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Remarks on algebraic fiber spaces
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Osamu Fujino

Abstract

In this paper, we collect basic properties of the Albanese dimension
and explain how to generalize the main theorem of [F2]: Algebraic fiber
spaces whose general fibers are of maximal Albanese dimension. This
paper is a supplement and a generalization of [F2]. We also prove an
inequality of irregularities for algebraic fiber spaces in the appendix,
which is an exposition of Fujita-Kawamata’s semi-positivity theorem.
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1. Introduction

The present paper is a continuation of my previous paper [F2]. In the
present paper, we shall generalize the main theorem of [F2]:

Theorem 1.1 (Main theorem of [F2]). Let f : X −→ Y be a surjective
morphism between non-singular projective varieties with connected fibers. Let
F be a sufficiently general fiber of f . Assume that F has maximal Albanese
dimension. Then κ(X) ≥ κ(Y ) + κ(F ).

To generalize the theorem, we need to define Albanese fiber dimension.

Definition 1.2 (Albanese dimension and Albanese fiber dimension).
Let X be a non-singular projective variety. Let Alb(X) be the Albanese vari-
ety of X and αX : X −→ Alb(X) the Albanese map. We define the Albanese
dimension dAlb(X) as follows;

dAlb(X) := dim(αX(X)).
2000 Mathematics Subject Classification(s). Primary 14J10; Secondary 14J40, 14K12
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684 Osamu Fujino

We call fdAlb(X) := dimX−dAlb(X) the Albanese fiber dimension ofX. By the
definition, it is obvious that 0 ≤ dAlb(X) ≤ dimX and 0 ≤ fdAlb(X) ≤ dimX.
We note that

dAlb(X) = rankOX
(Im(H0(X,Ω1

X)⊗C OX −→ Ω1
X)).

We say thatX has maximal Albanese dimension when dimX = dAlb(X), equiv-
alently, fdAlb(X) = 0.

The following is our main theorem (see also Theorem 3.4 below).

Theorem 1.3. Let f : X −→ Y be a surjective morphism between non-
singular projective varieties with connected fibers. Let F be a sufficiently general
fiber of f . Assume that fdAlb(F ) ≤ 3. Then κ(X) ≥ κ(Y ) + κ(F ).

The following corollary is obvious by Theorem 1.3 and Proposition 2.14
(2) below.

Corollary 1.4. Let f : X −→ Y be a surjective morphism between non-
singular projective varieties with connected fibers and F a sufficiently general
fiber of f . Assume that dimF = 4 and the irregularity q(F ) > 0. Then
κ(X) ≥ κ(Y ) + κ(F ).

The idea of the proof of Theorem 1.3 is to combine Theorem 1.1 with the
following Theorem 1.5. It is a special case of [Ka3, Corollary 1.2].

Theorem 1.5 (cf. [Ka3, Corollary 1.2]). Let f : X −→ Y be a surjec-
tive morphism between non-singular projective varieties. Assume that dimX −
dimY ≤ 3 or sufficiently general fiber of f are birationally equivalent to Abelian
varieties. If κ(Y ) ≥ 0, then

κ(X) ≥ κ(F ) + max{κ(Y ),Var(f)},
where F is a sufficiently general fiber of f .

For Var(f) and other positive answers to Iitaka’s conjecture, see [M, Sec-
tions 6, 7].

We summarize the contents of this paper: In Section 2, we define Al-
banese dimension and Albanese fiber dimension for complete (not necessarily
non-singular) varieties and collect their several basic properties. Section 3
sketches the proof of the main theorem: Theorem 1.3. The proof depends on
Theorem 1.1 and the arguments in [F2]. Section 4 is a supplement to [U, §16].
Here, we treat generalized Kummer manifolds. We will give simpler proofs
to [U, Theorem 16.2, Proposition 16.6]. In Section 5, which is an appendix,
we explain Fujita-Kawamata’s semi-positivity theorem and prove an inequality
about irregularities for algebraic fiber spaces (Theorem 5.13). It may be useful
for the study of the relative Albanese map. The statement is as follows (cf. [B,
Lemme]);
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Remarks on algebraic fiber spaces 685

Theorem 1.6 (Inequality of irregularities). Let f : X −→ Y be a sur-
jective morphism between non-singular projective varieties with connected fibers.
Then

q(Y ) ≤ q(X) ≤ q(Y ) + q(F ),

where F is a general fiber of f .

We recommend the readers who are only interested in Theorem 1.6 to read
Section 5 directly after checking the notation below. Section 5 is independent
of the results in the other sections. Section 5 is intended to the readers who are
not familiar with the technique of the higher dimensional algebraic geometry.
It is an expository section.

We fix the notation used in this paper.

Notation. We will work over the complex number field C throughout
this paper.

(i) A sufficiently general point z (resp. subvariety Γ) of the variety Z means
that z (resp. Γ) is not contained in the countable union of certain proper Zariski
closed subsets. We say that a subvariety Γ (resp. point z) is general in Z if it
is not contained in a certain proper Zariski closed subsets.

Let f : X −→ Y be a morphism between varieties. A sufficiently general
fiber (resp. general fiber) Xy = f−1(y) of f means that y is a sufficiently general
point (resp. general) in Y .

