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Asymptotics of Green functions and the
limiting absorption principle for elliptic

operators with periodic coefficients

By

Minoru Murata and Tetsuo Tsuchida

Abstract

We give the asymptotics of Green functions Gλ±i0(x, y) as |x−y| →
∞ for an elliptic operator with periodic coefficients on Rd in the case
where d ≥ 2 and the spectral parameter λ is close to and greater than
the bottom of the spectrum of the operator. The main tools are the
Bloch representation of the resolvent and the stationary phase method.
As a by-product, we also show directly the limiting absorption principle.
In the one dimensional case, we show that Green functions are written
as products of exponential functions and periodic functions for any λ in
the interior of the spectrum or the resolvent set.

1. Introduction

The scattering and spectral theory for periodic Schrödinger operators L
on Rd has been developed to some extent; in its study the limiting absorption
principle (i.e., the existence of the limits (L− λ∓ i0)−1 in a certain topology)
has played a crucial role (cf. [T], [Be], [Si], [G], [GN1,2], [Su], [RS], [BY], [FS]).

The main purpose of this paper is to give the asymptotics of the integral
kernel Gλ±i0(x, y) as |x − y| → ∞ of the operator (L − λ ∓ i0)−1 in the case
where d ≥ 2 and the parameter λ is greater than and close to λ0, the bottom
of the spectrum of L. In the subcritical case (i.e., either λ < λ0 or λ = λ0 and
d ≥ 3) we gave the asymptotics of the resolvent kernel and used it to determine
the Martin boundary in [MT] (see also [Ba], [Se]). This paper is a continuation
of [MT]; and the basic tool used in both papers is the Bloch representation of
the resolvent. The secondary purpose is to give a direct and elementary proof
of the limiting absorption principle by the method employed in establishing the
asymptotics of Green functions. The last purpose is to describe precisely Green
functions for any λ ∈ R in the one dimensional case.
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We consider a second order elliptic operator on Rd with periodic coeffi-
cients

L = −
d∑

j,k=1

∂

∂xk

(
ajk(x)

∂

∂xj

)
+ c(x) = −∇ · a(x)∇ + c(x),

where d ≥ 2, ∇ = (∂/∂x1, . . . , ∂/∂xd), and a(x) = (ajk(x))d
j,k=1. We assume

that the coefficients are real-valued measurable functions on Rd which are Zd-
periodic, i.e., ajk(x+z) = ajk(x) and c(x+z) = c(x) for any x ∈ Rd and z ∈ Zd.
We further assume that a is a symmetric matrix-valued function satisfying

µ|ξ|2 ≤
d∑

j,k=1

ajk(x)ξjξk ≤ µ−1|ξ|2, x, ξ ∈ Rd,

for some µ > 0, and that c ∈ Lp
loc(R

d) for some p > d/2. We regard L as the
selfadjoint operator on L2(Rd) with the domain D(L) = {u ∈ H1(Rd); Lu ∈
L2(Rd)}, where H1(Rd) is the Sobolev space of order one.

We recall some results to state our theorem. For each ζ ∈ Cd, let L(ζ) be
the operator on the d-dimensional torus Td = Rd/Zd defined by

L(ζ) = e−iζ·xLeiζ·x = −(∇ + iζ) · a(x)(∇ + iζ) + c(x),

where i =
√−1 is the imaginary unit. We regard L(ζ) as a closed operator

with compact resolvent on L2(Td) with the domain

D(L(ζ)) = {u ∈ H1(Td); L(ζ)u ∈ L2(Td)}.
{L(ζ)} is a holomorphic family of type (B) (cf. [Ka]). Similarly, we regard the
formal adjoint L(ζ)∗ of L(ζ) as a closed operator in L2(Td). By the Krein-
Rutman theorem, for each ξ ∈ Rd, L(iξ) has an eigenvalue Λ(iξ) ∈ R of
multiplicity one such that the corresponding eigenspace is generated by a posi-
tive function, which is Hölder continuous by the elliptic regularity; furthermore,
Λ(iξ) is also an eigenvalue of L(iξ)∗ of multiplicity one such that the eigenspace
is generated by a positive Hölder continuous function on Td (cf. [A1], [P2],
[Mu], [St]). We call

E(ξ) := Λ(iξ)

the principal eigenvalue of L(iξ). The following results are known (cf. [KP,
Lemma 12], [Ku, Theorem 4.6.7], [A2], [P1], [LP]).

