Classification of the irreducible representations of the affine Hecke algebra of type B_2 with unequal parameters

By

Naoya ENOMOTO

1. Introduction

The representation theory of the affine Hecke algebras has two different approaches. One is a geometric approach and the other is a combinatorial one.

In the equal parameter case, affine Hecke algebras are constructed using equivariant K-groups, and their irreducible representations are constructed on Borel-Moore homologies. By this method, their irreducible representations are parameterized by the index triples ([CG], [KL]). On the other hand, G. Lusztig classified the irreducible representations in the unequal parameter case. His ideas are to use equivariant cohomologies and graded Hecke algebras ([Lus89], [LusII], [LusIII]).

Although the geometric approach will give us a powerful method for the classification, but it does not tell us the detailed structure of irreducible representations. Thus it is important to construct them explicitly in combinatorial approach.

Using semi-normal representations and the generalized Young tableaux, A. Ram constructed calibrated irreducible representations with equal parameters ([Ram1]). Furthermore C. Kriloff and A. Ram constructed irreducible calibrated representations of graded Hecke algebras ([KR]). However, in general, we don't know the combinatorial construction of non-calibrated irreducible representations.

A. Ram classified irreducible representations of affine Hecke algebras of type A_1 , A_2 , B_2 , G_2 in equal parameter case ([Ram2]). But there are some mistakes in his list of irreducible representations and his construction of induced representation of type B_2 . For example, he missed the case $\chi_d^{(5)}$ (see Example 3.1).

In this paper, we will correct his list about type B_2 and also classify the irreducible representations in the unequal parameter case. There are three one-parameter families of calibrated irreducible representations and some other

irreducible representations. We will use the Kato's criterion for irreducibility (see Theorem 2.1).

Acknowledgement. I would like to thank Professor M. Kashiwara and Professor S. Ariki for their advice and suggestions, and Mathematica for its power of calculation.

2. Preliminaries

2.1. Affine Hecke algebra

We will use following notations.

 $\begin{array}{ll} (R,R^+,\Pi) & \text{a root system of finite type, its positive roots and simple roots,} \\ Q,P & \text{the root lattice and the weight lattice of R,} \\ Q^\vee,P^\vee & \text{the coroot lattice and the coweight lattice of R} \\ W & \text{the Weyl group of R,} \\ \ell(w) & \text{the length of } w \in W \end{array}$

We put $\Pi = \{\alpha_i\}_{i \in I}$, and denote by s_i the simple reflection associated with α_i .

First we define the Iwahori-Hecke algebra of W.

Definition 2.1. Let $\{q_i\}_{i\in I}$ be indeterminates. Then the *Iwahori-Hecke algebra* \mathcal{H} of W is the associative algebra over $\mathbb{C}(q_i)$ defined by following generators and relations;

generators
$$T_i$$
 $(i \in I)$
relations $(T_i - q_i)(T_i + q_i^{-1}) = 0$ $(i \in I)$,
 $T_i T_j T_i \cdots = T_j T_i T_j \cdots$,

where $m_{ij} = 2, 3, 4, 6$ according to $\langle \alpha_i, \alpha_i^{\vee} \rangle \langle \alpha_j \alpha_i^{\vee} \rangle = 0, 1, 2, 3$.

Remark 1. The indeterminates q_i, q_j must be equal if and only if α_i, α_j are in the same W-orbit in R. If all q_i are equal, we call the equal parameter case, and otherwise, the unequal parameter case.

For a reduced expression $s_{i_1}s_{i_2}\cdots s_{i_r}$ of $w\in W$, we define $T_w=T_{i_1}T_{i_2}\cdots T_{i_r}$. This does not depend on the choice of reduced expressions. Let us define the affine Hecke algebras.

Definition 2.2. The affine Hecke algebra $\widehat{\mathcal{H}}$ is the associative algebra

over $\mathbb{C}(q_i; i \in I)$ defined by following generators and relations;

generators
$$T_w X^{\lambda}$$
 $(w \in W, \lambda \in P^{\vee}),$
relations $(T_i - q_i)(T_i + q_i^{-1}) = 0$ $(i \in I),$
 $T_w T_{w'} = T_{ww'}$ if $\ell(w) + \ell(w') = \ell(ww')$ $(w, w' \in W),$
 $X^{\lambda} X^{\mu} = X^{\lambda + \mu}$ $(\lambda, \mu \in P^{\vee}),$
 $X^{\lambda} T_i = T_i X^{s_i \lambda} + (q_i - q_i^{-1}) \frac{X^{\lambda} - X^{s_i \lambda}}{1 - X^{-\alpha_i^{\vee}}}$ $(i \in I).$

2.2. Principal series representations and their irreducibility Let us put $X^{P^{\vee}} = \{X^{\lambda} | \lambda \in P^{\vee}\}$ and let $\chi : X^{P^{\vee}} \to \mathbb{C}^*$ be a character of $X^{P^{\vee}}$.

Definition 2.3. Let $\mathbb{C}v_{\chi}$ be the one-dimensional representation of $\mathbb{C}[X]$ defined by

$$X^{\lambda} \cdot v_{\chi} = \chi(X^{\lambda})v_{\chi}.$$

We call $M(\chi) = \operatorname{Ind}_{\mathbb{C}[X]}^{\widehat{\mathcal{H}}} \mathbb{C}v_{\chi} = \widehat{\mathcal{H}} \otimes_{\mathbb{C}[X]} \mathbb{C}v_{\chi}$ the principal representation of $\widehat{\mathcal{H}}$ associated with χ .

Note that $\operatorname{Res}_{\mathcal{H}}^{\widehat{\mathcal{H}}} M(\chi)$ is isomorphic to the regular representation of \mathcal{H} , so that dim $M(\chi) = |W|$.

We put

$$q_{\alpha} = q_i \text{ for } \alpha^{\vee} \in W \alpha_i^{\vee} \ (i \in I).$$

Theorem 2.1 (Kato's Criterion of Irreducibility). Let us put

$$P(\chi) = \{\alpha^{\vee} > 0 | \chi(X^{\alpha^{\vee}}) = q_{\alpha}^{\pm 2}\}.$$

Then $M(\chi)$ is irreducible if and only if $P(\chi) = \phi$.