(ii) An algebraic fiber space f : X −→ Y is a proper surjective morphism
between non-singular projective varieties X and Y with connected fibers.

(iii) Let f : X −→ Y be a surjective morphism between varieties. We put
dim f := dimX − dimY . Let X be a variety and F a coherent sheaf on X.
We write hi(X,F) = dimC H

i(X,F). If X is non-singular projective, then
q(X) := h1(X,OX) denotes the irregularity of X.

(iv) The words locally free sheaf and vector bundle are used interchangeably.
(v) Since most questions we are interested in are birational ones, we usually

make birational modifications freely whenever it is necessary. If no confusion
is likely, we denote the new objects with the old symbols.

(vi) Let X be a non-singular projective variety. If the Kodaira dimension
κ(X) > 0, then we have the Iitaka fibration f : X −→ Y , where X and Y
are non-singular projective varieties and Y is of dimension κ(X), such that the
sufficiently general fiber of f is non-singular, irreducible with κ = 0. Since the
Iitaka fibration is determined only up to birational equivalence, we used the
above abuses in (v). For the basic properties of the Kodaira dimension and the
Iitaka fibration, see [U, Chapter III] or [M, Sections 1, 2].

2. Albanese dimension

In this section, we collect several basic properties of the Albanese dimen-
sion and the Albanese fiber dimension. The next lemma is easy to check.

Lemma 2.1. Let f : W −→ V be a birational morphism between non-
singular projective varieties. Then (Alb(V ), αV ◦ f) is the Albanese variety of
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W . In particular, dAlb(V ) = dAlb(W ).

Proof. This is obvious. See, for example, [U, Proposition 9.12].

By the above lemma, we can define the Albanese dimension and the Al-
banese fiber dimension for singular varieties.

Definition 2.2. Let X be a complete variety. We define dAlb(X) :=
dAlb(X̃), where X̃ is a non-singular projective variety that is birationally equiv-
alent to X. We put fdAlb(X) := dimX − dAlb(X).

By Lemma 2.1, the Albanese dimension dAlb(X) and the Albanese fiber
dimension fdAlb(X) are well-defined birational invariants of X.

Definition 2.3 (Varieties of maximal Albanese dimension). Let X be
a complete variety. If fdAlb(X) = 0, then we say that X is of maximal Albanese
dimension or has maximal Albanese dimension. We note that κ(X) ≥ 0 if
fdAlb(X) = 0. By [Ka1, Theorem 1], κ(X) = 0 and fdAlb(X) = 0 implies that
αX : X −→ Alb(X) is birational.

Definition 2.4 (Albanese dimension of fibers). Let f : X −→ Y be a
surjective morphism between non-singular projective varieties. By taking the
Stein factorization of f , we obtain;

X −→ Z
↘ ↙

Y .

We shrink Z suitably and take a finite étale cover Z̃ −→ Z such that X̃ :=
X ×Z Z̃ −→ Z̃ has a section. Then, we obtain a relative Albanese map X̃ −→
Alb(X̃/Z̃) −→ Z̃ (see also 3.1 below). By this relative Albanese map, it is easy
to see that the Albanese dimension dAlb(Xz) is independent of z ∈ U , where U
is a suitable non-empty Zariski open set of Z and Xz is a fiber of X −→ Z. We
note that we can assume that the irregularity q(Xz) is independent of z ∈ U .

We put dAlb(f) := dAlb(Xz), where z is a general point of Z and fdAlb(f) :
= dim f − dAlb(f). We call dAlb(f) (resp. fdAlb(f)) the Albanese dimension
(resp. Albanese fiber dimension) of f .

The following proposition will play important roles in the proof of the main
theorem (cf. [F2, Proposition 2.3 (3)]).

Proposition 2.5. Let V be a non-singular projective variety and W a
closed subvariety of V . If W is general in V , then

fdAlb(W ) ≤ dimW − dimαV (W ) ≤ fdAlb(V ).

Proof. Let W̃ −→W be a resolution. We consider the following commu-
tative diagram;

W̃ −−−−→ Alb(W̃ )�
�

V
αV−−−−→ Alb(V ).
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Since W is general in V , dimV − dimW ≥ dAlb(V )− dimαV (W ). Therefore,
fdAlb(V ) ≥ dimW − dimαV (W ) ≥ fdAlb(W ).

The next example shows that the equality does not necessarily hold in
Proposition 2.5.

Example 2.6. Let X := P1 × E, where E is an elliptic curve. Let
p : X −→ E be the second projection and C an irreducible curve on X. Then
fdAlb(C) = 0 unless p(C) is a point. If C is a fiber of p, then it is obvious that
fdAlb(C) = 1. We note that fdAlb(X) = 1.

Example 2.7. Let A be an Abelian surface and X a one point blow-
up of A. Let E be the (−1)-curve on X. Then fdAlb(E) = 1 since E 	 P1.
Therefore, 1 = fdAlb(E) > fdAlb(X) = fdAlb(A) = 0.

Corollary 2.8 (Easy addition of the Albanese dimension). Let f : X
−→ Y be a surjective morphism between non-singular projective varieties. Then

dAlb(X) ≤ dimαX(F ) + dimY ≤ dAlb(f) + dimY.

