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and its equivalent equalities
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Abstract

This paper collects 26 conditions for the reverse-order law (AB)† =
B†(A†ABB†)†A† to hold for the Moore-Penrose inverse of matrix.

Throughout, the symbols A∗, r(A) and R(A) stand for the conjugate trans-
pose, the rank and the range (column space) of a complex matrix A, respec-
tively; the symbol [ A, B ] denotes a row block matrix consisting of A and B.

For a general m×n complex matrix A, the Moore-Penrose inverse A† of A
is the unique n×m matrix X that satisfies the following four Penrose equations

(i) AXA = A, (ii) XAX = X, (iii) (AX)∗ = AX, (iv) (XA)∗ = XA,

cf. Penrose [8]. For simplicity, denote EA = Im − AA† and FA = In − A†A.
A matrix X is called an outer inverse of A, if it satisfies XAX = X. General
properties of the Moore-Penrose inverse can be found in [1], [2], [7].

Let A and B be a pair of matrices such that AB exists. Because A†A,
BB† and BB†A†A are not necessarily identity matrices, the reverse-order law
(AB)† = B†A† for the matrix product AB does not necessarily hold. Greville
[5] showed that (AB)† = B†A† holds true if and only if

R(A∗AB) ⊆ R(B) and R(BB∗A∗) ⊆ R(A∗).

Many other necessary and sufficient conditions for (AB)† = B†A† to hold were
also given in the literature. If (AB)† = B†A† does not hold, (AB)† can be
written as either

(AB)† = B†XA† or (AB)† = B†A† + Y,

where X and Y are some matrices consisting of A and B. A possible expression
of (AB)† is

(AB)† = B†(A†ABB†)†A†.(1)
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This expression is derived from writing AB as AB = A(A†ABB†)B and
applying the reverse-order law (PNQ)† = Q†N†Q† to it. Some previous work
on (1) can be found in [4], [6], [11], [12].

When investigating various reverse-order laws for (AB)†, we notice that
some of them are in fact equivalent. For instance,

(AB)† = B†A† ⇔ (AB)† = B†(A†ABB†)†A† and (A†ABB†)† = BB†A†A,

which is shown in Tian [14]. When revisiting (1), we also find that many other
matrix equalities consisting of A and B are equivalent to (1). These equalities
are summarized in the following theorem.

Theorem 1. Let A and B be two m×n and n×p matrices, respectively.
Then the following 27 statements are equivalent:

(a1) (AB)† = B†(A†ABB†)†A†.
(a2) (AB)† = B∗(A∗ABB∗)†A∗.
(a3) (AB)† = B†A† − B†(EBFA)†A†.
(b1) [ (A†)∗B ]† = B†(A†ABB†)†A∗.
(b2) [ (A†)∗B ]† = B∗[ (A∗A)†BB∗ ]†A†.
(b3) [ (A†)∗B ]† = B†A∗ − B†(EBFA)†A∗.
(c1) [ A(B†)∗ ]† = B∗(A†ABB†)†A†.
(c2) [ A(B†)∗ ]† = B†[ A∗A(BB∗)† ]†A∗.
(c3) [ A(B†)∗ ]† = B∗A† − B∗(EBFA)†A†.
(d1) (B†A†)† = A(BB†A†A)†B.
(d2) (B†A†)† = (A†)∗[ (BB∗)†(A∗A)† ]†(B†)∗.
(d3) (B†A†)† = AB − A(FAEB)†B.
(e1) (A†AB)†A† = B†(ABB†)†.
(e2) (A†AB)†A∗ = B†[ (A†)∗BB† ]†.
(e3) [ A†A(B†)∗ ]†A† = B∗(ABB†)†.
(e4) (BB†A†)†B = A(B†A†A)†.
(e5) (A∗AB)†A∗ = B∗(ABB∗)†.
(e6) [ (A∗A)†B ]†A† = B∗[ (A†)∗BB∗ ]†.
(e7) [ A∗A(B†)∗ ]†A∗ = B†[ A(BB∗)† ]†.
(e8) B†[ (A∗)†(BB∗)† ]† = [ (A∗A)†(B∗)† ]†A†.
(e9) (AA∗ABB∗B)† = B†(A∗ABB∗)†A†.
(f1) (A†AB)† = B†(A†ABB†)† and (ABB†)† = (A†ABB†)†A†.
(f2) (A†AB)† = B∗(A†ABB∗)† and (ABB†)† = (A∗ABB†)†A∗.
(f3) (A†AB)† = B†A†A − B†(EBFA)†A†A and

