J. Math. Kyoto Univ. (JMKYAZ)
46-4 (2006), 713-754

Asymptotics of Green functions and the
limiting absorption principle for elliptic
operators with periodic coefficients

By

Minoru MURATA and Tetsuo T'SUCHIDA

Abstract

We give the asymptotics of Green functions Gxtio(z,y) as |z —y| —
oo for an elliptic operator with periodic coefficients on R? in the case
where d > 2 and the spectral parameter \ is close to and greater than
the bottom of the spectrum of the operator. The main tools are the
Bloch representation of the resolvent and the stationary phase method.
As a by-product, we also show directly the limiting absorption principle.
In the one dimensional case, we show that Green functions are written
as products of exponential functions and periodic functions for any A in
the interior of the spectrum or the resolvent set.

1. Introduction

The scattering and spectral theory for periodic Schrodinger operators L
on R? has been developed to some extent; in its study the limiting absorption
principle (i.e., the existence of the limits (L — A F40)~! in a certain topology)
has played a crucial role (cf. [T}, [Be], [Si], [G], [GN1,2], [Su], [RS], [BY], [FS]).

The main purpose of this paper is to give the asymptotics of the integral
kernel Gy+o(z,y) as |z — y| — oo of the operator (L — X Fi0)~! in the case
where d > 2 and the parameter A is greater than and close to Ay, the bottom
of the spectrum of L. In the subcritical case (i.e., either A < A\g or A = A\g and
d > 3) we gave the asymptotics of the resolvent kernel and used it to determine
the Martin boundary in [MT] (see also [Bal, [Se]). This paper is a continuation
of [MT]; and the basic tool used in both papers is the Bloch representation of
the resolvent. The secondary purpose is to give a direct and elementary proof
of the limiting absorption principle by the method employed in establishing the
asymptotics of Green functions. The last purpose is to describe precisely Green
functions for any A € R in the one dimensional case.
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714 Minoru Murata and Tetsuo Tsuchida

We consider a second order elliptic operator on R¢ with periodic coeffi-
cients

d 9 o
; B ( amj) Hele) =2V eV )

J,k=1

where d > 2, V = (9/dx1,...,0/dxq), and a(z) = (a;k(2))$ -, We assume
that the coefficients are real-valued measurable functions on R? which are Z9-
periodic, i.e., ajx(z+2) = aji(x) and c(z+2) = ¢(x) for any z € R? and 2z € Z4.
We further assume that a is a symmetric matrix-valued function satisfying

d

plél < Y ap(@)&ée < ptEP, z, e RY,

jk=1

for some p > 0, and that ¢ € L (R?) for some p > d/2. We regard L as the
selfadjoint operator on L?(R¢) with the domain D(L) = {u € H'(R%); Lu €
L?(R%)}, where H'(R?) is the Sobolev space of order one.

We recall some results to state our theorem. For each ¢ € C%, let L(() be
the operator on the d-dimensional torus T¢ = R?/Z¢ defined by

L(¢) = e %L = —(V +iC) - a(x)(V + i) + c(x),

where i = y/—1 is the imaginary unit. We regard L(¢) as a closed operator
with compact resolvent on L?(T?) with the domain

D(L(¢)) = {u € H'(T); L(Q)u € L*(TY)}.

{L(¢)} is a holomorphic family of type (B) (cf. [Ka]). Similarly, we regard the
formal adjoint L(¢)* of L(¢) as a closed operator in L2(T%). By the Krein-
Rutman theorem, for each ¢ € RY, L(i¢) has an eigenvalue A(i€) € R of
multiplicity one such that the corresponding eigenspace is generated by a posi-
tive function, which is Hoélder continuous by the elliptic regularity; furthermore,
A(i€) is also an eigenvalue of L(i€)* of multiplicity one such that the eigenspace
is generated by a positive Holder continuous function on T? (cf. [A1], [P2],
[Mu], [St]). We call

E(§) == A(i€)
the principal eigenvalue of L(i€). The following results are known (cf. [KP,
Lemma 12], [Ku, Theorem 4.6.7], [A2], [P1], [LP]).

Fact AP.  The function E(£) is real analytic and strictly concave. Its
Hessian Hess E(€) is negative definite for any ¢ € RY. The supremum supy
E(§) is attained only at § = 0, and V¢ E(E) = 0 if and only if £ = 0. E(§) is
nondegenerate (algeblaically simple).

We denote by A(¢) the analytic continuation of A(i€) in some neighborhood
of iR% in C?. Since A(i€) is the nondegenerate eigenvalue of L(i¢), the analytic
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perturbation theory implies that A({) is a nondegenerate eigenvalue of L(¢) for
¢ near iR%. If ¢ € RY, since L(¢) is selfadjoint, A(€) is real-valued. Since
the Hessian of E(&) is negative definite, Hess A(0) is positive definite. Hence,
there exists a sufficiently small positive number ¢ such that for any A with
A0) < X < A(0) + 6, {€ € R%; A(€) < A} is a compact and strictly convex set;
furthermore, VA(€) # 0 on X for any A € (A(0), A(0) + J), where

Xy = {€ € RY A®) = A}

Hence, for each s in the unit sphere S~! there exists a unique & € X such
that s = VA(&)/|VA(E)|- Regarding X, as the hypersurface oriented by
N(&) = =VA(&)/|VA(E)|, £ € X, we denote by K (&) the Gauss-Kronecker
curvature of X at . For £ € X, let ug be an eigenfunction to L(§)u = A(&)u.
For u € L*(T%), put [|u||®* = [ [u(z)[*dz. The symbol O(|z—y|™") stands for
a function f(z,y) on R? satisfying | f(z,y)| < Clz —y|™" on {|z —y| > R} for
some positive constants C' and R independent of z,y. Let R(z) = (L —2)~! be
the resolvent of L for z in the resolvent set. Our main theorem is the following.

Theorem 1.1.  There exists 6 > 0 such that for any A0) < X < A(0) +
8, the limit R(A+i0) f(z) := h?ol R(\+tie)f(z) in L? (RY) exists for f € L*>(R%)

loc
with compact support, and the integral kernels Gxtio(z,y) of R(A £140) admit
the following asymptotics as |x — y| — oo:

(1.1)
Gatio(z,y)

in(3-d)/4 el e (z)ue, (y)
VA IVEAE) @rle —yDED2 T ue, |2
(1.2)
Ga—io(,y)
o—im(3—d)/4 e i@ e e (2)ue, (y)

T VAG) VNG @rle —y) @D [fug, |2

where s = (x —y)/|x — y|.

(1+O0(lz —yI™"),

(1+0(z —yl™"),

The rest of this paper is organized as follows. In Section 2, we shall give
and prove a precise version of Theorem 1.1 (Theorem 2.3). Theorem 2.3 spec-
ifies precisely the interval in which the spectral parameter A can be contained.
In Section 3, we give the asymptotics at infinity of the m-th derivative of
G+io(z,y) with respect to A\, m = 1,2,--- (see Theorem 3.1). In Section 4,
as a by-product of the proof of the theorems, we give a direct and elementary
proof of the limiting absorption principle. Finally, in Section 5, in the case
d =1 we calculate G)10(z,y) and show that the limiting absorption principle
holds for any A in the interior of the spectrum. We study also the case that A
is in the resolvent set.
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2. Proof of Theorem 1.1

For each ¢ € R%, L(€) is a selfadjoint operator with compact resolvent, so
it has discrete spectrum A (§) < Ay(§) < -+ counted with multiplicities. Each
A (€) is continuous and (27Z)%-periodic, and called the n-th band function (see
e.g. [Ku, p.161] or [SK]). Put Ag min = 5211{5 A2(€) and let

W := the connected component of {£ € R%: M (&) < A2min}

containing £ = 0.
Lemma 2.1. (i) sup A(i€) = A(0) = girg A1(€) = A(0) < A (§) for
CER?

(ERA
¢ € [~m 7"\ {0}
(ii) W is not empty. Furthermore, \(§) is a nondegenerate eigenvalue of
L(&), £ € W; real analytic on W and the analytic continuation of A(£).

Proof. (i) The first equality has been seen in Fact AP. The second follows
from [MT, Proposition 2.1]. The third equality and the last inequality is known
for the case a;;(x) = ¢;; in [KS, Theorem 2.1]. The proof works out similarly
for our general case. (ii) By (i) W is not empty. Since L() is selfadjoint, A1 (),
& € W, is nondegenerate. The other statements follows from the nondegeneracy
and the continuity of A\; by the analytic perturbation theory. [l

Taking account of Lemma 2.1(ii), we denote A1(§) by A(€) for £ € W. We
have A(€) = A(=¢) for £ € W. For A(0) < A < Az min, let

W) := the connected component of {{ € W;A(£) < A} containing & = 0.

Put
I:={X € (A0), Ao,min); for any A € (A(0), X),
(i) Hess A(§) is positive definite on Wy;
(i) Upmeza (Wi +2mm) = {€ € RE M\ (€) < A}}
and

Aconw = sup 1.

Lemma 2.2.  The set I is not empty and A(0) < Aconw- Furthermore,
for any X € (A(0), Aeonv), Wi is compact and strictly convez.

Proof. From the positive definiteness of Hess A(0), the periodicity of the
function A1, and Lemma 2.1(i), it follows that the former part of the lemma
holds. We show the latter part. First we claim that if W) is strictly convex for
A(0) < A < Aconw, then Wy is bounded. Suppose that there exists a sequence
{&.} € W, such that |£,] > n. We may assume that &, /|€,| converges to some
n € S?1. Since 0 € Wy, the convexity of Wy implies that t&,/|¢,| € Wy for
0 <t <& So we have tn € W, for any t > 0. Wy, contains the ball with the
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center at the origin and radius r > 0 for some r. Hence the segment connecting
tn with each point in the ball belongs to Wy. Taking ¢ — oo, we obtain that
W, contains the tubular neighborhood with rudius r of the half line with the
direction 7. The tubular neighborhood contains some 2rm # 0, m € Z%. Then
by the periodicity of A, we have the contradiction

1
0=m-(VA(2mm) — VA(0)) = 27r/ m - HessA(02mm)md6 > 0.
0

Next we show that W) is strictly convex for A(0) < A < Acony. Since
Hess A(0) is positive definite, there exists ¢ > 0 such that for A(0) < A <
A(0) + 6, W)y is strictly convex. We claim that if Wy, is strictly convex for any
A(0) < A < Ao with some Ag < Acone, 50 is Wy,. In fact, for any £, &' € W),
we can take {&,},{&,} C Wy, so that &, — &, &, — &'. Then the segment
connecting &, with &, belongs to W),. So the segment connecting £ with
& belongs to Wy,. Since Hess A is positive definite on W), it follows that
for 0 <t < 1, A(€ + (1 =)&) < tA(&) + (1 — t)A(E') < Ao. This yields
that t& + (1 — t)¢’ € W), and hence W), is strictly convex. Furthermore, we
claim that if W—>\0 is strictly convex, then there exists X' < Acony such that
W)y, is strictly convex for \g < A < X. In fact, since W), is strictly convex,
there exists a compact, strictly convex neighborhood K C W of W,, such
that Hess A is positive definite on K. The function A is strictly convex on K.
Put X' = mingcorx A(§). Then W, is strictly convex for \g < A < X. The
arguments above imply that sup{A < Aeonw; W is strictly convex} = Acony-
Thus we have proved the lemma. O

Let X, :={¢£ € W;A(§) = A}. For s € 81 let & be the point such that
s =VA(&)/IVA(E)], and choose {es ; ?;% C R? such that {es1,...,€54-1,5}
is an orthonormal basis of R?. Theorem 1.1 is a consequence of the following
theorem.