Proof. This easily follows from Proposition 2.5. See also Definition 2.4.

Example 2.9. Let A be an Abelian surface and H be a non-singular
very ample divisor on A. We take a general member H ′ ∈ |H|. We can write
H ′ = H + (h), where h ∈ C(A). Consider the rational map;

h : A ��� P1.

By blowing up the points H ∩H ′, we obtain an algebraic fiber space;

f : X −→ Y,

which is birationally equivalent to h. In this case, dAlb(X) = 2, dAlb(Y ) = 0,
and dAlb(f) = 1. Therefore, we can not replace dimY with dAlb(Y ) in Corollary
2.8.

The following claim is a variant of [F2, Proposition 2.4].

Proposition 2.10. Let V be a non-singular projective variety and f :
V −→ W be the Iitaka fibration. Then fdAlb(W ) ≤ fdAlb(V ). In particular, if
V is of maximal Albanese dimension, then so is W .

Proof. We put m := fdAlb(V ) and n := dimV . Let F be a sufficiently
general fiber of f . Then κ(F ) = 0 and fdAlb(F ) ≤ m by Proposition 2.5. By
[Ka1, Theorem 1], αF : F −→ Alb(F ) is an algebraic fiber space. By the
following diagram;

F −−−−→ Alb(F )�
�

V
αV−−−−→ Alb(V ),
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αV (F ) is an Abelian variety. Since there exists at most countably many Abelian
subvarieties in Alb(V ), there is an Abelian subvariety A of Alb(V ) such that
αV (F ) is a translation of A for general fibers F . We note that dimA ≤ dimF =
n− dimW = n− κ(V ).

Let ψ : Alb(V ) −→ Alb(V )/A be the quotient map. By the definition
of A, ψ ◦ αV induces a rational map ϕ : W ��� Alb(V )/A. Since Alb(V )/A
is Abelian, ϕ is a morphism. By the universality of (Alb(W ), αW ), ϕ factors
through Alb(W ). Therefore,

dAlb(W ) ≥ dimϕ(W )
= dimψ(αV (V ))
≥ n−m− dimF

= κ(V )−m.
Note that dimW = κ(V ). Thus, we have the required inequality fdAlb(W ) ≤
m.

Remark 2.11. We can generalize Proposition 2.10 as follows without
difficulties. Details are left to the readers.

Let f : V −→ W be an algebraic fiber space. If q(F ) = dAlb(f), where F
is a sufficiently general fiber of f , then fdAlb(W ) ≤ fdAlb(V ).

The following example says that the equality doesn’t necessarily hold in
Proposition 2.10.

Example 2.12. Let S be a K3 surface and C is a non-singular projec-
tive curve with the genus g(C) ≥ 2. We put X := S × C. Then the second
projection X −→ C is the Iitaka fibration. It is easy to check that fdAlb(X) = 2
and fdAlb(C) = 0.

We collect several basic properties of the Albanese dimension and Albanese
fiber dimension for the reader’s convenience. First, we recall the following
obvious fact.

Lemma 2.13. Let X be a non-singular projective variety. Then the
irregularity q(X) = 0 if and only if dAlb(X) = 0.

Proposition 2.14. (1) Let X be a complete variety with dimX = n.
Then fdAlb(X) ≤ n.

(2) Let X be an (n + 1)-dimensional non-singular projective variety with
the irregularity q(X) > 0. Then fdAlb(X) ≤ n.

(3) Let f : X −→ Y be a generically finite morphism between non-singular
projective varieties. Then dAlb(X) ≥ dAlb(Y ). Equivalently, fdAlb(X) ≤
fdAlb(Y ).

(4) Let f : X −→ Y be a surjective morphism between non-singular pro-
jective varieties. Then fdAlb(X) ≤ fdAlb(Y ) + dim f .

(5) Let X and Y be non-singular projective varieties. Then dAlb(X×Y ) =
dAlb(X) + dAlb(Y ). Equivalently, fdAlb(X × Y ) = fdAlb(X) + fdAlb(Y ).
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Proof. The claims (1), (3), and (4) are obvious by the definition. For
(2), we note that αX(X) is not a point by Lemma 2.13. For (5), note that
(Alb(X)×Alb(Y ), αX ×αY ) is the Albanese variety of X ×Y by the Künneth
formula.

Lemma 2.15. Let V be a non-singular projective variety and H a non-
singular ample divisor on V . Then Alb(H) −→ Alb(V ) is surjective (resp. an
isomorphism) if dimV ≥ 2 (resp. dimV ≥ 3).

Proof. Apply the Kodaira vanishing theorem to H1(V,OV (−H)) and
H2(V,OV (−H)). For the details, see [BS, Proposition 2.4.4].

Proposition 2.16. Let V be a non-singular projective variety and H
a non-singular ample divisor on V . Assume that H is general in V . Then
fdAlb(H) = fdAlb(V )− 1 if dimV ≥ 3.

Proof. It is obvious by Lemma 2.15.

The following lemma is a key lemma in Section 3 (see 3.1 below).

