{34}\right),\left(G_{26}+G_{37}\right)+i\left(G_{27}-G_{36}\right)\right\} 2 \\
\mathfrak{g}_{1}=\tau\left(\mathfrak{g}_{-1}\right) \tau, \mathfrak{g}_{2}=\tau\left(\mathfrak{g}_{-2}\right) \tau, \mathfrak{g}_{3}=\tau\left(\mathfrak{g}_{-3}\right) \tau
\end{array}\right.
\end{aligned}
$$

Proof. We can prove this theorem in a way similar to [6, Theorem 4.13], using [6, Lemma 4.12].

Since $\left(\mathfrak{e}_{7(-5)}\right)_{e v}=\left(\mathfrak{e}_{7}^{C}\right)_{e v} \cap\left(\mathfrak{e}_{7}^{C}\right)^{\tau \lambda \gamma_{1}}=\left(\mathfrak{e}_{7}^{C}\right)^{\gamma} \cap\left(\mathfrak{e}_{7}^{C}\right)^{\tau \lambda \gamma_{1}},\left(\mathfrak{e}_{7(-5)}\right)_{0}=$ $\left(\mathfrak{e}_{7}{ }^{C}\right)_{0} \cap\left(\mathfrak{e}_{7}^{C}\right)^{\tau \lambda \gamma_{1}}=\left(\mathfrak{e}_{7}^{C}\right)^{\delta_{4}} \cap\left(\mathfrak{e}_{7}^{C}\right)^{\tau \lambda \gamma_{1}},\left(\mathfrak{e}_{7(-5)}\right)_{e d}=\left(\mathfrak{e}_{7}{ }^{C}\right)_{e d} \cap\left(\mathfrak{e}_{7}{ }^{C}\right)^{\tau \lambda \gamma_{1}}=$ $\left(\mathfrak{e}_{7}^{C}\right)^{w_{3}} \cap\left(\mathfrak{e}_{7}{ }^{C}\right)^{\tau \lambda \gamma_{1}}$, we shall determine the structures of groups

$$
\begin{aligned}
\left(E_{7(-5)}\right)_{e v} & =\left(E_{7}^{C}\right)_{e v} \cap\left(E_{7}^{C}\right)^{\tau \lambda \gamma_{1}}=\left(E_{7}^{C}\right)^{\gamma} \cap\left(E_{7}^{C}\right)^{\tau \lambda \gamma_{1}} \\
\left(E_{7(-5)}\right)_{0} & =\left(E_{7}^{C}\right)_{0} \cap\left(E_{7}^{C}\right)^{\tau \lambda \gamma_{1}}=\left(E_{7}^{C}\right)^{\delta_{4}} \cap\left(E_{7}^{C}\right)^{\tau \lambda \gamma_{1}}, \\
\left(E_{7(-5)}\right)_{e d} & =\left(E_{7}^{C}\right)_{e d} \cap\left(E_{7}^{C}\right)^{\tau \lambda \gamma_{1}}=\left(E_{7}^{C}\right)^{w_{3}} \cap\left(E_{7}^{C}\right)^{\tau \lambda \gamma_{1}} .
\end{aligned}
$$

Theorem 4.3.1. (1) $\left(E_{7(-5)}\right)_{e v} \cong\left(S L(2, \boldsymbol{R}) \times \operatorname{spin}^{*}(12)\right) / \boldsymbol{Z}_{2} \times\left\{1, \gamma \gamma^{\prime}\right\}$, $\boldsymbol{Z}_{2}=\{(E, 1),(-E, \gamma)\}$.
(2) $\left(E_{7(-5)}\right)_{0} \cong\left(S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{+} \times S U^{*}(6)\right) / \boldsymbol{Z}_{2} \times\left\{1, \gamma, \gamma^{\prime}, \gamma \gamma^{\prime}\right\}, \boldsymbol{Z}_{2}=$ $\{(E, 1, E),(-E, 1,-E)\}$.
(3) $\left(E_{7(-5)}\right)_{e d} \cong S L(3, \boldsymbol{R}) \times S U^{*}(6)$.

