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A note on anisotropic first-passage percolation

By

Masato Takei

Abstract

We consider a first-passage percolation problem on the square lat-
tice, where the distribution function of time coordinates of horizontal
edges may be different from that of vertical edges. Some basic limit
theorems for first-passage times and minimal lengths of optimal paths
are obtained. Especially, we show that as long as the system is in the
supercritical phase, the expectation of first-passage time from the ori-
gin to a point with distance n converges to a finite constant, which is
independent of the directions, as n → ∞.

1. Introduction and results

First-passage percolation was introduced by Hammersley and Welsh [5].
We consider a generalized first-passage percolation problem on the square lat-
tice L

2 = (Z2, E2). We write the edge between u, v ∈ Z
2 for 〈u, v〉 ∈ E

2. An
edge e is called horizontal if e = 〈(x, y), (x + 1, y)〉 for some (x, y) ∈ Z

2 and
vertical if e = 〈(x, y), (x, y + 1)〉 for some (x, y) ∈ Z

2. Let {t(e); e ∈ E
2} be

a family of nonnegative random variables. We regard t(e) as the time needed
for a particle to traverse the edge e. The setting of anisotropic first-passage
percolation ([2]) is as follows: The random variable t(e) is independent of each
other, and its distribution function is Fh(s) if e is horizontal, and Fv(s) if e is
vertical. In this paper, we are interested in the first-passage time between two
regions of L

2.

1.1. Anisotropic Bernoulli percolation
First we consider a special case, anisotropic Bernoulli percolation. Each

edge has two possible states, open and closed. A horizontal edge is open with
probability ph, while a vertical edge is open with probability pv. The corre-
sponding probability measure is denoted by Pph,pv

, and the expectation with
respect to Pph,pv

is denoted by Eph,pv
. Let C0 be the open cluster of the origin

and θ(ph, pv) = Pph,pv
{|C0| = ∞}, where |C| denotes the number of edges in a

subgraph C. Moreover, The critical line of this model is ph + pv = 1 (see [4,
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§11.9]):

θ(ph, pv)

{
= 0 if ph �= 1, pv �= 1, ph + pv ≤ 1,

> 0 otherwise.

In the appendix, we give some formulae about the ratio of boundary to
volume of the open cluster of the origin.

1.2. Limit theorems for first-passage times
We return to the general anisotropic first-passage percolation problem with

distribution functions Fh(s) and Fv(s). We denote the probability measure by
P , and the expectation with respect to P by E.

Let π : e1 → · · · → ep be a self-avoiding path on L
2, where e1, . . . , ep ∈ E

2.
The passage time of π is defined by

T (π) =
p∑

i=1

t(ei).

The first-passage time between u, v ∈ Z
2 is defined by

T (u, v) = inf{T (π); π is a path from u to v}.
More generally, let T (A, B) = inf{T (u, v); u ∈ A, v ∈ B} for A, B ⊂ Z

2. Let
0 = (0, 0), e1 = (1, 0) and e2 = (0, 1). We study the following first-passage
times:

• Point-to-point first-passage times :
For any unit vector u ∈ R

2, we define T (0, nu) by

T (0, the set of lattice points nearest to nu).

In particular, the following are called a-processes.

ar
0,n = T (0, ne1), al

0,n = T (0,−ne1),

au
0,n = T (0, ne2), ad

0,n = T (0,−ne2).

• Point-to-line first-passage times (b-processes):

br
0,n = T (0, {x = n}), bl

0,n = T (0, {x = −n}),
bu
0,n = T (0, {y = n}), bd

0,n = T (0, {y = −n}).
• Point-to-box first-passage time (c-process) : c0,n = T (0, ∂B(n)),

where ∂B(n) = {(x, y) ∈ Z
2; max{|x|, |y|} = n}.

Note that θr
0,n = θl

0,n and θu
0,n = θd

0,n in distribution, where θ = a or b.
We assume that mh :=

∫
sdFh(s) < ∞ and mv :=

∫
sdFv(s) < ∞. By

the subadditivity of the point-to-point first-passage time, there exists the time
constant for the direction u:

µ(u) = µ(F,u) := lim
n→∞

ET (0, nu)
n

.
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By the subadditive ergodic theorem,

lim
n→∞

T (0, nu)
n

= µ(u) a.s. and in L1.