Lemma 2.17. Let X be a non-singular projective variety and αX :
X −→ Alb(X) the Albanese mapping. We consider the Stein factorization;

X −→W −→ αX(X).

Then fdAlb(W ) = 0, that is, W has maximal Albanese dimension.

Proof. It is obvious by the definition. See Proposition 2.14 (3).

3. Sketch of the proof of the main theorem

In this section, we sketch the proof of the main theorem: Theorem 1.3.
We explain how to modify the arguments in [F2, Section 4]. For the details,
see [F2].

3.1 (Algebraic fiber space associated to the relative Albanese map).
Let f : X −→ Y be an algebraic fiber space. From now on, we often re-
place Y with its non-empty Zariski open set and X with its inverse image.
We denote the new objects with the old symbols. We can assume that f is
smooth. We put Alb(X/Y ) := Pic0(Pic0(X/Y )/Y ). We can further assume
that there exists a finite étale cover π : Ỹ −→ Y such that π is Galois and
f̃ : X̃ := X ×Y Ỹ −→ Ỹ has a section. Then there exists the relative Albanese
map α eX/eY : X̃ −→ Alb(X̃/Ỹ ) over Ỹ that is induced by the universality of

the relative Picard variety. We note that Alb(X̃/Ỹ ) 	 Pic0(Pic0(X̃/Ỹ )/Ỹ ).
Put k := deg π and G := Gal(Ỹ /Y ) the Galois group of π. Then G acts on
X̃ = X ×Y Ỹ and Alb(X̃/Ỹ ) = Alb(X/Y ) ×Y Ỹ . Thus G acts on α eX/eY as
follows;

(g · α eX/eY )(x) = g−1(α eX/eY (gx)),
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where g ∈ G and x ∈ X̃. We put β eX/eY :=
∑

g∈G g · α eX/eY : X̃ −→ Alb(X̃/Ỹ ).

Let Γ̃ ⊂ X̃ ×eY Alb(X̃/Ỹ ) be the graph of β eX/eY and Γ ⊂ X ×Y Alb(X/Y ) the

image of Γ̃. By the construction of β eX/eY , Γ induces a morphism βX/Y : X −→
Alb(X/Y ) over Y . Let us see βX/Y fiberwise. Then it is the composition of
the Albanese map and the multiplication by k of the Albanese variety up to
a translation. From the Stein factorization X −→ Z −→ Alb(X/Y ) of βX/Y ,
we obtain X −→ Z −→ Y . Compactify X, Y , and Z. Then, after taking
resolutions, we obtain;

f : X
g−−−−→ Z

h−−−−→ Y

such that
(i) it is birationally equivalent to the given fiber space f : X −→ Y .
(ii) X, Y , and Z are non-singular projective varieties.
(iii) g and h are algebraic fiber spaces.
(iv) the general fibers of h have maximal Albanese dimension.
(v) if κ(Xy) ≥ 0 for sufficiently general fibers Xy of f , then κ(Xz) ≥ 0

for sufficiently general points z ∈ Z. This is an easy consequence of the easy
addition of the Kodaira dimension.

(vi) dim g = dimX − dimZ = fdAlb(F ), where F is a sufficiently general
fiber of f .

Proof of Theorem 1.3. Let f : X −→ Y be the given fiber space.

Step 1. If κ(Y ) = −∞ or κ(F ) = −∞, then the inequality is obviously
true. From now on, we assume that κ(Y ) ≥ 0 and κ(F ) ≥ 0.

Step 2. We construct the fiber space associated to the relative Albanese
map (see 3.1), we obtain

f : X
g−−−−→ Z

h−−−−→ Y,

such that dimX − dimZ ≤ 3 by the assumption fdAlb(F ) ≤ 3 (see 3.1 (vi))
and the sufficiently general fiber of h are of maximal Albanese dimension by
3.1 (iv). By 3.1 (v), the Kodaira dimension of the sufficiently general fiber of
g is non-negative. Therefore, by Theorem 1.1 and Theorem 1.5,

κ(X) ≥ κ(Z) + κ(Xz)
≥ κ(Z)
≥ κ(Y ) + κ(Zy)
≥ κ(Y ),

where z (resp. y) is a sufficiently general point of Z (resp. Y ). Note that
κ(Zy) ≥ 0 since fdAlb(Zy) = 0 (see Definition 2.3). If κ(F ) = 0, then the
inequality that Theorem 1.3 claims is reduced to κ(X) ≥ κ(Y ) which we have
seen above. So, from now on, we can assume that κ(F ) > 0.
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Step 3. We recall the following useful lemma ([F2, Lemma 4.2]).

Lemma 3.2 (Induction Lemma). Under the same notation as in Theo-
rem 1.3, it is sufficient to prove that κ(X) > 0 on the assumption that κ(Y ) ≥ 0
and κ(F ) > 0.

Remark 3.3. We prove this lemma in [F2] on the assumption that
fdAlb(F ) = 0. The same proof works on the weaker assumption that fdAlb(F ) ≤
3. We only have to replace the words “maximal Albanese dimension”with
“fdAlb(·) ≤ 3”in the proof of [F2, Lemma 4.2]. The key point is Proposition
2.5. By this, the inductive arguments work. Details are left to the reader.

