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The suspension order of the real even
dimensional projective space

By

Juno Mukai∗

Abstract

The purpose of this paper is to prove the truth of the conjecture in
[12]: The suspension order of the real even dimensional projective space
coincides with its stable order determined by Toda [21] (see Silberbush
and Ucci [19]). We obtain the assertion by proving that the suspension
order of the real 6-projective space is 8.

1. Introduction

In this paper all spaces, maps and homotopies are based. For a space X, we
denote by ΣX a suspension of X and by ιX the identity class of X. The order
of ιΣX ∈ [ΣX, ΣX] is called the suspension order ([21]) or the characteristic
[4] of X. The order of Σ∞ιX ∈ {X, X} is called the stable order ([21]) of X.
Let Pn be the real n-dimensional projective space. Adams [1, Theorem 7.4]
showed that the KO-group K̃O(Pn) is isomorphic to Z2φ(n) , where φ(n) is the
number of integers i satisfying 1 ≤ i ≤ n and i ≡ 0, 1, 2 or 4 mod 8. Toda [21,
Corollary 3 to Theorem 4.3] determined the stable order of P2n equal to 2φ(2n).
The purpose of the present paper is to show the following.

Theorem 1.1. The suspension order of P6 is 8.

As an application of the theorem, we conclude that the suspension order
of P2n coincides with its stable order (see [12, Appendix]). In other words, we
obtain the following.

Corollary 1.2. The suspension order of P2n is 2φ(2n).

For a space X and its subspace A, let us denote by iA,X : A → X the
inclusion map and by pX,A : X → X/A the map pinching A to one point. We
set Pn

k = Pn/Pk−1, ik,n = iPk,Pn and pn,k = pPn,Pk for k ≤ n. We set ιn = ιSn .
We denote by γn : Sn → Pn the covering map.
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756 Juno Mukai

By abuse of notation, the same notation is often used for a mapping and
its homotopy class.

Since πn(Pn+1) = 0, we have

(1.1) in,n+1 ◦ γn = 0.

From the cell structure of Pn, we obtain

(1.2) pn,n−1 ◦ γn = (1 + (−1)n−1)ιn.

Let ηn ∈ πn+1(Sn) for n ≥ 2 be the Hopf map and η2
n = ηn ◦ ηn+1 ∈

πn+2(Sn). We recall from [20] that

π3(S2) = Z{η2}, πn+1(Sn) = Z2{ηn} (n ≥ 3)

and
πn+2(Sn) = Z2{η2

n} (n ≥ 2).

Here, for example, the notation πn+1(Sn) = Z2{ηn} indicates that πn+1(Sn) is
isomorphic to Z2 and generated by ηn.

We set Mn = Σn−2P2, in = Σn−2i1,2 and pn = Σn−2p2,1. Let η̃2 ∈ π4(M3)
be an element satisfying p3η̃2 = η3 ([15, Lemma 4.1]) and set

η̃n = Σn−2η̃2 (n ≥ 2).

Let η̄3 ∈ [M5, S3] be an extension of η3 and set

η̄n = Σn−3η̄3 (n ≥ 3).

We obtain π3(M3) = Z4{i3η2} and

πn(Mn) = Z2{inηn−1} (n ≥ 4).

We recall an important relation ([3], [21])

(1.3) 2ιMn = inηn−1pn (n ≥ 3).

We also obtain πn+2(Mn+1) = Z4{η̃n},
(1.4) 2η̃n = in+1η

2
n (n ≥ 2),

[Mn+2, Sn] = Z4{η̄n} and

(1.5) 2η̄n = η2
npn+2 (n ≥ 3).

Making use of the cofiber sequence

(∗)n Sn 2ιn−→ Sn in+1−→Mn+1 pn+1−→ Sn+1 −→ · · ·
and by the groups πk(Mn) for k = n, n + 1, we get that (see [16, Lemma 1.5
(i)])

(1.6) [Mn+1, Mn] = Z2{inη̄n−1} ⊕ Z2{η̃n−1pn+1} (n ≥ 4).

To prove Theorem 1.1, we need the following.
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Theorem 1.3. 2[M7, ΣPn] = 0 for n ≥ 3.

We note that P6
3 is identified with the mapping cone of i4η̄3:

P6
3 = M4 ∪i4η̄3 CM5.