Proof. (1) For $\alpha \in\left(E_{7(-5)}\right)_{e v} \subset\left(E_{7}^{C}\right)_{e v}=\left(E_{7}^{C}\right)^{\gamma}$, there exist $p \in$ $\operatorname{Sp}\left(1, \boldsymbol{H}^{C}\right)$ and $\beta \in \operatorname{Spin}(12, C)$ such that $\alpha=\varphi_{\gamma}(p, \beta)=\varphi_{2, l}(p) \beta$ (Theorem 4.1.1). From the condition $\tau \lambda \gamma_{1} \alpha \gamma_{1} \lambda^{-1} \tau=\alpha$, that is, $\tau \lambda \gamma_{1} \varphi_{2, l}(p) \beta \gamma_{1} \lambda^{-1} \tau=$ $\varphi_{2, l}(p) \beta$, we have $\varphi_{2, l}\left(\tau \gamma_{1} p\right) \tau \lambda \gamma_{1} \beta \gamma_{1} \lambda^{-1} \tau=\varphi_{2, l}(p) \beta$. Hence

$$
\left\{\begin{array} { l }
{ \tau \gamma _ { 1 } p = p } \\
{ \tau \lambda \gamma _ { 1 } \beta \gamma _ { 1 } \lambda ^ { - 1 } \tau = \beta }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
\tau \gamma_{1} p=-p \\
\tau \lambda \gamma_{1} \beta \gamma_{1} \lambda^{-1} \tau=\gamma \beta
\end{array}\right.\right.
$$

In the former case, from $\tau \gamma_{1} p=p$, we have $p \in S p\left(1, \boldsymbol{H}^{\prime}\right)$. In order to determine the structure of the group $\left\{\beta \in \operatorname{Spin}(12, C) \mid \tau \lambda \gamma_{1} \beta \gamma_{1} \lambda^{-1} \tau=\beta\right\}=$ $\operatorname{Spin}(12, C)^{\tau \lambda \gamma_{1}}=\left(E_{7}^{C}\right)^{\varepsilon_{1}, \varepsilon_{2}, \tau \lambda \gamma_{1}}$, we consider a C-vector space

$$
\begin{aligned}
\left(V^{C}\right)^{12} & =\left\{P \in \mathfrak{P}^{C} \mid \varepsilon_{1} P=-i P\right\} \\
& =\left\{\left.P=\left(\left(\begin{array}{ccc}
0 & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & 0 & x_{1} \\
x_{2} & \bar{x}_{1} & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & y_{3} & \bar{y}_{2} \\
\bar{y}_{3} & 0 & y_{1} \\
y_{2} & \bar{y}_{1} & 0
\end{array}\right), 0,0\right) \right\rvert\, x_{k}, y_{k} \in\left(\boldsymbol{H} e_{4}\right)_{\varepsilon_{1}}\right\},
\end{aligned}
$$

with norms

$$
(P, P)_{\varepsilon_{2}}=\frac{1}{8}\left\{P, \varepsilon_{2} P\right\}, \quad(P, P)_{\tau \lambda \gamma_{1}, \varepsilon_{2}}=\frac{1}{4}\left\{\tau \lambda \gamma_{1} P, \varepsilon_{2} P\right\}
$$

where $\left(\boldsymbol{H} e_{4}\right)_{\varepsilon_{1}}=\left\{x \in \mathfrak{C}^{C} \mid x=p\left(e_{4}+i e_{5}\right)+q\left(e_{6}-i e_{7}\right), p, q \in C\right\}$. The explicit forms of $(P, P)_{\varepsilon_{2}}$ and $(P, P)_{\tau \lambda \gamma_{1}, \varepsilon_{2}}$ for $P \in\left(V^{C}\right)^{12}, x_{k}=p_{k}\left(e_{4}+i e_{5}\right)+q_{k}\left(e_{6}-\right.$ $\left.i e_{7}\right), y_{k}=s_{k}\left(e_{4}+i e_{5}\right)+t_{k}\left(e_{6}-i e_{7}\right), k=1,2,3$ are given by