Step 4. By taking the fiber space associated to the relative Albanese
map (see 3.1), we obtain

f : X
g−−−−→ Z

h−−−−→ Y.

Since we want to prove κ(X) > 0, we can assume that the sufficiently general
fibers of g and h have zero Kodaira dimension by Theorem 1.1 and Theorem
1.5 (see the inequality in Step 2 above). On this assumption, the general fibers
of h are birationally equivalent to Abelian varieties. We can further assume
that Var(g) = Var(h) = 0 by Theorem 1.5. Therefore, we can apply the same
proof as in [F2]. Then we obtain κ(X) > 0. For the details, see the latter part
of [F2, Proof of the theorem]. We note that κ(F ) ≥ 1.

Therefore, we complete the proof.

The following theorem is obvious by the proof of Theorem 1.3. For the
conjecture C+

n,m, see [M, Section 7] and Theorem 1.5.

Theorem 3.4. Suppose that C+
n,m holds for every algebraic fiber spaces

on the assumption that n−m ≤ k. Let f : X −→ Y be an algebraic fiber space.
If fdAlb(F ) ≤ k, where F is a sufficiently general fiber of f , then κ(X) ≥
κ(Y ) + κ(F ).

4. On generalized Kummer manifolds

This section is a supplement to [U, §16]. After Ueno wrote [U, §16], various
results were proved. Thanks to the techniques and results in [Ka1], [F2], and
Section 2 of this paper, some results about generalized Kummer manifolds in
[U, §16] become easy exercises.

Let us recall the definition of generalized Kummer manifolds, which is due
to Ueno (see [U, Definition 16.1]).

Definition 4.1 (Generalized Kummer manifolds). A non-singular com-
plete variety V is called generalized Kummer manifold if there exist an Abelian
variety A and a generically surjective rational mapping f : A ��� V of A onto
V . We note that we do not assume that dimA = dimV .
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We treat only one result here. It is a reformulation of [U, Theorem 16.2,
Proposition 16.6]. We recommend the readers to see [U, §16] after checking
Theorem 4.2 and Corollary 4.3 below.

Theorem 4.2. Let f : X −→ Y be an algebraic fiber space such that X
is birationally equivalent to an Abelian variety. Then the Kodaira dimension
κ(Y ) ≤ 0. Furthermore, if κ(Y ) = 0, then Y is birationally equivalent to an
Abelian variety.

Proof. Let F be a sufficiently general fiber of f . Then F has maximal Al-
banese dimension. Thus, 0 = κ(X) ≥ κ(Y )+κ(F ) by Theorem 1.1. Therefore,
we have κ(Y ) ≤ −κ(F ) ≤ 0. If κ(Y ) = 0, then κ(F ) = 0. So, by Remark 2.11,
we obtain that Y has maximal Albanese dimension. Therefore, Y is birationally
equivalent to an Abelian variety.

Corollary 4.3 (cf. [U, Theorem 16.2, Proposition 16.6]). Let V be an
n-dimensional generalized Kummer manifold. Then κ(V ) ≤ 0. If κ(V ) = 0,
then there exist an n-dimensional Abelian variety A and a generically surjective
rational mapping g : A ��� V of A onto V .

Proof. We can assume that there exist an algebraic fiber space f : X −→
Y as in Theorem 4.2 and a generically finite morphism Y −→ V . We note
that κ(V ) ≤ κ(Y ) by [U, Theorem 6.10]. So, we obtain the required result by
Theorem 4.2.

5. Appendix: Semi-positivity and inequality of irregularities

The aim of this section is to explain Fujita-Kawamata’s semi-positivity
theorem in the geometric situation, that is, we prove the semi-positivity of
Rif∗ωX/Y on suitable assumptions, where f : X −→ Y is a surjective mor-
phism between non-singular projective varieties. Then we prove an inequality
of irregularities for algebraic fiber spaces (see Theorem 5.13), which is an easy
consequence of the semi-positivity theorem. This inequality seems to be useful
when we treat (relative) Albanese variety.

In spite of its importance, the results and the statements about the semi-
positivity theorem are scattered over various papers (see [M, §5]). This is one
of the reason why I decided to write down this section*1. It is surprising that
there are no good references about the semi-positivity of Rif∗ωX/Y . Kawa-
mata’s proof of the semi-positivity theorem (cf. [Ka2, Theorem 2] and [Ka1,
§4]) heavily relies on the asymptotic behavior of the Hodge metric near a punc-
ture. It is not so easy for the non-expert to take it out from [S, §6]. We
recommend the readers to see [P, Sections 2, 3] or [Z]*2. Our proof depends on
[Ka2, Proposition 1], [Ko1], [Ko2], and Viehweg’s technique. It is essentially

*1It took long time to find the statement [Ka2, Theorem 2]. I hope that this section will
contribute to distribute Fujita-Kawamata’s semi-positivity package.

*2For the proof of the semi-positivity theorem [Ka2, §4 (2)], it is sufficient to know the
asymptotic behavior of the Hodge metric of the VHS on a curve.
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the same as [Ko1, Corollary 3.7]. It is much simpler than the original proof.
We note that Kawamata’s proof can be applied to non-geometric situations.
So, his theorem is much stronger than the results explained in this section. See
the original article [Ka1, §4].