We set i′ = iP4
3,P6

3
and p′ = pP6

3,P4
3
. We consider an element (Σi1,4)η2η̄3 ∈

[M5, ΣP4]. By [18, Lemma 5.2], we know a relation

(Σi2,4)η̃2η4 = 0 ∈ π5(ΣP4).

So, by (1.4) and (1.5),

(Σi1,4)η2η̄3 ◦ i5η̄4 = (Σi1,4)η2
2 η̄4 = (Σi2,4)η̃2 ◦ 2ι4 ◦ η̄4

= (Σi2,4)η̃2η
2
4p6 = 0 ∈ [M6, ΣP4],

and hence (Σi1,4)η2η̄3 is extendible to (Σi1,4)η2η̄3 ∈ [ΣP6
3, ΣP4]. By (1.3) and

(1.6),
i4η̄3 ◦ i5η4p5 = 2(i4η̄3) = 0 ∈ [M5, M4].

Therefore there exists a coextenstion ĩ5η4p5 ∈ [M6, P6
3] of i5η4p5 satisfying

p′∗ĩ5η4p5 = i6η5p6. The Toda bracket

{(Σi1,4)η2η̄3, i5η̄4, i6η5p6}1 ⊂ [M7, ΣP4]

is represented by the composition −(Σi1,4)η2η̄3◦Σĩ5η4p5 ([20, Proposition 1.7])
as shown in the commutative diagram (ξ = (Σi1,4)η2η̄3):

M5

Σi′

��

ξ

����
��

���
���

��

M7
Σĩ5η4p5 ��

i7η6p7

����
��

��
��

��
��

ΣP6
3

ξ̄ ��

Σp′

��

ΣP4

M7.

The key to proving Theorem 1.1 is to find out the following.

Theorem 1.4.
(i) 4ιΣP6 ≡ (Σi4,6)(Σi1,4)η2η̄3 ◦ Σp6,2 mod [M7, ΣP6] ◦ Σp6,4.
(ii) {(Σi1,4)η2η̄3, i5η̄4, i6η5p6}1 consists of a single element and 2(Σi1,4)η2η̄3

= {(Σi1,4)η2η̄3, i5η̄4, i6η5p6}1 ◦ Σp′ ∈ [ΣP6
3, ΣP4].

(iii) (Σγ5)η6p7 = (Σi4,5) ◦ {(Σi1,4)η2η̄3, i5η̄4, i6η5p6}1 ∈ [M7, ΣP5].
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Theorem 1.1 is a direct consequence of Theorems 1.3, 1.4 and (1.1).
We use the composition methods in [20] arranged for suspended real projec-

tive spaces. And we are based on the result in [18]. The exact sequence of James
[10, Theorem 2.1] is used to determine the group structure of π6(ΣP2 ∧ P2)
(Lemma 3.1 (ii)). To prove Theorem 1.3, it is essential to find out the triviality
of some element of [M7, ΣP2 ∧P2] (3.3) by considering the Whitehead product
[ιM4 , 2ιM4 ].

2. Recollection of known results

Let ν′ be a generator of the 2-primary component π3
6
∼= Z4 of π6(S3). We

need the following facts [20]:

±ν′ = η̄3η̃4,(2.1)

2ν′ = η3
3 , η3ν4 = ν′η6,

π4
7 = Z{ν4} ⊕ Z4{Σν′}

and
±[ι4, ι4] = 2ν4 − Σν′.

We also recall from [13], [14], [15], [16] that

π7(M5) = Z4{i5ν4} ⊕ Z2{η̃4η6},
π6(M4) = Z4{δ} ⊕ Z2{η̃3η5},

2δ = i4ν
′,

Σδ = 2(i5ν4) ∈ π7(M5),

π7(M4) = Z2{δη6} ⊕ Z2{η̃3η
2
5}

(2.2)

and

(2.3) [ιM4 , i4] = δp6.

Making use of the cofiber sequence (∗)k for k = 5, 6, by the group structures
πk(M5)(k = 6, 7), π3

k(k = 5, 6), πk(M4)(5 ≤ k ≤ 7) and by (1.4), (2.2), (1.3),
we obtain the following (see [16, Lemma 1.5 (iii)]).

