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The suspension order of the real even
dimensional projective space

By

Juno MUKAT*

Abstract
The purpose of this paper is to prove the truth of the conjecture in
[12]: The suspension order of the real even dimensional projective space
coincides with its stable order determined by Toda [21] (see Silberbush
and Ucci [19]). We obtain the assertion by proving that the suspension
order of the real 6-projective space is 8.

1. Introduction

In this paper all spaces, maps and homotopies are based. For a space X, we
denote by XX a suspension of X and by ¢x the identity class of X. The order
of iy x € [XX,XX] is called the suspension order ([21]) or the characteristic
[4] of X. The order of ¥*°:1x € {X, X} is called the stable order ([21]) of X.
Let P™ be the real n-dimensional projective space. Adams [1, Theorem 7.4]
showed that the K O-group I?é(P") is isomorphic to Zys(n), where ¢(n) is the
number of integers ¢ satisfying 1 < i <n and ¢ =0, 1,2 or 4 mod 8. Toda [21,
Corollary 3 to Theorem 4.3] determined the stable order of P?" equal to 20(2n)
The purpose of the present paper is to show the following.

Theorem 1.1. The suspension order of PS is 8.

As an application of the theorem, we conclude that the suspension order
of P?" coincides with its stable order (see [12, Appendix]). In other words, we
obtain the following.

Corollary 1.2.  The suspension order of P2" is 2¢(2)

For a space X and its subspace A, let us denote by is,x : A — X the
inclusion map and by px, 4 : X — X/A the map pinching A to one point. We
set Py = pn/pk-1, ik,n = Ipk pn and pp = ppn pr for k <n. We set ¢, = 1gn.
We denote by v, : S™ — P the covering map.

2000 Mathematics Subject Classification(s). Primary 55P05, 55Q15; Secondary 55Q52
Received March 31, 2003

*Partially supported by Akio Sato, Shinshu University 101501 and Grant-in-Aid for
Scientific Research (No. 15540067 (c), (2)), Japan Society for the Promotion of Science



756 Juno Mukai

By abuse of notation, the same notation is often used for a mapping and
its homotopy class.
Since , (P"*1) = 0, we have

(1.1) Tn,n+1 © Yn = 0.
From the cell structure of P, we obtain
(1.2) Prn—197m = (1+ (_1)n_1)bn-

Let 1, € m,41(S™) for n > 2 be the Hopf map and n2 = 7, o 9,11 €
Tn+2(S™). We recall from [20] that

73(S%) = Z{n2}, mps1(8") =Zo{nn}  (n>3)

and
T+2(S™) = Za{nn}  (n>2).
Here, for example, the notation m,4+1(S™) = Za2{n, } indicates that m,11(S™) is
isomorphic to Zy and generated by n,.
We set M™ = En_2P2, by = En_ZZ'LQ and Pn = En_2p271. Let ’f}g S 7T4(M3)
be an element satisfying ps7js = 13 ([15, Lemma 4.1]) and set

fin=%""%  (n>2).
Let 3 € [M®, S%] be an extension of 73 and set
n=%""703  (n>3).
We obtain 73(M?) = Zs{izn2} and
Tn(M") = Zo{innn-—1}  (n=>4).

We recall an important relation ([3], [21])

(1.3) 200 = InMn—1Pn (n>3).
We also obtain m,o(M"™Y) = Zy{f,},

(1.4) 2 = inpann (0> 2),
[M"F2 8" = Z4{i,} and

(1.5) 20 = Mopn+2 (02 3).

Making use of the cofiber sequence
()n g Sy gn T A P gt

and by the groups m(M™) for k = n,n + 1, we get that (see [16, Lemma 1.5

1))
(16) [Mn+1a Mn} = ZQ{inﬁn—l} &b ZQ{ﬁn—lpn+l} (TL 2 4)

To prove Theorem 1.1, we need the following.
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Theorem 1.3. 2[M7,¥P"] =0 for n > 3.
We note that P§ is identified with the mapping cone of i473:
P3 = M* Ui, CM.