(ABB†)† = BB†A† − BB†(EBFA)†A†.
(g1) R[ (AB)† ] = R[ B†(A†ABB†)†A† ] and

R{[ (AB)† ]∗} = R{[ B†(A†ABB†)†A† ]∗}.
(g2) R[ (AB)† ] = R(B†A†) and R[ (B∗A∗)† ] = R[ (A∗)†(B∗)† ].
(g3) R( AA∗AB ) = R(AB) and R[ B∗B(AB)∗ ] = R[(AB)∗].

The results in Theorem 1 bring a great convenience for using reverse-order
laws in different situations. In order to show Theorem 1, we use a rank formula
for the difference of two outer inverses.
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Lemma 2 ([9]). Let X1 and X2 be a pair of outer inverses of a matrix
A, that is, X1AX1 = X1 and X2AX2 = X2. Then

r( X1 − X2 ) = r

[
X1

X2

]
+ r[ X1, X2 ] − r(X1) − r(X2).(2)

Hence, the equality X1 = X2 holds if and only if

r

[
X1

X2

]
= r(X1) = r(X2) and r[ X1, X2 ] = r(X1) = r(X2),

i.e., R(X1) = R(X2) and R(X∗
1 ) = R(X∗

2 ).

Some other simple results on ranks and Moore-Penrose inverses of matrices
are given below

if PX = Y and X = QY , then r(X) = r(Y ),(3)

(A†)∗ = (A∗)†, (A†)∗A∗ = AA†, A∗ = A∗A(A†)∗ = (A†)∗AA∗,(4)

(A†)∗A†(A†)∗ = (A∗AA∗)†,

r(B†A†) = r[(A∗)†B] = r[A(B∗)†] = r[(AB)†] = r(AB).(5)

Proof of Theorem 1. The reverse-order law in (1) was first studied by
Galperin and Waksman [4], and then by Izumino [6] for a product of two linear
operators. It is easy to verify that B†(A†ABB†)†A† is an outer inverse of AB.
From this fact and (2), Tian [11] showed that

r[(AB)† − B†(A†ABB†)†A†] = r

[
(AB)†

B†(A†ABB†)†A†

]
(6)

+ r[(AB)†, B†(A†ABB†)†A†]
− r[(AB)†] − r[B†(A†ABB†)†A†]

= r

[
(AB)†

B†A†

]
+ r[(AB)†, B†A†] − 2r[(AB)†](7)

= r

[
AB

ABB∗B

]
+ r[AB, AA∗AB] − 2r(AB).(8)

Recall that a matrix is zero matrix if and only if the rank of the matrix is
zero. Let the right-hand sides of (6), (7) and (8) be zero. Then we obtain the
equivalence of (a1), (g1) and (g3). It is also easy to show

r[(AB)† − B∗(A∗ABB∗)†A∗] = r

[
AB

ABB∗B

]
+ r[AB, AA∗AB]

− 2r(AB),
(9)
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see [11], [12]. Note that the right-hand sides of (8) and (9) are the same. Hence
(a1) and (b1) are equivalent.