Theorem 2.3.  Let A(0) < A < Aeonw. Then the limit R(A\ % i0) f(x)
in L} (R?) exists for f € L>(R?) with compact support, and the convergence
is locally uniform in (A(0), \eonw). For any w € S9=1 there exist a conic
neighborhood V,, of w and a constant C,, > 0 such that Gx10(z,y) admits the

asymptotics

[VAE)| =272 eimOm DA S e (2)ue, (y)
det(es,; - Hess A(&)es k) jn) /2 (2w — y[)l=D72 g |2
x (1+0(z—yl™),

Gatio(T,y) = (

where s = (z —y)/|z —y| and |O(Jz —y|™)| < Cylz —y|~! for any z —y € V,,.
Proof of Theorem 1.1. Let N(&) = —VA(E)/|VA(€)], £ € Xx. Then we
have

det((e; - Hess A(€)eg) k)
[VA(E)[*—1 7

K(§) = det(—((ej - V)(N(E) - ex))jn) =
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where {ej1,...,e4—1} is an orthonormal basis of the tangent plane of K at &
(cf. [Th]). From this Theorem 2.3 implies (1.1). (1.2) follows from (1.1) and
the relation G—;o(x,y) = Grtio(y, x). O

In the rest of this section we shall prove Theorem 2.3.
We denote by o(T) the spectrum of an operator T'. Let

I:={(£2) € R x C;z ¢ a(L(£))},
R(&,2) := (L(&) —2) ! for (€, 2) €T

Assume A(0) < A < Aeonw- Let f € L?(RY) with compact support. In the same
way as Proposition 2.3 of [MT] we obtain that for any € > 0

(21) R\ +ie)f(x) =U'R(EN+ie)Uf(x) = /(_Tm]d Fyiic(§,x) (chf)d’
where
Uf(§ )= fle—mye =™ fe L*(RY)

meZa
- i - df .
uge) = [ e g€ PR AT
(22) Fagic(&m) =" R(E N+ ie)Uf (€, x).

Here we regard R(&, A\ + ie)Uf(€,x) as a periodic function of z. Note that
Fyiic(€,2) is the (27Z)%periodic function of ¢ (see [MT, Lemma 2.4]). Since
A < A2 min, there exists 6 > 0 such that A(0) <A —36 < A+ 35 < Acony. Put

Ds:={£eW;x=50 <A(§) < A+ }.
For € € Ds,
a(L(§)) N{z € C;|z — Al <20} = {A(§)}.
We have for (§,2) € Ds x {z € C;|z — A| < 6}, z # A(§),

(2.3) R(&,2) = (A(€) — 2) 7' P(€) + Q= (8),
where
(2.4)
o __1 Z/ ZI — i R(£7Z/) Z’
PO =5 f, | REDE Q0= 5 ﬁ-ma H&2) g

P(¢) and Q, (&) are defined for £ € Ds and for (€, 2) € Dsx{z € C;|z—\| < ¢},
respectively. Note that (¢,2) € T if and only if (¢ + 27m,2) € T, m € Z¢. So
we extend P(€) and @Q,(§) to functions on U,,cza(Ds + 2wm) and

Umezd(Ds + 2mm) x {z € C;|z — A| < 0} by (2.4).
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Fix € € D; and let ug be an eigenfunction of L(€)u = A()u. Then

p¢ 1= P(§)ug is a Holder continuous solution to L(§)u = A(§)u and a HY(T9)-
valued analytic function in ¢ (see [MT, Lemma 3.3]). Furthermore, we have
e # 0 for £ € B(r,§), the ball of some radius r = r(§) > 0 with the center &.
Since P(€) is the orthogonal projection onto the eigenspace, the integral kernel
p(&; 2, y) of P(£) is written as

(25)  p(& 2,y) = ee(@)peW)/lleell’, €€ B(r,§), z,yeT?

By Lemma 3.3 (iii) of [MT], for any multi-index 3

(2.6) sup  [07p(&: - le(raxmey < Cs
§EB(r8)

for some Cg > 0. By covering Ds with finite balls {B(r(éj),éj);éj € Ds,1 <
j < J}, we have the estimate (2.6) with SUD¢e (1 ) replaced by supgcp, -

For w € S%! let &, € X be the point such that w = VA(&,)/|VA(E)].
Note that —&,, € X since A(§) = A(—§). We take functions 1;(§) € Cg°(Ds),
7 =1,2,3, such that

(i) ¥1 = 1 near &, and w - VA > 0 on the support of 1)1;

(ii) 1o = 1 near —¢&,,, and w - VA < 0 on the support of to;

(iif) ws_lnear {€ € Xy; w-VA(£) =0};

(iv) 9(§) == Zj:l ¥;j(§) = 1 near X,.

Let ro > 0 be a number such that ¢;(£) =1 for £, |£ — &,| < ro, and let V,, be
the conic neighborhood of w:

(2.7)
V., := {z € R4\ {0};2 = tVA(E) for some ¢t > 0 and some &, |€ — &,| < 70/2}.

We claim that for any m, m’ € Z¢, m # m/, and any A\ < Acono,
(W + 27mm) N (W + 27m”) = 0.
In fact, suppose that £ € Wy N (W) + 27m), m # 0. Then &, £ — 2am € W,
By the periodicity of A and the convexity of W), we have the contradiction

1
=m-(VA(E)—VA({—2mm)) = 27r/ m-HessA(02rm+ (£ —27m))mdo > 0.
0

By this claim, we extend ¢ € C§°(Ds) to a periodic C*°-function ¢ on R? by
putting (& 4 27rm) := (&) for € € Ds and m € Z%, and 9(£) = 0 otherwise.
Put

Fs == |R%\ U (Ds +2mm) | N (—m, 7)<

meZd
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By the periodicity of F);;c we have

/ Fyie(§,x) d§ = / + / Fpic(&,x)d¢
(=m,m]d Es (—=m, 7]\ E;s
:/ +/ Fyiic(§, ) d§
Es Um [(—m,7]4N(Ds+27m)]
:/ +/ F/\+i€(§ax) dg
Es Um [((—=m,7]4—=27rm)NDs]
:/ +/ F>\+is(£ax) df
Es JDs

Thus by (2.1), (2.2), and (2.3) we have for € > 0 small enough

R\ +ie) f(x) = Z Lingief (),

where

V(e POUF(E x) dE
by, A -A—ie  (@2nd

Ij,)\—i-isf(m) = .7 = 132,37

Larrief(x) = /E Fme(m@df)ﬁ /D (1—¢(§))FA+¢E(§7$)%
[ BO QU ()
Ds (2m)

We denote by I ayic(x,y) the integral kernel of each I; xe.
First we treat I; y4i.. We have

B ey, (& a,y) dE
Iy avic(@,y) = /D,; AE) = N—ie  (2m)@

where py(&;2,y) := ¥1(€)p(&; 2, y) is regarded as a periodic function of z,y €
R<. We choose {e),... e} C R? such that {w,e),...,€,} is an orthonormal
basis of R?, and use the coordinates (¢1,¢') = (&1, .. .,&4) and

(z=y1,(—y)) =z —y)1,...,(x — y)a) such that
d
(28) E=&Luw+E ¢ = £1w+Z§je; andz—y=(z—yhw+(x—y) €.
=2

Changing the integral variables from (£1,¢’) to ¢ = ((1,¢’) such that ¢; =
AE) — N\, ' =&, we have

dc
@)t

. o + ' -esx,y)| 06
AN - il(a—1)161(Q)+a—y) ¢ PLELOwW i
LAt (13, y) /Rd ¢ (1 — i€ a¢
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Since w - VA > 0 on the support of ¥, we have 0 < 9&;/9(; =
(w- VA& (Qw+ ¢ - €)™t < 0o. Note that for ¢ € C(R) and € > 0,

’/R Lc 71 ie (p“’é + ”5(33))] o(x)dx

Taking the limit € | 0, we obtain that

< Cellpller-

(2.9)
I avio(z,y) = 16%1 I yyic(z,y)

_ ile—)161 ()t (a—y) -1 PLE(Qw + (' - €52, y) ( 1. ) d¢
_/Rde y +(z—y o VAGQw L) p.v. G +im6((y) 2y’

Here the convergence is uniform with respect to (z,y) and locally uniform

with respect to A\. Hence I xyic f(2) — I pyiof (@) := [ I xvio(z, y) f(y)dy in
L%OC(Rd) locally uniformly with respect to A. We prepare a lemma to estimate
the integral, which plays a crucial role in proving Theorem 2.3.

Lemma 2.4. Letb(x) € C§°(R), and p(x) be real-valued C*(R)- func-
tion. Assume that ©'(x) > 0 on suppb. Then for any positive integer N,

/ eV?@p(z)p.v.= de = +ire*Ob(0) + O(jv| V)
x

—0
as v — Fo0, where O(|v|~N) satisfies the estimate

10(Jv|=™)| < Onlsupp bl (1Bl c25+1 ||l g2+ ||~
with some constant Cy. Here |suppb| is the Lebesque measure of supp b.

Proof. First we shall show the following: for any positive integer IV,

(2.10) /OO ei””b(m)p.vé dx = +irb(0) + O(|v|™)

—00

as v — oo, where |O(|[v|™N)| < Cnlv|™ [ b+ (z)|dz. In fact, the left-
hand side equals

<p.vé>xk b(—v) = —in/7/2 (sgn v % b)(—v)
= —i\/7/2 (— /oo b(v)dv' +2/_V13(V')d;/) = imb(0) + O(v~N)

— 00 — 00

as v — 0o, where b(v) = \/% [ e*b(z)dx is the Fourier transform of b. The
asymptotics for the case v — —oo can be obtained similarly. Next we show
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the estimate in the lemma. Take x(z) € C§°((—1,1)) such that xy = 1 near the
origin. We divide the integral in question into two parts

Iy 1
/ eV @ p(z)p.v. = da
x

—00

< 1
:/ eV?@p(z)p.v. = x (V|2 x) da +/
x

=: Jl(V) + Jg(l/).
Write o(x) as

oo

e X (1 (o] 20) do
x

() = p(0) + 2/ (0) + (), r(x) = o / (1 0)¢" (9)do,

|1/2

and change the integral variables to y = |v|*/“z to obtain

. o0 . ’ 1
Ty (v) = ewsa(O)/ iV (O)y/|V|1/2bU(y)p.V.§ dy,

— 00

where b, (y) = @/ *)p(y /|v|1/2)x(y). Note that

| ¥y < Clsuppbllbllexn ellovs
—00

with some constant C'y > 0 independent of || > 1. Thus by (2.10) we obtain
J1(v) = O (£ixb(0) + O(|v|~N/?)) as v — Fo0,

with |O(|v|~N/2)| < Cnlsuppb|||bllen+1 |l@llen+s|v] /2. Next we estimate
Jo(v). Since ¢’ # 0 on supp b, it follows that

alw) = iy [~ evetan (M) a,

where ® is the differential operator given by ®u(x) = (u(z)/¢’(x))’. Using that
sup [0 (b(a) (L — x([v]22) /)| < Cov Bl [pllcm v +D72,

we have |Jo(v)| < Clsupp blIBlle |l || N +D72. 0

Note that if x —y € V, (see (2.7) for the definition of V,,) then (z —y); >
c|(x —y)'| for some ¢ > 0. Since 9&1/9¢; > 0 on supp ¢1, Lemma 2.4 implies
that for any positive integer N and z —y € V,

(2.11)
I xvio(, )

— 2/ (ei[(:vy)lsl(muy)’~<’]p1(£1(4)w +¢ e, y)> ' dg¢’
Ri-1 w- VAL (Qw + (- €') )|, 2o (2m)41

+O0((z—y)7N)

- z/ gila=ylls161(0.¢)+s¢1PLEO0, Nw + (- sz, y)  d¢
Ri1 w - VA(§1(0, ¢ w + ¢ - €') (2m) 41

+ O(('l‘ - y|_N)7
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where s = (z —y)/|z —y| = sw+ 5 - €.