Lemma 2.1.
(i) [M7, M5] = Z2{i5η4η̄5} ⊕ Z2{η̃4η6p7} ⊕ Z2{i5ν4p7}.
(ii) [M6, S3] = Z2{η3η̄4} ⊕ Z2{ν′p6}.
(iii) [M6, M4] = Z2{i4η3η̄4} ⊕ Z2{η̃3η5p6} ⊕ Z2{δp6}.
(iv) [M7, M4] = Z4{η̃3η̄5} ⊕ Z2{ı4ν′} ⊕ Z2{δη6p7}, where 2η̃3η̄5 = η̃3η

2
5p7

and ı4ν′ is an extension of i4ν
′.

The smash product of P2 with itself has the following cell structure:

P2 ∧ P2 = M3 ∪2ιM3 CM3,
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where we take M3 = P2 ∧ S1 and 2ιM3 = ιP2 ∧ 2ι1. So, by (1.3), it turns to
the form:

P2 ∧ P2 = (M3 ∨ S3) ∪f ′
1i3η2+2f ′

2
e4,

where f ′
1 : M3 →M3∨S3 and f ′

2 : S3 →M3∨S3 be the embeddings to the first
and second spaces, respectively. We set i′ = iM3∨S3,P2∧P2 , p′ = pP2∧P2,M3∨S3

and p′′ = pP2∧P2,M3 . Then we can take i′f ′
1 = ιP2 ∧ i2. Since p′′ ◦ i′f ′

2 = i4, i′f ′
2

is a coextension of i3. We set ı̃3 = i′f ′
2, ı̃n = Σn−3ı̃3(n ≥ 3), fk = Σf ′

k(k = 1, 2),
i = Σi′ and p = Σp′. By [17, Lemma 2.4],

π3(P2 ∧ P2) = Z8{ı̃3}

and
πn(Σn−3(P2 ∧ P2)) = Z4{ı̃n} (n ≥ 4),

where

(2.4) 2ı̃n = (Σn−3(i2 ∧ i2))ηn−1 (n ≥ 3).

Let us recall that P3 is homeomorphic to the 3-rd rotation group. Let
h : ΣP3 ∧P3 → ΣP3 be the Hopf construction induced from the multiplication
of the topological group P3. We know the following ([5], [11]).

Lemma 2.2. There exists a direct sum decomposition for a space X:

[Σ2X, ΣP3] = h∗[Σ2X, ΣP3 ∧ P3]⊕ Σ[ΣX, P3].

The following is [18, Lemma 3.2].

Lemma 2.3. ΣP3∧P3 = ((ΣP2∧P2)∪iν′e7)∨M6∨M6, where i = i3∧i2.

Let h0 = h |(ΣP2∧P2)∪iν′e7 , h′ = h |ΣP2∧P2 , h′′ = h |M4 and h′′′ = h |S3 be
the restrictions of h, respectively. By [18, Lemma 2.3 (i)],

(2.5) h′′′ = (Σi1,3)η2 ∈ π3(ΣP3)

and
h′ı̃4 = ±(Σi2,3)η̃2 ∈ π4(ΣP3).

By [18, Lemma 5.2, (6.3)],

(2.6) Σγ4 = (Σi3,4)h′′η̃3 ∈ π5(ΣP4)

and

(2.7) 4ιΣP4 = (Σi1,4)η2η̄3Σp4,2.

3. Proof of the fact that 2[M7, ΣP3] = 0

First we show the following.
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Lemma 3.1.
(i) π5(ΣP2 ∧ P2) = Z2{(ιM3 ∧ i2)η̃3} ⊕ Z2{ı̃4η4} and Σn : π5(ΣP2 ∧ P2)

→ πn+5(Σn+1P2 ∧ P2) is an isomorphism for n ≥ 1.
(ii) π6(ΣP2 ∧ P2) = Z4{(ιM3 ∧ i2)δ} ⊕ Z2{(ιM3 ∧ i2)η̃3η5} ⊕ Z2{ı̃4η2

4} ⊕
Z2{[i3 ∧ i2, ı̃4]}, where 2((ιM3 ∧ i2)δ) = (i3 ∧ i2)ν′.

