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Abstract

Here we prove the generalization of Weinstein’s theorem for Finsler
manifolds: an isometry of a compact oriented Finsler manifold of positive
flag curvature has a fixed point supposed that it preserves the orientation
of the manifold if its dimension is even, or reverses it if odd.

1. Introduction

Alan Weinstein proved in 1968 [13] that a conformal diffeomorphism of
a compact oriented Riemannian manifold of positive sectional curvature has
a fixed point supposed that it preserves the orientation of the manifold if its
dimension is even, or reverses it if odd. Especially, it is true for isometries. It is
not known whether the theorem is still true for any diffeomorphism. If yes, this
would imply that S2 × S2 does not carry a metric of positive curvature, since
the map which is the antipodal map on each factor preserves the orientation,
and does not have a fixed point.

Weinstein’s theorem implies Synge’s earlier theorem [11] stating that a
compact manifold M with positive sectional curvature is simply connected if M
is orientable and its dimension is even. Synge’s theorem has been generalized for
Finsler manifold by Auslander [2], see also in [3, p. 221]. The odd dimensional
case remained open there.

An isometry of a Finsler manifold is a diffeomorphism f : M → M
which preserves the distance, or equivalently, preserves the Finsler norm of
the tangent vectors. This equivalence, the generalization of Myers-Steenrod
theorem of Riemannian geometry was proved in [7]. Few other results are
known about isometries of Finsler manifolds. In [12] Szabó determines all the
non-Riemannian Finsler spaces having a group of motions of the largest order,
and further shows interesting and important results on the problems of Berwald
spaces, scalar curvature and projective flatness.

Our aim is now to prove the following

Received October 11, 2005
∗The first author was supported by the JSPS Fellowship.

∗∗The second author was supported by the Matsumae International Fellowship, resp.
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Weinstein’s Theorem for Finsler manifolds: Let f be an isometry
of a compact oriented positively homogeneous Finsler manifold M of dimension
n. If M has positive flag curvature and f preserves the orientation of M for n
even and reverses the orientation of M for n odd, then f has a fixed point.

As immediate consequence we obtain Synge’s theorem for both even and
odd dimensions. The proof of the first part is different from that given in [2],
[3], and the second assertion was not covered there. Further consequences of
the generalized Weinstein theorem will be described in a forthcoming paper.

A Finsler manifold is a manifold equipped with a Banach norm F (x, ·) at
each tangent spaces TxM , called a Finsler fundamental function if

1. F (x, y) > 0 ∀x ∈ M, y ∈ TM, y �= 0
2. F (x, λy) = λF (x, y) ∀λ ∈ R

+, y ∈ TM
3. F is smooth except on the zero section

4. gij(x, y) =
∂2( 1

2F 2)
∂yi∂yj

(x, y) is positive definite for any (x, y) �= 0.

We remark that in condition (3) the exclusion of the zero section ensures
that the homogeneity does not imply linearity. The last condition implies that
the indicatrix body is strongly convex, and conversely. Notice that in condition
(2) the homogeneity is supposed for positive λ only, therefore we deal with
positively homogeneous, non-reversible Finsler metrics.

The arc length of a curve γ : [a, b] → M in a Finsler manifold (M, F ) is
defined as

s =
∫ b

a

F (γ(t), γ̇(t)) dt.

From the recent flourishing literature of Finsler geometry, we refer the
reader the books [1, 3, 6, 8, 9]. In the proof we shall utilize the Chern con-
nection. See for details [3] or [9]. Specially, we need the Riemann curvature
Ry(u) and the flag curvature K(P, y) for any y ∈ TxM, u ∈ TxM, x ∈ M
with P = span{y, u}. Finsler manifolds with positive flag curvature have been
extensively studied recently. Bryant in [4] and Shen in [10] constructed fine
examples for such spaces.

2. The proof

We follow the line of Weinstein, carefully adapted for Finsler setting.

Suppose that the isometry f has no fixed points:f(x) �= x for all x ∈ M .
Since the manifold M is compact, the function h : M → R given by h(x) =
d(x, f(x)) attains its minimum at a point x ∈ M , so h(x) > 0 for all x ∈ M .