Since A(&1(0,¢")w + (' - €') = A, (' satisfies the equation O¢/(s1£1(0,¢") +
s’ - (') = 0 if and only if s is the direction of VA(&1(0,{ )w + ¢’ - €’). So the
equation has a unique solution ¢’ = {}, and we have & = £;(0,(,)w + (. - €.
We apply the stationary phase method (cf. [H, Theorem 7.7.5]) to the integral
in (2.11) to obtain that

(2.12)
I xio(, y)
o < o ><d—1>/2ei[(x—yh&l(o,ci>+<m—y>’-<;]emsgansssl<o,<;)/4

= (2m)d=1\ |z — y| 3(1d_1)/2|det Hess &, (0,1)[1/2
P(fs;iﬂ,y) _ N
X <wVA(€S) +O(lz -y 1)) +O(|lz —y|~N).
Since
oaz  BeE0Ck = 900,610.C)

= —(w - VA(&)) 7 (0, §1w + ) - Hess (&) (9 1w + €f,),

the Hessian is negative definite, and so sgn Hess1(0,{.) =1 —d.
We shall show that

w - VA(fs)sgd_l)/z\ det Hess & (0, C;)|1/2

(2.14)
= |VA(§S)|_(d_3)/2| det(es,j - Hess A(fS)e&k)jkll/Qa

where {es1,...,€s.4-1,5} is an orthonormal basis of R?. By using (2.13) and
s1=w - VA(&)/|VA(Es)|, we have that the left-hand side of (2.14) equals

51| VA(E)| 2] det[(0, &1 + €f) - Hess A(&,) (0 Eaw + ep)] el /2.
It suffices to show that
| det[(D¢, Erw+€])-Hess A(&) (O, Srw+ep)]jk| = s17| det(es ;- Hess A(Es)es k) k-

Since {0, &1w + €;}9_, and {es,j}?;% are basis of the tangent space of X
at &, we can write J¢;§ 1w + €} = ZZ: bjresk, j = 2,...,d, for some B =
(bjk)j=2,....d,k=1,....i—1- Then

| det[(O, &1w + €)) - Hess A(&) (D¢, 1w + €]k
= (det B)?| det (e, ; - Hess A(&5)es k) k-

On the other hand, since {es1,...,€s4—1, S} is an orthonormal basis, we have
| det B| = | det(s7 8C2§1w + 6/2, veey aﬁdglw + e:i))‘ = 1/317

where we used 9¢;§1 = —s;/s1 in the last equality. We have thus shown (2.14).
Combining (2.12) with (2.14), we obtain
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Lemma 2.5. Forxz—yeV,,

I yvio(z,y)

DS A ) -
= 2nlr —y)@ D2 (det(esyj'HeSSA(gs)es,k:)jk)l/z( +O(lz —y|™)).

By (2.5) we get the main term of the asymptotics.
In the same way as above, we obtain that Is xy0(z,y) := li%l Iy atic(z,y)
I

is equal to the right-hand side of (2.9) with p;(&; z,y) replaced by p2(&; z,y) :=
¥2(&)p(&;x,y). Here the convergence is uniform with respect to (z,y) and
locally uniform with respect to A. Hence Iy y+c f(2) — Iz a+i0f(x)

= [ Itio(z,y) f(y)dy in L? . (R?) locally uniformly with respect to A. Since
061/0¢1 = (w- VA& (Qw + ¢+ €'))™ < 0 on supp ¥z, Lemma 2.4 implies that
the term with the factor iwd({1) cancels the one with the factor p.V.Cfl modulo
the remainder O((z — y)7V) = O(|z — y|~N) for  — y € V,, and any positive
integer N. Thus we obtain

Lemma 2.6.  For any positive integer N, I x1i0(z,y) = O(|lz — y|~V)
forxz—yeV,.

Next we treat I3 xyie-
Lemma 2.7.  For any positive integer N,
I3 avio(z,y) = laiﬁ)lfs,,\Jrie(x,y) =O(lz—yI™)

forx—y eV,
Proof. We have
Y3(§)e T Ep(&sa,y) dE
Ds A) — A\ —ie (2m)d”

By using a partition of unity for supps, it suffices to consider integrals re-
stricted on sufficiently small integral domains, i.e., let x € C§° be a cutoff
function such that x = 1 near a point £ € X, N suppws and consider the
integral

I3 ayic(w,y) =

iW(z=y)Ep ¢
Isnricn (1) = /D X(©es(§e' eV Ep(&ay) dE

A& — A —ie (2m)d”
Let n be the outward unit normal vector to X at &, i.e., n = VA(&)/|VA(&)].
Take {€3,...,Eq} such that {n,w,és,...,&4} is a basis of R%. Using the coor-

dinates (m1,7m2,7) = (1,72, - - -, m4), we change the integral variables such that
E=mn+nw+1n-€=mn-+mnw+ 2?23 n;€;. Then putting p3(&; x,y) =
X(§)¥s(§)p(&; 2,y), we have

I3 xviex (2, Y)

__D i(z—y)- (mn+naw+i-€) p3(mn +new + 17 - & ,y)
=— e +i -
(2m)" Jga A(mn +new + 7€) — A —ic

dnydnadn),
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where D = [det(n,w,é3,...,€4)]. We change the integral variables from

(M, m2,7) to ¢ = (C1, G2, €) such that ¢ = A(mn +mew +7-€) — A and (G, ) =
(n2,7). Then

[3’>\+1.57X(m7y) :/ etlz—yls-(m (¢ yntCaw+c-e) T\S) (C) d{ld@d(,
Rd G —
where
D
(2.15) 1(0) 1= Gyabs(m(Qn + G+ &50,) el

We may assume that n - VA > 0 on supp x without loss of generality. Then
Oeym = (n - VA)™! < oo. Since ¢1 = A(mi(O)n + Gw + ¢ - €) — A, we have
Oy = —w - VA/n - VA. Thus

w- VA
n-VA

e (8- (M(QOn + Gw)) = — s-n+s-w=:1t(C).

If s € V,, and 11 ({)n+Cow—+C-€ € supp x¢s, then t(¢) > 0since V,N{VA(£); € €
supp x¥3} = 0. Then for any positive integer N,

asieadasy) = (ile — )™ [ etmvimonomstn L0 a0
R G —
where Tr(¢) = O¢, (r(¢)/t(¢)). Thus we have

(—ilz — y) N Iz ppio (2, y) = hm( il — y) N Iz pie (7, )

:/ el m@uicereOTNy(() (P'V'gl “ﬂé(cl)) dcrdGadC,
R4 1

where the convergence is uniform with respect to (z,y) and locally uniform

with respect to A. This implies that Is x+ic () — I3 xti0,x f ()

= [ Iz xti0x (2, y) f(y)dy in L?(R?) locally uniformly with respect to A. Hence

it follows that I3 x1i0. (z,9y) = O(|z —y|~™). We have thus proved the lemma.
O

Next we treat Iy yti. Since the functions of £, (1 — ¥(§))Frte(§, z) and

1% VO )

210 S =25 7 f)\fzs

(€)™ Qurric (U (E,7) =

have (27Z)%-periodicity, we have

3
(2m)

+/ D(E)E T Quric (U (€, )
(=m,m]d

lirie@ = [ (0= O)Prilen)

d
(2m)d
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Since (1 —(&))(R(&, A +1ig) — R(€,))) — 0 in the norm of B(L?*(T%)) ase | 0
uniformly on supp (1 — (&),

0 OBl ) gy = U (L YR + i)

Lo f (@) == U (1 BV RIE U ()
— _ eix-§ T i
= [0 RE AU €D

in L2(R%) as ¢ | 0. Similarly, since 1(&)(Qxgc(&) — @x(£)) — 0 in the norm
of B(L?(T%)) as ¢ | 0 uniformly on supp(£), we have

O Qn U € ) g = U QiU
- Izlll,x-s-iof(f) = L{flw(g)Q)\(f)Z/{f(x)
it

N eix'f T
- /(—Tr,Tr]d ¢(§) Q)\(g)u‘f(& ) (27T)d’

in L2(RY) as ¢ | 0. Thus Iyiof(z) = leiﬁ)ll47,\+i5f(m) = Iy ypiof(@) +

I 4’1’ aqiof (@), where the convergence is locally uniform with respect to .
We claim that

(216)  (L—NIiapof(@) = f@) — [ (€™ POUS(E z) e

Ds (2m)d

In fact, we have

(L = M sriof () HL(E) = M = () R(E, MU f(x)
1

U
=UT (1 —(E)USf (),

and

(L = NI o f () = UTHL(E) = MY () QAU ()
_ v (L(§) ="+ 2" = MR 2US(2)
=u 211 fz’—/\_Qé z = d
= U P(OUS (x) — U () P(EUS ().

Hence we have (2.16).

Denote the integral kernel of the resolvent R(&, z) by R(, z;z,y) for (£, 2)
erl.

Lemma 2.8.  The function R(§, z;x,y) is a measurable function on T' X
T¢ x T¢. For each fivzed y € T, R(§, z;2,y) is the WH(T?)-valued analytic
function on T; furthermore, R(, z;x,y) € HE (T4\{y}). For any compact set
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K in T and any multi-index «, there exists a constant Cx o > 0 such that for
¢ 2)eK

o C’Ka(1—|—|10g\1:—y||), d=2,
. < I
|8§ R(§727$7y)| = { CK,a|x_y|2_da d>3.
Proof. See [GW] or [Mi], and use Cauchy’s integral formula. O

Let Qa(&;2,y), £ € Upeza(Ds + 2mm), be the integral kernel of Q():

. _ 1 R(,252,y)
QA(&LZU) - 211 fi\z/—)\|—25 2! — >\ dZ :

Corollary 2.9.  For each fized y € T¢, Qx\(&;2,y) is the WH(T?)-
valued analytic function on U,,cgza(Ds + 2mm); furthermore, Qx (& x,y) €
HE (T {y}). For any multi-indez o, there exists a constant C,, such that for
§€Ds

o Co(l +[loglz —yl]), d=2,
|0 Qx (& 2, y)| é{ Colz — y2~¢, d>3.

The integral kernel Iy xi0(x,y) of Iy atyio is written as Iy xii0(z,y) =
Ij svio(®,y) + 1) s 1io(, y), where

d§
I/ . =
4,/\+10($7 Y) /(—‘n,‘n']d (27)d

d )
Haalen) = [ G atl@@aer e

(1 — (&) R(E, \; x, y)e' @€,

Lemma 2.10.  For any positive integer N, Iy xyio(z,y) = O(Jx—y|~N).

Combining Lemmas 2.5, 2.6, 2.7, and the lemma, we complete the proof
of Theorem 2.3.