Proof. (i) is easily obtained (see [18, §4]).
The relation in (ii) is obtained from (2.2). We consider the homotopy exact

sequence of a pair (ΣP2 ∧ P2, M4 ∨ S4):

π7(ΣP2 ∧ P2, M4 ∨ S4) ∂−→ π6(M4 ∨ S4) i∗−→ π6(ΣP2 ∧ P2)
j∗−→ π6(ΣP2 ∧ P2, M4 ∨ S4) ∂−→ · · · .

By Blakers-Massey [7], π6(ΣP2 ∧ P2, M4 ∨ S4) ∼= π6(S5). The generator of
the relative homotopy group is denoted by η̂4, satisfying p∗η̂4 = η5. We have
π5(M4 ∨ S4) ∼= Z4 ⊕ Z2. So, by (1.4),

∂η̂4 = (f1i4η3 + 2f2) ◦ η4 = f1i4η
2
3 = 2f1η̃3 �= 0.

Hence i∗ : π6(M4 ∨ S4)→ π6(ΣP2 ∧ P2) is an epimorphism.
Since π7(M4×S4, M4∨S4) ∼= π7(M8), M4×S4 = (M4∨S4)∪[f1,f2] CM7

and [f1, f2] ◦ i7 = [f1i4, f2], we obtain

π6(M4 ∨ S4) = Z4{f1δ} ⊕ Z2{f1η̃3η5} ⊕ Z2{f2η
2
4} ⊕ Z2{[f1i4, f2]}.

By [10, Theorem 2.1], π7(ΣP2 ∧ P2, M4 ∨ S4) = Z2{η̂2
4} ⊕ Z2{[ω, f1i4]}, where

ω is the characteristic map of the 5-cell of ΣP2∧P2, [ , ] stands for the relative
Whitehead product ([8]) and η̂2

4 is an element satisfying p∗η̂2
4 = η2

5 . We have
∂(η̂2

4) = f1i4η
3
3 = 0. By [8] and the fact that [η3, ι3] = 0, we see that

∂[ω, f1i4] = −[f1i4η3 + 2f2, f1i4] = (f1i4)[η3, ι3] + 2[f2, f1i4] = 0.

This leads to (ii), completing the proof.

By use of [2, Theorem 2.4] and [6, Proposition II. 3.2], we obtain the
following (see [15, Remark, p. 273]).

Lemma 3.2. Let α ∈ [ΣA, X], β ∈ [ΣB, X], δ ∈ [D, A] and ε ∈ [E, B],
where A, B, D, E are polyhedra and X is a space. Then

[α ◦ Σδ, β ◦ Σε] = [α, β] ◦ Σ(δ ∧ ε).

Next we show the following.

Lemma 3.3. 2[M7, ΣP2 ∧ P2] = 0.
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Proof. Since [ιM3 ∧ i2, ı̃4] ◦ Σ((i2 ∧ ι1) ∧ ι3) = [i3 ∧ i2, ı̃4] by Lemma 3.2,
[ιM3 ∧ i2, ı̃4] is an extension of [i3 ∧ i2, ı̃4]. By use of (∗)6 and by Lemma 3.1
(ii), we obtain

[M7, ΣP2 ∧ P2] = {(ιM3 ∧ i2)ı4ν′, (ιM3 ∧ i2)η̃3η̄5, ı̃4η4η̄5,

[ιM3 ∧ i2, ı̃4]}+ π7(ΣP2 ∧ P2) ◦ p7.

We have 2(η4η̄5) = 0 and 2ı4ν′ = 0 by Lemma 2.1 (iv). By the relation 2i2 = 0,

2[ιM3 ∧ i2, ı̃4] = [ιM3 ∧ i2, ı̃4] ◦ Σ((i2 ∧ 2ι1) ∧ ι3) = 0

and
2((ιM3 ∧ i2)η̃3η̄5) = 0.

Hence, by the relation 2p7 = 0, the assertion follows.

We examine the Whitehead product [ιM4 , 2ιM4 ]. By (1.3), Lemma 3.2,
(2.3) and by the fact that

ιP2 ∧ η2 = i4η̄3 + η̃3p5 ∈ [M5, M4],

we get the following in [ΣM3 ∧M3, M4]:

[ιM4 , 2ιM4 ] = [ιM4 , i4η3p4] = [ιM4 , i4] ◦ Σ(ιM3 ∧ (η2p3))
= [ιM4 , i4] ◦ Σ(ιM3 ∧ η2) ◦ Σ(ιM3 ∧ p3)
= δη6 ◦ p7 ◦ Σ(ιM3 ∧ p3).