$$
\begin{aligned}
(P, P)_{\varepsilon_{2}}= & \left(p_{1} t_{1}-q_{1} s_{1}\right)+\left(p_{2} t_{2}-q_{2} s_{2}\right)+\left(p_{3} t_{3}-q_{3} s_{3}\right) \\
(P, P)_{\tau \lambda \gamma_{1}, \varepsilon_{2}}= & \frac{1}{2}\left(\left(\tau p_{1}\right) q_{1}-\left(\tau q_{1}\right) p_{1}+\left(\tau p_{2}\right) q_{2}-\left(\tau q_{2}\right) p_{2}+\left(\tau p_{3}\right) q_{3}-\left(\tau q_{3}\right) p_{3}\right. \\
& \left.+\left(\tau s_{1}\right) t_{1}-\left(\tau t_{1}\right) s_{1}+\left(\tau s_{2}\right) t_{2}-\left(\tau t_{2}\right) s_{2}+\left(\tau s_{3}\right) t_{3}-\left(\tau t_{3}\right) s_{3}\right)
\end{aligned}
$$

respectively. By the following coordinate transformation $\left(m_{k} \in C\right)$

$$
\begin{aligned}
& \begin{cases}p_{1}=m_{1}+i m_{2}, & t_{1}=m_{1}-i m_{2}, \\
q_{1}=m_{3}+i m_{4}, & s_{1}=-m_{3}+i m_{4},\end{cases} \\
& \begin{cases}p_{2}=m_{5}+i m_{6}, & t_{2}=m_{5}-i m_{6}, \\
q_{2}=m_{7}+i m_{8}, & s_{2}=-m_{7}+i m_{8},\end{cases} \\
& \left\{\begin{aligned}
p_{3}=m_{9}+i m_{10}, & t_{3}=m_{9}-i m_{10}, \\
q_{3}=m_{11}+i m_{12}, & s_{3}=-m_{11}+i m_{12},
\end{aligned}\right.
\end{aligned}
$$

we have

$$
\begin{aligned}
(P, P)_{\varepsilon_{2}}= & m_{1}^{2}+m_{2}{ }^{2}+\cdots+m_{11}^{2}+m_{12}^{2}={ }^{t} \boldsymbol{m} \boldsymbol{m} \\
(P, P)_{\tau \lambda \gamma_{1}, \varepsilon_{2}}= & \left(\tau m_{1}\right) m_{3}-\left(\tau m_{3}\right) m_{1}+\left(\tau m_{2}\right) m_{4}-\left(\tau m_{4}\right) m_{2}+\cdots \\
& +\left(\tau m_{9}\right) m_{11}-\left(\tau m_{11}\right) m_{9}+\left(\tau m_{10}\right) m_{12}-\left(\tau m_{12}\right) m_{10} \\
= & { }^{t}(\tau \boldsymbol{m}) J^{\prime} \boldsymbol{m}
\end{aligned}
$$

where $\boldsymbol{m}={ }^{t}\left(m_{1}, m_{2}, \ldots, m_{12}\right), J^{\prime}=\left(\begin{array}{ccc}Q & 0 & 0 \\ 0 & Q & 0 \\ 0 & 0 & Q\end{array}\right), Q=\left(\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0\end{array}\right)$. This shows that we have an isomorphism

$$
\begin{aligned}
\left\{\alpha \in \operatorname{Iso}_{C}\left(\left(V^{C}\right)^{12}\right) \mid(\alpha P, \alpha P)_{\varepsilon_{2}}\right. & \left.=(P, P)_{\varepsilon_{2}},(\alpha P, \alpha P)_{\tau \lambda \gamma_{1}, \varepsilon_{2}}=(P, P)_{\tau \lambda \gamma_{1}, \varepsilon_{2}}\right\} \\
& \cong\left\{\left.A \in M(12, C)\right|^{t} A A=E, J^{\prime} A=(\tau A) J^{\prime}\right\}
\end{aligned}
$$