The rank formula associated with (a3) is

r[(AB)† − B†A† + B†(EBFA)†A†] = r

[
AB

ABB∗B

]
+ r[AB, AA∗AB]

− 2r(AB),
(10)

which is shown in [12]. Because the right-hand sides of (8) and (10) are identical,
the equivalence of (a1) and (a3) follows from (8) and (10). Replacing A in (8)
with (A†)∗ gives

r{[(A†)∗B]† − B†(A†ABB†)†A∗} = r

[
(A†)∗B

(A†)∗BB∗B

]

+ r[(A†)∗B, (A∗AA∗)†B] − 2r[(A†)∗B].

(11)

It is easy to derive from (3) and (4) that

r

[
(A†)∗B

(A†)∗BB∗B

]
= r

[
AB

ABB∗B

]
,(12)

r[(A†)∗B, (A∗AA∗)†B] = r[AA∗AB, AB].

Substituting (5) and (12) into (11) gives

r{[(A†)∗B]† − B†(A†ABB†)†A∗} = r

[
AB

ABB∗B

]
+ r[ AB, AA∗AB ]

− 2r(AB).
(13)

Comparing (8) and (13) yields

(14) r{[(A†)∗B]† − B†(A†ABB†)†A∗} = r[(AB)† − B†(A†ABB†)†A†].

This implies the equivalence of (a1) and (b1). Similarly, we can show that

r{[A(B†)∗]† − B∗(A†ABB†)†A†} = r[(B†A†)† − A(BB†A†A)†B]

= r[(AB)† − B†(A†ABB†)†A†].

Hence, the equivalence of (a1), (c1) and (d1) follows. The following three
formulas

r{[(A†)∗B]† − B∗[(A∗A)†BB∗]†A†}
= r{[A(B†)∗]† − B†[A∗A(BB∗)†]†A∗}
= r{(B†A†)† − (A†)∗[(BB∗)†(A∗A)†]†(B†)∗}
= r[(AB)† − B∗(A∗ABB∗)†A∗]
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are derived from (3), (4), (5) and (9). Thus, we obtain the equivalence of (a2),
(b2), (c2) and (d2). The following three formulas

r[(AB)† − B†A† + B†(EBFA)†A†]

= r{[ (A†)∗B ]† − B†A∗ + B†(EBFA)†A∗}
= r{[ A(B†)∗ ]† − B∗A† + B∗(EBFA)†A†}
= r[ (B†A†)† − AB + A(FAEB)†B ]

are derived from (3), (4), (5) and (10). Thus, the equivalence of (a3), (b3), (c3)
and (d3) follows.

Replacing A and B in (8), (9) and (10) with A†A and BB† respectively
and simplifying yield

r[(A†AB)† − B†(A†ABB†)†]

= r[(A†AB)† − B∗(A†ABB∗)†]

= r[ (A†AB)† − B†A†A + B†(EBFA)†A†A]

= r

[
AB

ABB∗B

]
− r(AB)

and

r[(ABB†)† − (A†ABB†)†A†] = r[(ABB†)† − (A∗ABB†)†A∗]

= r[(ABB†)† − BB†A† + BB†(EBFA)†A†]
= r[ AB, AA∗AB ] − r(AB).

The equivalence of (a1), (f1), (f2) and (f3) follows from these rank formulas.
Note that

(A†AB)†A†AB(A†AB)†A† = (A†AB)†A†

and

B†(ABB†)†ABB†(ABB†)† = B†(ABB†)†.

Thus, both (A†AB)†A† and B†(ABB†)† are outer inverses of AB. In these
cases, applying (2) gives

r[(A†AB)†A† − B†(ABB†)†] = r

[
(A†AB)†A†

B†(ABB†)†

]

+ r[(A†AB)†A†, B†(ABB†)†]

− r[A†AB)†A†] − r[B†(ABB†)†].

