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∗

Abstract

In the previous paper [1], the author investigated the group struc-
ture of the homotopy set [X, U(n)] with the pointwise multiplication,
under the assumption that X is a finite CW complex with its dimen-
sion 2n and U(n) is the unitary group, and showed that [X, U(n)] is an

extension of eK1(X) by Nn(X), where Nn(X) is a group defined as the

cokernel of a map Θ : eK0(X) → H2n(X;Z). In this paper, we offer
another interpretation of Nn(X) using Adams e-invariant and show that

the extension Nn(X) → Un(X) → eK1(X) is determined by some Toda
brackets. Also we give some applications including the calculation of
[SO(4), U(3)].

1. Introduction

Let U(n) be the unitary group and X be a finite CW-complex. We consider
the homotopy set Un(X) = [X, U(n)] which forms a group by the pointwise
multiplication. This association provide a functor from the category of finite
CW-complexes to the category of (not always commutative) groups and, if
2n > dim X, Un(X) is merely equal to K̃1(X).

As mentioned in [1], even if X is base-pointed, the group of the homotopy
set and that of the base-point preserving homotopy set between X and U(n) are
naturally isomorphic. Thus in this paper we work in the base-pointed category
and assume all spaces are pointed. Especially the base-point of U(n) is the
unit and we assume that X is connected and all attaching maps of cells of X
are base-point preserving.

Now set dim X ≤ 2n. Considering the fibration involving U(n), i.e., from
the fibration U(n) i−→ U(∞)

p−→Wn (We set Wn = U(∞)/U(n).), one obtains
the fibration sequence

ΩU(∞)
Ωp−→ ΩWn

δ−→ U(n) i−→ U(∞)
p−→Wn,

which, applying [X, · ], turns out to be the exact sequence:

(1.1) K̃0(X)
Θ(X)−→ H2n(X;Z)

Φ(X)−→ Un(X)
Π(X)−→ K̃1(X)→ 0.
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(See Theorem 1.1 of [1].) Here, Θ(X), Φ(X) and Π(X) are homomorphisms
defined for each X (dim X ≤ 2n) and are obtained from Ωp∗, δ∗ and i∗ re-
spectively. We may omit “(X)” when it makes no confusion. We denote the
cokernel of Θ(X) by Nn(X).

Dually, we consider a cofibration involving X. We denote the (2n − 1)-
skeleton of X by X ′ and set that fi : S2n−1 → X ′(i ∈ I) are the attaching
maps of the 2n-cells of X. Then we have the natural cofibration sequence:∨

i∈I

S2n−1 → X ′ → X →
∨
i∈I

S2n → ΣX ′

and this induces the exact sequence

Un(ΣX ′)→ Un

(∨
i∈I

S2n

)
ρ∗
−→ Un(X).

In this paper, we claim that Nn(X) ∼= Im ρ and Im ρ can be determined by
“e-invariant”. (Theorem 2.1.)

After the investigation of Nn(X) for 2n-dimensional X, we consider the
extension of 0 → Nn(X) → Un(X) → K̃1(X) → 0. (Despite of the non-
commutativity of Un(X) in general, we use ‘0’ as the unit group and denote
the operation by ‘+’.) When K̃1(X) is free Z-module, all the relations in K̃1(X)
as a group are the commutativity and the above extension is determined by the
commutators between the inverse images in Un(X) of the elements of K̃1(X).
This was done in the previous paper ([1]). When K̃1(X) is not free, there
are further relations which indicate the torsion part of K̃1(X). In this paper
we exhibit that the determination of the above extension in general case is
essentially those of some secondary compositions. (Theorem 3.1.)

Finally, in Section 4, using the results of previous sections, we give some
applications. We determine [SO(4), U(3)]. (Theorem 4.1.) Also we show ex-
amples, in which Un(X) is commutative but the above extension is not trivial.
(Theorem 4.2.)

Throughout this paper, we use the following notation. We fix the orien-
tation of spheres, i.e., select a generator of Hn(Sn;Z) and denote it bn. Let
η be the canonical line bundle over S2 and denote the generator of K̃0(S2n)
by λn = (η − 1)n. Since Un(S2k+1) ∼= K̃1(S2k+1) ∼= [S2k+1, U(∞)] (k < n),
let εk ∈ Un(S2k+1) (k < n) denote the generator which corresponds to λk ∈
[S2k, ΩU(∞)] ∼= K̃0(S2k) by the adjoint isomorphism.