An edge e is called open if t(e) = 0, otherwise closed. Then, associated
with our first-passage percolation process, the anisotropic Bernoulli percolation
process with parameters ph = Fh(0) and pv = Fv(0) arises. The coupling
measure governing these processes is denoted again by P .

On the positivity of µh := µ(e1) and µv := µ(e2), it is known that the
critical line is Fh(0) + Fv(0) = 1, in the sense of the following proposition.

Proposition 1.1 ([2]). Assume that mh, mv < ∞. Let ph = Fh(0) and
pv = Fv(0).

(1) If ph +pv < 1, then µh > 0 and µv > 0. (In fact, their argument shows
that µ(u) > 0 for any u.)

(2) If ph �= 1, pv �= 1 and ph + pv ≥ 1, then µh = µv = 0. (In fact, their
argument shows that µ(u) = 0 for any u.)

(3)

{
If ph = 1, then µh = 0, µv = inf{s ≥ 0; Fv(s) > 0},
If pv = 1, then µv = 0, µh = inf{s ≥ 0; Fh(s) > 0}.

As for other passage times,

Proposition 1.2. Assume that mh, mv < ∞.
(1) For the b-processes, the following hold almost surely and in L1;

lim
n→∞

br
0,n

n
= lim

n→∞
bl
0,n

n
= µh, lim

n→∞
bu
0,n

n
= lim

n→∞
bd
0,n

n
= µv.

(2) lim
n→∞

c0,n

n
= min{µh, µv} a.s. and in L1.

(1) is a consequence of the shape theorem (see [6, p. 166]). This method
can be applied to (2) also (as in [8, (3.16)]).

Since c0,n is increasing in n, the limit ρ = lim
n→∞ c0,n exists (possibly +∞).

If there exists an infinite open cluster, then ρ < ∞ a.s. by Kolmogorov 0-1 law.
Let D = {u, d, l, r}. We quote almost sure convergence results in [13]. The

original proof works for our anisotropic case also. We remark that moment
conditions required in [13] can be dropped by a simple modification of his own
method.

Proposition 1.3 (cf. [13] Theorem 5). Assume that ph �= 1, pv �= 1
and ph + pv > 1.

(1) For any ∗ ∈ D, the family {a∗
0,n} is tight, i.e.

lim
L→∞

inf
n≥1

P{a∗
0,n ≤ L} = 1.

On the other hand,

lim inf
n→∞ a∗

0,n = ρ and lim sup
n→∞

a∗
0,n = +∞ a.s.
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(2) For any ∗ ∈ D, lim
n→∞ b∗0,n = ρ almost surely. In fact, b∗0,n = c0,n

eventually a.s.

For the expectations, we can obtain the following result. This theorem
says that even if Fh is quite different from Fv, the limit of the expectation of
the passage time is independent of the directions whenever the system is on
the critical line or in the supercritical regime.

Theorem 1.1. Assume that ph �= 1, pv �= 1 and ph + pv ≥ 1. If Eρ <
∞, then the following hold.

(1) For any unit vector u ∈ R
2, lim

n→∞ET (0, nu) = 2Eρ.

(2) For any ∗ ∈ D, lim
n→∞ Eb∗0,n = Eρ.

When ph+pv > 1, mh, mv < ∞ is sufficient for Eρ < ∞ (cf. [13, Properties
(a)]). In the supercritical case, ρ is the first passage time from the origin to the
minimal open circuit surrounding it and connected to the infinite open cluster
(see Lemma 2.3). Thus we can interpret ρ as the minimal cost to go far away
from the origin. In a fixed configuration and for a large n, T (0, nu) depends on
the situation around the terminal point nu, while the first passage time from
nu to the infinite open cluster is equal to ρ in law. This gives intuition for
the above results. We note that our proof of Theorem 1.1 remains valid for
the critical case, although there is no infinite open cluster. In this case, the
situation is less clear and the finiteness of Eρ becomes a delicate problem (see
[14]).

1.3. Limit theorems for minimal route lengths
A path π from A to B is called a route for the passage time T (A, B) if

T (π) = T (A, B). For example, we can always find a route for c0,n. In two
dimensions, for any Fh and Fv, there exist routes for a0,n and b0,n almost
surely. A proof for the standard first-passage percolation (i.e. Fh = Fv = F )
is found in §4.3 of [9]. It works for our anisotropic setting.

