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Lacunary Ap-summable sequence spaces defined
by Orlicz functions∗

By

Tunay Bilgin

Abstract

In this paper we introduce some new sequence spaces combining
a lacunary sequence, an infinite matrix, a bounded sequence and an
Orlicz function. We discuss some topological properties and establish
some inclusion relations between these spaces. It is also shown that if
a sequence is lacunary Ap-convergent with respect to an Orlicz function
then it is lacunary strongly Sθ(A)-statistically convergent.

1. Introduction

Let w be the spaces of all real or complex sequence x = (xk). �∞ and c
denote the Banach spaces of real bounded and convergent sequences x = (xi)
normed by ‖x‖ = supi |xi|, respectively.

A sequence of positive integers θ = (kr) is called “lacunary” if k0 = 0,
0 < kr < kr+1 and hr = kr − kr−1 → ∞ as r → ∞. The intervals determined
by θ will be denoted by Ir = (kr−1, kr] and ur = kr/kr−1. The space of lacunary
strongly convergent sequence Nθ was defined by Freedman et al [7] as:

Nθ =

{
x : lim

r→∞h−1
r

∑
i∈Ir

|xi − l | = 0, for some, l

}

Lindentrauss and Tzafirir [11] used the idea of Orlicz function to defined
the following sequence spaces.

lM =

{
x :

∞∑
i=1

M

( |xi|
ρ

)
< ∞, ρ > 0

}

which is called an Orlicz sequence spaces lM is a Banach space with the norm,

‖x‖ =

{
inf ρ > 0 :

∞∑
i=1

M

( |xi|
ρ

)
≤ 1

}
.
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An Orlicz function is a function M : [0,∞) → [0,∞) which is continuous,
non-decreasing and convex with M (0) = 0, M (x) > 0 for x > 0 and M (x) →
∞ as x → ∞.

It is well known that if M is a convex function and M (0) = 0; then
M (tx) ≤ tM (x) for all t with 0 < t < 1.

An Orlicz function M is said to satisfy the ∆2-condition for all values of
u, if there exists a constant L > 0 such that M(2u) ≤ LM(u), u ≥ 0.

It is also easy to see that always L > 2. The ∆2-condition equivalent to
the satisfaction of inequality M(Du) ≤ LDM(u) for all values of u and for all
D > 1 (see, Krasnoselskii and Rutitsky [10]).

In the later stage different Orlicz sequence spaces were introduced and
studied by Parashar and Choudhary [12], Bhardwaj and Singh [3], Bilgin [2],
Güngör et al [9], and many others.

The main purpose of this paper is to give some new sequence spaces com-
bining the concept of an Orlicz function and lacunary convergence by using
an Infinite matrix and a bounded sequence. Also we will investigate inclusion
relations between these new spaces:

The following well known inequality will be used troughout the paper;

(1) |ai + bi|pi ≤ T (|ai|pi + |bi|pi)

where ai and bi are complex numbers, T = max(1, 2H−1), and H = sup pi < ∞.
Let A = (aki) be an infinite matrix of complex numbers. We write Ax =

(Ak(x)) if Ak(x) =
∞∑

i=1

akixi converges for each k.

We now introduce the generalizations of the spaces of lacunary strongly
convergent sequences.

Let M be an Orlicz function, A = (aki) be an infinite matrix of complex
numbers, and p = (pk) be a bounded sequence of positive real numbers such
that 0 < h = inf pi ≤ pi ≤ sup pi = H < ∞. We define the following sequence
spaces:

N0
θ (A, M, p) =

{
x : lim

r→∞h−1
r

∑
k∈Ir

M

( |Ak(x)|
ρ

)pk

= 0, for some ρ > 0

}

Nθ(A, M, p) =

{
x : lim

r→∞h−1
r

∑
k∈Ir

M

( |Ak(x) − s|
ρ

)pk

= 0,

for some s and ρ > 0

}

N∞
θ (A, M, p) =

{
x : sup

r
h−1

r

∑
k∈Ir

M

( |Ak(x)|
ρ

)pk

< ∞, for some ρ > 0

}
,

where for convenince, we put M( |Ak(x)|
ρ )pk instead of [M( |Ak(x)|

ρ )]pk . If x ∈
Nθ(A, M, p), we say that x is lacunary Ap-convergence to s with respect to the
Orlicz function M.
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In the case M(x) = x, then we write the spaces N0
θ (A, p), Nθ(A, p), and

N∞
θ (A, p) in place of the spaces N0

θ (A, M, p), Nθ(A, M, p), and N∞
θ (A, M, p),

respectively.