The completeness of the manifold M implies that there exists a minimizing
normalized forward geodesic σ : [0, �] → M joining x and f(x). We show that
the curve formed by σ and f ◦σ gives a forward geodesic. Consider the forward
geodesic f ◦ σ which joins f(x) to f2(x), and a point y = σ(t), t ∈ (0, �) on
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σ between x and f(x). Since f is an isometry, d(x, y) = d(f(x), f(y)). By the
triangle inequality it follows that:

d(y, f(y)) ≤ d(y, f(x)) + d(f(x), f(y))
= d(y, f(x)) + d(x, y)
= d(x, f(x)).

Since x is a minimum for the function h, we have

d(y, f(y)) = d(y, f(x)) + d(f(x), f(y)),

so, the curve formed by σ and f ◦ σ is a forward geodesic and this implies that
it is smooth, that is

(f ◦ σ)˙(0) = σ̇(�).

Clearly, if a map f is an isometry of (M, F ): F (x, u) = F (f(x), dfx(u))
for x ∈ M and u ∈ TxM , i.e. f is an isometry between the Minkowski spaces
(TxM, F (x, ·)) and (Tf (x)M, F (f(x), dfx(·)) (cf. [3]), then, by the chain rule,
we obtain that gij(x, y)(v, w) = gij(f(x), dfx(y))(dfx(v), dfx(w)), i.e. the isom-
etry of a Finsler space gives rise to an isometry of the fibers over (x, y) and
(f(x), dfx(y)) in π∗TM .

Along a forward geodesic the Chern connection is metric compatible (see
[3], p. 122). This implies that for any forward geodesic σ(t), t ∈ [0, �], the
linearly parallel transport Pσ (see [6, p.73]) induced by the Chern connection
along the forward geodesic σ, preserves the inner products gσ̇ along σ, that is

gσ̇(t)(Pc(t)(u), Pc(t)(v)) = gσ̇(0)(u, v), for u, v ∈ Tσ(0)M.

See also [9], p. 89. This formula means that we have an isometry between the
tangent spaces Tσ(t)M along σ with inner products gσ̇, induced by the linearly
parallel transport.

Denote shortly by P the linearly parallel transport along the forward
geodesic σ between the tangent spaces TxM and Tf(x)M . We can consider
its inverse G = P−1 : Tf(x)M → TxM , which is an isometry, again. We con-
sider now the map B = G ◦ dfx : TxM → TxM . By the above observations B
is an isometry.

We have the following relations

B(σ̇(0)) = G ◦ dfx(σ̇(0)) = G((f ◦ σ)˙(0)) = G(σ̇(�)) = σ̇(0).

This means that B leaves σ̇(0) fixed. Let A be the restriction of B to the gσ̇(0)–
orthogonal complement of σ̇(0). A is an isometry and since P is an isometry
which preserves the orientation it follows that

detA = detB = det(G ◦ dfx) = (−1)n,

because of the hypothesis on f and the fact that G preserves the orientation.
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By the Lemma from [5] p. 203, A leaves a vector invariant. Let E(t) be a
unit linearly parallel vector field along σ such that, E(0) belongs to the gσ̇(0)–
orthogonal complement of σ̇(0) and E(0) is invariant by A: A(E(0)) = E(0).

Next, take the forward geodesic α(s), s ∈ (−ε, ε), such that α(0) = x,
and α̇(0) = E(0). We have dfx(E(0)) = E(�) because G ◦ dfx(E(0)) = E(0),
i.e., the forward geodesic f ◦ α has the property that (f ◦ α)(0) = f(x) and
(f ◦ α)˙(0) = E(�).

Consider now the variation of σ given by

h : (−ε, ε) × [0, �] → M

h(s, t) = expσ(t)(sE(t)), s ∈ (−ε, ε), t ∈ [0, �].

Clearly h(s, 0) = α(s), moreover, we have

h(s, �) = expf(x)(sE(�)) = (f ◦ α)(s),

for (f ◦ α)̇(0) = E(�). It follows then

∂

∂s
expσ(t)(sE(t))|s=0 = E(t),

so the transversal vector of the variation h is linearly parallel transported along
σ.