For any finite-dimensional representation of $\widehat{\mathcal{H}}$ we put

$$\begin{split} M_{\chi} &= \{v \in M | X^{\lambda}v = \chi(X^{\lambda})v \text{ for any} X^{\lambda} \in X\}, \\ M_{\chi}^{\text{gen}} &= \left\{v \in M \,\middle|\, \begin{array}{l} \text{there exists } k > 0 \text{ such that} \\ (X^{\lambda} - \chi(X^{\lambda}))^k v = 0 \text{ for any } X^{\lambda} \in X \end{array}\right\}. \end{split}$$

Then $M = \bigoplus_{\chi \in T} M_\chi^{\mathrm{gen}}$ is the generalized weight decomposition of M.

If M is a simple $\widehat{\mathcal{H}}$ -module with $M_{\chi} \neq 0$, then M is Proposition 2.1. a quotient of $M(\chi)$.

Definition 2.4. A finite-dimensional representation M of $\widehat{\mathcal{H}}$ is cali $brated (\text{or X-semisimple}) \text{ if } M_\chi^{\text{gen}} = M_\chi \text{ (for all χ)}.$

2.3. W-action Lemma

Let us define the action of Weyl group W as the following;

$$(w \cdot \chi)(X^{\lambda}) = \chi(X^{w^{-1}\lambda}) \ (w \in W, \lambda \in P^{\vee}).$$

The following proposition is well known.

Proposition 2.2 (W-action Lemma [Ram1], [Rog]).

- (1) If $M(\chi) \cong M(\chi')$, then there exists $w \in W$ such that $\chi' = w\chi$.
- (2) The representations $M(\chi)$ and $M(w\chi)$ have the same composition factors.

2.4. Specialization lemma

Let \mathbb{K} be a field and \mathbb{S} a discrete valuation ring such that \mathbb{K} is the fraction field of \mathbb{S} . Let us denote the $\mathfrak{m}=(\pi)$ the maximal ideal of \mathbb{S} and let $\mathbb{F}=\mathbb{S}/\mathfrak{m}$ be the residue field of \mathbb{S} . Let $K(\widehat{\mathcal{H}}_{\mathbb{F}}\text{-mod})$ be the Grothendieck group of the category of finite-dimensional representations of $\widehat{\mathcal{H}}_{\mathbb{F}}$.

the following lemma is well-known (e.g. see [Ari, Lemma 13.16].)

Lemma 2.1 (Specialization Lemma). Let V be an $\widehat{\mathcal{H}}_{\mathbb{K}}$ -module and L an $\widehat{\mathcal{H}}_{\mathbb{S}}$ -submodule of V which is an \mathbb{S} -lattice of full rank. Then $[L \otimes \mathbb{F}] \in K(\widehat{\mathcal{H}}_{\mathbb{F}}$ -mod) is determined by V and does not depend on the choice of L.

2.5. Key results for type B_2

Let us consider the type B_2 ;

$$P^{\vee} = \mathbb{Z}\varepsilon_1 \oplus \mathbb{Z}\varepsilon_2, \ R^{\vee} = \{\alpha_1^{\vee} = \varepsilon_1 - \varepsilon_2, \alpha_2^{\vee} = 2\varepsilon_2\}, \ X_i = X^{\varepsilon_i}.$$

 $s_1\varepsilon_1 = \varepsilon_2, \ s_1\varepsilon_2 = \varepsilon_1, \ s_2\varepsilon_1 = \varepsilon_1, \ s_2\varepsilon_2 = -\varepsilon_2$

Let us recall the definition of affine Hecke algebra of type B_2 with unequal parameters.

Definition 2.5. The affine Hecke algebra $\widehat{\mathcal{H}}$ of type B_2 is the associative algebra over $\mathbb{C}(p,q)$ defined by the following generators and relations;

$$\begin{array}{ll} \text{generators} & T_1, T_2, X_1, X_2 \\ \text{relations} & (T_1-q)(T_1+q^{-1})=0, & (T_2-p)(T_2+p^{-1})=0, \\ & T_1T_2T_1T_2=T_2T_1T_2T_1, & \\ & T_1X_2T_1=X_1, & T_2X_2^{-1}T_2=X_2, \\ & T_2X_1=X_1T_2, & X_1X_2=X_2X_1. \end{array}$$

We will use the following four subalgebras of $\widehat{\mathcal{H}}(B_2)$;

$$\widehat{\mathcal{H}}_1 = \langle T_1, X_1, X_2 \rangle, \quad \widehat{\mathcal{H}}_2 = \langle T_2, X_1, X_2 \rangle, \quad \mathcal{H} = \langle T_1, T_2 \rangle, \quad \mathbb{C}[X_1, X_2] \subset \widehat{\mathcal{H}}.$$

Lemma 2.2 (Decomposition Lemma). Suppose $\chi(X^{\alpha_i}) = q_i^2$, and let ρ_1, ρ_2 be the following 1-dimensional representations of $\widehat{\mathcal{H}}_i = \langle T_i, X_j (1 \leq j \leq 2) \rangle \subset \widehat{\mathcal{H}}$;

$$\rho_1(X_j) = \chi(X_j), \ \rho_1(T_i) = q_i, \ \rho_2(X_j) = (s_i\chi)(X_j), \ \rho_2(T_i) = -q_i^{-1}.$$

Then there exists the following short exact sequence;

$$0 \to \operatorname{Ind}_{\widehat{\mathcal{H}}_i}^{\widehat{\mathcal{H}}} \rho_2 \to M(\chi) \to \operatorname{Ind}_{\widehat{\mathcal{H}}_i}^{\widehat{\mathcal{H}}} \rho_1 \to 0$$

3. Classification

3.1. Method

Let M be an irreducible representation which is not principal. Then M appears in some $M(\chi)$. By Kato's criterion (Theorem 2.1), $P(\chi) \neq \phi$. Using Waction Lemma (Lemma 2.2), we may assume $P(\chi) \ni \alpha_1$ or α_2 . thus we obtain the following Lemma. We will use the notation $-\chi$ defined by $(-\chi)(X_i) = -\chi(X_i)$ (i=1,2).