The minimal route length for c0,n is defined by

Nc
0,n = inf{|π|; π is a route for c0,n}.

Similarly, the minimal route length for θ∗0,n is denoted by Nθ,∗
0,n , where θ = a

or b, and ∗ ∈ D. It remains difficult to obtain limit theorems for the minimal
route lengths. The argument in [12] for the supercritical case works for our
anisotropic model also:

Proposition 1.4 (cf. [12]). If ph �= 1, pv �= 1 and ph + pv > 1, then
there are constants λh, λv > 1, which depend only on ph and pv, such that

lim
n→∞

Nθ,l
0,n

n
= lim

n→∞
Nθ,r

0,n

n
= λh, lim

n→∞
Nθ,u

0,n

n
= lim

n→∞
Nθ,d

0,n

n
= λv

almost surely and in L1, where θ = a or b.
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As for Nc
0,n, we have the following

Theorem 1.2. If ph �= 1, pv �= 1 and ph + pv > 1, then

lim
n→∞

Nc
0,n

n
= min{λh, λv} a.s. and in L1.

A claim in [7] is that for the standard first-passage percolation, the ex-
istence of the limit of N b

0,n/n implies the existence of the limit of Nc
0,n/n in

the whole parameter region. Unfortunately, the argument in [7] is not correct.
Here we justify the above claim at least for the supercritical phase, and extend
it to the anisotropic case. Although the statement of the theorem looks like
Proposition 1.2 (2), we need a separate proof.

2. Proofs

Proof of Theorem 1.1. Almost the same arguments in [13], [14] work.
Here we give a simpler proof of (1) than in [13], which can be applied to some
dependent models, such as the two-dimensional Ising first-passage percolation.

Since each route for T (0, nu) intersects both ∂B(n/3) and nu + ∂B(n/3),
we have

T (0, nu) ≥ T (0, ∂B(n/3)) + T (nu, nu + ∂B(n/3)).

By the translation-invariance, ET (0, nu) ≥ 2Ec0,n/3. Using the monotone
convergence theorem, we can conclude that lim inf

n→∞ ET (0, nu) ≥ 2Eρ.
Let us consider the event

Gm := {there is an open circuit Cm surrounding 0 in B(m) \ B(n)},

where B(n) = [−n, n]2 ∩ Z
2. For fixed n ∈ N, lim

m→∞P (Gm) = 1. We take a

route r1 for c0,m and a route r2 for T (nu, ∂B(m)) arbitrarily. On Gm, both r1

and r2 must intersect Cm, which implies that

T (0, nu) ≤ t(r1) + 0 + t(r2) = c0,m + T (nu, ∂B(m)).

Noting that T (nu, ∂B(m)) ≤ T (nu, nu+ ∂B(m+2n)), and the distribution of
T (nu, nu + ∂B(m + 2n)) equals that of c0,m+2n,

ET (0, nu) = E[T (0, nu) : Gm] + E[T (0, nu) : Gc
m]

≤ E[c0,m + c0,m+2n] + n max{mh, mv} · P (Gc
m).

Letting m → ∞ and then, n → ∞, we have lim sup
n→∞

ET (0, nu) ≤ 2Eρ. This

completes the proof.

Before proving Theorem 1.2, we prepare some lemmata. The first one is
about some fundamental results on the anisotropic Bernoulli percolation.
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Lemma 2.1. (1) The radius distribution of C0 decays exponentially if
ph + pv < 1. In particular, we have Eph,pv

[|C0|m] < +∞ for all m ∈ N. By the
duality, the radius of each dual closed cluster decays exponentially if ph+pv > 1.

(2) The probability that there is a left-right open crossing in the rectangle
[−M, M ] × [−L, L] is denoted by R↔

L,M = R↔
L,M (ph, pv). Similarly, R

�
L,M =

R
�
L,M (ph, pv) denotes the top-bottom open crossing probability. Then,

R↔
L,3M ≥

(
R

�
L,M

)3

·
(

1 −
√

1 − R
�
L,M

)4

·
(
1 −

√
1 − R↔

L,M

)8

,

R
�
3L,M ≥ (

R↔
L,M

)3 ·
(
1 −

√
1 − R↔

L,M

)4

·
(

1 −
√

1 − R
�
L,M

)8

.