If aki =
{

1, k = i
−1, k = i + 1

}
, the spaces N0

θ (A, M, p), Nθ(A, M, p), and

N∞
θ (A, M, p) reduce to wθ

0(M, p)�, wθ(M, p)�, and wθ
∞(M, p)� (See Bilgin [2]).

If A = I, N0
θ (A, M, p), Nθ(A, M, p), and N∞

θ (A, M, p) reduce to [Nθ, M, p]0,
[Nθ, M, p], and [Nθ, M, p]∞ (See Bhardwaj and Singh [3]).

2. Inclusion theorems

In this section we examine some topological properties of N0
θ (A, M, p),

Nθ(A, M, p), and N∞
θ (A, M, p) spaces and investigate some inclusion relations

between these spaces.

Theorem 2.1. The spaces N0
θ (A, M, p), Nθ(A, M, p), and N∞

θ (A, M, p)
are linear spaces over C (the set of complex numbers).

Proof. We just prove only for N0
θ (A, M, p). The others follow similar

lines. Let x, y ∈ N0
θ (A, M, p) and α, β ∈ C. Then there exist some positive

numbers ρ1 and ρ2 such that

lim
r→∞h−1

r

∑
k∈Ir

M

( |Ak(x)|
ρ1

)pk

= 0 and lim
r→∞h−1

r

∑
k∈Ir

M

( |Ak(y)|
ρ2

)pk

= 0

Let ρ3 = max(2 |α| ρ1, 2 |β| ρ2). Since M is non-decreasing and convex and
A is a linear transformation, by using inequality (1), we have

h−1
r

∑
k∈Ir

M

( |Ak(αx + βy)|
ρ3

)pk

≤ h−1
r

∑
k∈Ir

M

(
α |Ak(x)|

ρ3

)
+

β |Ak(y)|
ρ3

)pk

≤ T

[
h−1

r

∑
k∈Ir

M

( |Ak(x)|
ρ1

)pk

+ h−1
r

∑
k∈Ir

M

( |Ak(y)|
ρ2

pk
)]

→ 0

as r → ∞. This proves that N0
θ (A, M, p) is linear.

Theorem 2.2. Let Ax → ∞ as x → ∞, then the space N0
θ (A, M, p) is

a paranormed space (not totally paranormed), paranormed by

g(x) = inf


σpr/H :

(
h−1

r

∑
k∈Ir

M

( |Ak(x)|
ρ

)pk
)1/H

≤ 1; r = 1, 2, 3, . . .




The proof of Theorem 2.2.used the ideas similar to those used in proving
Thorem 2.2 of Bhardwaj and Singh [3].

Theorem 2.3. Let M be an Orlicz function which satisfies the ∆2-
condition. Then N0

θ (A, M, p) ⊂ Nθ(A, M, p) ⊂ N∞
θ (A, M, p) and the inclusions

are strict.
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Proof. The first inclusion is obvious. Thus, we need to prove only
Nθ(A, M, p) ⊂ N∞

θ (A, M, p). Now let x ∈ Nθ(A, M, p). Then there exists
some positive ρ1 > 0 such that

lim
r→∞h−1

r

∑
k∈Ir

M

( |Ak(x) − s|
ρ1

)pk

= 0.

Define ρ = 2ρ1. Since M is non decreasing and convex, by using inequality (1),
we have

sup
r

h−1
r

∑
k∈Ir

M

( |Ak(x)|
ρ

)pk

= sup
r

h−1
r

∑
k∈Ir

M

( |Ak(x) − s + s|
ρ

)pk

≤ T

{
sup

r
h−1

r

∑
k∈Ir

M

( |Ak(x) − s|
ρ1

)pk

+ sup
r

h−1
r

∑
k∈Ir

M

( |s|
ρ1

)pk
}

≤ T

{
sup

r
h−1

r

∑
k∈Ir

M

( |Ak(x) − s|
ρ1

)pk

+
[
L

{ |s|
ρ1

/δ

}
M(2)

]H
}

< ∞

Hence x ∈ N∞
θ (A, M, p). This completes the proof.