Lemma 3.1. Except irreducible principal series representations, any finite-dimensional irreducible representation appears in the principal representations associated with the following characters as their composition factors;

χ	χ_a	χ_b	χ_c	$\chi_d^{(1)}$	$\chi_d^{(2)}$	$\chi_d^{(3)}$	$\chi_d^{(4)}$	$\chi_d^{(5)}$	$\chi_f(v)$	$\chi_g(u)$
$\chi(X_1)$	q^2p	q^2p^{-1}	$-p^{-1}$	q^2	q	p	1	-1	pv	q^2u
$\chi(X_2)$	p	p^{-1}	p	1	q^{-1}	p	p	p	p	u

and
$$-\chi_a, -\chi_b, -\chi_d^{(1)}, -\chi_d^{(2)}, -\chi_d^{(3)}, -\chi_d^{(4)}, -\chi_d^{(5)}, -\chi_f(v)$$
, where
$$v \neq \pm p^{-2}, \pm p^{-1}, \pm 1, q^{\pm 2}, q^{\pm 2}p^{-2},$$
$$u \neq \pm p^{\pm 1}, \pm 1, \pm q^{-2}, \pm q^{-1}, \pm q^{-2}p^{\pm 1}.$$

Note 1. Two principal series representations $M(-\chi_c)$ and $M(\chi_c)$ have same composition factors, because of W-action lemma (Lemma 2.2). By replacing u with -u, we don't need to consider $-\chi_q(u)$.

Finally, we must determine the composition factors of $M(\chi)$ for above characters, and we must prove their irreducibility. But using the decomposition lemma, we consider the representations induced from $\widehat{\mathcal{H}}_i$. We will show the examples and some proofs in the following section.

3.2. Some examples and proofs

Example 3.1. We consider the principal series representation $M(\chi_d^{(5)})$. Let $\rho_2^{d^{(5)}}$ and $\rho_2^{d^{(5)}}$ be the following 1-dimensional representations of $\widehat{\mathcal{H}}_2$;

	X_1	X_2	T_2
$ ho_1^{d^{(5)}}$	-1	p	p
$ ho_2^{d^{(5)}}$	-1	$-p^{-1}$	$-p^{-1}$

Since $\chi_d^{(5)}(\alpha_2^\vee)=p^2,$ we can apply the decompose lemma (Lemma 2.2) to $M(\chi_d^{(5)}).$

Lemma 3.2. Suppose $p \neq -q^{\pm 2}$. Then $\operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} \rho_1^{d^{(5)}}$ and $\operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} \rho_2^{d^{(5)}}$ are 4-dimensional non-calibrated irreducible representations.

Proof. We consider the case of $\operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} \rho_1^{d^{(5)}}$. These simultaneous eigenvalues of X_1 and X_2 are (p,-1),(-1,p), and the multiplicity of each eigenvalues is two. We can find the following representation matrices;

$$T_1 = \begin{pmatrix} \frac{p(q^2-1)}{(1+p)q} & -\frac{(p-1)(q^2-1)}{(1+p)q} & 1 & -\frac{p(q^2-1)^2}{(1+p)^2q^2} \\ 0 & \frac{p(q^2-1)}{(1+p)q} & 0 & \frac{(p+q^2)(1+pq^2)}{(1+p)^2q^2} \\ \frac{(p+q^2)(1+pq^2)}{(1+p)^2q^2} & \frac{(1-p+p^2)(q^2-1)^2}{(1+p)^2q^2} & \frac{(q^2-1)}{(1+p)q} & \frac{(p-1)(q^2-1)(p+q^2)(1+pq^2)}{(1+p)^3q^3} \\ 0 & 1 & 0 & \frac{(q^2-1)}{(1+p)q} \end{pmatrix},$$

$$T_2 = \begin{pmatrix} 1 & & & \\ 1 & \frac{(p^2-1)}{p} & & & \\ & & p & \\ & & & p \end{pmatrix},$$

$$X_1 = \begin{pmatrix} p & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & &$$

Since $p \neq -q^{\pm 2}$ and p,q are not a root of unity, the non-diagonal component with respect to (p,-1), (-1,p) in X_1 and X_2 don't vanish. Thus the dimension of each simultaneous eigenspaces is just one. Let v_1, v_2 be the simultaneous eigenvectors with respect to (p,-1), (-1,p). We have

$$T_1v_1 = \frac{p(q^2 - 1)}{(1 + p)q}v_1 + \frac{(p + q^2)(1 + pq^2)}{(1 + p)^2q^2}v_2, \quad T_1v_2 = \frac{q^2 - 1}{(1 + p)q}v_2 + v_1,$$

and $p \neq -q^{\pm 2}$. If there exists a submodule $0 \neq U$ of $\operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} \rho_1^{d^{(5)}}$, then U contains v_1 or v_2 . If v_2 is contained in U, then v_1 is contained in U, and vice versa. Therefore $\langle v_1, v_2, T_2 v_1, T_1 T_2 v_1 \rangle \subset U$. This implies that $U = \operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} \rho_1^{d^{(5)}}$, and $\operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} \rho_1^{d^{(5)}}$ is irreducible. Similarly, we can show that $\operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} \rho_2^{d^{(5)}}$ is irreducible.

Example 3.2. We consider $M(\chi_a)$. Let ρ_1^a and ρ_2^a be the following 1-dimensional representations of $\widehat{\mathcal{H}}_2$;

	X_1	X_2	T_2
ρ_1^a	q^2p	p	p
ρ_2^a	q^2p	$-p^{-1}$	$-p^{-1}$

Since $\chi_a(\alpha_2^{\vee}) = p^2$, we can apply the decompose lemma (Lemma 2.2) to $M(\chi_a)$.