Since

$$
\begin{aligned}
O^{*}(12)=O^{*}\left(\left(V^{C}\right)^{12}\right) & =\left\{\left.A \in M(12, C)\right|^{t} A A=E, J A=(\tau A) J\right\} \\
& \cong\left\{\left.A \in M(12, C)\right|^{t} A A=E, J^{\prime} A=(\tau A) J^{\prime}\right\}
\end{aligned}
$$

we have

$$
\begin{aligned}
& O^{*}(12) \cong \\
& \quad\left\{\alpha \in \operatorname{Iso}_{C}\left(\left(V^{C}\right)^{12}\right) \mid(\alpha P, \alpha P)_{\varepsilon_{2}}=(P, P)_{\varepsilon_{2}},(\alpha P, \alpha P)_{\tau \lambda \gamma_{1}, \varepsilon_{2}}=(P, P)_{\tau \lambda \gamma_{1}, \varepsilon_{2}}\right\}
\end{aligned}
$$

Now, since the group $\operatorname{Spin}(12, C)^{\tau \lambda \gamma_{1}}$ is connected, we can define a homomorphism $\pi: \operatorname{Spin}(12, C)^{\tau \lambda \gamma_{1}} \rightarrow O^{*}(12)^{0}$ (which is the connected component subgroup of $\left.O^{*}(12)\right)$ by $\pi(\alpha)=\alpha \mid\left(V^{C}\right)^{12} . \operatorname{dim}\left(\mathfrak{s p i n}(12, C)^{\tau \lambda \gamma_{1}}\right)=$ $\operatorname{dim}\left(\left(\mathfrak{e}_{7(-5)}\right)_{e v}\right)-\operatorname{dim}\left(\mathfrak{s p}\left(1, \boldsymbol{H}^{\prime}\right)\right)=39+15 \times 2-3$ (Theorem 4.3) $=66=$ $\operatorname{dim}\left(\mathfrak{o}^{*}(12)\right)$ and $\operatorname{Ker} \pi=\{1,-\gamma\}$. Hence

$$
\operatorname{Spin}(12, C)^{\tau \lambda \gamma_{1}} / \boldsymbol{Z}_{2} \cong O^{*}(12)^{0} .
$$

Thus $\operatorname{Spin}(12, C)^{\tau \lambda \gamma_{1}}$ is denoted by $\operatorname{spin}^{*}(12)$ as a double covering group of $O^{*}(12)^{0}$, that is, $\operatorname{Spin}(12, C)^{\tau \lambda \gamma_{1}} \cong \operatorname{spin}^{*}(12)$. Hence the group of the former case is $\left(S p\left(1, \boldsymbol{H}^{\prime}\right) \times \operatorname{spin}^{*}(12)\right) / \boldsymbol{Z}_{2}\left(\boldsymbol{Z}_{2}=\{(1,1),(1,-\gamma)\}\right) \cong(S L(2, \boldsymbol{R}) \times$ spin $\left.^{*}(12)\right) / \boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}=\{(E, 1),(-E, \gamma)\}$. In the latter case, $p=e_{1}, \beta=\delta_{4}$ satisfy these conditions and $\varphi_{\gamma}\left(e_{1}, \delta_{4}\right)=\gamma \gamma^{\prime}$. Therefore $\left(E_{7(-5)}\right)_{e v} \cong(S L(2, \boldsymbol{R}) \times$ $\left.\operatorname{spin}^{*}(12)\right) / \boldsymbol{Z}_{2} \times\left\{1, \gamma \gamma^{\prime}\right\}, \boldsymbol{Z}_{2}=\{(E, 1),(-E, \gamma)\}$.
(2) For $\alpha \in\left(E_{7(-5)}\right)_{0} \subset\left(E_{7}^{C}\right)_{0}=\left(E_{7}^{C}\right)^{\delta_{4}}$, there exist $p \in \operatorname{Sp}\left(1, \boldsymbol{H}^{C}\right), a \in$ C^{*} and $\beta \in S L(6, C)$ such that $\alpha=\varphi_{\delta_{4}}(p, a, \beta)=\varphi_{2, l}(p) \zeta(a) \beta$ (Theorem 4.1.2). From the condition $\tau \lambda \gamma_{1} \alpha \gamma_{1} \lambda^{-1} \tau=\alpha$, that is, $\tau \lambda \gamma_{1} \varphi_{2, l}(p) \zeta(a) \beta \gamma_{1} \lambda^{-1} \tau$
$=\varphi_{2, l}(p) \zeta(a) \beta$, we have $\varphi_{2, l}\left(\tau \gamma_{1} p\right) \zeta(\tau a) \tau \lambda \gamma_{1} \beta \gamma_{1} \lambda^{-1} \tau=\varphi_{2, l}(p) \zeta(a) \beta$. Hence
(i) $\left\{\begin{array}{l}\tau \gamma_{1} p=p \\ \zeta(\tau a)=\zeta(a) \\ \tau \gamma_{1} \lambda \beta \gamma_{1} \lambda^{-1} \tau=\beta,\end{array}\right.$
(ii) $\left\{\begin{array}{l}\tau \gamma_{1} p=-p \\ \zeta(\tau a)=\zeta(a) \\ \tau \gamma_{1} \lambda \beta \gamma_{1} \lambda^{-1} \tau=\gamma \beta,\end{array}\right.$
(iii) $\left\{\begin{array}{l}\tau \gamma_{1} p=p \\ \zeta(\tau a)=\gamma \zeta(a) \\ \tau \gamma_{1} \lambda \beta \lambda^{-1} \gamma_{1} \tau=\gamma \beta,\end{array}\right.$
(iv) $\left\{\begin{array}{l}\tau \gamma_{1} p=-p \\ \zeta(\tau a)=\gamma \zeta(a) \\ \tau \gamma_{1} \lambda \beta \gamma_{1} \lambda^{-1} \tau=\beta,\end{array}\right.$