Fact AP. The function E(ξ) is real analytic and strictly concave. Its
Hessian Hess E(ξ) is negative definite for any ξ ∈ Rd. The supremum supξ

E(ξ) is attained only at ξ = 0, and ∇ξE(ξ) = 0 if and only if ξ = 0. E(ξ) is
nondegenerate (algeblaically simple).

We denote by Λ(ζ) the analytic continuation of Λ(iξ) in some neighborhood
of iRd in Cd. Since Λ(iξ) is the nondegenerate eigenvalue of L(iξ), the analytic
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perturbation theory implies that Λ(ζ) is a nondegenerate eigenvalue of L(ζ) for
ζ near iRd. If ξ ∈ Rd, since L(ξ) is selfadjoint, Λ(ξ) is real-valued. Since
the Hessian of E(ξ) is negative definite, HessΛ(0) is positive definite. Hence,
there exists a sufficiently small positive number δ such that for any λ with
Λ(0) < λ < Λ(0) + δ, {ξ ∈ Rd; Λ(ξ) ≤ λ} is a compact and strictly convex set;
furthermore, ∇Λ(ξ) 	= 0 on Xλ for any λ ∈ (Λ(0),Λ(0) + δ), where

Xλ := {ξ ∈ Rd; Λ(ξ) = λ}.
Hence, for each s in the unit sphere Sd−1 there exists a unique ξs ∈ Xλ such
that s = ∇Λ(ξs)/|∇Λ(ξs)|. Regarding Xλ as the hypersurface oriented by
N(ξ) = −∇Λ(ξ)/|∇Λ(ξ)|, ξ ∈ Xλ, we denote by Kλ(ξ) the Gauss-Kronecker
curvature of Xλ at ξ. For ξ ∈ Xλ, let uξ be an eigenfunction to L(ξ)u = Λ(ξ)u.
For u ∈ L2(Td), put ‖u‖2 =

∫
Td |u(x)|2dx. The symbol O(|x−y|−N ) stands for

a function f(x, y) on R2d satisfying |f(x, y)| ≤ C|x−y|−N on {|x−y| > R} for
some positive constants C and R independent of x, y. Let R(z) = (L− z)−1 be
the resolvent of L for z in the resolvent set. Our main theorem is the following.

Theorem 1.1. There exists δ > 0 such that for any Λ(0) < λ < Λ(0)+
δ, the limit R(λ±i0)f(x) := lim

ε↓0
R(λ±iε)f(x) in L2

loc(R
d) exists for f ∈ L2(Rd)

with compact support, and the integral kernels Gλ±i0(x, y) of R(λ ± i0) admit
the following asymptotics as |x− y| → ∞:

Gλ+i0(x, y)

=
eiπ(3−d)/4

|∇Λ(ξs)|
√
Kλ(ξs)

ei(x−y)·ξs

(2π|x− y|)(d−1)/2

uξs
(x)uξs

(y)
‖uξs

‖2
(1 +O(|x− y|−1)),

(1.1)

Gλ−i0(x, y)

=
e−iπ(3−d)/4

|∇Λ(ξs)|
√
Kλ(ξs)

e−i(x−y)·ξs

(2π|x− y|)(d−1)/2

uξs
(x)uξs

(y)
‖uξs

‖2
(1 +O(|x− y|−1)),

(1.2)

where s = (x− y)/|x− y|.
The rest of this paper is organized as follows. In Section 2, we shall give

and prove a precise version of Theorem 1.1 (Theorem 2.3). Theorem 2.3 spec-
ifies precisely the interval in which the spectral parameter λ can be contained.
In Section 3, we give the asymptotics at infinity of the m-th derivative of
Gλ±i0(x, y) with respect to λ, m = 1, 2, · · · (see Theorem 3.1). In Section 4,
as a by-product of the proof of the theorems, we give a direct and elementary
proof of the limiting absorption principle. Finally, in Section 5, in the case
d = 1 we calculate Gλ±i0(x, y) and show that the limiting absorption principle
holds for any λ in the interior of the spectrum. We study also the case that λ
is in the resolvent set.
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2. Proof of Theorem 1.1

For each ξ ∈ Rd, L(ξ) is a selfadjoint operator with compact resolvent, so
it has discrete spectrum λ1(ξ) ≤ λ2(ξ) ≤ · · · counted with multiplicities. Each
λn(ξ) is continuous and (2πZ)d-periodic, and called the n-th band function (see
e.g. [Ku, p.161] or [Sk]). Put λ2,min = min

ξ∈Rd
λ2(ξ) and let

W := the connected component of {ξ ∈ Rd; λ1(ξ) < λ2,min}
containing ξ = 0.