The author is grateful to Professor A. Kono for his fruitful advices.

2. e-invariant

The e-invariant is classically known and, among the several definitions of
e-invariant, we adopt the following here. (See [2].)

Assume a CW-complex X ′ satisfies H2n(X ′;Q) = H2n−1(X ′;Q) = 0 and
let chn : BU → K(Q, 2n) be the n-th Chern character. For f : S2n−1 → X ′
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and β ∈ K̃0(X ′) = [X ′, BU ], β ◦ f and chn ◦ β are null-homotopic.

S2n−1 f−→ X ′ β−→ BU
chn−→ K(Q, 2n)

Thus the secondary composition (Toda bracket) {chn, β, f} ∈ [S2n, K(Q, 2n)]
can be defined modulo Im(chn : K̃0(S2n) → H2n(S2n;Q)). Remark that
Im(Σf∗ : H2n(X ′;Q) → H2n(S2n;Q)) is 0. Thus {chn, β, f} takes its value
in H2n(S2n;Q)/ Im chn ∼= Q/Z and this value is denoted by e(f)(β), i.e., e(f)
is defined as a map K̃0(X ′)→ H2n(S2n;Q)/ Im chn.

Now we offer yet another modified definition of the above one. Let X ′

be a CW-complex whose dimension is less than 2n, f : S2n−1 → X ′ and
β ∈ K̃0(X ′) = [X ′, BU ]:

S2n−1 f−→ X ′ β−→ BU
sn−→ K(Z, 2n).

Also we set sn : BU → K(Z, 2n) is the map which corresponds to the n-
th primitive s-class of the universal bundle, in other words, n!chn. Then the
secondary composition {sn, β, f} ∈ [S2n, K(Z, 2n)] = H2n(S2n;Z) can be also
defined modulo

Im(sn : K̃0(S2n)→ H2n(S2n;Z)) + Im(Σf∗ : H2n(ΣX ′;Z)→ H2n(S2n;Z)).

Here recall that Θ(X) in the exact sequence (1.1) is the map which
associates (−1)nsn(α) to each α ∈ K̃0(X). (See Proposition 3.1 in [1].) Thus,
applying this exact sequence to S2n, Φ(S2n)({sn, β, f}) takes its value in
Un(S2n) = Z/n!Z modulo Im(Φ ◦ Σf∗ : H2n(ΣX ′;Z) → Un(S2n)). We write
this value as e′(f)(β).

Lemma 2.1. When H2n−1(X ′;Q) = 0, the ambiguity of e′(f) disap-
pears and e′(f)(β) ∈ Un(S2n) = Z/n!Z. Moreover, e′(f) and e(f) coincide by
means of the injection which maps 〈k〉 ∈ Z/n!Z to k/n! ∈ Q/Z.

Proof. Because H∗(S2n;Z) is free, H2n(ΣX ′;Q) = 0 implies that Im(Φ ◦
Σf∗)=0, i.e., the ambiguity of e′(f) vanishes. The latter follows from the next
commutative diagram:

S2n−1
f ��

��

X ′ β ��

��

BU
sn ��

��

K(Z, 2n)

× 1
n!

��
S2n−1

f �� X ′ β �� BU
chn

�� K(Q, 2n)

Remark. Especially, in case that k < n, X ′ = S2k and f : S2n−1 →
S2k, since H2n(ΣX ′;Z) = 0, e′(f) : K̃0(S2k)→ Un(S2n) ∼= H2n(S2n;Z)/ Im sn

has no ambiguity. Then let a ∈ Z/n!Z satisfies e′(f)(λk) = abn ∈ H2n(S2n;Z)/
Im sn and we also denote this value a by e′(f).
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Next, we introduce a proposition about secondary composition.

Proposition 2.1. Assume a fibration F
i−→ E

p−→ B and a map X
f−→ Y . For any map x : ΣY → F such that i ◦ x ◦ Σf 	 ∗,

δ ◦ {Ωp, Ad(i ◦ x), f} � x ◦ Σf.