The proof of the following result is a consequence of Theorem 2.3.

Corollary 2.4. N0
θ (A, M, p) and Nθ(A, M, p) are nowhere dense sub-

sets of N∞
θ (A, M, p).

Let X be a sequence space. Then X is called
i) Solid (or normal) if (αkxk) ∈ X whenever (xk) ∈ X for all sequences

(αk) of scalars with ‖αk‖ ≤ 1; for all k ∈ N ;
ii) Monotone provided X contains the canonical preimages of all its step-

spaces.
If X is normal, then X is monotone.

Theorem 2.5. If A = I, the sequence spaces N0
θ (A, M, p) and

N∞
θ (A, M, p) are solid and as such monotone.

Proof. Let α = (αk) be sequence of scalars such that ‖αk‖ ≤ 1; for all
k ∈ N . Since M is non-decreasing and A = I, we get

h−1
r

∑
k∈Ir

M

( |Ak(αx)|
ρ

)pk

= h−1
r

∑
k∈Ir

M

( |αkxk|
ρ

)pk

≤ h−1
r

∑
k∈Ir

M

( |xk|
ρ

)pk

Then the result follows from the above inequality.

Theorem 2.6. Let M , M1, and M2 be Orlicz functions which satisfies
∆2-condition. We have
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i) Nθ(A, M1, p) ⊆ Nθ(A, MoM1, p), N0
θ (A, M1, p) ⊆ N0

θ (A, MoM1, p),
and N∞

θ (A, M1, p) ⊆ N∞
θ (A, MoM1, p),

ii) Nθ(A, M1, p) ∩ Nθ(A, M2, p) ⊆ Nθ(A, M1 + M2, p), N0
θ (A, M1, p) ∩

N0
θ (A, M2, p) ⊆ N0

θ (A, M1 + M2, p), and N∞
θ (A, M1, p) ∩ N∞

θ (A, M2, p) ⊆
N∞

θ (A, M1 + M2, p)

Proof. We shal prove only for first inclusions. The others can be treated
similarly.

i) Let x ∈ Nθ(A, M1, p) and ε > 0 be given and choose δ with 0 < δ < 1
such that M(t) < ε for 0 ≤ t ≤ δ. Writ

h−1
r

∑
k∈Ir

M

(
M1

( |Ak(x) − s|
ρ

)pk

= h−1
r

∑
1

M

(
M1

( |Ak(x) − s|
ρ

))pk

+ h−1
r

∑
2

M

(
M1

( |Ak(x) − s|
ρ

))pk

where the first summation is over M1(
|Ak(x)−s|

ρ ) ≤ δ and the second summation

is over M1(
|Ak(x)−s|

ρ ) > δ.

Let M1(
|Ak(x)−s|

ρ ) > δ, we have

M1

( |Ak(x) − s|
ρ

)
< M1

( |Ak(x) − s|
ρ

)
/δ ≤ 1 + M1

( |Ak(x) − s|
ρ

)
/δ

Since M is non-decreasing and satisfies ∆2-condition, then there exists
L ≥ 1 such that

M

(
M1

( |Ak(x) − s|
ρ

))
< M

(
1 + M1

( |Ak(x) − s|
ρ

)
/δ

)

≤ 1
2
M(2) +

1
2
M

(
2M1

( |Ak(x) − s|
ρ

)
/δ

)

≤ 1
2
L

{
M1

( |Ak(x) − s|
ρ

)
/δ

}
M(2) +

1
2
L

{
M1

( |Ak(x) − s|
ρ

)
/δ

}
M(2)

= L

{
M1

( |Ak(x) − s|
ρ

)
/δ

}
M(2)

Then

h−1
r

∑
2

M

(
M1

( |Ak(x) − s|
ρ

))pk

≤ max(1, (Lδ−1M(2))H)h−1
r

∑
2

M1

( |Ak(x) − s|
ρ

)pk

Since M is continuous, we have

h−1
r

∑
1

M

( |Ak(x) − s|
ρ

)pk

< max(ε, εh).
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Thuse

h−1
r

∑
k∈Ir

M

(
M1

( |Ak(x) − s|
ρ

))pk

≤ max(ε, εh)

+ max(1, (Lδ−1M(2))H)h−1
r

∑
2

M1

( |Ak(x) − s|
ρ

)pk

By taking the limit as ε → 0 and r → ∞ we obtain x ∈ Nθ(A, MoM1, p).
This completes the proof.

ii) Let x ∈ Nθ(A, M1, p) ∩ Nθ(A, M2, p). Then using inequality (1) it can
be show that x ∈ Nθ(A, M1 + M2, p).