Lemma 2.1. (i) sup
ξ∈Rd

Λ(iξ) = Λ(0) = inf
ξ∈Rd

λ1(ξ) = λ1(0) < λ1(ξ) for

ξ ∈ [−π, π]d \ {0}.
(ii) W is not empty. Furthermore, λ1(ξ) is a nondegenerate eigenvalue of

L(ξ), ξ ∈W ; real analytic on W ; and the analytic continuation of Λ(ξ).

Proof. (i) The first equality has been seen in Fact AP. The second follows
from [MT, Proposition 2.1]. The third equality and the last inequality is known
for the case aij(x) = δij in [KS, Theorem 2.1]. The proof works out similarly
for our general case. (ii) By (i) W is not empty. Since L(ξ) is selfadjoint, λ1(ξ),
ξ ∈W , is nondegenerate. The other statements follows from the nondegeneracy
and the continuity of λ1 by the analytic perturbation theory.

Taking account of Lemma 2.1(ii), we denote λ1(ξ) by Λ(ξ) for ξ ∈W . We
have Λ(ξ) = Λ(−ξ) for ξ ∈W . For Λ(0) < λ < λ2,min, let

Wλ := the connected component of {ξ ∈W ; Λ(ξ) < λ} containing ξ = 0.

Put

I :=
{
λ′ ∈ (Λ(0), λ2,min); for any λ ∈ (Λ(0), λ′),
(i) Hess Λ(ξ) is positive definite on Wλ;

(ii) ∪m∈Zd (Wλ + 2πm) = {ξ ∈ Rd;λ1(ξ) < λ}}
and

λconv := sup I.

Lemma 2.2. The set I is not empty and Λ(0) < λconv. Furthermore,
for any λ ∈ (Λ(0), λconv), Wλ is compact and strictly convex.

Proof. From the positive definiteness of HessΛ(0), the periodicity of the
function λ1, and Lemma 2.1(i), it follows that the former part of the lemma
holds. We show the latter part. First we claim that if Wλ is strictly convex for
Λ(0) < λ < λconv, then Wλ is bounded. Suppose that there exists a sequence
{ξn} ⊂Wλ such that |ξn| > n. We may assume that ξn/|ξn| converges to some
η ∈ Sd−1. Since 0 ∈ Wλ, the convexity of Wλ implies that tξn/|ξn| ∈ Wλ for
0 ≤ t ≤ |ξn|. So we have tη ∈Wλ for any t ≥ 0. Wλ contains the ball with the
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center at the origin and radius r > 0 for some r. Hence the segment connecting
tη with each point in the ball belongs to Wλ. Taking t → ∞, we obtain that
Wλ contains the tubular neighborhood with rudius r of the half line with the
direction η. The tubular neighborhood contains some 2πm 	= 0,m ∈ Zd. Then
by the periodicity of Λ, we have the contradiction

0 = m · (∇Λ(2πm) −∇Λ(0)) = 2π
∫ 1

0

m · HessΛ(θ2πm)mdθ > 0.