The exponential decay result (1) can be proved by the Menshikov argument
(see [4, §5.2]). A version of the Russo-Seymour-Welsh lemma (2) is found in
[10, p. 85].

Suppose that ph + pv > 1. Let I be the unique infinite open cluster. The
minimal open circuit surrounding ne1 and connected to I is denoted by Dn.
The next lemma corresponds to Lemma 2 in [12]. This is proved by the method
in section 2 of [1] together with Lemma 2.1.

Lemma 2.2. If ph �= 1, pv �= 1 and ph + pv > 1, then for any m ≥ 1,

Eph,pv
[|Dn|m] < +∞ and lim

n→∞
|Dn|
n

= 0 a.s.

The following lemma is a variant of Lemma 1 in [12].

Lemma 2.3. Assume that D0 lies in the box B(n). Then a path r from
0 to ∂B(n) is a route for c0,n if and only if r consists of two pieces r1 and r2,
say r = r1 ∗ r2, of the following nature: r1 connects 0 to D0 inside D0 (except
for its endpoint on D0) and has minimal passage time among such paths. r2 is
contained in I and connects D0 to ∂B(n).

We put

∂B(n)u = {(x, y) ∈ Z
2;−n ≤ x ≤ n, y = n},

∂B(n)d = {(x, y) ∈ Z
2;−n ≤ x ≤ n, y = −n},

∂B(n)l = {(x, y) ∈ Z
2; x = −n, −n ≤ y ≤ n},

∂B(n)r = {(x, y) ∈ Z
2; x = n, −n ≤ y ≤ n}.

The set of routes for c0,n is denoted by Rc
0,n. For any ∗ ∈ D, we define Rc,∗

0,n is
the set of paths in Rc

0,n whose endpoints are in ∂B(n)∗.

Lemma 2.4. With probability one, there exists a random number N
such that all the above four sets are non-empty and D0 ⊂ B(n) for all n ≥ N .
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Proof. If there exists an infinite open cluster in Qr
n := {(x, y) ∈ Z

2; x ≥
0, |y| ≤ x} almost surely, then by Lemma 2.3, Rc,r

0,n �= ∅ for large n. Using
Lemma 2.1, such an infinite cluster can be constructed by a standard sponge-
crossing argument.

The monotonicity of N b
0,n (for large n) is used in the proof of Lemma 4 in

[12]. We can see that Nc
0,n is also monotone for large n.

Lemma 2.5. If N ≤ n < n′, then Nc
0,n < Nc

0,n′ .

Proof. Let r′ be a path from 0 to ∂B(n′) with T (r′) = c0,n′ and |r′| =
Nc

0,n′ . We decompose r′ = r′1 ∗ r′2 as in Lemma 2.3. Let r2 be the piece of
r′2 from its starting point to its first intersection with ∂B(n). Then, again by
Lemma 2.3, r := r′1 ∗ r2 is route for c0,n. Thus we have

Nc
0,n ≤ |r| = |r′1| + |r2| < |r′1| + |r′2| = |r′| = Nc

0,n′ .

Hereafter we assume that n ≥ N . For any ∗ ∈ D, we define

N c,∗
0,n = inf{|r|; r ∈ Rc,∗

0,n, T (r) = c0,n}.

Clearly, Nc,∗
0,n ≥ Nc

0,n and Nc,∗
0,n < Nc,∗

0,n+1 for any ∗ ∈ D. By a simple argument
(among others, as in [7]), we have Nc

0,n ≤ N b,∗
0,n ≤ Nc,∗

0,n for any ∗ ∈ D. Note
that for each n, N c,∗

0,n = Nc
0,n for at least one direction ∗ ∈ D.

Proof of Theorem 1.2. As in the proof of Lemma 4 in [12], we can see
that

Nc
0,n ≤ Na,h

0,n + |Dn| and Nc
0,n ≤ Na,v

0,n + |D′
n|,

where D′
n denotes the minimal open circuit surrounding ne2 and connected to

I. By Proposition 1.4 and Lemma 2.2, we have

lim sup
n→∞

Nc
0,n

n
≤ min{λh, λv} a.s.