(v) $\left\{\right.$| $\tau \gamma_{1} p=p$ |
| :--- |
| $\zeta(\tau a)=\zeta\left(\pm \omega^{k}\right) \zeta(a)$ |
| $\tau \gamma_{1} \lambda \beta \gamma_{1} \lambda^{-1} \tau=\zeta\left(\pm \omega^{-k}\right) \beta$ |
| $k=1,2$ |

(vi) $\left\{\begin{array}{l}\tau \gamma_{1} p=-p \\ \zeta(\tau a)=\zeta\left(\pm \omega^{k}\right) \zeta(a) \\ \tau \gamma_{1} \lambda \beta \gamma_{1} \lambda^{-1} \tau=\zeta\left(\pm \omega^{-k}\right) \gamma \beta \\ \quad k=1,2 .\end{array}\right.$

Case (i) From $\tau \gamma_{1} p=p$, we have $p \in \operatorname{Sp}\left(1, \boldsymbol{H}^{\prime}\right)$, and from $\zeta(\tau a)=$ $\zeta(a)$, we have $a \in \boldsymbol{R}^{*}$. We will determine the structure of the group $\{\beta \in$ $\left.S L(6, C) \mid \tau \lambda \gamma_{1} \beta \gamma_{1} \lambda^{-1} \tau=\beta\right\}=S L(6, C)^{\tau \lambda \gamma_{1}}$. For this end, consider the correspondence

$$
\left.\begin{array}{rl}
\left(V^{C}\right)^{6} \ni\left(\begin{array}{ccc}
0 & p_{3}\left(e_{4}+i e_{5}\right) & -p_{2}\left(e_{4}+i e_{5}\right) \\
\left(p_{3}\left(e_{4}+i e_{5}\right)\right. & 0 & p_{1}\left(e_{4}+i e_{5}\right) \\
p_{2}\left(e_{4}+i e_{5}\right) & -p_{1}\left(e_{4}+i e_{5}\right) & 0
\end{array}\right), \\
\left(\begin{array}{ccc}
0 & s_{3}\left(e_{4}+i e_{5}\right) & -s_{2}\left(e_{4}+i e_{5}\right) \\
-s_{3}\left(e_{4}+i e_{5}\right) & 0 & s_{1}\left(e_{4}+i e_{5}\right) \\
s_{2}\left(e_{4}+i e_{5}\right) & -s_{1}\left(e_{4}+i e_{5}\right) & 0
\end{array}\right), 0,0
\end{array}\right) \rightarrow\left(\begin{array}{c}
p_{1} \\
s_{1} \\
p_{2} \\
s_{2} \\
p_{3} \\
s_{3}
\end{array}\right) \in C^{6} .
$$