Remark 5.1. This section is a supplement of [M, §5 Part I], especially,
[M, (5.3) Theorem]. The joint paper with S. Mori [FM] generalized [M, §5 Part
II] and treated several applications. The paper [F1] gave a precise proof of [M,
(5.15.9)(ii)] from the Hodge theoretic viewpoint. A logarithmic generalization
of Fujita-Kawamata’s semi-positivity theorem is treated in [F3]. For the details,
see [F3].

Let us recall the definition of semi-positive vector bundles.

Definition 5.2 (Semi-positive vector bundles). Let V be a complete
variety and E a locally free sheaf on V . We say that E is semi-positive if
and only if the tautological line bundle OPV (E)(1) is nef on PV (E). We note
that E is semi-positive if and only if for every complete curve C and morphism
g : C −→ V every quotient line bundle of g∗E has non-negative degree.

The following result is obtained by Kollár and Nakayama. For the details,
see, for example, the original articles [Ko2, Theorem 2.6], [N, Theorem 1], or
[M, (5.3), (5.4)].

Theorem 5.3. Let f : V −→ W be a projective surjective morphism
between non-singular varieties. We assume that there exists a simple normal
crossing divisor Σ on W such that f is smooth over W \Σ. Then Rif∗OV and
Rif∗ωV/W are locally free for every i. Put W0 := W \Σ, V0 := f−1(W0), f0 :=
f |V0 , and k := dim f . Moreover, if all the local monodromies on Rk+if0∗CV0

around Σ are unipotent, then Rif∗ωV/W is characterized by the canonical ex-
tension of Rk+if0∗CV0 .

The following is the main theorem of this section (see [M, (5.3) Theorem]).

Theorem 5.4 (Semi-positivity theorem). Let f : V −→ W be a sur-
jective morphism between non-singular projective varieties with k := dim f .
Let Σ be a simple normal crossing divisor on W such that f is smooth over
W0 := W \ Σ. Put V0 := f−1(W0) and f0 := f |V0 . We assume that all the
local monodromies on Rk+if0∗CV0 around Σ are unipotent. Then Rif∗ωV/W is
a semi-positive vector bundle on W .

Before we prove Theorem 5.4, we fix the notation and convention used
below.

5.5. Let f : V −→W be a surjective morphism between varieties. Let

fs : V s := V ×W V ×W · · · ×W V −→W (product taken s times)

V (s) = desingularization of V s, f (s) : V (s) −→W.
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Lemma 5.6. On the same assumption as in Theorem 5.4, we have that
(Rif∗ωV/W )⊗s is a direct summand of Rsif

(s)
∗ ωV (s)/W for every positive integer

s. We note that (f∗ωV/W )⊗s 	 f (s)
∗ ωV (s)/W for every positive integer s.

Proof. We use the induction on s. First, when s = 1, the claim is
obvious. Next, we assume that (Rif∗ωV/W )⊗(s−1) is a direct summand of
R(s−1)if

(s−1)
∗ ωV (s−1)/W . We consider the following commutative diagram;

V ←−−−− V ×W V (s−1) ←−−−− V (s)

f

�
�

�g

W ←−−−−
f(s−1)

V (s−1) ←−−−−
id

V (s−1).

We can assume that (f (s−1))−1(Σ) is simple normal crossing without loss of
generality. Since Rif∗ωV/W is the canonical extension of Rif0∗ωV0/W0 by The-
orem 5.3 (see [Ko2, Theorem 2.6], [N, Theorem 1]), we have the following
isomorphism: f (s−1)∗Rif∗ωV/W 	 Rig∗ωV (s)/V (s−1) by [Ka2, Proposition 1].
Therefore,

Rjf
(s−1)
∗ Rig∗ωV (s)/W 	 Rjf

(s−1)
∗ Rig∗(ωV (s)/V (s−1) ⊗ g∗ωV (s−1)/W )

	 Rjf
(s−1)
∗ (Rig∗ωV (s)/V (s−1) ⊗ ωV (s−1)/W )

	 Rjf
(s−1)
∗ (f (s−1)∗Rif∗ωV/W ⊗ ωV (s−1)/W )

	 Rif∗ωV/W ⊗Rjf
(s−1)
∗ ωV (s−1)/W ,

for every j. By [Ko2, Theorem 3.4], R(s−1)if
(s−1)
∗ Rig∗ωV (s)/W is a direct sum-

mand of Rsif
(s)
∗ ωV (s)/W . We assumed that (Rif∗ωV/W )⊗(s−1) is a direct sum-

mand of R(s−1)if
(s−1)
∗ ωV (s−1)/W . Therefore, (Rif∗ωV/W )⊗s is a direct sum-

mand of Rsif
(s)
∗ ωV (s)/W .

The following lemma is obvious by Kollár’s vanishing theorem [Ko1, The-
orem 2.1]. For the regularities, see [Kl, p. 307 Definitions 1, 2 and Proposition
1].