Lemma 3.3. Suppose $p \neq \pm q^{-1}, \pm q^{-2}, p^2 \neq -q^{-2}$. Then $\operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} \rho_1^a$ and $\operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} \rho_2^a$ have 1- and 3-dimensional calibrated irreducible composition factors. More precisely.

(1) $\operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} \rho_1^a$ have two composition factors which are presented by the following representation matricies;

•
$$X_1 = pq^2$$
, $X_2 = p$, $T_1 = q$, $T_2 = p$.
• U_2^1 :

$$\bullet$$
 U_a^1 :

$$\begin{split} X_1 &= \binom{p}{p^{-1}q^{-2}}, \ X_2 = \binom{pq^2}{p^{-1}q^{-2}}, \\ T_1 &= \binom{-q^{-1}}{\frac{p^2q(q^2-1)}{(p^2q^2-1)}} \frac{(p^2-1)(p^2q^4-1)}{(p^2q^2-1)^2}}{1 \quad -\frac{(q^2-1)}{q(p^2q^2-1)}}, \ T_2 = \binom{\frac{p(p^2-1)q^4}{(p^2q^4-1)}}{1 \quad -\frac{p^2-1}{p(p^2q^4-1)}}}{1 \quad -\frac{p^2-1}{p(p^2q^4-1)}}, \\ \end{split}$$

(2) $\operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} \rho_2^a$ have two composition factors which are presented by the following representation matricies; • $X_1 = p^{-1}q^{-2}$, $X_2 = p^{-1}$, $T_1 = -q^{-1}$, $T_2 = -p^{-1}$. • U_a^2 :

•
$$X_1 = p^{-1}q^{-2}$$
, $X_2 = p^{-1}$, $T_1 = -q^{-1}$, $T_2 = -p^{-1}$

$$\bullet U_a^2$$

$$\begin{split} X_1 &= \binom{p^{-1}}{pq^2}, \ X_2 &= \binom{pq^2}{p^{-1}}, \\ T_1 &= \binom{-\frac{q^2-1}{q(p^2q^2-1)}}{(p^2q^2-1)^2} \frac{1}{(p^2q^2-1)} \\ \frac{(p^2-1)(p^2q^4-1)}{(p^2q^2-1)^2} \frac{p^2q(q^2-1)}{(p^2q^2-1)} \\ q \end{pmatrix}, \ T_2 &= \binom{\frac{p(p^2-1)}{(p^2q^4-1)}}{1} \frac{(q^4-1)(p^4q^4-1)}{(p^2q^4-1)^2}}{1} \\ 1 &- \frac{p^{-1}}{p(p^2q^4-1)} \end{split}.$$

Example 3.3. We consider $M(\chi_b)$. Let ρ_1^b and ρ_2^b be the following 1-dimensional representations of $\widehat{\mathcal{H}}_1$;

	X_1	X_2	T_1
ρ_1^b	q^2p^{-1}	p^{-1}	q
ρ_2^b	p^{-1}	q^2p^{-1}	$-q^{-1}$

Since $\chi_a(\alpha_1^{\vee}) = q^2$, we can apply the decompose lemma (Lemma 2.2) to $M(\chi_b)$.

(1) Suppose $p \neq \pm q, \pm q^2, p^2 \neq -q^2$. Then $\operatorname{Ind}_{\widehat{\mathcal{H}}_1}^{\widehat{\mathcal{H}}} \rho_1^b$ and $\operatorname{Ind}_{\widehat{\mathcal{H}}_1}^{\widehat{\mathcal{H}}} \rho_2^b$ have 1- and 3-dimensional calibrated irreducible composition factors which are calibrated and presented by the following representation matrices;

which are calibrated and presented by the following re
(i) case
$$\operatorname{Ind}_{\widehat{\mathcal{H}}_1}^{\widehat{\mathcal{H}}} \rho_1^b$$
;
• $X_1 = q^2 p^{-1}, \ X_2 = p^{-1}, \ T_1 = q, \ T_2 = -p^{-1}$.
• U_b^1 :

$$\bullet U_b^1$$

$$\begin{split} X_1 &= \left(\begin{smallmatrix} q^2p^{-1} & \\ & p \end{smallmatrix} \right), \ X_2 &= \left(\begin{smallmatrix} p \\ & pq^{-2} \\ & q^2p^{-1} \end{smallmatrix} \right), \\ T_1 &= \left(\begin{smallmatrix} \frac{q(q^2-1)}{q^2-p^2} & -\frac{(p^2-1)(q^4-p^2)}{(q^2-p^2)^2} \\ & q \\ & 1 & -\frac{p^2(q^2-1)}{(q^2-p^2)q} \end{smallmatrix} \right), \ T_2 &= \left(\begin{smallmatrix} p \\ & \frac{p(p^2-1)}{p^2-q^4} & 1 \\ & -\frac{(p^2-q^2)(q^4-1)(p^2+q^2)}{(p^2-q^4)^2} & -\frac{(p^2-1)q^4}{p(p^2-q^4)} \end{smallmatrix} \right). \end{split}$$

(ii) case
$$\operatorname{Ind}_{\widehat{\mathcal{H}}_1}^{\widehat{\mathcal{H}}} \rho_2^b$$
;

(ii) case
$$\operatorname{Ind}_{\widehat{\mathcal{H}}_1}^{\widehat{\mathcal{H}}} \rho_2^b;$$

• $X_1 = pq^{-2}, \ X_2 = p, \ T_1 = -q^{-1}, \ T_2 = -p.$

 $\bullet U_h^2$:

$$\begin{split} X_1 &= \binom{pq^{-2}}{p^{-1}}, \ X_2 &= \binom{p^{-1}}{pq^{-2}} q^2 p^{-1} \right), \\ T_1 &= \binom{-\frac{p^2(q^2-1)}{q^2-p^2}}{-\frac{(p^2-1)(q^4-p^2)}{(q^2-p^2)^2}} \frac{(q^2-1)q}{(q^2-p^2)} \\ &-q^{-1} \end{pmatrix}, \\ T_2 &= \binom{-p^{-1}}{\frac{p(p^2-1)}{p^2-q^4}} 1 \\ &-\frac{(p^2-q^2)(q^4-1)(p^2+q^2)}{(p^2-q^4)^2} - \frac{(p^2-1)q^4}{p(p^2-q^4)} \end{pmatrix}. \end{split}$$