Since

(3.1) p7 ◦ Σ(ιM3 ∧ p3) = Σ(p3 ∧ p3) ∈ [ΣM3 ∧M3, S7],

we obtain

(3.2) [ιM4 , 2ιM4 ] = δη6 ◦ Σ(p3 ∧ p3) ∈ [ΣM3 ∧M3, M4].

Now we show the following.

Lemma 3.4. 2[M7, (ΣP2 ∧ P2) ∪iν′ e7] = 0.

Proof. By (3.2) and the fact that 2(ιM3 ∧ i2) = 0,

(ιM3 ∧ i2)δη6 ◦ Σ(p3 ∧ p3) = [ιM3 ∧ i2, 2(ιM3 ∧ i2)]

= 0 ∈ [ΣM3 ∧M3, ΣP2 ∧ P2].

So, by making use of the cofiber sequence

M6 ιM4∧i3−→ ΣM3 ∧M3 ιM4∧p3−→ M7 2ιM7−→ M7 −→ · · ·
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and by (3.1), we obtain (ιM3 ∧ i2)δη6p7 ∈ 2[M7, ΣP2 ∧ P2]. Hence, by Lemma
3.3,

(3.3) (ιM3 ∧ i2)δη6p7 = 0 ∈ [M7, ΣP2 ∧ P2].

We set B = (ΣP2 ∧ P2) ∪iν′ e7 and r = iΣP2∧P2,B. From the homotopy exact
sequence of a pair (B, ΣP2 ∧ P2) and by Lemma 3.1 (ii), we obtain

π6(B) = {r(ιM3 ∧ i2)δ, r(ιM3 ∧ i2)η̃3η5, rı̃4η
2
4 , r[i3 ∧ i2, ı̃4]} ∼= (Z2)4.

So, by use of (∗)6, we obtain

[M7, B] = {r(ιM3 ∧ i2)δ, r(ιM3 ∧ i2)η̃3η̄5, rı̃4η4η̄5, r[ιM3 ∧ i2, ı̃4]}+ π7(B) ◦ p7,

and hence, 2[M7, B] = {2r(ιM3 ∧ i2)δ}. By (1.3) and (3.3),

2r(ιM3 ∧ i2)δ = r(ιM3 ∧ i2)δη6p7 = 0.

This leads to the assertion, completing the proof.

Since r ◦ (i3 ∧ i2)ν′ = 0 and h′′′ν′ = h0 ◦ r(i3 ∧ i2)ν′, we obtain

(3.4) (Σi1,3)η2ν
′ = h′′′ν′ = 0 ∈ π6(ΣP3).

By Lemma 2.3, we have

π6(ΣP3 ∧ P3) ∼= π6(B)⊕ π6(M6)⊕ π6(M6).

Since 2π6(B) = 2π6(M6) = 0, we get that 2π6(ΣP3 ∧ P3) = 0. We have
2Σπ5(P3) = 0. So, by Lemma 2.2, we obtain the following.

Lemma 3.5. 2π6(ΣP3) = 0.

We show the following.

Lemma 3.6. (Σi3,n)∗ : π6(ΣP3) → π6(ΣPn) is an epimorphism for
n = 4, n ≥ 6 and π6(ΣP5) = Z{Σγ5} ⊕ (Σi3,5)∗π6(ΣP3).

Proof. In the homotopy exact sequence of a pair (ΣP4, ΣP3), the con-
necting homomorphism ∂ : π6(ΣP4, ΣP3) → π5(ΣP3) is a monomorphism by
[18, Theorem 5.3] and its proof. Hence (Σi3,4)∗ : π6(ΣP3) → π6(ΣP4) is an
epimorphism.

By making use of the homotopy exact sequence of a pair (ΣP5, ΣP4) and
by (1.2), we conclude that

π6(ΣP5) = Z{Σγ5} ⊕ (Σi4,5)∗π6(ΣP4).

Obviously (Σi5,n)∗ : π6(ΣP5) → π6(ΣPn) for n ≥ 6 is an epimorphism. This
completes the proof.
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Now we prove Theorem 1.3.

Proof of Theorem 1.3.
By Lemma 3.5, any element α ∈ π6(ΣP3) is extendible to ᾱ ∈ [M7, ΣP3].