We set i’ = ips ps and p’ = ppg ps. We consider an element (Xiy4)noi)s €
[M®,¥P4]. By [18, Lemma 5.2], we know a relation

(Yig.4)f2ns = 0 € 75(XP?).
So, by (1.4) and (1.5),

(Sir,a)n2ils 0 il = (Siva)n3iia = (Si,a)ijz 0 2ta 0 7l
= (Yig4)i2mips = 0 € [M°, TPY),

and hence (Xi1,4)n273 is extendible to (Xi1 4)n2fs € [SP§, XP4]. By (1.3) and
(16),
ifls 0 isnaps = 2(iafls) = 0 € [M°, M*].

e~

Therefore there exists a coextenstion iznups € [MY PS] of isnips satisfying

plisnaps = ignsps- The Toda bracket
{(Si1,4)n2M3, i574, i6nspe 1 C (M7, 5P

is represented by the composition — (3 4)n273 022‘577/_;;5 ([20, Proposition 1.7])
as shown in the commutative diagram (£ = (41 4)7273):

—

Yisnaps

M yp4

17 N6 DT

M.
The key to proving Theorem 1.1 is to find out the following.

Theorem 1.4.
(l) 4L2p6 = (Zi4,6)(27;1)4)77277]3 o Zp(;’g mod [M7, ZPG] o Zp6,4.
(ii) {(X41,4)m273, 1574, t6Mspe 1 consists of a single element and 2(Xiq 4)n273
= {(Xi1,4)n273, i574, i6nsp6 }1 © Lp' € [LP§, TPY].
(iii) (Zys)nepr = (ia,s) o {(Si1,4)n21s, isTa, i6M5p6 }1 € [MT, P,
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Theorem 1.1 is a direct consequence of Theorems 1.3, 1.4 and (1.1).

We use the composition methods in [20] arranged for suspended real projec-
tive spaces. And we are based on the result in [18]. The exact sequence of James
[10, Theorem 2.1] is used to determine the group structure of mg(XP? A P?)
(Lemma 3.1 (ii)). To prove Theorem 1.3, it is essential to find out the triviality
of some element of [M”, ¥ P2 A P?] (3.3) by considering the Whitehead product
[[/]\/[47 2[,]\/[4].

2. Recollection of known results

Let v/ be a generator of the 2-primary component 7 = Z4 of 76(S%). We
need the following facts [20]:

(21) il// = 7’7]37747
21/ = 77;’; n3v4 = I/nﬁa
77 = Z{vy} ® Zy{SV'}
and
Ftg, t4] =20y — TV,
We also recall from [13], [14], [15], [16] that

w7 (M) = Za{isva} © Zo{fiane},
w6 (M*) = Za{0} ® Zo{iians},
(2.2) 25 = i/,
¥ = 2(isvy) € mr(MP),
mr(M*) = Zp{0ne} @ Zofisn3}

and

(2.3) [tara, 4] = Ope.

Making use of the cofiber sequence () for k = 5, 6, by the group structures
Wk(MS)(k = 6,7)3 ’/TI?c)(k = 536), Wk(M4) 5< k< 7) and by (14)7 (22)7 (13)7
we obtain the following (see [16, Lemma 1.5 (iii)]).

Lemma 2.1.

(i) [M7, M®) = Zs{isnaiis} © Zo{ianepr} © Zo{isvapr}.

(i) [M, %] = Zo{nzia} © Za{v'ps}-

(iti) [MC, M*] = Zy{iansia} ® Zo{iisnspe} ® Zo{dpes}-

(iv) [M7, M*] = Za{7j371} © Zo{1aV"} © Zo{dnepr}, where 20375 = 313p7
and 141 is an extension of igV'.

The smash product of P? with itself has the following cell structure:

P2 AP? = M® Uy, , CM?,
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where we take M3 = P2 A S and 2up3 = tp2 A 211, So, by (1.3), it turns to
the form:
P2AP? = (M?V S*) Upriynvap; €,

where f] : M? — M3V S® and f} : S — M3V S? be the embeddings to the first
and second spaces, respectively. We set i' = ipsygs p2ap2, P = Pp2ap2 msvss
and p” = pp2ap2 ps. Then we can take ¢/ f{ = tp2 Ada. Since p” od' f5 =iy, 1’ f5
is a coextension of i3. We set i3 = 7' f}, 7, = X" 3i3(n > 3), fi = X f1.(k = 1,2),
1 =24 and p = ¥p’. By [17, Lemma 2.4],

m3(P? A P?) = Zg {3}

and

T (Z" (P2 AP?) = Zu{i,}y (n>4),
where
(2.4) 2, = (8" 3(ia Nia)) 1 (n > 3).

Let us recall that P? is homeomorphic to the 3-rd rotation group. Let
h : ¥P3 AP? — XP3 be the Hopf construction induced from the multiplication
of the topological group P3. We know the following ([5], [11]).