For θ = b or c, let Nθ,h
0,n = min{Nθ,l

0,n, Nθ,r
0,n} and Nθ,v

0,n = min{Nθ,u
0,n , Nθ,d

0,n}.
If Nc

0,n < Nc,h
0,n eventually, then Nc

0,n = Nc,v
0,n = N b,v

0,n for large n and

lim
n→∞

Nc
0,n

n
= lim

n→∞
N b,v

0,n

n
= λv = min{λh, λv}

by Proposition 1.4. Similarly, if Nc
0,n < Nc,v

0,n eventually, then we have lim
n→∞

Nc
0,n

n
= λh = min{λh, λv}.

Suppose that we can find two subsequences {nk} and {mk} such that
Nc

0,nk
= Nc,v

0,nk
= N b,v

0,nk
and Nc

0,mk
= Nc,h

0,mk
= N b,h

0,mk
. Note that Nc

0,n = Nc,h
0,n =
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N b,h
0,n and Nc

0,n+1 = Nc,v
0,n+1 = N b,v

0,n+1 for infinitely many n’s. To establish the
existence of the limit of Nc

0,n/n, we shall prove that λh = λv in such a case.
Suppose that λh > λv. By Proposition 1.4, for given ε > 0, we can choose n so
large that ∣∣∣∣∣N

b,h
0,n

n
− λh

∣∣∣∣∣ < ε and

∣∣∣∣∣N
b,v
0,n+1

n + 1
− λv

∣∣∣∣∣ < ε.

If ε < (λh − λv)/2 and n ≥ (λv + ε)/(λh − λv − 2ε), then

Nc
0,n+1 = N b,v

0,n+1 ≤ (λv + ε)(n + 1)

≤ (λh − ε)n ≤ N b,h
0,n = Nc

0,n.

This contradicts Lemma 2.5.

3. Appendix: The ratio of boundary to volume of the open cluster

We give some formulae about the ratio of boundary to volume of the open
cluster of the origin in anisotropic Bernoulli bond percolation, which extend the
results in [3], [11]. For a subgraph C of L

2, let |C|h be the number of horizontal
edges in C and |C|v be the number of vertical edges in C. The boundary edges
of C is denoted by ∆C.

Theorem 3.1. For 0 < ph, pv ≤ 1 and n ∈ N,

Eph,pv
|∆C0 ∩ S(n)|h

Eph,pv
|C0 ∩ S(n)|h =

1 − ph

ph
,

Eph,pv
|∆C0 ∩ S(n)|v

Eph,pv
|C0 ∩ S(n)|v =

1 − pv

pv
,

where S(n) = [−n, n]2. When 0 < ph + pv < 1, we have

Eph,pv
|∆C0|h

Eph,pv
|C0|h =

1 − ph

ph
,

Eph,pv
|∆C0|v

Eph,pv
|C0|v =

1 − pv

pv
.

Proof. We can see that

Eph,pv
[|∆C0 ∩ S(n)|h]

=
∑

e⊂S(n);horizontal

Pph,pv
{a horizontal edge e belongs to ∆C0}

=
∑

e⊂S(n);horizontal

1 − ph

ph
Pph,pv

{a horizontal edge e belongs to C0}

=
1 − ph

ph
Eph,pv

[|C0 ∩ S(n)|h].

For the subcritical case, we get the desired result by using Lemma 2.1 (1) and
the monotone convergence theorem.

For the supercritical case, we can obtain the following information about
the geometry of the infinite open cluster, which is an extension of Theorem
8.99 in [4].
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Theorem 3.2. Suppose that 0 < ph, pv ≤ 1 and ph + pv > 1. Let I be
the infinite cluster and Ie be the edges both of whose endpoints are in I. Then,
as n → ∞,

|∆I ∩ S(n)|h
|Ie ∩ S(n)|h → 1 − ph

ph
and

|∆I ∩ S(n)|v
|Ie ∩ S(n)|v → 1 − pv

pv
a.s.

This can be proved by the argument for Theorem 8.99 in [4] with similar
modifications as in the proof of Theorem 3.1.

These theorems have a little weaker version for higher-dimensional cases,
proved by a similar method.
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