Proof. Consider the fibration sequence associated with F → E → B
shown in the left diagram below. Since i ◦ (x ◦ Σf) 	 ∗, there exists a lift
φ : ΣX → ΩB such that δ ◦ φ 	 x ◦ Σf .

X

f

��

ΩF

Ωi

��
Y

��

Ad(i◦x)
��

Ad(x)

�������������������
ΩE

Ωp

��
Cf

π

��

φ̄f

������������������
ΩB

δ

��
ΣX

Σf

��

x◦Σf ��

φ

������������������
F

i

��
ΣY

x

�������������������
E

X

��

Adφ �� Ω2B

��

Ωδ �� ΩF

Ωi

��
CX

��

C(Adφ) ��

φ̄

��
CΩ2B

��

eval �� ΩE

Ωp

��
ΣX

ΣAdφ ��

φ

��ΣΩ2B
eval �� ΩB

Now, recall that Ωδ can be characterize as follows: Let eval : ΣΩ2B → ΩB
be the evaluation map. Using the CHP of ΩF → ΩE → ΩB, there exists a
map eval : CΩ2B → ΩE which makes the right above diagram commutative.
Here CX means the cone of X, [0, 1]×X/{0}×X. Therefore the restriction of
eval to the Ω2B = {1} × Ω2B induces a map Ω2B → ΩF and this is just Ωδ
up to homotopy.

We remark φ = eval ◦Σ(Adφ) and set φ̄ = eval ◦ C(Adφ) and φ̄X =
φ̄|X . Then

φ̄X 	 Ωi ◦ Ωδ ◦Ad φ = Ωi ◦Ad(δ ◦ φ) 	 Ωi ◦Ad(x ◦ Σf) = Ad(i ◦ x) ◦ f.

Using this homotopy, one can deform φ̄ into φ̄′ so that φ̄′|X = Ad(i ◦ x) ◦ f .
This deformation enables us to combine this deformed φ̄′ : CX → ΩE and
Ad(i ◦ x) : Y → ΩE to make the new map φ̄f from Cf to ΩE. In other words,

φ̄f is made from Y
Ad(i◦x)−→ ΩE and the homotopy Ad(i ◦ x) ◦ f 	 ∗.

Here, one can easily verify Ωp ◦ φ̄f = π ◦ φ and this implies that φ belongs
to the secondary composition {Ωp, Ad(i ◦ x), f} from its definition. Thus

δ{Ωp, Ad(i ◦ x), f} � δ ◦ φ 	 x ◦ Σf.
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We turn to Un(X). For a connected CW-complex X of dim2n, let X ′ be
its (2n− 1)-skeleton and fi : S2n−1 → X ′ (i ∈ I) be the attaching maps of 2n-
cells. Applying the exact sequence (1.1) to the each member of the cofibration
sequence:

∨
S2n−1

W
fi �� X ′ j �� X

ρ �� ∨S2n

W
Σfi �� ΣX ′,

we obtain the next diagram where all the rows and the columns are exact.

(2.1)

0 K̃0(X ′)
W

fi
∗

��

��

K̃0(X)
epic��

Θ(X)

��

⊕
K̃0(S2n)��

��
0 = H2n(X ′) H2n(X)��

Φ(X)

��

⊕
H2n(S2n)��

Φ(S2n)

��

H2n(ΣX ′)��

Φ(ΣX′)
��

Un(X)
⊕

Un(S2n)
ρ∗

��

Π(S2n)

��

Un(ΣX ′)
W

Σfi
∗

��

Π(ΣX′)
��⊕

K̃1(S2n) = 0

��

K̃1(ΣX ′)

��

��

0 0

Theorem 2.1. In the above diagram, let Mi ⊂ Un(S2n) be the submod-
ule Im(Φ ◦ Σfi

∗ : H2n(ΣX ′;Z)→ Un(S2n)). Then we have
(1) Nn(X) = CokerΘ(X) ∼= Im(ρ∗ :

⊕
Un(S2n)→ Un(X)).

(2) For β ∈ Un(ΣX ′), let β′ ∈ K̃0(X ′) be the element which corresponds to
Π(ΣX ′)(β) by the isomorphism K̃1(ΣX ′) = [ΣX ′, U(∞)] Ad−→ [X ′, ΩU(∞)] =
K̃0(X ′). Then we have

Σfi
∗(β) = (−1)ne′(fi)(β′) modulo Mi.