So, by use of (∗)6 and by Lemma 3.6, we obatin

[M7, ΣPn] = {(Σi3,n)ᾱ}+ π7(ΣPn) ◦ p7 (α ∈ π6(ΣP3)).

Therefore it suffices to prove that 2[M7, ΣP3] = 0. By [7], [CM7, M7; B ×
M6, B ∨M6] ∼= [M8, B ∧M6] (B = (ΣP2 ∧P2)∪iν′ e7). So, by Lemma 2.3, we
have

[M7, ΣP3 ∧ P3]
∼= [M7, B]⊕ [M7, M6]⊕ [M7, M6]⊕ [M8, B ∧M6]⊕ [M8, B ∧M6].

By Lemma 3.4, 2[M7, B] = 0. By (1.6), 2[M7, M6] = 0. Since [M8, B ∧
M6] ∼= [M8, M9] ∼= Z2, we obtain 2[M8, B ∧M6] = 0. By Lemma 2.1 (ii),
[M6, P3] ∼= [M6, S3] ∼= (Z2)2. This shows that 2Σ[M6, P3] = 0. Hence, by
Lemma 2.2, we conclude that 2[M7, ΣP3] = 0. Thus the proof of Theorem 1.3
is complete.

We obtain the following.

Corollary 3.7. π6(ΣPn) ◦ η6p7 = 0 for n ≥ 3, n �= 5 and π6(ΣP5) ◦
η6p7 = {(Σγ5)η6p7}.

Proof. Let α ∈ π6(ΣPn) for n ≥ 3 be a nontrivial element except for
Σγ5. Then, by Lemmas 3.5 and 3.6, the order of α is 2, and hence α is
extendible to ᾱ ∈ [M7, ΣPn]. Thus, by (1.3) and Theorem 1.3, α ◦ (η6p7) =
2ᾱ ∈ 2[M7, ΣPn] = 0. This completes the proof.

4. Proof of Theorem 1.1

First of all we show the following.

Lemma 4.1.
(i) Σ[M6, M4] = Z2{i5η4η̄5} ⊕ Z2{η̃4η6p7}.
(ii) Σ[M6, M3] = Z4{η̃3η̄5}.
Proof. By the fact that Σ(δp6) = Σ[ιM4 , i4] = 0 (2.3), (i) is a direct

consequence of Lemma 2.1 (iii).
We know that η̃3η̄5 ∈ Σ[M6, M3]. We consider the Hopf homomorphism

H : [M7, M4]→ [M7, ΣM3 ∧M3]. By Lemma 3.1 (i),

π7(ΣM3 ∧M3) = Z2{ı̃6η6} ⊕ Z2{(ιM4 ∧ i3)η̃5}.
So, by use of (∗)6 combining with the fact that π6(ΣM3 ∧M3) = Z4{ı̃6} and
2ı̃6 = (i4 ∧ i3)η5 (2.4), we obtain

[M7, ΣM3 ∧M3] = Z2{(i4 ∧ i3)η̄5} ⊕ Z2{ı̃6η6p7} ⊕ Z2{(ιM4 ∧ i3)η̃5p7}.
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By [14, Proposition 14],
H(δ) = ±ı̃6,

and so H(δη6p7) = ı̃6η6p7.
By use of a generalized version [9] of [20, Proposition 2.2] and by the fact

that H(ν′) = η5 [20, (5.3)] for H : π3
6 → π5

6 , we obtain

H(ı4ν′) ◦ i7 = H(i4ν′) = (i4 ∧ i3)η5 = (i4 ∧ i3)η̄5 ◦ i7 ∈ π6(ΣM3 ∧M3).

Hence, by use of (∗)6, we obtain

H(ı4ν′) ≡ (i4 ∧ i3)η̄5 mod π7(ΣM3 ∧M3) ◦ p7 = {ı̃6η6p7, (ιM4 ∧ i3)η̃5p7}.

Thus (ii) follows from the fact that H ◦ Σ = 0. This completes the proof.

For the cell complex P6
3 = M4 ∪i4η̄3 CM5, we set

i′ = iM4,P6
3
, i′′ = i′ ◦ i4, p′ = pP6

3,M4 and p′′ = p6 ◦ p′.