(15)
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It is also easy to find by (3), (4) and (5) that

r

[
(A†AB)†A†

B†(ABB†)†

]
= r

[
B∗A†

BB†A∗

]
= r

[
B∗A∗

B∗A∗AA∗

]
= r[AB, AA∗AB],

r[(A†AB)†A†, B†(ABB†)† ] = r[B∗A∗, B†A∗]

= r[B∗BB∗A∗, B∗A∗] = r

[
AB

ABB∗B

]
,

r[(A†AB)†A†] = r[B†(ABB†)†] = r(AB).

Hence (15) is reduced to

(16) r[(A†AB)†A†−B†(ABB†)†] = r

[
AB

ABB∗B

]
+r[AB, AA∗AB]−2r(AB).

Comparing (8) and (16) results in the equivalence of (a1) and (e1). Replacing
A and B in (16) with (A†)∗ and (B†)∗ respectively and simplifying by (3), (4)
and (5), we also obtain

r{(A†AB)†A∗ − B†[(A†)∗BB†]†} = r{[A†A(B†)∗]†A† − B∗(ABB†)†}
= r[(BB†A†)†B − A(B†A†A)†]

= r[(A†AB)†A† − B†(ABB†)†].

Thus the equivalence of Theorem 1 (e1)–(e4) follows. Also by (2)

r[(A∗AB)†A∗ − B∗(ABB∗)†] = r{[(A∗A)†B]†A† − B∗[(A†)∗BB∗]†}
= r{[A∗A(B†)∗]†A∗ − B†[A(BB∗)†]†}
= r{B†[(A∗)†(BB∗)†]† − [(A∗A)†B†]†A†}

= r

[
AB

ABB∗B

]
+ r[AB, AA∗AB] − 2r(AB).

Hence, (a1) and (e1)–(e4) are equivalent. The equivalence of (e5) and (a1) is
derived from (8) and

r[(A∗AB)†A∗ − B∗(ABB∗)†] = r

[
AB

ABB∗B

]
+ r[AB, AA∗AB] − 2r(AB).

The proof of this formula is left for the reader. The equivalence of (a1), (e6),
(e7) and (e8) is derived from (e5) by the previous replacement method.

The equivalence of (a1) and (e9) follows from (8) and

r[B∗(A∗ABB∗)†A∗ − B∗B(AA∗ABB∗B)†AA∗]

= r

[
AB

ABB∗B

]
+ r[AB, AA∗AB] − 2r(AB).

The proof is also left for the reader.
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A square matrix A is called an orthogonal projector if A∗ = A = A2.
Obviously, A† = A if A is an orthogonal projector. Suppose A and B are two
orthogonal projectors of order m. Then they satisfy the two range equalities in
Theorem 1 (g3). By Theorem 1 (a3), AB satisfies the following identity

(AB)† = BA − B[(Im − B)(Im − A)]†A.

Pre- and post-multiplying A and B gives

(AB)2 = AB + AB[(Im − B)(Im − A)]†AB.

These two results can be used to establish various equalities for (AB)k, (A−B)†

and (AB − BA)†. For more details, see [3], [12], [15].
The results in Theorem 1 can be extended to the weighted Moore-Penrose

inverse of a matrix product. Suppose M and N are two m × m and n × n
Hermitian positive definite matrices, respectively. The weighted Moore-Penrose
inverse of an m × n matrix A with respect to M and N is defined to be the
unique n × m matrix X of satisfying the following four matrix equations

(i) AXA = A, (ii) XAX = X,

(iii) (MAX)∗ = MAX, (iv) (NXA)∗ = NXA,

and is denoted as X = A†
M,N . When M = Im and N = In, A†

Im,In
is the

standard Moore-Penrose inverse A† of A. Reverse-order laws for the weighted
Moore-Penrose inverse of matrix products have also been studied; see, e.g., [10],
[13]. It is well known (see, e.g., [1]) that the weighted Moore-Penrose inverse
A†