The method of the proof of Theorem 2.6(i) shows that, for any Orlicz
function M which satisfies ∆2-condition, we have

N0
θ (A, p) ⊂ N0

θ (A, M, p), Nθ(A, p) ⊂ Nθ(A, M, p)
and N∞

θ (A, p) ⊂ N∞
θ (A, M, p).

Theorem 2.7. Let M be an Orlicz function. Then
i) For lim infr ur > 1 we have cθ(A, M, p) ⊂ Nθ(A, M, p)
ii) For lim supr ur < ∞ we have Nθ(A, M, p) ⊂ cθ(A, M, p)
iii) cθ(A, M, p) = Nθ(A, M, p) if 1 < lim infr ur ≤ lim supr ur < ∞, where

cθ(A, M, p)

=

{
x ∈ w(X) : lim

n→∞
1
n

n∑
k=1

M

( |Ak(x) − s|
ρ

)pk

= 0, for some ρ > 0

}

Proof. i) Let x ∈ cθ(A, M, p) and lim infr ur > 1. There exist δ > 0 such
that ur = (kr/kr−1) ≥ 1 + δ for sufficiently large r. We have, for sufficiently
large r, that (hr/kr) ≥ δ/(1 + δ) and (kr/hr) ≤ (1 + δ)/δ. Hence we get

k−1
r

kr∑
k=1

M

( |Ak(x) − s|
ρ

)pk

≥ k−1
r

∑
k∈Ir

M

( |Ak(x) − s|
ρ

)pk

= (hr/kr)h−1
r

∑
k∈Ir

M

( |Ak(x) − s|
ρ

)pk

≥ δ/(1 + δ)h−1
r

∑
k∈Ir

M

( |Ak(x) − s|
ρ

)pk

which implies just x ∈ Nθ(A, M, p).
ii) If lim supr ur < ∞ then there exists K > 0 such that ur < K for every

r.
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Now suppose that x ∈ Nθ(A, M, p) and ε > 0. There exists m0 such that
for every i and m ≥ m0,

Hm = h−1
m

∑
k∈Im

M

( |Ak(x) − s|
ρ

)pk

< ε

We can also find R > 0 such that Hm ≤ R for all m. Let n be any integer
with kr ≥ n > kr−1. Now write

1
n

n∑
k=1

M

( |Ak(x) − s|
ρ

)pk

≤ k−1
r−1

kr∑
k=1

M

( |Ak(x) − s|
ρ

)pk

= k−1
r−1

(
m0∑
k=1

+
kr∑

k=m0+1

) ∑
k∈Im

M

( |Ak(x) − s|
ρ

)pk

= k−1
r−1

m0∑
k=1

∑
k∈Im

M

( |Ak(x) − s|
ρ

)pk

+ k−1
r−1

kr∑
k=m0+1

∑
k∈Im

M

( |Ak(x) − s|
ρ

)pk

≤ k−1
r−1

m0∑
k=1

∑
k∈Im

M

( |Ak(x) − s|
ρ

)pk

+ ε(kr − km0)k
−1
r−1

≤ k−1
r−1

sup
1 ≤ k ≤ m0

Hkkm0 + εK < Rk−1
r−1km0 + εK

from which we obtain x ∈ cθ(A, M, p).
iii) It follows from (i) and (ii).
We consider that (pk) and (tk) are any bounded sequences of strictly pos-

itive real numbers.
We are able to prove Nθ(A, M, t) ⊂ Nθ(A, M, p) only under additional

conditions.
Using the same technique in the Thorem 2.6 of Bhardwaj and Singh [3] it

is easy to prove the following theorem.

Theorem 2.8. Let 0 < pk ≤ tk for all k and let (tk/pk) be bounded.
Then Nθ(A, M, t) ⊂ Nθ(A, M, p).