Proof. We suppose d > 3. Since the case d = 2 is similarly shown, we
omit the proof. Let p > 0 and y € R%. Put x,,(x) := |B(p, y)| " XB(py) (@),
where X p(,,,)(2) is the characteristic function of the ball B(p,y) and |B(p,y)|
is the volume. We shall show that for any positive integer N there exists Cn
independent of p > 0 such that

(217) |I4,/\+i0Xp,y($)| S CN|£L' - yl_N.
We have
Izll,)\+i0XP7y(x)
(5 tm)- d¢
_ _ L i(z—-4m)-£
= [ ABOREN | 3 xpulmm)d ) )

meZd
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Note that for any multi-index o and m € Z¢
(2.18) OZR(E,N) = ™™ T2 R(E + 2mm, N)e 2™V,

Write § = (x — - +m)/|z — - +m|. By using (ilz — - +m|)~'5- Veell@—+m)e =
e@=+m)€ and the periodicity (2.18), we make integration by parts (N + N')-
times to obtain that

/ dg
I4,>\+i0Xp,y(33): Z Cal,az/

d
lal=N N7 (—m,m)d (271—)
a1 tas=a

r—tm)-

)

gaei(
X O (1= Y€ REN) | D Xl — m);

. N+N’
meZd t +m| i

with some constants Cy, «,. Here N’ is chosen sufficiently large later. Hence,
by Lemma 2.8 there exists C'nyns > 0 independent p > 0 such that

(2.19) T xvioXow ()] < Cnenvrla =y 7V 2] = [y]]*7,

where [z] € T? denotes the equivalence class of z. Similarly, by Corollary 2.9
we have (2.19) with I} y ;0Xp,y(2) replaced by I}y ;0Xp,y(z). These imply that
forl € Z4, |l > 1, z € (-1/2,1/2)¢,

[ Laprio Xy (y + 1+ 2)| < Onvene IV |27
If | and z satisfy |[|=V']2[27% < 1, i.e., |2| > |I|7N'/(@=2) then

[Lia+ioXpy(y + 1+ 2)] < On i~V
Next we consider the case |z| < r:= [I|7N'/(4=2) Since Iy x1i0X,., belongs to
H} (R?), and satisfies (2.16) with f replaced by x,,, the Hélder continuity
of solutions (cf. [St, Théoréme 7.2] or [GT, Theorem 8.22]) implies that there
exist a, K > 0 independent of y € R%, [ € Z%, |I| > 1, p > 0, such that for
z, 2 € (—=1/2,1/2)¢

L p+i0Xpy (Y + 1+ 2) — IixtioXpy(y + 1+ 2]
(2.20)

§K|z—z’\°‘ < sup I4,>\+i0Xp7y(y+l+Z)|+M> )
z€(~1/2,1/2]4

where M is the constant

M = C sup |Ip(&; -, )l o(rexTe)
£€Ds

(e WD PEUN (€, [y + 2])

Ds (27T)d , D> d/27

2|
Lr((~1/2,1/2))
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where the LP-norm is taken with respect to z-variable. Take 2’ such that |2/| = r
in (2.20). Then

sup |1y xioXp,y (¥ + 1+ 2)|
|z|<r

<Ol + K(2r)* < sup [y atioXpy (Y + 1+ 2)] +M>
se(—1/2,1/2]4

< C|l7N 4+ K(2r)® max <Isup I47>\+ioxp7y(y—|—l—|—z)|,C|[|—N> + MK(2r)*.
z|<r

Choose N’ so large that —aN’/(d — 2) < —N, and take |I| so large that
K (2r)* < 1/2. Then we have

sup Iy xtioXpy(y + 14 2)| < Cnll| V.
|z|<r

We thus obtain (2.17). Since

Iy yvioXpy(x) — I xtio(z,y) = /(147A+i0(96‘>y +2) = Ly ario(z,9))xp0(2) dz,

Lebesgue’s theorem implies that for fixed =, Iy xyioXp,y () = Iaxtio(z,y) as a

function of y in L}, as p | 0. We have thus shown the lemma. |

Remark 2.11.  We can show that G40 admits the following asymp-
totic expansion as |x — y| — oo: There exist functions g;(z,y),j = 1,2, ,
such that for any natural number n

eim(3—d)/4 etle—y)-&s

o) = o VR @rle )72
. - gj(x,y) o — ylmn 1
x (p(fs, ,y)+;r_y|j +O(|jz -y ))-

In order to prove this expansion, we have only to apply to the integral in (2.11)
the stationary phase method which gives the asymptotic expansion with the
higher order terms; and note Lemmas 2.6, 2.7, and Lemma 2.10. In principle,
we can explicitly calculate the functions g;(z,y), which are written by using
the derivatives of A(€) and p(&;z,y) at € = &.

3. Asymptotics of derivatives of the Green functions

m . . d m . .
Let G\ (,y) be the integral kernel of 11{1(()1 (ﬁ) R(X\ £ ig). Our aim of
g

this section is to prove the following.

Theorem 3.1.  Let A(0) < A < Aeonw- Then Gg\nl)io(x,y), m > 1, ad-
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mits the following asymptotics as |x — y| — oo:

S ANERY
(3.1) :<ilf—yl>’” e eeTE g (@)ug, ()
VA  |VAE) V(&) @rlz —yED2 T lug, |2

X (14 0(lz —y[™),
where s = (x —y)/|x — yl.
We prove the following theorem, which clearly implies Theorem 3.1.

Theorem 3.2.  Let A(0) < A < Aeony- For any w € S4=1 there exist
a conic neighborhood V,, of w and a constant C, > 0 such that GE\Ti)io(x,y)
satisfies the asymptotics (3.1), where |O(Jx — y|=1)| < Cylz — y|=t for any
r—y€eV,.

As will be clearly seen in the proof of the theorem, for f € L? with compact

7. is locally uniform with

d
support, the convergence of 1im (d)\) R(A+ie)f in L?

R(Atie)f = R(A+40)f. Let

respect to A. Hence hm ( (dd)\)

d)\)

ey (L) ol = ™ _REA)
am©= (1) @O B Tt

for (£,2) € Upeza(Ds + 2mm) x {z € C;|z — A| < §}, and denote its inte-
gral kernel by Qi’”)(g ;x,y). We need a lemma which follows from Lemma 2.8
immediately. Set (z)y = max{x,0} for z € R.

Lemma 3.3.  For any compact set K in 1", any multi-index o, and m >
0, there exists a constant Ck om > 0 such that for (§,z) € K

|0g 0" R(E, 232, y)|

Cram(1+ |log |z —y|)I=m™)+, d =2,
< Cramlz —y|~@7272m d>3, d#2+2m,
Cra,m(1 + [log |z —yl]), d>3, d=2+2m.

Furthermore, for any multi-index o and m > 0, there exists a constant Co m
such that for & € Dg

Ca,m(l—i—|log|x—y||)(1_m)+, d=2,
102Q" (&2, 9)] < { Canla — y|(@-272m) d>3, d#2+2m,
Com(1+|loglz —yl]), d>3, d=2+42m.

Proof of Theorem 3.2. We use the same notations as in Section 2. Since
R(¢,2) is a bounded operator-valued holomorphic function on {(¢,2) € C? x
C;z ¢ o(L(€))}, by (2.1) and (2.2) we have

(5) RO+ - [ (5) Rler+murEn s
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By (2.3) we have

<%) R(g A +ie) = (A() T!)]\DEO Yyl +Q}\+za(§)7 £ € Ds.

The same argument as in Section 2 shows that for f € L?(R%) with compact
support,
4

(%) " R\ +ie) f(z) = Z I, f (@),
where B
I f (@) = ml N w-"((/'f()gxff(g)ii[{&’f) ( ;ff) _, j=1,2,3,
@)=t [ (g R A+ i U )

T m dé
+ ] ve f@&ﬁawﬂf,w)w.

Here v, j = 1,2,3, and ¢ = 23:1 ; are the cutoff functions given below
(2.6).
First we treat 11( /\)HE By the same calculation as stated in the case I7 yyie
(m)

we obtain that the integral kernel I} M_w(x y) of I1( A)+w equals

L% ()

. 1, ol d

:m;/dezm—y)la() (w—y)-¢1P1LE(Qw + ¢ e,x,y)(gl_ig)_m_l ¢
R

w- VA& (Q)s+ (- ¢) (2m)4
_ m [ gil(z—)161(O)+(z—y)’ <]p1(§1(C)w+C’-e’;x,y)> -1 dC
= [ (e e ) 6 )

where p1(&;z,y) := ¥1(&)p(&; x,y). Taking the limit € | 0, we have
(32)

I kio(,y) =l 7Y, ()

:/ 3m< ilz—9)1€1(O)+@—y)" ¢’ pl(gl(owc/.e/;m’y))

w- VA& (Qw + (T -¢)
d
( G tm 41)) ﬁ

/ il@E=1)161 (O +(—y)'¢'] (pv — +Z7r5(C1)>
Rd Cl

mP1(E1(Qw+ (- eizy) Y
><< Y)10¢,61) R I CIO e +J§: z—y)ial™ (¢, y))
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where agm)(C;x,y) are O(T? x T9)-valued smooth functions. Since 9, & =
(w-VA(& (Qw++€")™1 > 0 on supp 91, Lemma 2.4 implies that for z—y € V,,
and any positive N,

(m) . d¢’ il(m=9)161(O)+(x—y)-¢]
I io(wy) =i €
Rdfl

(271_)(1—1
: m_ P1&(Qs+-eszy)
(33) (- 00" R R eow o e
m—1
# 3=l Gon)|| ooy
j=0 ¢1=0
Applying the stationary phase method, we have for x —y € V,
Il(jq;)+m<x’ y)
Z|x — y| meiw(?’*d)/zlei(zfy)fs |VA(£S)|(d73)/2
- <VA(§S)|> (2mz — y[){d=1/2 (det(es,; - Hess A(€s)esk)jr) /2

2 W14 0(fe 1),

which gives the main term. Here we have used (z — y)1/w - VA(&s) =
|z = yl/IVA(E)]-
In the same way as above, we obtain that IQ(mAzrio(m, y) = liff)l 12(7;)“6(3:, Y)
, ’ ,

is equal to the right-hand side of (3.2) with p; replaced by ps. Since
96,61 = (w- VA(&(Qw + (" €¢)7" <0 on supp ¢,

Lemma 2.4 implies that the term with the factor iwd((;) cancels the one with
the factor p.v.(;* modulo the remainder O(|x — y|~N) for z —y € V,,. Thus
we obtain that for any positive integer NNV,

(3.4) IQ(?;)HO(x,y) =O0(lz —y|™) forz—yeV,.

Next we treat I?(,T;Ll_ie. Let x be the cutoff function appeared in the proof
of Lemma 2.7. By the same calculation as stated in the proof of Lemma 2.7, it
suffices to estimate the quantity

(m) R i|lx—yls- n w+C-é 7/.(C) d
Isfz+i67x(x,y) =m)! /Rde\ yls- (1 (¢)n+¢aw+C )Wdfld@dc,

where r({) is given in (2.15). For any positive integer N and « —y € V,,

(m)
IB,A-{-'L’E,X (l‘, y)

» o TVr(Q) .
= ml(=ile — gD~ N ilz—yls-(n1 (On+lw+(-€) A dCod
m!(—ilz —yl) /Rde G — ey C1dCad(
gm[eilz—yls (m (On+¢aw+(-&)pN )
— (*i‘x—yD_N/ C1[ (C)]

Cl—i€

d¢idCadC,



Elliptic operators with periodic coefficients 733

where T is the operator given in the proof of Lemma 2.7. Thus we have

hm I; AZFZE (@y) =0(lz — y|~NF™) for  —y € V. Hence for any positive N,

(3.5) I;mAerO(m y) = hm I§ /\zrw(m,y) =0(|z — y\_N), x—y eV,

Next we treat Ii )\)HE In the same way as stated in the case of Iy yi;. we
have

0o (@) = T I () = o (2) 4+ 10 (),
where
L) o f (@) = mlU™ (1 — (&) R(E, )™ U f(x),
I f (@) = U QU (U S ().