Lemma 5.7. Let f : X −→ Y be a surjective morphism between pro-
jective varieties, X non-singular, m := dimY + 1. Let L be an ample line
bundle on Y which is generated by its global sections. Then Rif∗ωX is m-
regular (with respect to L) for every i. That is, Hj(Y,Rif∗ωX ⊗ L⊗(m−j)) = 0
for every j > 0. In particular, Rif∗ωX ⊗L⊗l is generated by its global sections
for l ≥ m.

The next lemma is not difficult to prove. For the proof, see, for example,
[Ko1, Proof of Corollary 3.7].
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Lemma 5.8. Let E be a vector bundle on a complete variety Y . Assume
that there exists a line bundle L on Y and L ⊗ E⊗s is generated by its global
sections for every s. Then E is semi-positive.

Sketch of the proof. It is not difficult to see that OPY (E)(s) ⊗ π∗L is nef
for every s, where π : PY (E) −→ Y . Therefore, OPY (E)(1) is nef.

Proof of Theorem 5.4. Let L be an ample line bundle on W which is
generated by its global sections. We put E := Rif∗ωV/W and L := L⊗m ⊗
ωW , where m = dimY + 1. Then Rsif

(s)
∗ ωV (s)/W ⊗ L is generated by its

global sections for every s by Lemma 5.7. By Lemma 5.6, (Rif∗ωV/W )⊗s ⊗ L
is generated by its global sections. Therefore, Rif∗ωV/W is semi-positive by
Lemma 5.8.

The following theorem is well-known. We write it for the reader’s conve-
nience. We will use it in the proof of Theorem 5.13. We reduce it to Theorem
5.4 by the semi-stable reduction theorem.

Theorem 5.9. In Theorem 5.4, if W is a curve, then the assumption
on the monodromies is not necessary, that is, Rif∗ωV/W is always semi-positive
for every i.

Proof. Without loss of generality, we can assume that Suppf∗(P ) is sim-
ple normal crossing for every point P ∈ W . By the semi-stable reduction
theorem (see [KKMS, Chapter II]), we consider the following commutative di-
agram;

V ←−−−− V ×W W̃
ν←−−−− V ′ ←−−−− Ṽ

f

�
�g

�f ′
� ef

W ←−−−−
π

W̃ ←−−−−
id

W̃ ←−−−−
id

W̃ ,

where π : W̃ −→ W is a finite cover, ν is the normalization, and f̃ : Ṽ −→ W̃
is a semi-stable reduction of f . By the flat base change theorem, we have
π∗Rif∗ωV/W 	 Rig∗ωV ×W

fW/fW
for every i. We consider the following exact

sequence, which is induced by the trace map;

0 −−−−→ ν∗ωV ′/fW

tr−−−−→ ω
V ×W

fW/fW
−−−−→ δ −−−−→ 0,

where δ is the cokernel of tr. Since SuppRi−1g∗δ � W̃ , we obtain a generically
isomorphic inclusion;

0→ Rif ′∗ωV ′/fW
	 Rif̃∗ωeV /fW

→ Rig∗ωV ×W
fW/fW

	 π∗Rif∗ωV/W .

We note that ν is finite and V ′ has at worst rational Gorenstein singularities.
Since f̃ is semi-stable, all the local monodromies are unipotent (see, for exam-
ple, [M, (4.6.1)]). Thus Rif̃∗ωeV /fW

is semi-positive by Theorem 5.4. By the
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above inclusion, we can check easily that Rif∗ωV/W is semi-positive. We note
that W is a curve.

The following theorem is a slight generalization of Theorem 5.4. It seems
to be well-known to specialists. It is buried in Kawamata’s proof of the semi-
positivity theorem (see [Ka1, §4]). We note that W is not necessarily complete
in Theorem 5.10 below.

Theorem 5.10. Let f : V −→ W be a projective surjective morphism
between non-singular varieties with connected fibers. Assume that there exists a
simple normal crossing divisor Σ on W such that f is smooth over W0 := W \Σ.
We put V0 := f−1(W0), f0 := f |V0 , and k := dim f . We assume that all the
local monodromies on Rk+if0∗CV0 around Σ are unipotent. Let C be a complete
curve on W . Then the restriction (Rif∗ωV/W )|C is semi-positive.

Proof. By Chow’s lemma, desingularization theorem, and [Ka2, Proposi-
tion 1], we can assume that V and W are quasi-projective and Σ is a simple
normal crossing divisor. We note that if ψ : W ′ −→ W is a proper birational
morphism from a quasi-projective variety, then there exists a complete curve
C ′ on W ′ such that ψ(C ′) = C. Let g : C̃ −→ C ⊂W be the normalization of
C. If C ∩W0 �= ∅, then g∗Rif∗ωX/Y 	 Rih∗ωD/ eC is semi-positive by Theorem

5.4, where D is a desingularization of the main component of V ×W C̃ and
h : D −→ C̃. So, we have to treat the case when C ⊂ Σ. By cutting W , we
can take an irreducible surface S on W such that S �⊂ Σ and C ⊂ S. Take
a desingularization π : S̃ −→ S ⊂ W of S such that π−1(Σ) is simple normal
crossing on S̃ and there is a smooth projective irreducible curve C̃ on S̃ with
π(C̃) = C. By [Ka2, Proposition 1], we have π∗Rif∗ωV/W 	 Rih∗ωT/ eS , where