The second variation formula of the arc-length has the following form ([9,
p. 161])

L′′(0) =
∫ �

0

{gσ̇(∇σ̇E,∇σ̇E) − gσ̇(Rσ̇(E), E)}dt

+ gσ̇(�)(κ�(0), σ̇(�)) − gσ̇(0)(κ0(0), σ̇(0))
+ Tσ̇(0)(E(0))− Tσ̇(�)(E(�))

Here the quantities κ�(0) and κ0(0) are the geodesic curvatures of the transver-
sal curves α(s) for s = 0. Being the transversal curves forward geodesics, the
geodesic curvatures are zero. Furthermore, T represents the T-curvature (see
[9, p. 153]), which depends on the Finsler metric, only. The points σ(0) and
σ(�) are coupled by the isometry f , moreover, dfx(E(0)) = E(�) holds, there-
fore Tσ̇(0)(E(0)) = Tσ̇(�)(E(�)). Finally in the first term ∇σ̇E is zero along
the forward geodesic σ, since E is linearly parallel transported along σ. By the
above observations the second variation formula reduces to

L′′(0) = −
∫ �

0

gσ̇(Rσ̇(E), E)dt = −
∫ �

0

K(P, σ̇)gσ̇(E, E)dt = −
∫ �

0

K(P, σ̇)dt

so the second variation is negative because the flag curvature is positive. But
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this contradicts the minimality of σ, the curve which joins x and f(x). There-
fore d(x, f(x)) > 0 is impossible.

3. Synge’s theorem for Finsler manifolds

In this section we prove the Synge theorem in the Finslerian context, using
our main result.

Theorem 3.1. Let (M, F ) be a compact Finsler manifold of positive
flag curvature of dimension n.

1. If M is orientable and n is even, then M is simply connected.
2. If n is odd, then M is orientable.

Proof. (1) Consider the universal covering π : M̃ → M and the covering
metric on M̃ . We can choose an orientation on M̃ such that the covering map π
preserves the orientation. Because M is compact, the flag curvature is strictly
positive, that is, there exists δ > 0 such that the flag curvature is greater or
equal to δ. The same bound on the curvature holds on M̃ because π is a local
isometry (see [3], p. 197). Consider now a covering transformation τ : M̃ → M̃ :
π ◦ τ = π. τ is an isometry of M̃ which preserves the orientation. Because
n is even, due to our main theorem τ has a fixed point, so τ is the identity
(because a covering transformation which has a fixed point is the identity).
This implies that the group of covering transformations reduces to the identity,
and therefore M is simply connected.

(2) Suppose that M is not orientable and consider the orientable double
cover M̃ of M (see [5], p. 34), with the covering metric and denote the covering
map by p : M̃ → M . M̃ is compact because it is the double cover of a compact
manifold. Consider a deck transformation τ of M̃ , τ �= id with the covering
metric, that is p ◦ τ = p. From the unique lifting property of the covering
space and the fact that M is connected, so M̃ is, it follows that the deck
transformation is completely determined by the image of a point, particularly
only the identity transformation of M̃ has fixed points.

Denote by F̃ = p∗F the covering metric, that is F̃ (x̃, ṽ) = F (x, v) where
p(x̃) = x, dp(ṽ) = v. Because p ◦ τ = p and the Finsler metric on M̃ is the pull
back of the metric of M , τ is an isometry of M̃ which reverses the orientation
of M̃ because M is not orientable. Consequently, τ has a fixed point, for n is
odd, which gives a contradiction.

Remark. It is clear that the assumptions (1) of this theorem are really
necessary. Namely, the case of real projective space of dimension 2 shows the
necessity of orientability, and the real projective space of dimension 3 gives a
counterexample for odd dimension. See also [3], page 224.
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László Kozma

Institute of Mathematics

University of Debrecen

H-4010 Debrecen, P.O. Box 12, Hungary

e-mail: kozma@math.klte.hu

Ioan Radu Peter

Technical University of Cluj-Napoca

str. Daicoviciu nr. 15

400020 Cluj-Napoca, Romania

e-mail: Ioan.Radu.Peter@math.utcluj.ro

References

[1] Peter L. Antonelli (ed.), Handbook of Finsler geometry, Vols. 1 and 2,
Dordrecht: Kluwer Academic Publishers, 2003.

[2] L. Auslander, On curvature in Finsler geometry, Trans. AMS 79 (1955),
378–388.

[3] D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemann–Finsler
Geometry, Springer Verlag, 2000.

[4] Robert L. Bryant, Some remarks on Finsler manifolds with constant flag
curvature, Houston J. Math. 28 (2002), 221–262.

[5] M. P. do Carmo, Riemannian Geometry, Birkhäuser, Boston, Basel,
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[12] Z. I. Szabó, Generalized spaces with many isometries, Geom. Dedicata
11-3 (1981), 369–383.

[13] A. Weinstein, A fixed point theorem for positively curved manifolds,
J. Math. Mech. 18 (1968), 149–153.