Lemma 2.2.  There exists a direct sum decomposition for a space X:
22X, YP% = h.[22X, EP? A P3| @ B2 X, P3.

The following is [18, Lemma 3.2].

Lemma 2.3. YP3AP? = ((XP2AP?)U;, e )V MOV MO, where i = izAis.

Let ho =h ‘(EP2/\P2)Uw/e7, W =nh |Zp2/\p2, W' =h |M4 and "' = h |S3 be
the restrictions of h, respectively. By [18, Lemma 2.3 (i)],

(2.5) R = (Biy 3)ne € T3(XP?)

and
Wiy = +(ig 3)72 € ma(EP?).

By [18, Lemma 5.2, (6.3)],

(2.6) Yy = (Zig )73 € m5(XP?)
and
(2.7) dispa = (3i1 4)N2M3Xpa 2.

3. Proof of the fact that 2[M7, XP3] =0

First we show the following.
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Lemma 3.1.

(l) 71'5(2132 AN P2) = ZQ{(LM:S A 12)77]3} D ZQ{%4774} and X" : 71'5(2132 A P2)
— Tpts(S"TIP2 A P2) is an isomorphism for n > 1.

(it) 76 (XP* A P?) = Za{(tars A i2)0} ® Zo{(tars A ia)iisns} © Zo{iani} @
ZQ{[ig A\ i2,54]}, where 2((LM3 N 22)5) = (7,3 A\ ig)l//.

Proof. (i) is easily obtained (see [18, §4]).

The relation in (ii) is obtained from (2.2). We consider the homotopy exact
sequence of a pair (XP2 A P2 M* v S%):

m2(SP2 AP2, M4 v §%) -Ls mg(M* v §*) 55 mg(SP2 A P2)
I mg(SP2 AP, MA v §Y L
By Blakers-Massey [7], 76(XP2 A P2, M* v S%) = 74(S®). The generator of

the relative homotopy group is denoted by 74, satisfying p.7ns = n5. We have
7T5(M4 V 54) =74 ® Zs. So, by (1.4),

O = (friams + 2f2) ona = frians = 2f1ilz # 0.
Hence i, : mg(M?* Vv S*) — 76(XP? A P?) is an epimorphism.
Since 77 (M* x S*, M* v S*) 22 77 (M?®), M* x S* = (M*V S*)Uyy, 1, CM”
and [fl, fg} o} i7 = [f1i4, fz], we obtain
me(M*V S*) = Zu{f16} ® Zo{ frilsns} ® Zof{ foni} @ Zof[f1is, fo]}.

By [10, Theorem 2.1], 77(XP2 A P2, M* v §%) = Zy {02} @ Zo{|w, fria]}, where
w is the characteristic map of the 5-cell of XP? AP2, [, | stands for the relative
Whitehead product ([8]) and 772 is an element satisfying p*nt% = n?. We have
8(772) = f1iym3 = 0. By [8] and the fact that [n3, t3] = 0, we see that

Olw, fria] = —[frians + 2f2, fria] = (fria)[n3, 3] + 2[f2, f1ia] = 0.
This leads to (ii), completing the proof. O

By use of [2, Theorem 2.4] and [6, Proposition II. 3.2], we obtain the
following (see [15, Remark, p. 273]).

Lemma 3.2. Let o € [¥A, X], 6 € [E¥B,X],0 € [D,A] and € € [E, B],
where A, B, D, E are polyhedra and X is a space. Then

[0 X0, 50 Xe] = [a, f] 0o 2(0 Ag).
Next we show the following.

Lemma 3.3. 2[M7,¥P? AP? =0.
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Proof.  Since [tprs Ao, ig] 0 X((42 A t1) Atg) = [ig Aia, 4] by Lemma 3.2,
[tars A d2,74] is an extension of [ig A ig,%4]. By use of (x)g and by Lemma 3.1
(ii), we obtain

[M7,SP? AP?) = {(tars Ado)ual/, (tags A do)ilafs, 1analls,
[LM:S A 7:2754]} —|— 7T7(EP2 A PQ) o p7.