Under this correspondence, the actions λ and $\tau \gamma_{1}$ on $\left(V^{C}\right)^{6}$ correspond to the actions J and τ on C^{6}, respectively. Let $B \in M(6, C)$ be the matrix corresponds to $\beta \in S L(6, C)$, then we see that the condition $\lambda \tau \gamma_{1} \beta \tau \gamma_{1} \lambda^{-1}=\beta$ corresponds to the condition $J(\tau B) J^{-1}=B$, that is, $J B=(\tau B) J$. Hence we have

$$
\beta \in S L(6, C)^{\tau \lambda \gamma_{1}} \cong S U^{*}(6)=\{B \in M(6, C) \mid J B=(\tau B) J, \operatorname{det} B=1\}
$$

Thus we see that for $\alpha \in\left(E_{7(-5)}\right)_{0}$, there exist $p \in S p\left(1, \boldsymbol{H}^{\prime}\right), a \in \boldsymbol{R}^{*}$ and $\beta \in S U^{*}(6)$ such that $\alpha=\varphi_{\delta_{4}}(p, a, \beta)$. As similar to Theorem 4.2.(2), the group of (i) is isomorphic to $\left(S p\left(1, \boldsymbol{H}^{\prime}\right) \times \boldsymbol{R}^{*} \times S U^{*}(6)\right) /\left(\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}\right)\left(\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}=\right.$ $\{(1,1,1),(-1,-1,1)\} \times\{(1,1,1),(-1,1, \gamma)\}) \cong\left(S p\left(1, \boldsymbol{H}^{\prime}\right) \times \boldsymbol{R}^{+} \times S U^{*}(6)\right) / \boldsymbol{Z}_{2}$ $\left(\boldsymbol{Z}_{2}=\{(1,1,1),(-1,1, \gamma)\}\right) \cong\left(S p\left(1, \boldsymbol{H}^{\prime}\right) \times \boldsymbol{R}^{+} \times S U^{*}(6)\right) / \boldsymbol{Z}_{2}\left(\boldsymbol{Z}_{2}=\{(1,1,1)\right.$, $(-1,1, \gamma)\}) \cong\left(S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{+} \times S U^{*}(6)\right) / \boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}=\{(E, 1, E),(-E, 1,-E)\}$.

Case (ii) $\varphi_{\delta_{4}}\left(e_{1}, 1, \delta_{4}\right)=\gamma \gamma^{\prime}$.
Case (iii) $\varphi_{\delta_{4}}\left(1, i, \delta_{4}\right)=\gamma$.
Case (iv) $\varphi_{\delta_{4}}\left(e_{1},-i, 1\right)=\gamma^{\prime}$.

Cases (v) and (vi) are impossible. Because there exists no $a \in C^{*}$ satisfying the condition $\tau a=\left(\pm \omega^{k}\right) a$ for $k=1,2$.
Thus we have the required isomorphism $\left(E_{7(-5)}\right)_{0} \cong\left(\left(S L(2, \boldsymbol{R}) \times \boldsymbol{R}^{+} \times S U^{*}(6)\right)\right.$ $/ \boldsymbol{Z}_{2} \times\left\{1, \gamma, \gamma^{\prime}, \gamma \gamma^{\prime}\right\}, \boldsymbol{Z}_{2}=\{(E, 1, E),(-E, 1,-E)\}$.
(3) For $\alpha \in\left(E_{7(-5)}\right)_{e d} \subset\left(E_{7}^{C}\right)_{e d}=\left(E_{7}^{C}\right)^{w_{3}}$, there exist $A \in S U\left(3, C^{C}\right)$ and $\beta \in S U\left(6, C^{C}\right)$ such that $\alpha=\varphi_{w_{3}}(A, \beta)=\varphi_{3, l}(A) \beta$ (Theorem 4.1.3). From the condition $\tau \lambda \gamma_{1} \alpha \gamma_{1} \lambda^{-1} \tau=\alpha$, that is, $\tau \lambda \gamma_{1} \varphi_{3, l}(A) \beta \gamma_{1} \lambda^{-1} \tau=\varphi_{3, l}(A) \beta$, we have $\varphi_{3, l}\left(\tau \gamma_{1} A\right) \tau \lambda \gamma_{1} \beta \gamma_{1} \lambda^{-1} \tau=\varphi_{3, l}(A) \beta$. Hence
(i) $\left\{\begin{array}{l}\tau \gamma_{1} A=A \\ \tau \lambda \gamma_{1} \beta \gamma_{1} \lambda^{-1} \tau=\beta,\end{array}\right.$
(ii) $\left\{\begin{array}{l}\tau \gamma_{1} A=w_{1} A \\ \tau \lambda \gamma_{1} \beta \gamma_{1} \lambda^{-1} \tau=w_{1} \beta,\end{array}\right.$
(iii) $\left\{\begin{array}{l}\tau \gamma_{1} A=w_{1}{ }^{2} A \\ \tau \lambda \gamma_{1} \beta \gamma_{1} \lambda^{-1} \tau=w_{1}{ }^{2} \beta .\end{array}\right.$