Let ı̃5η4p5 be a coextension of i5η4p5 = 2ιM5 . It is taken as a representative of
the Toda bracket

{i′, i4η̄3, i5η4p5} ⊂ [M6, P6
3].

Then, by the properties of Toda brackets and by the fact that

{2ι5, p5, i5} � ι5 mod 2ι5,

we see that

2ı̃5η4p5 ∈ {i′, i4η̄3, i5η4p5} ◦ i6η5p6

= i′ ◦ {i4η̄3, i5η4p5, i5} ◦ η5p6

⊃ i′ ◦ {2η̃3, p5, i5} ◦ η5p6

⊃ i′η̃3 ◦ {2ι5, p5, i5} ◦ η5p6

� i′η̃3η5p6 mod i′∗[M
6, M4] ◦ 2ιM6 + [M6, P6

3] ◦ 2ιM6 ◦ 2ιM6 .

By (1.3) and Lemma 2.1 (iii), the indeterminacy i′∗[M6, M4]◦2ιM6 +[M6, P6
3]◦

2ιM6 ◦ 2ιM6 is trivial. That is,

(4.1) 2ı̃5η4p5 = i′η̃3η5p6 ∈ [M6, ΣP6
3].

Since p4 ◦ i4η̄3 = 0, there exists an extension p̄4 ∈ [P6
3, S

4] of p4. We show
the following.

Lemma 4.2. 2ιΣP6
3
≡ ±Σı̃5η4p5Σp′ mod (Σi′′)ν4Σp′′.

Proof. By use of the canonical bijection

[CP6
3, P

6
3; ΣP6

3, M
5] ∼= [ΣP6

3, M
7] = {Σp′},
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we obtain the exact sequence

[ΣP6
3, M

5]
(Σi′)∗−→ [ΣP6

3, ΣP6
3]

(Σp′)∗−→ [ΣP6
3, M

7] −→ 0.

Since (Σp′)∗(2ιΣP6
3
− Σı̃5η4p5Σp′) = 0, we get that

2ιΣP6
3
− Σı̃5η4p5Σp′ ∈ (Σi′)∗[ΣP6

3, M
5].

Making use of the exact sequence induced from the cofiber sequence starting
with i5η̄4 : M6 →M5:

[M6, M5]
(i5η̄4)

∗
←− [M5, M5]

(Σi′)∗←− [ΣP6
3, M

5]
(Σp′)∗←− [M7, M5]

(i6η̄5)
∗

←− [M6, M5],

together with (1.3) and Lemma 2.1 (i), we obtain

[ΣP6
3, M

5] = {i5η4Σp̄4, η̃4η6Σp′′, i5ν4Σp′′} ∼= (Z2)3.

So, by the fact that i′ ◦ i4η3 = i′ ◦ i4η̄3 ◦ i5 = 0 and by (4.1), we obtain

(Σi′)∗[ΣP6
3, M

5] = {2Σı̃5η4p5Σp′, (Σi′′)ν4Σp′′}.
This leads to the relation, completing the proof.

In fact we can show the following.

Remark 4.3. [ΣP6
3, ΣP6

3] = Z8{ιΣP6
3
} ⊕ Z2{(Σi′′)ν4Σp′′}.

Now we prove Theorem 1.4.

Proof of Theorem 1.4.
We consider the exact sequence (i = Σi4,6, p = Σp6,4)

[ΣP4, ΣP6] i∗←− [ΣP6, ΣP6]
p∗
←− [M7, ΣP6].

By use of the commutative diagram:

P4 i4,6−−−−→ P6

�p4,2

�p6,2

M4 i′−−−−→ P6
3

and by (2.7),

(Σi1,4)η2η̄3 ◦ Σp6,2 ◦ Σi4,6 = (Σi1,4)η2η̄3Σp4,2 = 4ιΣP4 .

So, by the relation

Σi4,6 ◦ 4ιΣP4 = 4ιΣP6 ◦ Σi4,6 ∈ [ΣP4, ΣP6],
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we have Theorem 1.4 (i).
By Lemma 4.2, we see that

2(Σi1,4)η2η̄3 = (Σi1,4)η2η̄3 ◦ 2ιΣP6
3

≡ ±(Σi1,4)η2η̄3 ◦ Σı̃5η4p5Σp′

mod (Σi1,4)η2η̄3 ◦ (Σi′′)ν4Σp′′.