T is a desingularization of the main component of V ×W S̃ and h : T −→ S̃. So,
it is sufficient to check that π∗Rif∗ωV/W 	 Rih∗ωT/ eS is semi-positive on C̃. We

compactify h : T −→ S̃. Then we obtain an algebraic fiber space h : T −→ S.
After modifying h birationally, we can assume that ∆ := (S \ S̃) ∪ π−1(Σ) is
a simple normal crossing divisor on S. We can assume that h is smooth over
S \ ∆. We note that C̃ is an irreducible component of ∆. By Kawamata’s
covering trick [Ka1, Theorem 17], we can take a finite cover ϕ : S′ −→ S which
induces a unipotent reduction h′ : T ′ −→ S′ (see [Ka1, Corollary 18] or [M,
(4.5)]). We put U := ϕ−1(S̃). By Theorem 5.4, Rih′∗ωT ′/S′ is semi-positive
and (Rih′∗ωT ′/S′)|U 	 ϕ∗((Rih∗ωT/S)|eS) 	 ϕ∗(Rih∗ωT/ eS). Therefore, it is

easy to check that (Rih∗ωT/ eS)| eC is semi-positive since C̃ ⊂ S̃. So, we obtain
the required result.

The following corollary is obvious by Theorem 5.10. It will be useful when
we study algebraic fiber spaces in the relative setting.

Corollary 5.11. In the same notation and assumptions as in Theorem
5.10, we further assume that W is proper over a variety B. Then Rif∗ωV/W

is semi-positive over B, that is, (Rif∗ωV/W )|F is semi-positive for every fiber
F of W −→ B.
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Remark 5.12. In the proof of Theorem 5.10, we only use the following
fact that Rif∗ωV/W is characterized as the canonical extension of the bottom
Hodge filtration.

The next theorem is an easy consequence of the semi-positivity theorem.
For the proof, we use Theorem 5.9.

Theorem 5.13. Let f : X −→ Y be an algebraic fiber space. Then

q(Y ) ≤ q(X) ≤ q(Y ) + q(F ),

where F is a general fiber. Moreover, if q(F ) = 0, then Alb(X) −→ Alb(Y ) is
an isomorphism.

Proof. By modifying f birationally, we can assume that there exists a
simple normal crossing divisor Σ on Y such that f is smooth over Y \ Σ and
Suppf∗Σ is simple normal crossing. By Leray’s spectral sequence, we have

0→ H1(Y,OY )→ H1(X,OX)→ H0(Y,R1f∗OX)→ 0.

We note that H2(Y,OY )→ H2(X,OX) is injective. Therefore, q(Y ) ≤ q(X) =
q(Y ) + h0(Y,R1f∗OX). Let H be a very ample divisor on Y such that
h0(Y,R1f∗OX ⊗OY (−H)) = 0. We take H general. We have;

0→ R1f∗OX ⊗OY (−H)→ R1f∗OX → R1f∗Of−1H → 0.

Thus, we obtain that h0(Y,R1f∗OX) ≤ h0(Y,R1f∗Of−1H). By repeating this
argument, we can assume that Y is a curve. By Theorem 5.9, (Rif∗OX)∨ 	
Rdim f−iωX/Y is semi-positive. Then h0(Y,R1f∗OX) ≤ q(F ) by Lemma 5.14
below. We note that the rank of R1f∗OX is q(F ). Thus, we get the required
inequality. The latter part is obvious.

Lemma 5.14. Let E be a vector bundle on a non-singular projective
curve V . Assume that the dual vector bundle E∨ is semi-positive. Then h0(V, E)
≤ r. In particular, if h0(V, E) = r, then E is trivial.

Proof. We take a basis {ϕ1, . . . , ϕl} of H0(V, E). We have to prove that
l ≤ k. We define ψi := (ϕ1, . . . , ϕi) : O⊕i

V −→ E for every i. We put ψ0 = 0 for
inductive arguments.

Claim. Imψi 	 O⊕i
V is a subbundle of E for every i, where Imψi denotes

the image of ψi.

Proof of Claim. We use the induction on i. We assume that Imψi−1 	
O⊕(i−1)

V is a subbundle of E . Thus, we have h0(V, Imψi−1) = i− 1. Therefore,
Imψi has rank i. Let F be the double dual of Imψi. Then F is a rank i
subbundle of E such that ψi factors through F . Since F∨ is semi-positive by
the semi-positivity of E∨ and F is semi-positive by the definition of F , we
obtain that ψi : O⊕i

V 	 F .
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Thus we obtain that l ≤ r, that is, h0(V, E) ≤ r. The latter part is
obvious.

The following corollary is a slight generalization of [Ka1, Corollary 2]. The
proof is obvious by Theorem 5.13.

Corollary 5.15. Let f : X −→ Y be an algebraic fiber space. As-
sume that sufficiently general fibers have zero Kodaira dimension. Then 0 ≤
q(X)− q(Y ) ≤ q(F ) ≤ dim f , where F is a general fiber of f . Furthermore, if
q(X)− q(Y ) = dim f , then general fibers are birationally equivalent to Abelian
varieties.
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