M,N of A can be rewritten as

A†
M,N = N− 1

2 (M
1
2 AN− 1

2 )†M
1
2 ,(17)

where M
1
2 and N

1
2 are the positive definite square roots of M and N , respec-

tively. It turns out from (17) that

(AB)†M,N = N− 1
2 (M

1
2 ABN− 1

2 )†M
1
2 ,(18)

A†
M,In

= (M
1
2 A)†M

1
2 , B†

In,N = N− 1
2 (BN− 1

2 )†,(19)

(BN− 1
2 )(BN− 1

2 )† = BB†
In,N , (M

1
2 A)†(M

1
2 A) = A†

M,In
A.(20)

Theorem 3. Let A and B be two m×n and n×p matrices, respectively,
and let M and N be two m×m and p×p Hermitian positive definite matrices,
respectively. Then the following 27 statements are equivalent:

(a1) (AB)†M,N = B†
In,N (A†

M,In
ABB†

In,N )†A†
M,In

.

(a2) (AB)†M,N = N−1B∗(A∗MABN−1B∗)†A∗M.

(a3) (AB)†M,N = B†
In,NA†

M,In
−B†

In,N [(In−BB†
In,N )(In−A†

M,In
A)]†A†

M,In
.

(b1) [ (A∗)†In,M−1B ]†M−1,N = B†
In,N (A†

M,In
ABB†

In,N )†A∗.

(b2) [ (A∗)†In,M−1B ]†M−1,N = N−1B∗[ (A∗MA)†(BN−1B∗) ]†A†
M,In

M−1.
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(b3) [ (A∗)†In,M−1B ]†M−1,N = B†
In,NA∗

− B†
In,N [ ( In − BB†

In,N )( In − A†
M,In

A ) ]†A∗.

(c1) [ A(B∗)†N−1,In
]†M,N−1 = B∗(A†

M,In
ABB†

In,N )†A†
M,In

.

(c2) [ A(B∗)†N−1,In
]†M,N−1 = NB†

In,N [ (A∗MA)(BN−1B∗)† ]†A∗M.

(c3) [ A(B∗)†N−1,In
]†M,N−1 = B∗[ ( In − BB†

In,N )( In − A†
M,In

A ) ]†A†
M,In

.

(d1) (B†
In,NA†

M,In
)†N,M = A(BB†

In,NA†
M,In

A)†B.

(d2) (B†
In,NA†

M,In
)†N,M

= M−1(A∗)†In,M−1 [ (BN−1B∗)†(A∗MA)† ]†(B∗)†N−1,In
N.

(d3) (B†
In,NA†

M,In
)†N,M = AB − A[ ( In − A†

M,In
A )( In − BB†

In,N ) ]†B.

(e1) (A†
M,In

AB)†In,NA†
M,In

= B†
In,N (ABB†

In,N )†M,In
.

(e2) (A†
M,In

AB)†In,NA∗ = B†
In,N [ (A∗)†I,M−1BB†

In,N ]†M−1,In
.

(e3) [ A†
M,In

A(B∗)†N−1,In
]†In,N−1A

†
M,In

= B∗(ABB†
In,N )†M,In

.

(e4) (BB†
In,NA†

M,In
)†In,MB = A(B†

In,NA†
M,In

A)†N,In
.

(e5) N(A∗MAB)†In,NA∗M = B∗(ABN−1B∗)†M,In
.

(e6) N [ (A∗MA)†B ]†In,NA†
M,In

= B∗[ (A∗)†In,M−1BN−1B∗ ]†M−1,In
M.

(e7) [ A∗MA(B∗)†N−1,In
]†In,N−1A

∗M = NB†
In,N [ A(BN−1B∗)† ]†M,In

.

(e8) NB†
In,N [ (A∗)†In,M−1(BN−1B∗)† ]†M−1,In

M

= [ (A∗MA)†(B∗)†N−1,In
]†In,N−1A

†
M,In

.

(e9) (AA∗MABN−1B∗B)†M,N = B†
In,N (A∗MABN−1B∗)†A†

M,In
.