By the relation η3ν4 = ν′η6 and (3.4),

(Σi1,4)η2η̄3 ◦ (Σi′′)ν4 = (Σi1,4)η2η3ν4

= (Σi1,4)η2ν
′η6 = 0 ∈ π7(ΣP4).

By (4.1), (2.1) and (3.4),

2((Σi1,4)η2η̄3 ◦ Σı̃5η4p5) = (Σi1,4)η2η̄3 ◦ (Σi′)η̃4η6p7

= (Σi1,4)η2ν
′η6p7 = 0 ∈ [M7, ΣP4].

Hence we conclude that

2(Σi1,4)η2η̄3 = (Σi1,4)η2η̄3 ◦ Σı̃5η4p5Σp′ ∈ [ΣP6
3, ΣP4].

By [20, Proposition 1.7], we obtain

(Σi1,4)η2η̄3 ◦ Σı̃5η4p5 ∈ {(Σi1,4)η2η̄3, i5η̄4, i6η5p6}1
mod (Σi1,4)η2η̄3 ◦ Σ[M6, M4] + [M7, ΣP4] ◦ i7η6p7.

By (1.3) and Theorem 1.3, [M7, ΣP4] ◦ i7η6p7 = 2[M7, ΣP4] = 0. By Lemma
4.1 (i), (2.1), (3.4) and by the relation (Σi1,4)η3

2 = 0, we obtain

(Σi1,4)η2η̄3 ◦ Σ[M6, M4] = {(Σi1,4)η3
2 η̄5, (Σi1,4)η2ν

′η6p7} = 0.

Hence the indeterminacy is trivial and we get that

(Σi1,4)η2η̄3 ◦ Σı̃5η4p5 = {(Σi1,4)η2η̄3, i5η̄4, i6η5p6}1 ∈ [M7, ΣP4].

This leads to Theorem 1.4 (ii).
Since (Σp5,4)(Σγ5) = 2ι6 by (1.2), we obtain

Σγ5 ∈ {Σi4,5, Σγ4, 2ι5}.
By the properties of Toda brackets,

(Σγ5)η6p7 ∈ {Σi4,5, Σγ4, 2ι5} ◦ η6p7 = Σi4,5 ◦ {Σγ4, 2ι5, η5p6}.
The indeterminacy of Σi4,5 ◦{Σγ4, 2ι5, η5p6} is (Σi4,5 ◦Σγ4)◦ [M7, S5]+Σi4,5 ◦
π6(ΣP4) ◦ η6p7 = 0 by (1.1) and Corollary 3.7. Therefore

(Σγ5)η6p7 = Σi4,5 ◦ {Σγ4, 2ι5, η5p6}.
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By the fact that Σ[M6, S4] = [M7, S5],

{Σγ4, 2ι5, η5p6} = {Σγ4, 2ι5, η5p6}1,
and hence

(4.2) (Σγ5)η6p7 = Σi4,5 ◦ {Σγ4, 2ι5, η5p6}1.
By (2.6), (1.4), (2.5) and by the relation i4η

2
3 = i4η̄3 ◦ i5η̄4 ◦ i6, we obtain

{Σγ4, 2ι5, η5p6}1 ⊂ {(Σi3,4)h′′, 2η̃3, η5p6}1
= {(Σi3,4)h′′, i4η2

3 , η5p6}1
⊃ {(Σi1,4)η2η̄3, i5η̄4, i6η5p6}1

mod (Σi3,4)h′′ ◦ Σ[M6, M3] + π6(ΣP4) ◦ η6p7.

By Corollary 3.7, π6(ΣP4) ◦ η6p7 = 0. By Lemma 4.1 (ii) and (2.6),

(Σi3,4)h′′ ◦ Σ[M6, M3] = {(Σγ4)η̄5}.
So we obtain

{Σγ4, 2ι5, η5p6}1 ≡ {(Σi1,4)η2η̄3, i5η̄4, i6η5p6}1 mod (Σγ4)η̄5.

Thus, by (1.1) and (4.2), we obtain

(Σγ5)η6p7 = (Σi4,5) ◦ {(Σi1,4)η2η̄3, i5η̄4, i6η5p6}1.
This leads to Theorem 1.4 (iii), completing the proof of Theorem 1.4.
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