Corollary 2.9. i) If 0 < inf pk ≤ 1 for all k, then Nθ(A, M) ⊂
Nθ(A, M, p).

ii) 1 ≤ pk ≤ sup pk = H < ∞, then Nθ(A, M, p) ⊂ Nθ(A, M)

Proof. i) Follows from Theorem 2.8 tk = 1 for all k.
ii) Follows from Theorem 2.8 pk = 1 for all k.

3. Sθ(A)-statistical convergence

In this section we introduce the concept of lacunary strongly Sθ(A)-
statistical convergence and give some inclusion relations related to this sequence
space.
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In [5], Fast introduced the idea of statistical convergence. These idea were
later studied in Connor [4], Freedman and Sember [8], Salat [13], and other
authors independently.

A complex number sequence x = (xi) is said to be statistically convergent
to the number l if for every ε > 0

lim
n→∞

1
n
|{i ≤ n : |xi − l | ≥ ε}| = 0

The set of statistically convergent sequences is denoted by S.
Recently, Fridy and Orhan [6] introduced the concept of lacunary Statis-

tical convergence as follows;
Let θ = (kr) be a lacunary sequence. A sequence x = (xi) is said to be

lacunary statistically convergent to s if for any ε > 0

lim
r→∞h−1

r |{k ∈ Ir : |xk − s| ≥ ε}| = 0,

The set of lacunary statistically convergent sequences is denoted by Sθ.
A sequence x = (xi) is said to be lacunary strongly Sθ(A)-statistically

convergent to s if for any ε > 0

lim
r→∞h−1

r |{k ∈ Ir : |Ak(x) − s| ≥ ε}| = 0,

uniformly in i. The set of all lacunary strongly Sθ(A)-statistically convergent
sequences is denoted by Sθ(A) (Bilgin [1]).

We now establish inclusion relations between Sθ(A) and Nθ(A, M, p).

Theorem 3.1. Let M be Orlicz function. Then Nθ(A, M, p) ⊂ Sθ(A).

Proof. x ∈ Nθ(A, M, p). There exists some positive ρ > 0 such that

lim
r→∞h−1

r

∑
k∈Ir

M

( |Ak(x) − s|
ρ

)pk

= 0

Then

h−1
r

∑
k∈Ir

M

( |Ak(x) − s|
ρ

)pk

= h−1
r

∑
1

M

( |Ak(x) − s|
ρ

)pk

+ h−1
r

∑
2

M

( |Ak(x) − s|
ρ

)pk

≥ h−1
r

∑
1

M

( |Ak(x) − s|
ρ

)

≥ h−1
r

∑
1

M (ε/ρ)pk

≥ h−1
r

∑
1

Min{M (ε/ρ)h, M (ε/ρ)H}

≥ h−1
r |{k ∈ Ir : |Ak(x) − s| ≥ ε}|Min{M (ε/ρ)h, M (ε/ρ)H}
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where the first summation is over |Ak(x) − s| ≥ ε and the second summation
is over |Ak(x) − s| < ε. Hence x ∈ Sθ(A).

Theorem 3.2. Let M be Orlicz function and A be a limitation method.
Then �∞ ∩ Nθ(A, M, p) = �∞ ∩ Sθ(A),

Proof. By Theorem 3.1, we need only show that �∞ ∩ Sθ(A) ⊂ �∞ ∩
Nθ(M, p, q). Let x ∈ �∞ ∩Sθ(A). Since x ∈ �∞ and A is limitation method, so
there exists K > 0 such that M( |Ak(x)−s|

ρ ) ≤ K.
Then for a given ε > 0, we have

h−1
r

∑
k∈Ir

M

( |Ak(x) − s|
ρ

)pk

= h−1
r

∑
1

M

( |Ak(x) − s|
ρ

)pk

+ h−1
r

∑
2

M

( |Ak(x) − s|
ρ

)pk

≤ Kh−1
r |{k ∈ Ir : |Ak(x) − s| ≥ ε}| + Max

{
M (ε/ρ)h , M (ε/ρ)H

}
where the first summation is over |Ak(x) − s| ≥ ε and the second summation
is over |Ak(x) − s| < ε.

Taking the limit as ε → 0 and r → ∞, it follows that x ∈ Nθ(A, M, p).
Hence x ∈ �∞ ∩ Nθ(A, M, p). This completes the proof.
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