Case (i) From $\tau \gamma_{1} A=A$, we have $A \in S U\left(3, \boldsymbol{C}^{\prime}\right)$. From the proof of (2) above, we see $\beta \in S U^{*}(6)$. Therefore the group of (i) is $S U\left(3, C^{\prime}\right) \times S U^{*}(6) \cong$ $S L(3, \boldsymbol{R}) \times S U^{*}(6)$.

Case (ii) $\quad \varphi_{w_{3}}\left(w_{1} E, w_{1} E\right)=1$.
Case (iii) $\quad \varphi_{w_{3}}\left(w_{1}{ }^{2} E, w_{1}{ }^{2} E\right)=1$.
Thus we have the required isomorphism $\left(E_{7(-5)}\right)_{e d} \cong S U\left(3, C^{\prime}\right) \times S U^{*}(6) \cong$ $S L(3, \boldsymbol{R}) \times S U^{*}(6)$.

Komoro High School
Komoro city, Nagano, 384-0801
Japan
e-mail: spin15ss16@ybb.ne.jp
339-5, Okada-Matsuoka
Matsumoto, 390-0312
Japan

References

[1] M. Hara, Real semisimple graded Lie algebras of the third kind (in Japanese), Master's thesis, Dept. Math. Shinshu Univ. (2000).
[2] I. Yokota, T. Ishihara and O. Yasukura, Subgroup $\left((S U(3) \times S U(6)) / \boldsymbol{Z}_{3}\right)$. \boldsymbol{Z}_{2} of the simply connected compact simple Lie group E_{7}, J. Math. Kyoto Univ. 23 (1983), 715-737.
[3] I. Yokota, Realization of involutive automorphisms σ and G^{σ} of exceptional linear Lie groups G, Part I, $G=G_{2}, F_{4}$ and E_{6}, Tsukuba J. Math. 4 (1990), 185-223.
[4] , Realization of involutive automorphisms σ and G^{σ} of exceptional linear Lie groups G, Part II, $G=E_{7}$, Tsukuba J. Math. 4 (1990), 379-404.
[5] \qquad 2-graded decompositions of exceptional Lie algebras \mathfrak{g} and group realizations of $\mathfrak{g}_{\text {ev }}, \mathfrak{g}_{0}$, Part I, $G=G_{2}, F_{4}, E_{6}$, Japan. J. Math. 24 (1998), 257-296.
[6] \qquad , 2-graded decompositions of exceptional Lie algebras \mathfrak{g} and group realizations of $\mathfrak{g}_{\text {ev }}, \mathfrak{g}_{0}$, Part II, $G=E_{7}$, Japan. J. Math. 25 (1999), 154179.
[7] \qquad , 3-graded decompositions of exceptional Lie algebras \mathfrak{g} and group realizations of $\mathfrak{g}_{e v}, \mathfrak{g}_{0}$ and $\mathfrak{g}_{\text {ed }}$, Part I, $G=G_{2}, F_{4}, E_{6}$, J. Math. Kyoto Univ. 41-3 (2001), 449-475.
[8] \qquad , Exceptional simple Lie groups, Gendai-Sugakusha, Kyoto, 1992 (in Japanese).