We have 2(n47]5) = 0 and 224" = 0 by Lemma 2.1 (iv). By the relation 2is = 0,
2[LM3 A\ Z'Q,Ld = [LMS Ao, 54] o E((ZQ A\ 2L1) A\ Lg) =0

and
2((LM3 A i2)773775) =0.
Hence, by the relation 2p; = 0, the assertion follows. O

We examine the Whitehead product [tpre,2tp4]. By (1.3), Lemma 3.2,
(2.3) and by the fact that

Lp2 A g = iafs + Tj3ps € [M°, M*),
we get the following in [SM3 A M3, M4):

[tara, 2eara] = [are, iam3pa] = [ears, 4] © B(ears A (12p3))
= [tara, 4] 0 Z(eprs Ama) 0 B(epss A ps)
= 016 © p7 © L(tprs A p3).

Since

(3.1) proS(eas Aps) = X(ps Aps) € [EM? A M?, ST,
we obtain

(3:2) [tar4, 20ap4] = 0m6 © B(ps A ps) € [SMP A M?, M.

Now we show the following.
Lemma 3.4. 2[M7 (SP2AP?)U;, €] =0.
Proof. By (3.2) and the fact that 2(¢ps Adz) =0,

(ears Nig)ome © X(ps A p3) = [tars Az, 2(ears Ad2)]
=0¢ [SM3 A M3 EP? AP
So, by making use of the cofiber sequence

Lasd Ni3

Lara NP3 20,7
MO ML e A M3 ML T M T
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and by (3.1), we obtain (¢33 A iz)dnepr € 2[M7, XP% A P?]. Hence, by Lemma
3.3,

(3.3) (tars N in)ongpr =0 € [MT, P2 A P?).

We set B = (XP2 AP?) U e” and r = iyp2ap2,g- From the homotopy exact
sequence of a pair (B, XP? A P?) and by Lemma 3.1 (ii), we obtain

76(B) = {r(tprs ANin)0,r(eags Ado)Tisns, rians, rlis Ado, 4]} = (Zo)*.
So, by use of (x)g, we obtain
(M7, B] = {r(ears Ni2)d,r(eass A ia)fisils, Pianails, rlears Az, 7]} + m7(B) o pr,
and hence, 2[M7, B] = {2r(tps A iz)d}. By (1.3) and (3.3),
2r(tags N i) = 1(Lags Adg)dnepr = 0.

This leads to the assertion, completing the proof. O

Since 7 o (i3 Aig)) = 0 and h"'v' = hg or(iz Ai2)V’, we obtain
(3.4) (Diy 3)mer’ = W'V =0 € m6(ZP?).

By Lemma 2.3, we have

76 (XP? A P?) 2 16(B) @ 76 (M) @ me(MP).

Since 276(B) = 2m6(MS) = 0, we get that 2m6(XP3 A P3) = 0. We have
2%75(P?) = 0. So, by Lemma 2.2, we obtain the following.

Lemma 3.5. 276(3XP3) = 0.
We show the following.

Lemma 3.6. (Yi3,)« : m6(XP3) — 76(ZP") is an epimorphism for
n=4,n>6 and m6(XP%) = Z{Zv5} © (Xiz 5).7m6(XP3).

Proof. In the homotopy exact sequence of a pair (XP*, ¥P3), the con-
necting homomorphism 9 : 76(XP*, ¥P3) — m5(3P?) is a monomorphism by
[18, Theorem 5.3] and its proof. Hence (Xiz4). : m6(XP3) — mg(XP?) is an
epimorphism.

By making use of the homotopy exact sequence of a pair (XP°, XP*) and
by (1.2), we conclude that

76(EZP%) = Z{Z7s5} ® (Dig )6 (ZP).

Obviously (Xi5,,)s : m6(XP°) — mg(XP™) for n > 6 is an epimorphism. This
completes the proof. O
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Now we prove Theorem 1.3.

Proof of Theorem 1.3.
By Lemma 3.5, any element a € 75(XP?) is extendible to & € [M7, XP3].
So, by use of (x)g and by Lemma 3.6, we obatin

(M7, 5P"] = {(Ziz n)a} + m7(EP™) o pr (« € 76(SP?)).
Therefore it suffices to prove that 2[M7,XP3] = 0. By [7], [CM",M"; B x

M Bv M = [M8 BAM® (B = (XP2AP?)U;, €7). So, by Lemma 2.3, we
have

[M7,XP3 A P?]
= (M7, Bl@ [MT, M) & [M", M°] & [M®, BA M) & [M®, B A M.
By Lemma 3.4, 2[M",B] = 0. By (1.6), 2[M7,M%] = 0. Since [MS, B A
M®) = [M8, M®] = Z,, we obtain 2[M® B A M°®] = 0. By Lemma 2.1 (ii),
[M® P3] = [M®,S3] = (Z3)2. This shows that 2X[M% P3] = 0. Hence, by
Lemma 2.2, we conclude that 2[M7, XP3] = 0. Thus the proof of Theorem 1.3
is complete. O

We obtain the following.