(3) Modulo
⊕

Mi, Ker ρ∗ coincides with
⊕

Im(e′(fi)). Especially, when
H2n−1(X ′;Q) = 0,

Nn(X) ∼=
⊕

π2n(U(n))/ Im(e′(fi)).

Proof. The first assertion can be easily deduced by a simple diagram
chasing:

CokerΘ(X) ∼= Im Φ(X) = Im Φ(X) ◦ ρ∗ = Im ρ∗ ◦ Φ(S2n) = Im ρ∗.

We apply the previous proposition to the case that F → E → B is the
fibration U(n) i−→ U(∞)

p−→ Wn, and f is the attaching map of a 2n-cell of
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X, i.e., fi : S2n−1 → X ′. Then for β ∈ Un(ΣX ′), we obtain

(2.2) Σfi
∗β ∈ δ{Ωp, Ad(i ◦ β), fi} ⊂ Un(S2n).

On the other hand, we recall that there is a map a2n : ΩWn → K(Z, 2n)
which induces the isomorphism [X, ΩWn] ∼= H2n(X;Z) for CW complex X of
the dimension no more than 2n and makes the next diagram commutative. (See
Theorem 1.1 of [1].) Also remark that Φ(X) : H2n(X;Z)→ Un(X) was defined
by δ∗(a2n∗)−1.

ΩU(∞)

∼=
��

Ωp �� ΩWn

a2n

��

δ �� U(n)

BU
(−1)nsn �� K(Z, 2n)

Therefore, under the isomorphism [S2n, ΩWn] ∼= H2n(S2n;Z) induced by a2n,

{Ωp, Ad(i ◦ β), fi} = (−1)n{sn, Ad(i ◦ β), fi}
and

δ{Ωp, Ad(i ◦ β), fi} = Φ(S2n)((−1)n{sn, Ad(i ◦ β), fi})
= (−1)ne′(fi)(Ad(i ◦ β)).

(2.3)

Then (2.2), (2.3) and the equation Ad(i◦β) = Ad(Π(ΣX ′)(β)) imply the second
assertion.

Since all rows and columns of diagram (2.1) are exact, Ker ρ∗ =
⊕

Im Σfi
∗

and the third assertion follows. Especially, if H2n−1(X ′;Q) ∼= H2n(ΣX ′;Q) =
0, H2n(ΣX ′;Z) has no free part, while H2n(S2n;Z) is free. Therefore Im(Φ(S2n)
◦Σfi

∗) = 0, i.e., e′(fi) has no ambiguity and Nn(X) ∼= ⊕Un(S2n)/ Im(e′(fi))
as asserted.

3. Extension

As mentioned in Section 1, Un(X) is a extension of K̃1(X). In this section,
we formulate the group extension of Un(X) for a CW complex of dimension 2n
by means of second composition.

Assume that X is a connected CW complex of dimension 2n, X ′ is its
(2n − 1)-skeleton, fi : S2n−1 → X ′(1 ≤ i ≤ l) are attaching maps of 2n-cells
and ρ : X → ∨

X/X ′ ∼= ∨
i S2n is the quotient map. Also we set the inclusion

map j : X ′ → X. Note that the following extension obtained from (1.1) is
central. [1]

(3.1) 0→ Nn(X)
Φ(X)−→ Un(X)

Π(X)−→ K̃1(X)→ 0.

Let α1, . . . , αk ∈ K̃1(X) be the generators as a Z-module, mi be the order
of αi in K̃1(X) and α̃i ∈ Un(X) be a inverse image of αi in the above exact
sequence.
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We set H∗(U(n);Z) =
∧

(x1, x3, x5, . . . x2n−1) where x2k−1 is the coho-
mology suspension of the k-th universal Chern class. Finally, we set the map
µm : U(n)→ U(n) which maps A ∈ U(n) to Am.

Theorem 3.1. The extension of (3.1) can be determined by the follow-
ings :

(1) The commutator [α̃i, α̃j ] = Φ(X)〈u〉 where

u =
∑

k+l+1=n

(α̃∗(x2k+1) ∪ β̃∗(x2l+1)) ∈ H2n(X;Z)

and 〈u〉 means the class of Nn(X) = Coker Θ(X) represented by u.
(2) The element mjα̃j comes from Nn(X) ∼= ⊕i π2n(U(n))/ Ker ρ∗ and

mjα̃j ∈
⊕

i

{µmj
, α̃j ◦ j, fi} ⊂

⊕
i

π2n(U(n))/ Ker ρ∗.