- (2) Suppose p = q. Then they have 1-dimensional composition factor and 3-dimensional non-calibrated composition factor which are presented by the fol $lowing\ representation\ matrices;$
- (i) case $\operatorname{Ind}_{\widehat{\mathcal{H}}_{1}}^{\widehat{\mathcal{H}}} \rho_{1}^{b};$ $X_{1} = q, \ X_{2} = q^{-1}, \ T_{1} = q, \ T_{2} = -q^{-1}.$ U_{h}^{1} :

$$\begin{split} X_1 &= \left(\begin{smallmatrix} q & \\ & q & q^2 \\ & q \end{smallmatrix} \right), \ X_2 &= \left(\begin{smallmatrix} q^{-1} & \frac{1+2q^2}{q} \\ & q & -q^2 \\ & -q^2 \end{smallmatrix} \right), \\ T_1 &= \left(\begin{smallmatrix} q & \frac{1+2q^2}{q^2} \\ & -q^{-1} \\ & \frac{q^2-1}{q^2} \\ & q \end{smallmatrix} \right), \ T_2 &= \left(\begin{smallmatrix} -q^{-1} & \frac{1+q^2}{q(q^2-1)} \\ 1 & q & -\frac{1}{q^2-1} \\ & q \end{smallmatrix} \right). \end{split}$$

- (ii) case $\operatorname{Ind}_{\widehat{\mathcal{H}}_1}^{\widehat{\mathcal{H}}} \rho_2^b;$ $X_1 = q^{-1}, \ X_2 = q, \ T_1 = -q^{-1}, \ T_2 = q.$ U_b^1 :

$$\begin{split} X_1 &= \begin{pmatrix} q^{-1} & -\frac{q^2-1}{q^3} \\ q^{-1} & q^{-1} \end{pmatrix}, \ X_2 &= \begin{pmatrix} q^{-1} & \frac{q^2-1}{q^3} \\ q & \frac{(q^2-1)(q^2+2)}{q} \\ q^{-1} & q^{-1} \end{pmatrix}, \\ T_1 &= \begin{pmatrix} q \\ q(2+q^2) & -q^{-1} \\ -q & -q^{-1} \end{pmatrix}, \ T_2 &= \begin{pmatrix} -q^{-1} & q^{-1} & q \\ q & q(q^2+1) \\ -q^{-1} & -q^{-1} \end{pmatrix}. \end{split}$$

- (3) Suppose $p = q^2$. Then they have 1-dimensional composition factor and 3-dimensional non-calibrated composition factor which are presented by the following representation matrices;

(i) case
$$\operatorname{Ind}_{\widehat{\mathcal{H}}_1}^{\widehat{\mathcal{H}}} \rho_1^b$$
;
• $X_1 = 1, \ X_2 = q^{-2}, \ T_1 = q, \ T_2 = -q^{-2}$.

• U_b^1 :

$$\begin{split} X_1 &= \begin{pmatrix} 1 & q^2 \\ & q^2 \end{pmatrix}, \ X_2 &= \begin{pmatrix} q^2 \\ & 1 & \frac{q^4-1}{q^2} \\ 1 & & 1 \end{pmatrix}, \\ T_1 &= \begin{pmatrix} -q^{-1} & -\frac{(q^2+1)^2}{q^2} \\ 1 & q & \frac{q^2+1}{q} \\ 1 & & q \end{pmatrix}, \ T_2 &= \begin{pmatrix} q^2 & & \\ & 1 \\ & 1 & \frac{q^4-1}{q^2} \\ \end{pmatrix}. \end{split}$$

- (ii) $case \operatorname{Ind}_{\widehat{\mathcal{H}}_1}^{\widehat{\mathcal{H}}} \rho_2^b$: $X_1 = 1, \ X_2 = q^2, \ T_1 = -q^{-1}, \ T_2 = q^2$. U_b^2 :

$$\begin{split} X_1 &= \begin{pmatrix} q^{-2} \\ q^{-2} \\ 1 \end{pmatrix}, \ X_2 &= \begin{pmatrix} 1 & \frac{q^4-1}{q^2} \\ 1 & q^{-2} \end{pmatrix}, \\ T_1 &= \begin{pmatrix} -q^{-1} & \frac{q^2+1}{q} & \frac{(q^2+1)^2}{q^2} \\ -q^{-1} & q \end{pmatrix}, \ T_2 &= \begin{pmatrix} 1 & \frac{1}{q^4-1} \\ & -q^{-2} \end{pmatrix}. \end{split}$$

Example 3.4. We consider $M(\chi_c)$. Let ρ_1^c and ρ_2^c be the following 1-dimensional representations of $\widehat{\mathcal{H}}_2$;

	X_1	X_2	T_2
$ ho_1^c$	$-p^{-1}$	p	p
$ ho_2^c$	$-p^{-1}$	$-p^{-1}$	$-p^{-1}$

Since $\chi_c(\alpha_2^{\vee}) = p^2$, we can apply the decompose lemma (Lemma 2.2) to $M(\chi_c)$.