Corollary 3.7.  m(XP™) ongpr = 0 for n > 3, n # 5 and ms(XP®) o
nepr = {(X75)n6p7}-

Proof. Let a € ms(XP™) for n > 3 be a nontrivial element except for
37s5. Then, by Lemmas 3.5 and 3.6, the order of « is 2, and hence « is

extendible to & € [M7,¥P"]. Thus, by (1.3) and Theorem 1.3, a o (nsp7) =
2 € 2[M7,¥P"] = 0. This completes the proof. O

4. Proof of Theorem 1.1

First of all we show the following.

Lemma 4.1.

(1) B[MC, M*] = Zo{ismiis} @ Za{fanepr}-

(ii) B[MC, M°] = Za{iss }-

Proof. By the fact that X(dps) = Xliase,i4] = 0 (2.3), (i) is a direct
consequence of Lemma 2.1 (iii).

We know that 7375 € L[M®, M3]. We consider the Hopf homomorphism
H:[M7,M* — [M",XM3 A M3]. By Lemma 3.1 (i),

7 (SM3 A M?) = Zo{ione} & Zo{(tase Ni3)iis ).

So, by use of (x)g combining with the fact that 76(XM3 A M3) = Z4{is} and
256 = (i4 AN i3)’l75 (24), we obtain

[M7,SM3 A M3 = Zo{(ig Niz)Tjs} ® Zo{isnepr} © Zof{(tpars A is)Tspr}.
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By [14, Proposition 14],
H(5) = +is,

and so H(0nspr) = i6n6p7-

By use of a generalized version [9] of [20, Proposition 2.2] and by the fact
that H(v') = ns [20, (5.3)] for H : 7§ — 7§, we obtain

H(Z47) o7 = H(i4VI) = (i4 A i3)775 = (i4 A\ 23)ﬁ5 oi7 € WG(EM?’ A M3)
Hence, by use of (x)g, we obtain
H (1) = (ig Nig)ijs mod 77 (S M3 A M3) o pr = {isnspr, (tars A i3)iispr}.

Thus (ii) follows from the fact that H o ¥ = 0. This completes the proof. O

For the cell complex P§ = M* U;, 5, CM5, we set

-/ . -/ -/ - / /! /
v =1p4apg, U =V O, P =DPpg M and p’ =pgop.

Let 1514p5 be a coextension of isnyps = 20ps5. It is taken as a representative of
the Toda bracket

{i',iafls, ismaps } C [M°, P§).
Then, by the properties of Toda brackets and by the fact that

{2L57p5; ’LS} S Ly mod 2L5,
we see that

2i5maps € {1, 1473, 574p5} © G675P6
=" 0 {ia7j3,i5Mm4ps, 5} © N5P6
D4 o {273, ps, 15} 0 N5ps
D i'7j3 0 {2u5,ps, 05} 0 N5Pe
> i'f3mspe mod il [MC, M*] 0 20556 4+ [MC, PS] 0 2up76 0 20576,

By (1.3) and Lemma 2.1 (iii), the indeterminacy i/, [M6, M*] 02¢ys6 + [MS, P§] o
2upp6 0 20pp6 is trivial. That is,

(4.1) 25maps = i'Tansps € [M°, P

Since py 0 i47j3 = 0, there exists an extension py € [PS, S*] of ps. We show
the following.

Lemma 4.2.  2iyps = +X05nm4ps Xp’ mod (i )vyXp”.
Proof. By use of the canonical bijection

[CPS, P§; ©P§, M) = [EP§, M"] = {Zp'},
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we obtain the exact sequence

=P8, %) F0 (2ps, wps) FP [mp8, M7 — 0.

Since (Ep/)*(QLZPg — YiymapsXp’) = 0, we get that
2sps — SismapsXp’ € (5i').[SP§, M.