Remark. The secondary composition {µmj
, α̃j ◦ j, fi} is a coset and, in

Nn(X), it has an ambiguity of mjNn(X) = {mjx|x ∈ Nn(X)}. This ambiguity
comes from the selection of the inverse images α̃j . In spite of this ambiguity,
the above equations uniquely determines the group extension of (3.1).

Proof. First assertion is just the statement of Theorem 1.4 of [1]. We
remark that, since (3.1) is a central extension, [α̃i, α̃j ] does not depend on the
selection of inverse images α̃i of αi.

Now, we check the second assertion. See the next diagram which demon-
strate the exact sequence (1.1) applied to each member of cofibration X ′ j−→
X

ρ−→ ∨
S2n:

(3.2) 0

��

H2n(X;Z)

��

�� ⊕
i H2n(S2n;Z)��

��
Un(X ′)

Π(X′)
��

Un(X)

Π(X)

��

j∗
�� ⊕

i Un(S2n)
ρ∗

��

��
K̃1(X ′) K̃1(X)

j∗
�� 0��

Since j∗(miαi) = 0 in K̃1(X ′) and Π(X ′) is injective, we have j∗(miα̃i) = 0
in Un(X ′). Therefore there exists γ ∈ [

∨
S2n, U(n)] ∼= ⊕

Un(S2n) such that
ρ∗γ = miα̃i. We consider the relation of α̃i, µm, fi and j in the following
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diagram. ∨
i S2n−1

W
fi

��
X ′

j

��

eαi◦j �� U(n)

µmi

��
X

ρ

��

mi eαi ��

eαi

�����������������
U(n)

∨
i S2n

γ

���������

It can be seen that γ is obtained from µmi
◦ α̃i and the homotopy of µmi

◦ α̃i ◦ j
	 ∗, i.e.,

γ ∈
{
µmi

, α̃i ◦ j,
∨

fi

}
=
⊕

i

{µmi
, α̃i ◦ j, fi}.

In [3], A. T. Lundell introduced the unstable Bott map βn: The restriction

of Bott map β|U(n) : U(n) ↪→ U(∞)
β−→ Ω2U(∞) can be factorized as U(n)

βn−→
Ω2U(n + 1) ↪→ Ω2U(∞). This map induces a map Un(X)

βn∗−→ Un+1(Σ2X) but
we should remark that this is NOT a group homomorphism in general, unless
X is a co-H space. Concerning this map, we have the following theorem.

Theorem 3.2. Let X be a CW complex and dimX = 2n. Then the
next diagram commutes.

(3.3)

K̃0(X)
Θ(X) ��

β

��

H2n(X;Z)
Φ(X) ��

µ′
(n+1)

��

Un(X)
Π(X) ��

βn∗
��

K̃1(X)

β

��
K̃0(Σ2X)

Θ(Σ2X)�� H2n+2(Σ2X;Z)
Φ(Σ2X) �� Un+1(Σ2X)

Π(Σ2X) �� K̃1(Σ2X)

In the above diagram, β means the Bott periodicity map and µ′
(n+1) is the

map which maps a ∈ H2n(X;Z) to (n + 1)Σ2a ∈ H2n+2(Σ2X;Z).

Proof. From the property of βn, the commutativity of the right square in
(3.3) follows.

For the commutativity of the left square, we recall that for α ∈ K̃0(X) =
[X, BU ], β(α) = ζ ◦ Σ2α ∈ K̃0(Σ2X) = [Σ2X, BU ] where ζ ∈ [Σ2BU, BU ] is
the classifying map of limN→∞(η−1) ⊗̂ (ξN−N), η is the canonical line bundle
over CP 1 and ξN is the universal bundle over BU(N).