We claim that for m > 1

(3.6) (L= NI o f () =m0 ().

In fact

(L= NI o (2) = miU= (L(E) — A)(L — $(€)R(E N U f (x)
= mlU ™ (1= $(E)R(ENUS(x) = mITo8) Fla),
(L= NS0 () = U (€ (LE) — VR (U f ()

m! [ (L(&) -2 + 2 — MR(,2)
m R d2'Uf ()

— U H(OQTUS (x) = mI} S f(x).

We shall show that for any positive integer N there exists C,,, indepen-
dent of p > 0 such that

(3.7) LY, s0X 0 (@) < Ol —y| 7V,

where X, is defined in the proof of Lemma 2.10. Once this is proved, for

any positive integer N the integral kernel Iiri)ﬂ-o(m,y) of IAET;)HO satisfies the
estimate

(3.8) I (@ y) = Oz — =),

which can be proved in the same way as in the proof of Lemma 2.10. We show
(3.7) by induction on m > 0. We have already shown (3.7) in the case m = 0 in
Section 2, since IAE?A)+1‘OXPJJ(‘T) = I1 x4i0Xp,y(z). Let m > 1. In the same way
as in the proof of Lemma 2.10, using (2.18) and Lemma 3.3, we obtain that for



734 Minoru Murata and Tetsuo Tsuchida

any positive integers N, N’ there exists Cy 4+ such that for [ € Z%, |I| > 1,

€ (-1/2,1/2]°,

|IZ§ A+i0Xp, y(y+1+2)]
Cran ||V N Cr, d=2,

< ON-"-N"”?NiN/|Z|7(d7272m)+7 d > 37 d# 2+2m7
Cnn 17V "N (1 4 logl2l]), d>3, d=2+2m.

Hence, indeed, we have (3.7) in the case d = 2 or the case d < 2 + 2m. In the
following we assume that d > 24-2m. The case d = 24-2m is similarly shown. In
the case |z| > r:= |I|=N'/(d=2-2m) e have |Ii’";)+ioxp7y(y+l+ z)| < Cn|l|=N.
Consider the case |z| < r. By the induction hypothesis, we can choose a
constant M, which is independent of [, |I| > 1, and satisfies

My, > ml|I (n;HloXpm(y +l+Ner(=1/2,1/219), P> d/2.

Since Izi,yz)ﬂ'oXp’y belongs to H},(R?), and satisfies (3.6) with f replaced by

Xp,y, the Holder continuity of solutions implies that there exist o, K > 0

independent of y € RY, 1 € Z4, |I| > 1, p > 0, such that for z, 2/ € (-1/2,1/2]¢
|I£KL¢0Xp7y(y +l+2) - Igﬁlioxmy(y +1+7)

<Kl|z—Z2|" sup |Iileioxp,y(y+l+z)|+Mm).
2€(—1/2,1/2)4

Take 2’ such that |2'| = r in (3.9). Then

(3.9)

sup |I4 ,\+zoXp y(y +1+2)]

|z|<r

<OU™ + K@) sup IV xe(y + L 2)] + M)
2€(—1/2,1/2]¢

<O~ + K(2r)” max(ls?p 5%, s X (0 + L+ 2)], Ol + K My (21)°.
<r

Choose N’ so large that —aN'/(d —2 — 2m) < —N, and take |I| so large that
K (2r)* < 1/2. Then we have

Is?p |I4 >\+10Xp y(y+1+2) < COnllI™ -,

We thus obtain (3.7). We have proved Theorem 3.2. O

4. The limiting absorption principle

We denote by Bs, s € R, the space

1/2
B, = {ve L2 (RY: o], = ZRS (/ v(a:)|2d:z:> <oo,
R;_ 1<|$|<RJ'
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where Ry =0, R; = 271 for j > 0. The dual space B} is the set

1/2
B =<{wve L} (RY; lvl|p: = sup I2;° (/ |v(m)|2dx> < oo
jz1 R

j—1<|z|<R;

The main theorem of this section is the following

d\m
Theorem 4.1.  Let A(0) < A < Aeonw- The operator (a) R(X £10),
m > 0, is bounded from B%+m to B”%‘_‘_

Proof.  Since for |z —y| < 1

Con(1+ |log |z — y[ )=+, d =2,
Go@ ) £ | Cmle =y =272, >3, d#2+2m,
Cn(1 4 |log |z — y||), d>3, d=2+2m,

the operator with the integral kernel G)\-HO(Q: y)x1(lz — y|) is bounded on

L?(R%), where x1(r) is a C*(]0, 00))-function such that xi(r) = 1 for 0 <
r<1/2,and x1(r) =0 for 1 <r.

For |z — y| large, we use the decomposition GAHO x,y) Z i, A+zo

m > 1, as in Section 3. (The case m = 0 is proved in the same Way by using
the decomposition as in Section 2.) Let w € S?!, and V, be such a conic
neighborhood of w as in Theorem 3.2. Let x2 be a C*°-function on S%~! such
that y2 = 1 near w and x2 = 0 outside of V,, N S4~1. By (3.4), (3.5), and (3.8),
we have for any positive N and x —y € V,,,

4

(4.1) > Lol y) = Ol ™).

Thus the operator with the kernel (1 — x1(|z — y))x2(£=4) 31—y Iy vrio(2, 9)

Yl
is bounded on L?(R%).
By using the coordinates ((z — y)1, (z —y)’) as in (2.8), we have by (3.3)
that for any positive N and z —y € V,,, Iff’;zﬂ.o(m, y) has the expression

I, o, y)

4.2 = il(z—)1€1(0,¢")+H(=z—y)" ('] N A m) e dc’

(4.2 | Da = de
+O0(|lz — 7).

Here, since p(&; 7, y) = pe(2)pe(y) /|l pe||? for some C(T9)-valued smooth func-

tion ¢, agm)(g’; x,y) is written as

L
@™ () = 3o u (¢ (),
=1
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where UJ(T)(CI,x), w§T)(C',x) € C°(RI~1;C(T?)) and for any multi-index a,
(4.3) sup 108057 (¢l ey + sup 102w (¢ Mers) < Cma
Let
— Ty j
Kf@) = [ (1=l -yl - )
R4 |z -yl

X (/Rd1 ei[(z_yh&(O’C/)+(z_y),'<,]v§7)(C/,$)w§7)(C/,y)dC/)f(y)dy.

By (4.1) and (4.2), the theorem follows from the following estimate: for any
f9 € C*(RY),

(sl = | [ Krwaas

< Cillfln,, lolls,,

Let us show this estimate. For simplicity, we write x3(z —y) :=

(1= x1(]z = yD)xa (=), v(¢s2) = v\ (¢, 2), and w(¢’,y) = w7 (', y)-
Put

Xa(w1,€) = (2m) 7702 / e g (a2 )
Rt

F(Cy8) = (2m) 7070 / s e w(l v f (s )y
-

G(Clgmlafl) = (27T)_(d_1)/2 / » €_ixl'£lv(cl7$17$l)g($1,x’)dl".
Ri-

Then by Planchrel’s formula with respect to z’-variable,

(Kf,g) = (2m)\4= /2 / dwydyd¢dg (w — y)] eSO 3g (2 — gy, & = ()
X F(CI7 Y1, 5/)6(4-/7 x1, é-l)
— (2m)@-1)/2 / daydyr di € (z — y)i~ T i 08 0’ /(=)

x Xa(x1 =y, 1 /(@ —y)1)FE —n' /(. — y)1,y1,€)
X é(fl - 77//($ - y)1,x1,§’)-

Hence

(K f,9)| < C/dxldyﬂfﬂl — "M s (@ — w1, /(2 — 9) )l a1

X sup ||F(' - 77//(93 —Y)1, Y1, ')”L?(Rd*l) sup ||é(' - U//(x —Y)1, %1, ')HL2(Rd*1)~
n’ n’
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We claim that for some constant C' independent of y; and z1,
Sllllp IE(-=n'/(x = )1, 91, Mrz@ma-1y < CONf(y1, )2 a1y,
sup GG = /(@ = y)r,a1, ) | 2ery < Cllg(an, )|z @a)-
In fact, for any h € C§°(R4™1),
| F@RE =/ = )1 )
=200 [y sy [ €l ol (o= o)) T
= (QW)_(d_”/dy’f(yl,y’)
< [ [t @ g SR e

where A is the inverse Fourier transform of h. By (4.3) and the integration by
parts, we have for any positive IV

’/ e~ =€ (e ol f(a — )1y, o )E | < O+ [ — o).

Thus we have

\ /R L MEEE =/ =y, €)de!

S C”h”LQ(Rd_l)Hf(yl’ ')HL?(Rd—l).

The inequality for G follows in the same way as above. Furthermore, we claim
that for some constant C independent of (z — y)1,
(@ =y (@ =),/ (@ =)@ < C.
In fact, we have for ¢ := (z — y); large
!/

A t z
1—d .~ ’ _41-d —in’-2"/t !
T xs(t ' /t) =t /e XQ((tz T 272 (12 4 Z/2)1/2)d2

P 1 Z/
— —in’-z /
/e X2((1+Z’2)1/2’ (1+2’2)1/2)d27

which is a rapidly decreasing function of n’ independent of ¢. Hence we have

(K S, 9)]

<c / dzrdys (x — 1) 1F (o W e 9@, ) oo ga)

< C/(l + @1 ) [|g(21, )| L2 (ma-1yda /(1 + 1) f (s )l g2 ra-1ydy

< Clfls,,, lolls,
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where the last inequality is shown in the same way as Theorem 2.4 of [AH]. We
have thus proved the theorem. [l

5. The one dimensional case

In the one dimensional case we shall show that the Green functions G+;o
are written as a product of an exponential function and a periodic function,
and that the limiting absorption principle holds for all A in the interior of the
spectrum. We shall also calculate the resolvent kernel for all A € R in the
resolvent set.

In this section, let

L= —% (W%) +ela),

where a(z) and ¢(z) are real-valued periodic functions with period 1. Assume
that ¢ € L>®(R) and 0 < pu < a(z) < p~! for some constant p, and that

ce L} .(R). Corresponding to this operator, we consider the equation

(5.1) d ( w@\_( 0 a0 ( () )
' dr \ y2(x) c(z) —z 0 ya(x)
for z € C. By the standard iteration method of ordinary differential equations,

we can find unique solutions to (5.1), (¢1(z, 2), ca(x, 2)) and (s1(z, 2), s2(x, 2))
with the initial conditions

c1(0,2) \ _ (1 51(0,2) \ _ (0
( c2(0, 2) ) o ( 0 and s2(0,2) )\ 1 )
respectively, in the space of C?-valued absolutely continuous functions AC(R,)?.
We can also see that ¢;(z, z) and s;(z, z) are C'([—R, R])-valued entire functions

of z for any R.
For each ¢ € C, the eigenvalue problem

y€ H (R)
(5.2) Ly=zy
y(x +1) = ey(z) ((-periodicity)

is equivalent to

(y1,92) € AC(R)?
(y1,y=2) satisfies (5.1) and y; satisfies the (-periodicity

under the relation y; = y, y2 = ay’. Writing a solution to (5.2) as y(z) =

arer(x,2) + agsi(w, 2), |ar|? + |az|? # 0, by the (-periodicity we have (M (z) —
e’“I)a = 0, where

e (057 6 ) e (0,
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We see that det(M(z) — e¥“I) = 0 if and only if
(5.3) D(z) = €' +e7¢,

where D(z) := ¢1(1, z)+s2(1, z) is the discriminant, which is an entire function.
Hence the existence of non-trivial solution of (5.2) is equivalent to (5.3).