Lemma 3.5. (1) Suppose $p^2 \neq -q^{\pm 2}$. $\operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} \rho_1^c$ and $\operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} \rho_2^c$ have two 2-dimensional irreducible calibrated composition factors which are presented by the following representation matricies;

composition factors of $\operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} \rho_1^c$;

	X_1	X_2	T_1	T_2
U_c^1	$\binom{p}{-p}$	$\begin{pmatrix} -p \\ p \end{pmatrix}$	$\begin{pmatrix} \frac{q^2 - 1}{2q} & \frac{(1+q^2)^2}{4q^2} \\ 1 & \frac{q^2 - 1}{2q} \end{pmatrix}$	$\begin{pmatrix} p \\ p \end{pmatrix}$
U_c^3	$\left(\begin{array}{c} -p^{-1} \\ p \end{array}\right)$	$\left(\begin{array}{c}p\\-p^{-1}\end{array}\right)$	$\begin{pmatrix} \frac{q^2 - 1}{(p^2 + 1)q} & \frac{(p^2 + q^2)(1 + p^2 q^2)}{(p^2 + 1)^2 q^2} \\ 1 & \frac{p^2(q^2 - 1)}{(p^2 + 1)q} \end{pmatrix}$	$\left(\begin{array}{c}p\\-p^{-1}\end{array}\right)$

composition factors of $\operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} \rho_2^c$;

	X_1	X_2	T_1	T_2
U_c^2	$\left(\begin{array}{c} -p^{-1} \\ p^{-1} \end{array}\right)$	$\left(\begin{array}{c}p^{-1}\\-p^{-1}\end{array}\right)$	$\begin{pmatrix} \frac{q^2 - 1}{2q} & \frac{(1 + q^2)^2}{4q^2} \\ 1 & \frac{q^2 - 1}{2q} \end{pmatrix}$	$\left(\begin{array}{c} -p^{-1} \\ -p^{-1} \end{array}\right)$
U_c^4	$\begin{pmatrix} p^{-1} \\ -p \end{pmatrix}$	$\left(\begin{array}{c} -p \\ p^{-1} \end{array}\right)$	$\begin{pmatrix} \frac{q^2 - 1}{(p^2 + 1)q} & \frac{(p^2 + q^2)(1 + p^2 q^2)}{(p^2 + 1)^2 q^2} \\ 1 & \frac{p^2(q^2 - 1)}{(p^2 + 1)q} \end{pmatrix}$	$\begin{pmatrix} p \\ -p^{-1} \end{pmatrix}$

(2) Suppse $p^2 = -q^2$. They have one 2-dimensional irreducible calibrated composition factor and two 1-dimensional composition factors. And their representation matrices are obtained by putting $p^2 = -q^2$ in above matrices, since specialization lemma (Lemma 2.1). More precisely, U_c^1, U_c^2 are irreducible, but U_c^1, U_c^4 have two 1-dimensional composition factors.

3.3. Classification Theorem

By the preceding Examples and Lemmas, we obtain the following classification theorem. $\,$

First, let us define the 1-dimensional representations of $\widehat{\mathcal{H}}_i$ in addition to the notation in the preceding Examples and Lemmas;

$igl[\widehat{\mathcal{H}}_1igr]$	$ ho_1^{d^{(1)}}$	$ ho_2^{d^{(1)}}$	$ ho_1^{d^{(2)}}$	$ ho_2^{d^{(2)}}$	$\rho_1^g(u)$	$\rho_2^g(u)$
X_1	q^2	1	q	q^{-1}	q^2u	u
X_2	1	q^2	q^{-1}	q	u	q^2u
T_1	\overline{q}	$-q^{-1}$	q	$-q^{-1}$	\overline{q}	$-q^{-1}$

$ \widehat{\mathcal{H}}_2 $	$ ho_1^{d^{(3)}}$	$ ho_2^{d^{(3)}}$	$ ho_1^{d^{(4)}}$	$ ho_2^{d^{(4)}}$	$\rho_1^f(v)$	$ \rho_2^f(v) $
X_1	p	p	1	1	pv	pv
X_2	p	p^{-1}	p	p^{-1}	p	p^{-1}
T_2	p	$-p^{-1}$	p	$-p^{-1}$	p	$-p^{-1}$

Theorem 3.1. Suppose that p and q are not a root of unity. The finite-dimensional irreducible representations of type B_2 with unequal parameters are given by the following lists depending on the relation of parameters.

- (0) The principal series representations $M(\chi)$, where $\chi \neq \pm \chi_a, \pm \chi_b, \chi_c, \pm \chi_d^{(j)}$ $(1 \le j \le 5), \pm \chi_f(v), \chi_g(u)$ and their W-orbits, are irreducible.
- (1) For any p,q, there are eight 1-dimensional (irreducible) representations defined by

X_1	q^2p	$q^{-2}p^{-1}$	q^2p^{-1}	$q^{-2}p$	$-q^2p$	$-q^{-2}p^{-1}$	$-q^2p^{-1}$	$-q^{-2}p$
X_2	p	p^{-1}	p^{-1}	p	-p	$-p^{-1}$	$-p^{-1}$	-p
T_1	q	$-q^{-1}$	q	$-q^{-1}$	q	$-q^{-1}$	q	$-q^{-1}$
T_2	p	$-p^{-1}$	$-p^{-1}$	p	p	$-p^{-1}$	$-p^{-1}$	p

(2) For any p, q,

$$\begin{split} &\operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} \, \rho_1^f(v), \, \operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} \, \rho_2^f(v), \, \operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} (-\rho_1^f(v)), \, \operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} (-\rho_2^f(v)) \\ & \quad with \, v \neq \pm p^{-2}, \pm p^{-1}, \pm 1, q^{\pm 2}, q^{\pm 2}p^{-2} \\ &\operatorname{Ind}_{\widehat{\mathcal{H}}_1}^{\widehat{\mathcal{H}}} \, \rho_1^g(u), \, \, \operatorname{Ind}_{\widehat{\mathcal{H}}_1}^{\widehat{\mathcal{H}}} \, \rho_2^g(u) \, \, with \, u \neq \pm p^{\pm 1}, \pm 1, \pm q^{-2}, \pm q^{-1}, \pm q^{-2}p^{\pm 1} \end{split}$$

are 4-dimensional one parameter families of irreducible representations and calibrated. They are not isomorphic to each other.

(3) When p, q are generic i.e. $p \neq \pm q^{\pm 2}, \pm q^{\pm 1}$ and $p^2 \neq -q^{\pm 2}$, the remaining finite-dimensional irreducible representations are the following;

- (I) U_c^i $(1 \le i \le 4)$ which are 2-dimensional and calibrated.
- (II) $U_a^i, U_b^i, U_{-a}^i, U_{-b}^i$ (i = 1, 2) which are 3-dimensional and calibrated.

$$\begin{split} &\operatorname{Ind}_{\widehat{\mathcal{H}}_1}^{\widehat{\mathcal{H}}} \rho_j^{d^{(i)}}, \operatorname{Ind}_{\widehat{\mathcal{H}}_1}^{\widehat{\mathcal{H}}} (-\rho_j^{d^{(i)}}) \ (j=1,2,i=1,2), \\ &\operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} \rho_j^{d^{(i)}}, \operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} (-\rho_j^{d^{(i)}}) \ (j=1,2,i=3,4,5) \end{split}$$

which are 4-dimensional and non-calibrated.