Making use of the exact sequence induced from the cofiber sequence starting
with ’L'5’I74 : M6 — M5Z

(z)"
kit

(v, M) B (5, 0] [SPS, MO

G20 (a7, %) 2 (s, ),
together with (1.3) and Lemma 2.1 (i), we obtain
[XPS, MP) = {isnaXpa, aneXp”, isvalp”} = (Z2)3.
So, by the fact that i’ o igng =i’ 0isfj3 0 i5 = 0 and by (4.1), we obtain
(S1).[EPS, M) = {25ismipes, (5 )asp' ).
This leads to the relation, completing the proof. d
In fact we can show the following.
Remark 4.3. [YP§,XP§] = Zs{vsps} @ Zo{(Zi")vaXp”}.

Now we prove Theorem 1.4.

Proof of Theorem 1.4.
We consider the exact sequence (i = Xiq6,p = Xpg.a)

[ZP*, P < (2P, 2P6] P (M7, TP,
By use of the commutative diagram:

7
P4 4,6 PG

J{p4,2 lpa,z

’

M4 — PS
and by (2.7),
(Xi1.4)12713 0 Epe 2 0 Digg = (Di1 4)n23Epas = disps.
So, by the relation

Zi476 0 4typs = 4dixps O Zi4)6 S [EP47 ZPﬁ],
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we have Theorem 1.4 (i).
By Lemma 4.2, we see that

2(Xi1,4)n2m3 = (X41,4)n2713 © 2sps
= £ (Xi1,4)1273 © Li51aps Sp/
mod (Xiq,4)nem3 o (X" )y p”.

Yi1,4)n2m3va
Si14)mev'ne = 0 € m7(SPY).

By the relation nsvy = /16 and (3.4),
(Xi1,a)n213 0 (Xi")va = (
= (

By (4.1), (2.1) and (3.4),

2((Zi1,4)12773 © Tisnaps) = (Tir,a)1273 © (X4 )anepr
= (Ziya)mev'nepr = 0 € [M7, P4

Hence we conclude that

2(Si1,4)n2ms = (Si1a)m2ms 0 SisnapsXp’ € [EP, TP
By [20, Proposition 1.7], we obtain

(Xi1.4)n273 0 Yismaps € {(Di1.4)0273, 1574, i675P6 }1
mod (Xiy 4)n2fj3 0 Z[MC, M*] + [M7,XP* o izneps.

By (1.3) and Theorem 1.3, [M7,¥P*] o iznepr = 2[M7,¥P*] = 0. By Lemma
4.1 (i), (2.1), (3.4) and by the relation (i 4)n3 = 0, we obtain

(Si1,4)m2m3 0 B[MC, M4 = {(Zi1,4)n375, (Xi1,4)m2v n6p7} = 0.
Hence the indeterminacy is trivial and we get that
(Si1,a)m2m3 © Stsnaps = {(Si1,4)n27s, 504, i6nspe 1 € (M7, SPY).

This leads to Theorem 1.4 (ii).
Since (Xps 4)(Xvs) = 26 by (1.2), we obtain

Yvs € {Xias, Xya, 25}
By the properties of Toda brackets,
(Z5)n6p7 € {Xia5, Xya, 2t5} 0 Nepr = Va5 0 {4, 25, M5P6 |-

The indeterminacy of iy 50 {4, 25, 75p6 } is (Sig50574) o [M7, S5+ Xig 50
76(XP*4) o ngpr = 0 by (1.1) and Corollary 3.7. Therefore

(X95)n6p7 = Xias © {374, 25, 1m5D6 }-
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By the fact that L[M¢, S = [M7, S,
{74, 25, m5p6} = {374, 205, 15p6 1
and hence
(4.2) (Evs)nepr = a5 0 {X4, 25, M5P6 11
By (2.6), (1.4), (2.5) and by the relation i4n3 = 473 0 i5fjs © ig, we obtain

{374, 205, m5p6 11 C {(Xiz,4)R”, 2713, 15p6 11
= {(Siz,a)h",ian3, m5p6 11
D {(Xi1,4)m2M3, 1574, i675P6 }1
mod (i3 4)h” o X[MO M?] + 76(XP*) 0 ngpr.

By Corollary 3.7, m6(XP*) o ngp7 = 0. By Lemma 4.1 (ii) and (2.6),
(Ziza)h" o S[M®, M?] = {(Sa)ls}-
So we obtain
{E74, 25, m5p6 11 = {(Xd1,4)0273, 1574, i6M5P6 11 mOd (E74)75.
Thus, by (1.1) and (4.2), we obtain
(X5)n6p7 = (Xias) o {(X41,4)n273, 9574, 16756 }1-

This leads to Theorem 1.4 (iii), completing the proof of Theorem 1.4. O
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