Next we show that Wλ is strictly convex for Λ(0) < λ < λconv. Since
HessΛ(0) is positive definite, there exists δ > 0 such that for Λ(0) < λ <
Λ(0) + δ, Wλ is strictly convex. We claim that if Wλ is strictly convex for any
Λ(0) < λ < λ0 with some λ0 < λconv, so is Wλ0 . In fact, for any ξ, ξ′ ∈ Wλ0 ,
we can take {ξn}, {ξ′n} ⊂ Wλ0 so that ξn → ξ, ξ′n → ξ′. Then the segment
connecting ξn with ξ′n belongs to Wλ0 . So the segment connecting ξ with
ξ′ belongs to Wλ0 . Since HessΛ is positive definite on Wλ0 , it follows that
for 0 < t < 1, Λ(tξ + (1 − t)ξ′) < tΛ(ξ) + (1 − t)Λ(ξ′) ≤ λ0. This yields
that tξ + (1 − t)ξ′ ∈ Wλ0 and hence Wλ0 is strictly convex. Furthermore, we
claim that if Wλ0 is strictly convex, then there exists λ′ < λconv such that
Wλ is strictly convex for λ0 ≤ λ < λ′. In fact, since Wλ0 is strictly convex,
there exists a compact, strictly convex neighborhood K ⊂ W of Wλ0 such
that HessΛ is positive definite on K. The function Λ is strictly convex on K.
Put λ′ = minξ∈∂K Λ(ξ). Then Wλ is strictly convex for λ0 ≤ λ < λ′. The
arguments above imply that sup{λ < λconv;Wλ is strictly convex} = λconv.
Thus we have proved the lemma.

Let Xλ := {ξ ∈W ; Λ(ξ) = λ}. For s ∈ Sd−1, let ξs be the point such that
s = ∇Λ(ξs)/|∇Λ(ξs)|, and choose {es,j}d−1

j=1 ⊂ Rd such that {es,1, . . . , es,d−1, s}
is an orthonormal basis of Rd. Theorem 1.1 is a consequence of the following
theorem.

Theorem 2.3. Let Λ(0) < λ < λconv. Then the limit R(λ ± i0)f(x)
in L2

loc(R
d) exists for f ∈ L2(Rd) with compact support, and the convergence

is locally uniform in (Λ(0), λconv). For any ω ∈ Sd−1, there exist a conic
neighborhood Vω of ω and a constant Cω > 0 such that Gλ+i0(x, y) admits the
asymptotics

Gλ+i0(x, y) =
|∇Λ(ξs)|(d−3)/2

(det(es,j · Hess Λ(ξs)es,k)jk)1/2

eiπ(3−d)/4ei(x−y)·ξs

(2π|x− y|)(d−1)/2

uξs
(x)uξs

(y)
‖uξs

‖2

× (1 +O(|x− y|−1)),

where s = (x− y)/|x− y| and |O(|x− y|−1)| ≤ Cω|x− y|−1 for any x− y ∈ Vω.

Proof of Theorem 1.1. Let N(ξ) = −∇Λ(ξ)/|∇Λ(ξ)|, ξ ∈ Xλ. Then we
have

Kλ(ξ) = det(−((ej · ∇)(N(ξ) · ek))jk) =
det((ej · Hess Λ(ξ)ek)jk)

|∇Λ(ξ)|d−1
,
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where {e1, . . . , ed−1} is an orthonormal basis of the tangent plane of Kλ at ξ
(cf. [Th]). From this Theorem 2.3 implies (1.1). (1.2) follows from (1.1) and
the relation Gλ−i0(x, y) = Gλ+i0(y, x).

In the rest of this section we shall prove Theorem 2.3.
We denote by σ(T ) the spectrum of an operator T . Let

Γ := {(ξ, z) ∈ Rd × C; z /∈ σ(L(ξ))},
R(ξ, z) := (L(ξ) − z)−1 for (ξ, z) ∈ Γ.

Assume Λ(0) < λ < λconv. Let f ∈ L2(Rd) with compact support. In the same
way as Proposition 2.3 of [MT] we obtain that for any ε > 0

(2.1) R(λ+ iε)f(x) = U−1R(ξ, λ+ iε)Uf(x) =
∫

(−π,π]d
Fλ+iε(ξ, x)

dξ

(2π)d
,

where

Uf(ξ, x) :=
∑

m∈Zd

f(x−m)e−i(x−m)·ξ, f ∈ L2(Rd)

U−1g(x) :=
∫

(−π,π]d
eix·ξg(ξ, x)

dξ

(2π)d
, g ∈ L2((−π, π]d;L2(Td))

Fλ+iε(ξ, x) := eix·ξR(ξ, λ+ iε)Uf(ξ, x).(2.2)

Here we regard R(ξ, λ + iε)Uf(ξ, x) as a periodic function of x. Note that
Fλ+iε(ξ, x) is the (2πZ)d-periodic function of ξ (see [MT, Lemma 2.4]). Since
λ < λ2,min, there exists δ > 0 such that Λ(0) < λ− 3δ < λ+ 3δ < λconv. Put

Dδ := {ξ ∈W ;λ− δ < Λ(ξ) < λ+ δ}.