Therefore, referring to Proposition 3.1 of [1], we have

(3.4) Θ(Σ2X)(β(α)) = (β(α))∗((−1)nsn+1) = (Σ2α)∗ζ∗((−1)nsn+1).
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Also, it is known that ζ∗(ci) = (−1)i−1Σ2si−1 where ci is the i-th universal
Chern class and si is the primitive s-class in Hi(BU ;Z). (See Proposition 3.1
of [1].) Using Newton’s formula and (3.4),

ζ∗((−1)nsn+1) = ζ∗((−1)n(n+1)cn+1+decomposable elements) = (n+1)Σ2sn

and
Θ(Σ2X)(β(α)) = (n + 1)Σ2α∗(sn) = (n + 1)Σ2(Θ(X)(α)).

This is just the commutativity of the left square of (3.3).
Now we prove the commutativity of the middle square of (3.3). In [3], it

is shown that βn∗ maps 1 ∈ Z/n!Z ∼= Un(S2n) to (n + 1) ∈ Z/(n + 1)!Z ∼=
Un+1(S2n+2).

Now we consider the diagram below.

H2n+2(Σ2X)

Φ(Σ2X)

��

⊕
H2n+2(S2n+2)

(Σ2ρ)∗��

Φ(S2n+2)

��

0 H2n(X)

�����������

Φ(X)

��

�� ⊕
H2n(S2n)

�������������

ρ∗
��

Φ(S2n)

��

Un+1(Σ2X)
⊕

Un+1(S2n+2)��

��
Un(X)

βn∗
����������� ⊕

Un(S2n)
βn∗

�������������
ρ∗

��

��

0

0

In the above diagram, ρ means the quotient map X → X/X(n−1) ∼= ∨
S2n

as before. We see that for any x ∈ H2n(X), taking x̄ ∈ ⊕H2n(S2n) so that
ρ∗(x̄) = x,

βn∗Φ(X)x = βn∗Φ(X)ρ∗(x̄)
= βn∗ρ

∗Φ(S2n)x̄
= (Σ2ρ)∗βn∗Φ(S2n)x̄
= (Σ2ρ)∗Φ(S2n+2)(n + 1)Σ2x̄

= Φ(Σ2X)(Σ2ρ)∗(n + 1)Σ2x̄

= Φ(Σ2X)((n + 1)Σ2(ρ∗x̄))
= Φ(Σ2X)((n + 1)Σ2x).

And the statement is proved.

Corollary 3.1. Let dimX = 2n and assume that X is a co-H space.
If 0 → Nn(X) → Un(X) → K̃1(X) → 0 is a trivial extension, so is 0 →
Nn+1(Σ2X)→ Un+1(Σ2X)→ K̃1(Σ2X)→ 0.
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Proof. When X is a co-H space, βn∗ is a group homomorphism. Thus,
by Theorem 3.2, we obtain the diagram:

0 �� Nn(X) ��

��

Un(X) ��

��

K̃1(X) ��

∼=
��

0

0 �� Nn+1(Σ2X) �� Un+1(Σ2X) �� K̃1(Σ2X) �� 0

which says that the splitting of the upper extension induces the splitting of the
lower. Also, Un+1(Σ2X) is abelian and the statement follows.

4. Application

In this section we see some examples of the computation of Un(X). One
of them is U3(SO(4)).

In [1], examples are offered, in which Un(X) is not commutative, i.e.,
Un(X) is a non-trivial extension of K̃1(X) in the sense of Theorem 3.1 (1).
Here we also see a example in which the extension is not trivial in the sense of
Theorem 3.1 (2).

We start with the next lemma.

Lemma 4.1. For n > 2, we have Nn(Σ2n−3RP 3) ∼= Un(S2n) = Z/n!Z.

Proof. We apply Theorem 2.1 (3).
The (2n−1)-skeleton of Σ2n−3RP 3 is Σ2n−3RP 2 and let f be the attaching

map of the 2n-cell. Since H2n(Σ2n−3RP 2;Z) has no free part, while H2n(S2n;Z)
is free, thus Im(Φ ◦ Σf∗) vanishes and Nn(Σ2n−3RP 3) ∼= Un(S2n)/ Im e′(f).
But K̃0(Σ2n−3RP 2) = 0 and Im e′(f) vanishes as well.

Lemma 4.2. The next extension is trivial :

0→ N2(ΣRP 3)→ U2(ΣRP 3)→ K̃1(ΣRP 3)→ 0.

Proof. We set X = ΣRP 3, X ′ = ΣRP 2, f is the attaching map of the
4-cell of X and apply Theorem 3.1 (2). Also we use the same notations as
Theorem 3.1.