A function y is an eigenfunction of (5.2) if and only if u(x) = e~ Cy(z)
is an eigenfunction of L(¢) with the same eigenvalue. Here L(() = e~%¢ Lei®¢
is an operator on L?(T) with compact resolvent with the domain D(L(¢)) =
{u € HY(T); L({)u € L*(T)}. Regarding L as the selfadjoint operator on
L*(R) with the domain D(L) = {u € HI(R) Lu € L*(R)}, we have the
direct integral decomposition /LU ~* f( - W] &)d¢, where U is the unitary
operator defined in Section 2 with d =1 (cf. [RS})

We denote the eigenvalues of L(€) by A1(§) < Ag(§) < --- for £ € R
counted with multiplicities. Each A, (&) is known to be continuous on R. We
summarize several facts, which can be proved in ways similar to those in [E],
[Ku], [Ma], and [RS]. Each A, (§) is real analytic on (0,7), and for £ € (0, ),
An(€) is a nondegenerate eigenvalue of L(£). There exists a sequence of real
numbers

—oo < <vp S <y S puz<vg< -

such that it tends to infinity and has the following properties:

(i) The spectrum o (L) of L is U2 ([tian—1, Van—1]U [Van, pi2n]); and | D(N)]
<2, A€ R, if and only if A € o(L).
(ii) D(A) = 2 only at A = p;, and D(A\) = —2 only at A = v;.
(iii) D'(A) < 0on (—oo,v1) and (pon—1, Van—1), and D'(X) > 0 on (vap, tan)-
(iv) AL,—1(&) > 0 and X}, (€) < 0 on (0,7); in the interval [0, 7], Aan—1(£)
increases from pig,—1 t0 von—1, and A9, (€) decreases from pa, to vo,; Ay (kT +
&) = Mp(km — &) for any integer k and real &.

(V) If )\anl(’fr) = )\Qn(’fr), then )\anl(ﬂ' — 0) 75 0; if )\Qn(O) = )\2n+1 (O),
then )\2n+1(0 + 0) #0

(vi) If vap—1 # vap, then D'(va,—1) # 0 and D'(va,) # 0, and vo,—1 and
Vo, are nondegenerate eigenvalues of L(7); if pon # pon+1, then D'(ug,) # 0
and D' (p2,41) # 0 and pa, and pg,+1 are nondegenerate eigenvalues of L(0); if
Van_1 = Vap, OF lon = ont1, then D’ = 0 at these points, and these are doubly
degenerate eigenvalues of L(w) or L(0), respectively; if D(A\) > 2 (< —2) and
D’(M\) =0, then D”(X\) <0 (> 0).

We denote by G, (z,y) the integral kernel of the resolvent R( ) = (L—2)"!

for z in the resolvent set. We use the notations ( fo x)v(x) dr and
[ul® = (u, u).
First, let A be in the interior of o(L). Then the only one of the following
four cases holds:
(I) A= X2n-1(&) € (pt2n—1,v2n—1) for some £ € (0,7),
(IT) X = A2n (&) € (van, pion,) for some & € (—m,0),
(ITI) X = Aan—1(7m) = Ao () = van_1 = Vap,
(IV) A = X2,(0) = A2p41(0) = pion = pan+1-
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Theorem 5.1.  Assume that X\ is in the interior of o(L). There ex-

ists the limit h?& (%)mR(x\ +ie)f(z) in L (R) form > 0 and f € L*(R)

with compact support, and the convergence is locally uniform in the interior of

o(L). The integral kernels Gxtio(z,y) and G(;l)io(x,y) of liﬁ)l R(X + ie) and
d\m

liﬁ)l (5) R(A+ie), m > 1, admit the following expressions:

€

Case (I).

_ 'Lc;’b(i?*y)g ug(x)Ug(y), y S z,
Apn—1(8)  uel|

Grtio(z,y) = Gatio(y, )
G\l y) = Gy, )

. m4+1 -
= () e R Aot i), v

Here ug is an eigenfunction corresponding to the eigenvalue Agp—1(§).

Case (II). Gxyio(z,y) and GE\T_'ZO(Ly) admit the same expressions as
in (I) with Xy, _1(§) replaced by N, (§), and with ue being an eigenfunction
corresponding to the eigenvalue Aoy, (€).

Case (IIT).  With ug being a C(T)-valued holomorphic function in a neigh-
borhood of m such that ||ug| # 0, (L(§) — Aan—1(§))ue = 0 for £ < w, and
(L(g) - >\2n(£))u§ = 0 fOT' T < g;

_ eI up(2)uq(y)
A1 (T =0) Jluxl?

G/\+i0($7y) = G)\+i0(ya l’) ) Yy < z,

GLo () = Gy, )
= ()\én_l(iﬂ_o))mH (z — y)mei(mfy)ﬂw
x(1+0(z—yl™"), y<a
Case (IV).  With ue being a C(T)-valued holomorphic function in a neigh-

borhood of 0 such that ||uel] # 0, (L(§) — Aant1(§))ue = 0 for 0 < &, and
(L(&) = A2n(§))ue = 0 for £ <0,

- i o (7)uo(y) y
N1 (040) ol

Grvio(z,y) = Gryio(y, x)

IN
&

G(A?io(xa y) = G(Ti)io(% )

. m+1 7
(7)o e oty v
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Proof. (I) Since D’(A) < 0 on (f25,—1, Von—1), there exists a holomorphic
inverse function D~ of D on an open set containing (—2,2). Put \(¢) :=
D~1(e¥ +e7%) for ¢ in an open set containing (0, 7). We have A(¢) = Agp—1(€)
for £ € (0, 7). Let

a(¢) = (a1(¢), a2(€)) = (=51 (L, A(Q)), e (1, A(Q)) — €).

Since a(€) # 0 for £ € (0,7), a({) is an eigenvector of M (A(¢)) corresponding
to the eigenvalue € for ¢ in an open set containing (0,7). Thus y¢(z) =
a1(Q)er(z, A(Q)) + az(C)s1(z, A(C)) satisfies (5.2) with z replaced by A(¢). So
u¢(z) == e ®y¢(z) is a C(T)-valued holomorphic eigenfunction of L(¢) cor-
responding to the eigenvalue A(¢). Since A, _;(§) > 0 on (0,7), the in-
verse function theorem implies that there exists a holomorphic function ((z)
on an open set containing (pen—1,v2n—1) such that A(((z)) = z. For each
A € (p2n—1,V2n—1), if € > 0 is small enough, y¢(x+ic)(7) is a solution to the
equation Ly = (\ + ie)y. Taking the complex conjugate of this equation and
replacing € by —e, we obtain that y¢ () () is also a solution. Since ¢’(\) > 0,
we obtain the linearly independent solutions to Ly = (A + ie)y:

Yoo (x) _ eiC()\+iE)qu(/\+¢6) (m>
= exp|(iC(A) — ¢’ (N) + O(e%))xlu¢(xpie) (),
Yoo (@) = ¢TI i (@)

= exp[(—i¢(A) +&¢'(A) + O(*))2]uc(r—ie) ().

Let [y, 9](z) := a(z)(y(x)y' (z) — /' (z)g(x)) be the Wronskian of two solutions
y and g. Then

G _ yeorio (@) Yen—io) W)/ [Yearie) Yer—ie))(0),  y <,
Atie (l‘, y) - - <
Yertie) W)Y (r—ie) () ) [Ye Aie)s Tor—ie)) (0), r <y,

(cf. 85.3 in [E]). Since [y¢(atie)» Uc(r—ie)) () is a constant independent of = and
C(A +ie) = {(A —ie), it follows that

[Ye(rtie)s U (r—ie)] (0)
_ /O ' (tearioy Teormin) () — 2CA + ie)a(@)iig pie) ()i iy (@) .
On the other hand, we have
1 d d _
[ ot (4 + 160 +i9)) sciin @) (55 - 60+ ) oo @

+ C(z)uﬁ()\-‘ris)(x)uC(A—ia)(m)] dr = (A +1€) (Ug (A i) Ue(A—ie) )-
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Differentiating both sides of this equation with respect to A, we have

1
iC'(>\+i5)/o ([W(Hie)a“c&—ia)](x)

— 2iC(A + ig)a(x)uc (ryie) (x)uC(,\_,»e)(m)> dx
= (U¢(rie)s UG(A—ie))-
Thus
i (A + i) [Ye(rrie), i) (0) = (Ug(rtie)s Ug(r—ie))-

Therefore we have for y < x

() UcOrtio) () ucr—ie) ()
(Ue(rtie) Uc(r—ie))

Gatie(®,y) = Garic(y,x) = i¢' (A 4 ig) e
Taking the limit € | 0, we have the existence of the limit h?ol R(Atie)f(x) and
€

8 ()i
. ie we(x)ue(y
Grrio(z,y) =1lim Gyyic(z,y) = S L y<uw,
* cloHE Aon—1(8)  lugl?

where £ = ((A), i.e., A\ap—1(§) = A. Furthermore, we can see that for any

integer m > 1, the limit lslfg (%)MR(/\ +ie) f(z) exists and

m . d\™
G(A+)io(3371/) = 161%1 (ﬁ) Grtie(T,Y)

. m+1 -
- (A;nlas)) (@ ‘y)mem_y)g%“ FO(e -y, y<a

We have thus proved the case (I). The case (II) is proved in the same way as

(D).

(ITT) Assume that Aop—1(7) = A2p (7) = Von—1 = vay,. Since v, is a doubly
degenerate eigenvalue and L(§) is selfadjoint for £ real, Theorem XII.13 in [RS]
implies that there exist holomorphic eigenvalues F1(¢) and F5(¢) of L(¢) near
¢ = 7 such that Ey(7) = Ea(m) = vap,. If £ € R, each of Agp—1(€) and A2, (&)
must be equal to one of E;(§), j = 1,2. Since D(E;(§)) = 2cos¢ near { = ,
we have

D"(E;(€))Ej(€)* + D'(E;(€)) Ej (§) = —2cos.
So, since D'(v2,) = 0 and D"(v2,) > 0, we obtain that E}(7) # 0 (which
implies the fact (v) stated before Theorem 5.1). Since

{ )‘/2n—1(£) > Oa g < ™, and { )‘/Qn—l(g) < 07 T < 57
5 (8) >0, ™ <&, an(§) <0, {<m,
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we conclude that there exist holomorphic functions F1(¢) and F2(¢) on an open
set containing (0, 27) such that

Cf dewale), 0<E<m, L e, 0<e<m
El(f){A;(g), r<€<om EQ(f){A;_l(f), r<€<om

Since E1(§) > 0 on (0,27), the inverse function theorem implies that there
exists a holomorphic function {(z) on an open set containing (gan,—1, tion) such
that E1({(z)) = 2.