For ξ ∈ Dδ,

σ(L(ξ)) ∩ {z ∈ C; |z − λ| < 2δ} = {Λ(ξ)}.
We have for (ξ, z) ∈ Dδ × {z ∈ C; |z − λ| < δ}, z 	= Λ(ξ),

(2.3) R(ξ, z) = (Λ(ξ) − z)−1P (ξ) +Qz(ξ),

where

(2.4)

P (ξ) :=
−1
2πi

∮
|z′−λ|=2δ

R(ξ, z′)dz′, Qz(ξ) :=
1

2πi

∮
|z′−λ|=2δ

R(ξ, z′)
z′ − z

dz′.

P (ξ) and Qz(ξ) are defined for ξ ∈ Dδ and for (ξ, z) ∈ Dδ×{z ∈ C; |z−λ| < δ},
respectively. Note that (ξ, z) ∈ Γ if and only if (ξ + 2πm, z) ∈ Γ, m ∈ Zd. So
we extend P (ξ) and Qz(ξ) to functions on ∪m∈Zd(Dδ + 2πm) and
∪m∈Zd(Dδ + 2πm) × {z ∈ C; |z − λ| < δ} by (2.4).
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Fix ξ̃ ∈ Dδ and let uξ̃ be an eigenfunction of L(ξ̃)u = Λ(ξ̃)u. Then
ϕξ := P (ξ)uξ̃ is a Hölder continuous solution to L(ξ)u = Λ(ξ)u and a H1(Td)-
valued analytic function in ξ (see [MT, Lemma 3.3]). Furthermore, we have
ϕξ 	= 0 for ξ ∈ B(r, ξ̃), the ball of some radius r = r(ξ̃) > 0 with the center ξ̃.
Since P (ξ) is the orthogonal projection onto the eigenspace, the integral kernel
p(ξ;x, y) of P (ξ) is written as

(2.5) p(ξ; x, y) = ϕξ(x)ϕξ(y)/‖ϕξ‖2, ξ ∈ B(r, ξ̃), x, y ∈ Td.

By Lemma 3.3 (iii) of [MT], for any multi-index β

(2.6) sup
ξ∈B(r,ξ̃)

‖∂β
ξ p(ξ; ·, ·)‖C(Td×Td) ≤ Cβ

for some Cβ > 0. By covering Dδ with finite balls {B(r(ξ̃j), ξ̃j); ξ̃j ∈ Dδ, 1 ≤
j ≤ J}, we have the estimate (2.6) with supξ∈B(r,ξ̃) replaced by supξ∈Dδ

.
For ω ∈ Sd−1 let ξω ∈ Xλ be the point such that ω = ∇Λ(ξω)/|∇Λ(ξω)|.

Note that −ξω ∈ Xλ since Λ(ξ) = Λ(−ξ). We take functions ψj(ξ) ∈ C∞
0 (Dδ),

j = 1, 2, 3, such that
(i) ψ1 = 1 near ξω, and ω · ∇Λ > 0 on the support of ψ1;
(ii) ψ2 = 1 near −ξω, and ω · ∇Λ < 0 on the support of ψ2;
(iii) ψ3 = 1 near {ξ ∈ Xλ; ω · ∇Λ(ξ) = 0};
(iv) ψ(ξ) :=

∑3
j=1 ψj(ξ) = 1 near Xλ.

Let r0 > 0 be a number such that ψ1(ξ) = 1 for ξ, |ξ − ξω| < r0, and let Vω be
the conic neighborhood of ω:

(2.7)
Vω := {x ∈ Rd \ {0};x = t∇Λ(ξ) for some t > 0 and some ξ, |ξ − ξω| < r0/2}.

We claim that for any m, m′ ∈ Zd, m 	= m′, and any λ < λconv,

(Wλ + 2πm) ∩ (Wλ + 2πm′) = ∅.

In fact, suppose that ξ ∈ Wλ ∩ (Wλ + 2πm), m 	= 0. Then ξ, ξ − 2πm ∈ Wλ.
By the periodicity of Λ and the convexity of Wλ, we have the contradiction

0 = m ·(∇Λ(ξ)−∇Λ(ξ−2πm)) = 2π
∫ 1

0

m ·HessΛ(θ2πm+(ξ−2πm))mdθ > 0.