In this case, since X ′ = S2 ∪2ι e3, using the cofibration sequence S2 2ι−→
S2 → X ′ π−→ S3 2ι−→ S3,

0 = U2(S2)←− U2(X ′) π∗
←− U2(S3) ×2←− U2(S3),

is exact and U2(X ′) ∼= Z/2Z, which has a generator α′ = π∗ε1. Also K̃1(X) ∼=
K̃1(X ′) ∼= U2(X ′), since

K̃1(S3) 0←− K̃1(X ′)←− K̃1(X)←− K̃1(S4) = 0.

Thus we can take α ∈ K̃1(X) and α̃ ∈ U2(X) so that α̃ ◦ j 	 α′ and Π(X)(α̃)
= α. (See diagram (3.2).)
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By Theorem 3.1, we should consider {µ2, α
′, f} ⊂ π2n(U(n)). Recall that

f is the suspension of the natural projection S2 → RP 2, π is the suspension of
RP 2 → RP 2/RP 1 and it can be seen that π ◦ f is null homotopic.

Thus {µ2, α
′, f} = {µ2, ε ◦ π, f} ⊃ {µ2, ε, π ◦ f} = 0-coset and the exten-

sion is trivial. (In fact, in this case {µ2, α
′, f} has no ambiguity and exactly

{0}.)

Proposition 4.1. For n > 2, the extension

0→ Nn(Σ2n−3RP 3)→ Un(Σ2n−3RP 3)→ K̃1(Σ2n−3RP 3)→ 0

is trivial and Un(Σ2n−3RP 3) = Z/n!Z⊕ Z/2Z.

Proof. This statement follows directly from Lemmas 4.1, 4.2 and Corol-
lary 3.1.

Theorem 4.1. We can take generators α, β, β′, γ ∈ U3(SO(4)) and
all their relations are

6γ = 0, 2α = 0, [β, γ] = [β′, γ] = [β, α] = [β′, α] = [α, γ] = 0, [β, β′] = γ.

Proof. It is well known that the fibre bundle SO(3)→ SO(4)→ S3 is the
trivial bundle and SO(3) ∼= RP 3. Thus SO(4) ∼= S3 × RP 3 and we consider
the cofibration

S3 ∨RP 3 i′−→ S3 ×RP 3 p′
−→ Σ3RP 3

which induces the short exact sequence

(4.1) 0← U3(S3)⊕ U3(RP 3) i′∗←− U3(S3 × RP 3)
p′∗
←− U3(Σ3RP 3)← 0.

Here U3(RP 3) ∼= U3(S3) ∼= Z and we can take their generators as β ∈
U3(S3) and β′ = β ◦π′ ∈ U3(RP 3) where π′ : RP 3 → RP 3/RP 2 is the quotient
map. Then we take the inverse image of β and β′ in U3(SO(4)) as β̃ = β ◦ p1

and β̃′ = β′ ◦ p2 where pi is the i-th projection map of SO(4) = S3 × RP 3.
Also by Lemma 4.1 and Proposition 4.1, we know

U3(Σ3RP 3) ∼= K̃1(Σ3RP 3)⊕N3(Σ3RP 3)
∼= K̃1(Σ3RP 3)⊕ U3(S6) ∼= Z/2Z⊕ Z/6Z

and set generators as α ∈ K̃1(Σ3RP 3) and γ ∈ U3(S6).
All we have to do is to examine the extension of (4.1). Since the subgroup

〈γ〉 of U3(SO(4)) generated by γ coincide with N3(SO(4)) = Im ρ∗ where ρ is
the quotient map smashing the (2n−1)-skeleton of SO(4) = S3×RP 2, recalling
the central extension (3.1), U3(SO(4))/〈γ〉 ∼= K̃1(SO(4)) is commutative, all
commutators in U3(SO(4)) are in 〈γ〉 and γ belongs to the center of U3(SO(4)).
Also by Corollary 1.5 of [1], α belongs to the center, because its order is finite.
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Thus (4.1) is also a central extension and, since U3(S3)⊕U3(RP 3) is free,
the extension is determined by [β̃, β̃′] ∈ 〈γ〉. By Theorem 3.1 (1), we have

[β̃, β̃′] = Φ〈u〉, u =
∑

i+j=2

β̃∗(x2i+1) ∪ β̃′∗(x2j+1).