(f1) (A†
M,In

AB)†In,N = B†
In,N (A†

M,In
ABB†

In,N )† and
(ABB†

In,N )†M,In
= (A†

M,In
ABB†

In,N )†A†
M,In

.

(f2) (A†
M,In

AB)†In,N = N−1B∗(A†
M,In

ABN−1B∗)† and
(ABB†

In,N )†M,In
= (A∗MABB†

In,N )†A∗M.

(f3) (A†
M,In

AB)†In,N = B†
In,NA†

M,In
A

− B†
In,N [ ( In − BB†

In,N )( In − A†
M,In

A ) ]†A†
M,In

A and
(ABB†

In,N )†M,In
= BB†

In,NA†
M,In

− BB†
In,N [ ( In − BB†

In,N )( In − A†
M,In

A ) ]†A†
M,In

.

(g1) R[ (AB)†M,N ] = R[ B†
In,N (A†

M,In
ABB†

In,N )†A†
M,In

] and
R{[ (AB)†M,N ]∗} = R{[ B†

In,N (A†
M,In

ABB†
In,N )†A†

M,In
]∗}.

(g2) R[ (AB)†M,N ] = R(B†
In,NA†

M,In
) and

R[ (B∗A∗)†N−1,M−1 ] = R[ (A∗)†In,M−1(B∗)†N−1,In
].

(g3) R(AA∗MAB) = R(AB) and R[ (ABN−1B∗B)∗ ] = R[ (AB)∗ ].

Proof. Let

A1 = M
1
2 A and B1 = BN− 1

2 .(21)

Applying Theorem 1 to A1 and B1 gives the following 27 equivalent conditions
(a1) (A1B1)† = B†

1(A
†
1A1B1B

†
1)

†A†
1.
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(a2) (A1B1)† = B∗
1(A∗

1A1B1B
∗
1)†A∗

1.

(a3) (A1B1)† = B†
1A

†
1 − B†

1(EB1FA1)
†A†

1.
...

(g3) R( A1A
∗
1A1B1 ) = R(A1B1) and R[ B∗

1B1(A1B1)∗ ] = R[ (A1B1)∗ ].
Substituting (21) into (a1) gives

(M
1
2 ABN− 1

2 )† = (BN− 1
2 )†[(M

1
2 A)†M

1
2 ABN− 1

2 (BN− 1
2 )†]†(M

1
2 A)†.

Pre- and post-multiplying N− 1
2 and M

1
2 on both sides gives

N− 1
2 (M

1
2 ABN− 1

2 )†M
1
2

= N− 1
2 (BN− 1

2 )†[(M
1
2 A)†M

1
2 ABN− 1

2 (BN− 1
2 )†]†(M

1
2 A)†M

1
2 .

From (18) and (19), this equality can be written as (a1). Substituting (21) into
(a2) gives

(M
1
2 ABN− 1

2 )† = (BN− 1
2 )∗[(M

1
2 A)∗(M

1
2 A)(BN− 1

2 )(BN− 1
2 )∗]†(M

1
2 A)∗

= N− 1
2 B∗(A∗MABN−1B∗)†A∗M

1
2 .

Pre- and post-multiplying N− 1
2 and M

1
2 on both sides gives (a2). Substituting

(21) into (a3) and applying (20) gives

(M
1
2 ABN− 1

2 )†

= (BN− 1
2 )†(M

1
2 A)†

− (BN− 1
2 )†{[In − (BN− 1

2 )(BN− 1
2 )†][In − (M

1
2 A)†(M

1
2 A)]}†(M 1

2 A)†

= (BN− 1
2 )†(M

1
2 A)† − (BN− 1

2 )†[(In − BB†
In,N )(In − A†

M,In
A)]†(M

1
2 A)†.

Pre- and post-multiplying N− 1
2 and M

1
2 on both sides gives (a3). The remain-

ing in Theorem 3 can be shown similarly and the details are omitted here.
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