Let p(€¢) be the eigenprojection for the eigenvalue e’ of M(E;(¢)) for
&€ (0,m)U (m,2m):

p(€) 1= (=2mi) ! j{ e, MEN) -9
__ 1 ( sa(L, Er(§)) — e —s1(1, E1(§)) )
eié — i€ —c2(1,E1(€) (1, Ei(€)) —e )

where 6 > 0 is taken so that e is the only eigenvalue of M (E;(¢)) inside
the circle |z — €| = 6. Since sa(1,10,) + 1 = c1(1,va,) +1 = s51(1,9,) =
ca(1,v2,) = 0 (cf. [E, p.7 and p.29]), & = 7 is a removable singularity of p(¢).
We have (p(€))11 # 0 on (0, 27), since

(p(m)11 = (20) 710 (s2(1, Ba(€)) =€ )le=r = (20) " (Dz52(1, v2n) By () +1) # 0.

Thus p(€) is a real analytic rank one matrix on (0, 27). Note that the holomor-
phically extended p(¢) to an open set containing (0,27) is the eigenprojection
for the eigenvalue e’ of M (E;(¢)). Thus the function

ye(z) == (p(Q)1ier(z, £1(C)) + (p(¢))2151(z, E1(C))

is a solution to (5.2) with z replaced by E1(¢); and so uc(z) = e~ %y (x) is
a C(T)-valued holomorphic eigenfunction of L(¢) corresponding to E;(¢) on
an open set containing (0,27). Thus as in the case (I), since ('(A) > 0 for
A € (H2n—1, H2n), Ye(r+ie) () and ye(a—iq)(2) are linearly independent solutions
to Ly = (A +ig)y. Hence, as in the proof of (I) we have

i€ @y (2)ug(y) y
Ei(m)  ucl®

IN
8

Glfzn-i-io(xa y) = 151%1 Gu2n+i8 (l‘, y) =

and for any integer m > 1,

m . d\"
Gl(jgrn)ﬂo(l?,y) = lelﬁf)l <a) Gryptic(1,Y)

m—+1 )
- (Z) (@ — gy DU oy, g

Eq(m) ([ || B
Note that Ej{(7) = A,,,_;(m — 0). We have thus proved (III). (IV) is proved
d \m
similarly. From the proof above it follows that the convergence liﬁ)l (a) R(\+
g

i€) f(x) is locally uniform with respect to A. O

The following is a direct consequence of Theorem 5.1.
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d \m
Corollary 5.2.  Let A be in the interior of o(L). Then (ﬁ) R(A£10),
m > 0, is bounded from Bi,,, to By .
2 zt+m

Proof. Let f € C§°(R). Since Theorem 5.1 yields that

‘ (%) " R(\ +i0) f ()

sC@U~+@Dm];u++mwwﬂyww
< Cn(L+ lal)™ I flls, ..

it follows that

H<%>mR(>\+i0)f(x)

m
. < Cnll(tlz)™llsy 1By ., < Cmliflsy,,-
1

3 m
(|

Next we study the case that the parameter A € R is in the resolvent
set of L. This case is equivalent to |D(A)| > 2. D(A) > 2 if and only if
A€ Ay = (—oo,p1) U [USE, (Han, Hont1)]; and D(A) < —2 if and only if
A€ A :=U2 (Vapn—1,V2,). Consider a function e”+e~" on (0, 00), and solve
the equation

e+ e "= D(N)

with respect to 1, where A € A;. By the implicit function theorem, we have
a unique solution n(A) which is real analytic on A;. Similarly, define n(A) on
A_ by e?+ e~ = —D()). Note that dimKer (L(+in(\)) —A) =1for A € Ay
and dim Ker (L(r £in(A)) —A) =1 for A € A_ (cf. [E, p.6]).

Theorem 5.3. (i) Let A € Ay. Let uy and vy be real-valued eigenfunc-
tions of L(in(X\)) and L(—in(X\)) corresponding to the eigenvalue X\, respectively.
Suppose D'(X) #0. Then (ux,vy) # 0 and

G4)  Caley) = Calyx) =~ (e IR
(ux,vr)

Suppose D'(\) = 0. Then there exists a solution 1, € H'(T) of the equation

(L(—=in(N)) — A\ = vy such that (ux, ¢y, ) # 0, and

0" o0 @—y) A (@)va(y)
5.5 Ga(z,y) = Galy,x) = ——=Le "M a—y) 22 A2 <z
(5.5) Az, y) = Ga(y, z) 2 (wrnuy) 7
(ii) Let X € A_. Let ux and vy be eigenfunctions of L(m + in(\)) and

L(m —in(\)) corresponding to the eigenvalue \, respectively.
Suppose D'(X) # 0. Then (uy,vy) # 0 and

Cr(,y) = Caly, 2) = —f ()elm— 1@ D)
(u)n U)\)
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Suppose D'(X) = 0. Then there exists a solution ¥,, € H'(T) of the equation
(L(m —in(X)) — AN = vy such that (ux, ¥y, ) # 0, and

_ _ M) m—noy@—p W @oaly)
Gi(z,y) = Ga(y,z) = 5 € (s D) y <.

Proof. Let A € AL. Since ¢1(1,\)—e™™) and s5(1, \) —eF1N) = ¢F1(N)
¢1(1,A) do not vanish simultaneously on a nelghborhood of each A € A, there
exist nonzero real analytic eigenvectors as (X)) = (ax 1(A), ax2(A)) of M(N)
corresponding to the eigenvalues e?™) and e~ respectively. Then yy () :=
a_1(N)er(z, ) +a 2(N)s1(x, A) and 2y (z) = ar1(N)er(z, ) +aq 2(N)s1(z, )
are solutions to (5.2) with ¢ replaced by in(A) and —in(A). Thus uy(x) =
"2y, () and vy (z) := e "Nz, () are C( )-valued real analytic eigenfunc-
tions on Ay of L(in(\)) and L(in(X\))* = L(—in(\)) corresponding to the eigen-
value A, respectively. Hence yy(z) = e "()‘)’”ux(m) and zy () = e"™®y, () are
linearly independent solutions, and so

_ | ua(@)2a(y)/[yx, 22](0), y<uw,
Gal@,y) = { (W) (@) /[yr, 22](0),  x <uy.

Since [ya, zx](x) is a constant independent of z, it follows that

1
[yA,zA](0)=/O ([ux, val(2) + 2n(N)a(z)ur (z)ox (z))dz.

On the other hand, we have

/01 {a(m) (% - U(A)) ux () (% + n()\)) ox (@) + c(@)ux(z)va(2) | do

= Aux, vy).

Differentiating both sides of this equation with respect to A, we have

=1’ (\) /Ol([ux’w](x) +2n(Na(@)ua(@)va(@))de = (ux, v2).
Hence
(5.6) =0/ (M)yr, 22](0) = (ux, vr).
Suppose D'(A) £ 0. Then 5'(\) = D/(A)/(e7®) — ¢=1)) £ 0 and
Ga(z,y) = =0/ (N)e "V Vuy (2)or(y)/(ur,v2), y < .

Suppose D'(A) = 0. Then 5'(\) = 0 and 1”(X\) = D"(\) /("™ — e=1N) < 0.
Differentiating (5.6), we have

(5.7) 7" (M)[ya, 2](0) = —(ux, va)".
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Therefore

Ga(z,y) = =" (N)e "V Vuy (2)or(y)/(un, 0n)', y < .
By (5.6), (ux,vx) = 0. Moreover, since 7/(\) =

(5.8) (L(in(A)) — N)Oxuy = uy and (L(—in(N)) — A)drvx = vy.
Put v, = davx. Then 1), is a solution of (L(—in(A)) — A)y = vx. By (5.8),

we have

(Orux, va)= (Oaux, (L(—in(A)) — A)Oxvy)
= ((L(in(N)) — A)Orux, Oavy) = (ux, Orvy)-

Thus (ux,vr)" = 2(uy, 1y, ), which together with (5.7) implies that (uy, 1y, ) #
0. Therefore we have (5.5). The assertion (ii) is proved similarly. O

We have seen that in the formula (5.4) and (5.5) the different factor
u(z)va(y) or ux(z)va(y)
(ux, vx) (ux; ¥o,)
ish or not. This is related to the Laurent expansion of (L(in(\)) — z)~! with

respect to z around .

appears according to whether D’(\) does not van-

Proposition 5.4. Let A € A.. If D'(\) # 0, the eigenvalue \ of
L(in(\)) 1is nondegenerate and its eigenprojection has the integral kernel

M; and if D'(X\) = 0, the eigenvalue A of L(in(\)) is degenerate and
(’LL)\, )\)
its eigennilpotent has the integral kernel % Similar statement holds
u}\? U

forxe A_.

Proof. 'We shall represent the integral kernel R((, z; 2, y) of the resolvent
R(¢,2) :== (L(¢) — 2)7!, by using c;(z,2) and s;(z,2). Let (¢,z) € T :=
{(¢,2) € C*%z ¢ o(L(())}- Put

. — Cl(x’z)sl(yvz)a y<uw,
k(z’x,y) o { Sl(l’,Z)Cl(y,Z), <y

For f € C§°(0,1), put
K. f(x) = / Kz 2,9) f(y)dy.

Since (L — 2)K. f(x) = f(z) and (L — 2)e**  R(¢, z)e~ ¢ f(x) = f(z) on (0, 1),
e R(¢, z)e” ¢ f(x) — K, f(z) is a solution to Ly = zy. Thus
(59) emCR(C’ z)e—ifo(x) - Kzf(x) = ac ($7 z) + ﬁ31($7 z)

for some v and 3. Since R((,2)e~ ¢ f(z) € D(L(C)) has the periodicity, we
get
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(5.10)
Kzf(x>+acl($7 z)+Bs1(z,2) = e_iC(Kzf(m""l)"’_acl(m""l?Z)+651(x+1ﬂ Z)),

so putting x = 0, we have

(5.11) a=e% [cl(l, z)/o s1(y, 2) f(y)dy + aci(1, z) + Bs1(1, 2)

Differentiating both sides of (5.10) with respect to = and putting z = 0, we
have

/0 ey, 2) f(y)dy + B
(5.12)

1
=€ [Cz(l,z) /0 s1(y,2)f (y)dy + aca(1, 2) + fsa (1, 2)

Note that (¢,z) € T if and only if §(¢, 2) := D(z) — € — e~ # 0. Solving
(5.11) and (5.12) with respect to («, 3), we have

(=g [ [( w2 Y

H(TLEST ) s s

Combining this with (5.9), we obtain that

W Ds(( . y)
D(z) — €6 — e~

R(¢, zm,y) = eV k(2 2,y) +

where

s(¢, 2z, y) =[s1(1, z)cl(x, 2) + (e — e1(1, 2))s1(x, 2)]es(y, 2)
Fle — en(L,2))en (@, 2) — ea(L, 2)sa (2 2)]sa (9, 2).

Suppose D'(A) # 0. For z near \, we have D(z) — e"M — 71N = (z —
M) Fy\(z) for some Fy(z) such that F\(A) = D'(A) # 0. Thus R(in(N), z;x,y)
has a pole X of order one with the residue

ri(\ @, y) = D'(N) eI N s (in(X), Ay 2, ).