One can easily check that u is a generator of H6(SO(4);Z) and obtain [β̃, β̃′] =
±γ. Retake γ and the statement follows.

Now we turn to another examples. Let M = S2k ∪mι e2k+1 be the Moore
space of type (Z/mZ, 2k) and X = M ∪f e2n, where f : S2n−1 → S2k ⊂ M

and k < n − 1. We can easily see (for example by AHSS) K̃1(X) = Z/mZ.
Also, since H2n−1(M ;Z) = 0 and K̃0(M) = 0, by Theorem 2.1 (3), we have
Nn(X) ∼= Un(S2n) ∼= Z/n!Z. Thus we have an extension

0→ Z/n!Z→ Un(X)→ Z/mZ→ 0.

We shall take the generators α ∈ K̃1(X), γ ∈ Un(S2n) and the inverse image
α̃ of α in Un(X).

Theorem 4.2. Let X be as above. Then we can take α, γ and α̃ so
that Un(X) has two generators γ and α̃ and their all relations are

n!γ = 0, mα̃ = e′(f)γ.

Proof. See the commutative diagram (3.2) in the proof of Theorem 3.1.
In this situation, we see K̃1(X) ∼= K̃1(M) ∼= Un(M) and Nn(X) ∼= Un(S2n).
Thus we consider the extension

(4.2) 0→ Un(S2n)→ Un(X)→ Un(M)→ 0

instead of 0→ Nn(X)→ Un(X)→ K̃1(X)→ 0.
Next we fix some maps as

M
ρ′
−→ S2k+1, X

ρ′′
−→ S2k+1 ∨ S2n,

S2k+1 ∨ S2n r1−→ S2k+1, S2k+1 ∨ S2n r2−→ S2n,

S2k ∨ S2n−1 h−→ S2k

where ρ′ and ρ′′ are quotient maps smashing the 2k-skeleton, r1 and r2 are
retraction maps smashing the first or second component, h = ∇◦ (mι∨ f) and
∇ : S2k ∨ S2k → S2k is the folding map. Then we have the next commutative
diagram in which all columns and rows are cofibration sequences:

S2k
mι �� S2k ��

=

��

M
ρ′

��

j

��

S2k+1
mι ��

j′

��

S2k+1

=

��
S2k ∨ S2n−1

h �� S2k �� X
ρ′′

��

ρ

��

S2k+1 ∨ S2n
Σh ��

r1

��

r2

��

S2k+1

S2n = �� S2n

Σf
�������������
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where j and j′ are natural inclusion.
Applying Un(·) to the diagram, we know that 0 ← Un(M) ← Un(S2k+1)

×m←− Un(S2k+1) is exact and can take the generator of Un(M) as α = εk ◦ ρ′

where εk ∈ Un(S2k+1) ∼= Z is the generator.
Now we set α̃ = εk ◦ r2 ◦ ρ′′. Then

j∗α̃ = εk ◦ r2 ◦ ρ′′ ◦ j = εk ◦ r2 ◦ j′ ◦ ρ′ = εk ◦ ρ′ = α,

i.e., α̃ is a inverse image of α in (4.2). Next we set β = −εk ◦ Σf ∈ Un(S2n)
and show that ρ∗β = mα̃. In fact, since

ρ∗β = β ◦ ρ = −εk ◦ Σf ◦ ρ = −εk ◦ Σf ◦ r1 ◦ ρ′′ = ρ′′∗(−εk ◦ Σf ◦ r1),

mα̃ = m(εk ◦ r2 ◦ ρ′′) = ρ′′∗((mεk) ◦ r2),

therefore we can proceed as

mα̃− ρ∗β = ρ′′∗(εk ◦ Σf ◦ r1 + εk ◦ (mι) ◦ r2) = ρ′′∗(Σh)∗εk = 0.

Now all we have to do is to prove that β = e′(f)γ. But, applying Theorem
2.1 (2) to the CW-complex Y = S2k ∪f e2n, it can be see that

Σf∗(−εk) = (−1)n+1e′(f) · b2n ∈ H2n(S2n;Z)/ Im sn
∼= Un(S2n).

Thus we can take the generator γ satisfying β = e′(f)γ.
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