- (4) When $p = q^2$, the remaining finite-dimensional irreducible representations are the following;
 - (I) U_c^i $(1 \le i \le 4)$ which are 2-dimensional and calibrated.
 - (II) U_a^i, U_{-a}^i , (i=1,2) which are 3-dimensional and calibrated.
 - (III) $U_b^i, U_{-b}^i, (i = 1, 2)$ which are 3-dimensional and non-calibrated.

$$\begin{split} &\operatorname{Ind}_{\widehat{\mathcal{H}}_1}^{\widehat{\mathcal{H}}} \, \rho_j^{d^{(i)}}, \operatorname{Ind}_{\widehat{\mathcal{H}}_1}^{\widehat{\mathcal{H}}} (-\rho_j^{d^{(i)}}) \,\, (j=1,2,i=2), \\ &\operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} \, \rho_j^{d^{(i)}}, \operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} (-\rho_j^{d^{(i)}}) \,\, (j=1,2,i=3,5) \end{split}$$

which are 4-dimensional and non-calibrated.

- (5) When p = q, the remaining finite-dimensional irreducible representations are the following;
 - (I) U_c^i $(1 \le i \le 4)$ which are 2-dimensional and calibrated. (II) $U_a^i, U_{-a}^i, (i = 1, 2)$ which are 3-dimensional and calibrated.

 - (III) U_b^i, U_{-b}^i , (i = 1, 2) which are 3-dimensional and non-calibrated.

(IV)

$$\begin{split} &\operatorname{Ind}_{\widehat{\mathcal{H}}_1}^{\widehat{\mathcal{H}}} \, \rho_j^{d^{(i)}}, \operatorname{Ind}_{\widehat{\mathcal{H}}_1}^{\widehat{\mathcal{H}}} (-\rho_j^{d^{(i)}}) \,\, (j=1,2,i=1), \\ &\operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} \, \rho_j^{d^{(i)}}, \operatorname{Ind}_{\widehat{\mathcal{H}}_2}^{\widehat{\mathcal{H}}} (-\rho_j^{d^{(i)}}) \,\, (j=1,2,i=4,5) \end{split}$$

which are 4-dimensional and non-calibrated.

- (6) When $p^2 = -q^2$, the remaining finite-dimensional irreducible representations are the following;
 - (I) U_c^i (i = 1, 2) which are 2-dimensional and calibrated.
 - (II) U_a^i, U_{-a}^i , $(1 \le i \le 2)$ which are 3-dimensional and calibrated.

(III)

$$\begin{split} &\operatorname{Ind}_{\widehat{\mathcal{H}}_{1}}^{\widehat{\mathcal{H}}} \rho_{j}^{d^{(i)}}, \operatorname{Ind}_{\widehat{\mathcal{H}}_{1}}^{\widehat{\mathcal{H}}}(-\rho_{j}^{d^{(i)}}) \ (j=1,2,i=1,2), \\ &\operatorname{Ind}_{\widehat{\mathcal{H}}_{2}}^{\widehat{\mathcal{H}}} \rho_{j}^{d^{(i)}}, \operatorname{Ind}_{\widehat{\mathcal{H}}_{2}}^{\widehat{\mathcal{H}}}(-\rho_{j}^{d^{(i)}}) \ (j=1,2,i=3,4,5) \end{split}$$

which are 4-dimensional and non-calibrated.

(7) Using the following automorphisms of \mathcal{H}

$$X_1 \mapsto X_1, X_2 \mapsto X_2, T_1 \mapsto T_1, T_2 \mapsto -T_2, q \mapsto q, p \mapsto \mp p^{\pm 1}$$

the cases of $p = \pm q^{-2}$, $-q^2$ reduces the case (4). Similarly, the cases of $p = \pm q^{-1}$, -q reduces the case (5). The case of $p^2 = -q^{-2}$ also reduces the case (6).

Note 2. In [Ram2], Ram dealt equal parameter case. However he missed the case $\chi_d^{(5)}$ and did not explicitly list the isomorphism classes of irreducible representations $-\chi_a, -\chi_b, -\chi_d^{(j)}$ and $-\chi_f$.

4. Tables of irreducible representations

We will summarize about the dimension of composition factors and their calibratability. Note that we will omit the principal series representation $M(-\chi)$ and their composition factors in the following tables.

4.1. p,q generic case (i.e. $p \neq \pm q^{\pm 1}, \pm q^{\pm 2}$ and $p^2 \neq -q^{\pm 2}$)

	$\chi(X_1)$	$\chi(X_2)$	$P(\chi)$	dim	calibrated?
χ_a	q^2p	p	$\{\alpha_1, \alpha_2\}$	1	0
				3	O O
				3	
	9 _1	_1		1	0
χ_b	q^2p^{-1}	p^{-1}	$\{lpha_1,lpha_2\}$	1	
				3	
				1	
24	_m -1		[0-20-10-]	2	
χ_c	$-p^{-1}$	p	$\{\alpha_2, 2\alpha_1 + \alpha_2\}$	2	
				2	
				2	000000000000000000000000000000000000000
$\chi_d^{(1)}$	q^2	1	$\{\alpha_1, \alpha_1 + \alpha_2\}$	4	×
				4	×
$\chi_d^{(2)}$	q	q^{-1}	$\{\alpha_1\}$	4	×
				4	×
$\chi_d^{(3)}$	p	p	$\{\alpha_2, 2\alpha_1 + \alpha_2\}$	4	×
				4	×
$\chi_d^{(4)}$	1	p	$\{\alpha_2\}$	4	×
				4	×
$\chi_d^{(5)}$	-1	p	$\{\alpha_2\}$	4	×
				4	×
$\chi_f(v)$	pv	p	$\{\alpha_2\}$	4	0
				4	0
$\chi_g(u)$	q^2u	u	$\{lpha_1\}$	4	
				4	