This implies that the eigenvalue A of L(in())) is nondegenerate and its eigen-
projection has the integral kernel —r1(A\;z,y). On the other hand, the eigen-
projection and its adjoint are projections onto the spaces Ker (L(in(A\)) — A)
and Ker (L(—in(X)) — A), respectively, so the eigenprojection has the integral

71”(%)“@). Therefore 710‘(%)@)‘(1/)

(ux,vy) (tix, 03 =—-r(\z,y).

kernel



748 Minoru Murata and Tetsuo Tsuchida

Let Ao € R satisfy D'(\g) = 0. For z near \g, we have D(z) — e"(*0) —
e~10) = (z—\g)2H(2) for some H(z) such that H()\g) = D" ()\g)/2 # 0. Thus
R(in(Xo), z; x,y) has a pole Ag of order two:

R(in(Xo), 252, y) = r2(2,y) (2 — Ao) 72+ O((z — X)),
where
ra(w,y) 1= 2D" (M) "1 5 (in( o), Aos 2, y).
Hence the eigenvalue Ay of L(in(Ag)) is degenerate and its eigennilpotent has
the integral kernel —ry(x,y). We shall show that % = —ry(z,y) at
s Yoy
A = Ag. Since

dcr(z,2) = /0 N(er( st 2) — s (@, 2)er (1, 2)enh, =) db,

0,89(x,2) = /096(02(33, 2)s1(t, z) — sa(x, 2)er (¢, 2))s1(t, 2) dt

(cf. [E]), we have for A € A4
D'(X) = dxre1(1,A) + Orsa(1, \)

1
:/ [ea(1, A5 (2, N2 + (1 (1, A) — sa(1, A))er (2, Vs (2, A)
0
—s1(1, e (z, A)z]d.’ﬂ
1
= —/ s(in(A), \; z, x)dz.
0

As eigenfunctions of L(in(A)) and L(—in(X)) for A € A4 near Ay, we can choose
uy and vy, as follows: (i) when c; (1, \g) — e~ 70) £ 0,

ur(z) = " [—s1 (1, Ner (2, A) + (1 (1,A) = e "N )51 (2, V)],

oa(x) == eTTNT[(cr (1, X) — e )¢y (@, N) + e2(1, ) st (2, M)];
(ii) when ¢; (1, \g) — ?0) £ 0,

ux () = "% [(c(1,A) — e")ey (@, A) + e2(1, A)s1 (2, M),

oa(x) == e 7TV~ (1, Ner (2, M) + (e1(1, A) — ") sy (2, V)]
Let us treat the former case. (The latter is done similarly.) We have

S1 (1, )\)62(1, /\)Z 61(1, /\)52(1, )\) -1
= ¢ (1, ) ("™ eV _ (1)) — 1
= ("7 — ¢y (1, ) (e (1, A) — e71V),
Thus
ur(@)or(y) = —e"NE (e (1,0) — e "V)s(in(N), Az, y),
(ux,va) = (c1(1,A) — e ") D'(N).
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So (ux,vx) = (c1(1,A) — e "M)D”(X) at A = \g. Therefore

nNE=9) g(in(\). \:
ux(z)va(y) _ ZUA(x)UA(%/) — _9° 3(377( ), i@, y) = —ro(z, y)
(ux, ¥u,) (ux, vx) D"(\)
at A = Ag. We have thus shown the proposition. [l

Finally, we give an asymptotic expansion of the Green function G, (z,y)
as the spectral parameter z approaches one of edges of the spectrum of L. We
show it in a direct and elementary way, although the expansion of resolvents
for Schrodinger operators with periodic potentials is given by [G, Corollary
4.2]. Let Ay := C\ [0,00). We denote by 22 a branch of the square root of
z € A4 such that 22 = \/7_°(3i9/2 for z = re?, 0 < 6 < 27, r > 0. Note that
A is an edge of the spectrum of L if and only if |[D(A)| = 2 and D'()\) # 0. If
D(X) =2 and D’()) # 0, there exist real-valued linearly independent solutions
u and ¥ of Ly = Ay such that w is a real-valued periodic function with period 1
and ¥(z) = zu(x) + v(z) for some real-valued periodic function v with period
1; if D(A) = —2 and D’(\) # 0, there exist real-valued linearly independent
solutions u and ¥ of Ly = Ay such that u is a real-valued semi-periodic function
with semi-period 1, i.e., u(z + 1) = —u(x), and (x) = zu(z) + v(z) for some
real-valued semi-periodic function v with semi-period 1 (cf. [E, p.7 and p.29]).

Theorem 5.5.  Assume that po,—1 is an edge of the spectrum of L.
Then for any integer m > —1 one has the expansion for small z — po,—1 € A

m

Gz(xuy) = Z (Z - M2n71)%qj(xay) +Tm(z;x7y)7

j=—1
where r,(2;x,y) satisfies the estimate: for any 0 <6 <1
7 (232, 9)| < Cnlz = prop 1|2 (J2 — y| + 1)+,
Furthermore, q;(x,y) is of the form
j+1
g(@,y) = ¢;(y,2) =Y (e =y grlzy), y<u,
k=0
for some g i (z,y) € C(T x T). In particular,
i u(@)u(y)
225, 1(0) [l
(2, y) = qo(y, ) = Ny, 1 (0) " (u(@)¥(y) — v(@)uly))/||ul?, y <,
where Xy, _1(0) > 0, and u and ¢ are real-valued linearly independent solutions

of Ly = pan—1y such that u is a periodic function with period 1 and ¢ (x) =
zu(x) + v(x) for some periodic function v with period 1.

q-1(x,y) =
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Remark 5.6.  If v, _1, o,, Or uo, is an edge of the spectrum, a similar
expansion holds around it.

Proof. Since D(p2n—1) = 2 and D'(u2,—1) < 0, there exists a holomor-
phic inverse function D™ of D near D = 2. Put A\({) = D7 !(e¥ + &™)
near ¢ = 0. Then A(§) = Ag2p—1(§) > pan—1 for small £ € R and N (0) = 0.
Furthermore, since D(A(€)) = 2cos¢, we have

D" (AE)N (€)% + D'(ME))N(€) = —2cosE.

This implies that \”/(0) = —2/D’(p2n—1) > 0. Therefore we can choose a suffi-
ciently small positive number R such that the set {\(¢);Im{ >0, |[¢| < R} is a
subdomain of C\ [u2,-1,00). We have also that s1(1, u2n—1) and ca(1, pan—1)
are not both zero (cf. [E, p.29]). So we can choose a holomorphic eigenvec-
tor (a1(¢),a2(¢)) of M(X(¢)) corresponding to the eigenvalue €% near ¢ = 0.
Put y¢(z) = ar(Q)ei(z, MQ)) + az(Q)si(z,A(()). Then uc(z) := e~ "“yc(x)
is a holomorphic eigenfunction of L(¢) corresponding to the eigenvalue A(()
near ( = 0. Let C; := {( € C;Im(¢ > 0}. For small ¢ € C,, since
A(C) = A(Q), it follows that yc = e““u¢ and gz = e *“"u; are linearly in-
dependent solutions to Ly = A({)y. Hence as in the proof of Theorem 5.1,
since i[y¢, T¢](0) = N'(¢)(uc¢, ug), we have for y < z and small ( € C4.

(5.13) L _
G0 (@) = Gy (0, ) = ye(@)ye )/ [ye, Ue)(0) = iN (Q) e @) pe (w, ),

where p¢(z,y) := uc(z)ug(y)/(uc, ug) is a C(T x T)-valued holomorphic func-
tion near ( = 0. Let y < z. We write the Taylor expansion of ei(gv_y)cpc(x, Y)
with respect to ( as follows:

(5-14) ei(w_y)cpé (337 y) = Z qj (l‘, y)C] + T (C? z, y)7
§=0
where
J
(515) ij($7 y) = Z((E - y)k(jj,k(xa y)
k=0

for some g; i (z,y) € C(T x T), and 7,,(C; x, y) satisfies the estimate: for any
0<6<1

(5.16) P (G2, )| < Cl¢I™ (|2 — y] + 1) 0.

Let us show this remainder estimate. We have

m!

ei(w—y)( — zm: (Z(l‘ ;|y)C)7 + (Z(.’IJ — y)C)m+1 /1(1 o t)meit(w—y)ﬁdt.
— : 0

j=
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Thus

(lz = ylich™*
= (m+1)!

)

‘ >0

since Re [it(z — y)¢] < 0. This implies that
[ (G2, 9)| < ConlC[™ T (2 =y + 1)

On the other hand, since

Fm(<7 $7y) = mel(c; -T,y) - Qm(m7y)cma
we have

P (G2, )| < O [C™ (|2 —y[ +1)™.
Hence we get the desired estimate (5.16). We see that Go(x,y) = po(z,y) and
@ (z,y) = iz = y)po(z,y) + dcpc(w,y)|c=0. We shall show that ¢ (z,y) =
i(Y(x)u(y) —u(x)y(y))/||ul|?, where u(z) and ¥ (z) = xu(z) +v(z) are linearly
independent solutions stated in the theorem. We have

Ocycle=o0 = 4 (0)cr(z, pan—1) + 5 (0)s1(x, pran—1) = izug + dcuclc=o,
!/
1

Q] R

O0cYzle=0 = a1 (0)er(w, pan—1) + a5(0)s1(z, pon—1) = —ixtg + OcTUg|c=0-

So Ocyclc=o and 8<y_§\<:0 = Ocy¢lc=o are solutions of Ly = pon—1y, and we
have uy = cu and O¢y¢|c=o0 = icy) + c'u for some ¢, ¢’ € C. Hence

dcuclc=o = icv(x) + cu(x), OcTglc=0 = —icv(z) 4 cu(x).
Using this we have

qi(w,y) = i(z —y)po(,y) + dcpc(,y)lc=0

¢ (ug(2)ug(y))lc=o (uc, ug)c=o
[[uol[?

=i(z —y)po(z,y) +

o u@)uly) | Gieo(a) + cule)euly) + culz)(—icu(y) + Puly))
=i =)= e PEE

u(z)u(y) 2Re(icv + 'u, cu)
[lull? el [ul?
= i(z — yJu@)u(y)/|[ull® + i(v(z)u(y) — ul@)v(y))/|ul
= i(Y(x)uly) — w(@)¥(y))/|lull.

There exists an entire function F(z) such that F(¢?) = ¥ +e7% —2; F(z) is
real for real z, F/(0) = 0, and F’(0) = —1. So there exists an inverse function
F~1 of F near the origin. Thus for § > 0 small, the map 2z € {z € Ay + pion_1;
|2 — pon—1| < 8} — ((2) :== (F~Y(D(z) — 2))2 € C, is conformal from the
disc with the cut to the intersection of a neighborhood of the origin and C,.
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Note that A(¢(z)) = z. Noting that D(z) —2 = D'(pon—1)(z — pan—1) + O((z —

pon—1)%) and F~1(w) = —w + O(w?), we have the Puiseux series
9] .

(517) C(Z) = Za’j<z - M?n—l)j+§a
§=0

where ag = \/|D'(p2n—1)| = 1/2/X5,_1(0). Note that X'(¢(z))~* = ('(z). By
(5.13), (5.14) and (5.17),

G.(z,y) =i (2)e" @V E . (x,y)

2

I

~.
7

Q

j (] + l) (Z - ,U/Qn—l)j_l/2 qu(‘r7 y)C(Z)] + 'Fm(C(z)7 l‘,y)
j=0

- (Z*/4L2n—1)j/2qj(mvy)+Tm(z;x»y)'
j=—1

j=—
This together with (5.15) and (5.16) yields the desired expansion. O
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