4.2. p = q case; equal parameter case

	$\chi(X_1)$	$\chi(X_2)$	$P(\chi)$	dim	calibrated?
χ_a	q^3	q	$\{\alpha_1, \alpha_2\}$	1	0
				3	
				3	
				1	
χ_b	q	q^{-1}	$\left\{\alpha_1,\alpha_2,2\alpha_1+\alpha_2\right\}$	1	0
				3	×
				3	×
				1	
χ_c	$-q^{-1}$	q	$\{\alpha_2, 2\alpha_1 + \alpha_2\}$	2	0
				2	
				2	000
				2	
$\chi_d^{(1)}$	q^2	1	$\{\alpha_1, \alpha_1 + \alpha_2\}$	4	×
				4	×
$\chi_d^{(4)}$	1	q	$\{\alpha_2\}$	4	×
				4	×
$\chi_d^{(5)}$	-1	p	$\{\alpha_2\}$	4	×
""				4	×
$\chi_f(v)$	qv	q	$\{\alpha_2\}$	4	0
				4	
$\chi_g(u)$	q^2u	u	$\{\alpha_1\}$	4	Ó
				4	

4.3. $p = q^2$ case

	$\chi(X_1)$	$\chi(X_2)$	$P(\chi)$	dim	calibrated?
χ_a	q^4	q^2	$\{\alpha_1, \alpha_2\}$	1	
				3	
				3	
				1	
χ_b	1	q^{-2}	$\{\alpha_1, \alpha_2, \alpha_1 + \alpha_2\}$	1	0
				3	×
				3	×
				1	
χ_c	$-q^{-2}$	q^2	$\{\alpha_2, 2\alpha_1 + \alpha_2\}$	2	0
				2	
				2	Ŏ
				2	Ŏ
$\chi_d^{(2)}$	q	q^{-1}	$\{\alpha_1\}$	4	×
			, ,	4	×
$\chi_d^{(3)}$	q^2	q^2	$\{\alpha_2, 2\alpha_1 + \alpha_2\}$	4	×
				4	×
$\chi_d^{(5)}$	-1	q^2	$\{\alpha_2\}$	4	×
l a				4	×
$\chi_f(v)$	q^2v	q^2	$\{\alpha_2\}$	4	0
				4	
$\chi_g(u)$	q^2u	u	$\{\alpha_1\}$	4	Ó
				4	

4.4. $p^2 = -q^2$ case

	$\chi(X_1)$	$\chi(X_2)$	$P(\chi)$	dim	calibrated?
χ_a	$-p^3$	p	$\{\alpha_1, \alpha_2\}$	1	0
				3	
				3	
				1	0
χ_c	$-p^{-1}$	p	$\{\alpha_1, \alpha_2, 2\alpha_1 + \alpha_2\}$	1	000000
				1	0
				1	0
				1	0
				2	
(1)				2	0
$\chi_d^{(1)}$	$-p^2$	1	$\{\alpha_1, \alpha_1 + \alpha_2\}$	4	×
				4	×
$\chi_d^{(2)}$	$\pm p\sqrt{-1}$	$\pm p\sqrt{-1}$	$\{\alpha_1\}$	4	×
				4	×
$\chi_d^{(3)}$	p	p	$\{\alpha_2, 2\alpha_1 + \alpha_2\}$	4	×
				4	×
$\chi_d^{(4)}$	1	p	$\{\alpha_2\}$	4	×
		-		4	×
$\chi_d^{(5)}$	-1	p	$\{\alpha_2\}$	4	×
· • a		-	-,	4	×
$\chi_f(v)$	pv	p	$\{\alpha_2\}$	4	0
				4	
$\chi_g(u)$	$-p^2u$	u	$\{\alpha_1\}$	4	Ō
				4	

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES KYOTO UNIVERSITY
KITASHIRAKAWA-OIWAKECHO
SAKYOKU, KYOTO 606-8502
JAPAN

e-mail: henon@kurims.kyoto-u.ac.jp

References

- [Ari] S. Ariki, Representations of quantum algebras and combinatorics of young tableaux, Amer. Math. Soc. Univ. Lec. Ser. 26, 2002.
- [CG] N. Chriss and V. Ginzburg, Representation theory and complex geometry, Birkhäuser, 1997.
- [JK] G. James and A. Kerber, *The representation theory of the symmetric group*, Encyclopedia Math. Appl. **16**, Addison-Wesley, 1981.
- [Kato] S. Kato, Irreducibility of principal representations for Hecke algebras of affine type, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 929–943.

- [KL] D. Kazhdan and G. Lusztig, Proof of delingre-langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), 153–215.
- [KR] C. Kriloff, A. Ram, Representations of graded Hecke algebras, Represent. Theory 6 (2002), 31–69 (electronic).
- [Lus89] G. Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), 599–635.
- [LusI] _____, Cuspidal local systems and graded Hecke algebras I, Publ. Math. I.H.E.S. **67** (1989), 145–202.
- [LusII] ______, Cuspidal local systems and graded Hecke algebras II, Representations of groups, (B. Allison and G. Cli eds.) Canad. Math. Soc. Conf. Proc. 16, Amer. Math. Soc. (1955), 217–275.
- [LusIII] _____, Cuspidal local systems and graded Hecke algebras III, Represent. Theory 6 (2002), 202–242 (electronic).
- [Ram1] A. Ram, Affine Hecke algebras and generalized standard young tableaux, J. Algebra 230 (2003), 367–415.
- [Ram2] _____, Representations of rank two affine Hecke algebras, Advances Algebra and Geometry, Univ. Hyderabad conference 2001, (C. Musili ed.), Hindustan Book Agency, 2003, 57–91.
- [Rog] J. D. Rogawski, On modules over the Hecke algebra of p-adic group, Invent. Math. 79 (1985), 443–465.