By this claim, we extend ψ ∈ C∞
0 (Dδ) to a periodic C∞-function ψ on Rd by

putting ψ(ξ + 2πm) := ψ(ξ) for ξ ∈ Dδ and m ∈ Zd, and ψ(ξ) = 0 otherwise.
Put

Eδ :=


Rd \

⋃
m∈Zd

(Dδ + 2πm)


 ∩ (−π, π]d.
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By the periodicity of Fλ+iε we have∫
(−π,π]d

Fλ+iε(ξ, x) dξ =
∫

Eδ

+
∫

(−π,π]d\Eδ

Fλ+iε(ξ, x) dξ

=
∫

Eδ

+
∫
∪m[(−π,π]d∩(Dδ+2πm)]

Fλ+iε(ξ, x) dξ

=
∫

Eδ

+
∫
∪m[((−π,π]d−2πm)∩Dδ]

Fλ+iε(ξ, x) dξ

=
∫

Eδ

+
∫

Dδ

Fλ+iε(ξ, x) dξ.

Thus by (2.1), (2.2), and (2.3) we have for ε > 0 small enough

R(λ+ iε)f(x) =
4∑

j=1

Ij,λ+iεf(x),

where

Ij,λ+iεf(x) =
∫

Dδ

ψj(ξ)eix·ξP (ξ)Uf(ξ, x)
Λ(ξ) − λ− iε

dξ

(2π)d
, j = 1, 2, 3,

I4,λ+iεf(x) =
∫

Eδ

Fλ+iε(ξ, x)
dξ

(2π)d
+
∫

Dδ

(1 − ψ(ξ))Fλ+iε(ξ, x)
dξ

(2π)d

+
∫

Dδ

ψ(ξ)eix·ξQλ+iε(ξ)Uf(ξ, x)
dξ

(2π)d
.

We denote by Ij,λ+iε(x, y) the integral kernel of each Ij,λ+iε.
First we treat I1,λ+iε. We have

I1,λ+iε(x, y) =
∫

Dδ

ei(x−y)·ξp1(ξ;x, y)
Λ(ξ) − λ− iε

dξ

(2π)d
,

where p1(ξ;x, y) := ψ1(ξ)p(ξ;x, y) is regarded as a periodic function of x, y ∈
Rd. We choose {e′2, . . . , e′d} ⊂ Rd such that {ω, e′2, . . . , e′d} is an orthonormal
basis of Rd, and use the coordinates (ξ1, ξ′) = (ξ1, . . . , ξd) and
((x− y)1, (x− y)′) = ((x− y)1, . . . , (x− y)d) such that

(2.8) ξ = ξ1ω + ξ′ · e′ = ξ1ω +
d∑

j=2

ξje
′
j and x− y = (x− y)1ω + (x− y)′ · e′.

Changing the integral variables from (ξ1, ξ′) to ζ = (ζ1, ζ ′) such that ζ1 =
Λ(ξ) − λ, ζ ′ = ξ′, we have

I1,λ+iε(x, y) =
∫
Rd

ei[(x−y)1ξ1(ζ)+(x−y)′·ζ′] p1(ξ1(ζ)ω + ζ ′ · e′;x, y)
ζ1 − iε

∣∣∣∣∂ξ1∂ζ1

∣∣∣∣ dζ

(2π)d
.
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Since ω · ∇Λ > 0 on the support of ψ1, we have 0 < ∂ξ1/∂ζ1 =
(ω · ∇Λ(ξ1(ζ)ω + ζ ′ · e′))−1 <∞. Note that for ϕ ∈ C1

0 (R) and ε > 0,
∣∣∣∣
∫
R

[
1

x− iε
−
(

p.v.
1
x

+ iπδ(x)
)]

ϕ(x)dx
∣∣∣∣ ≤ Cε‖ϕ‖C1 .

Taking the limit ε ↓ 0, we obtain that

I1,λ+i0(x, y) := lim
ε↓0

I1,λ+iε(x, y)

=
∫
Rd

ei[(x−y)1ξ1(ζ)+(x−y)′·ζ′] p1(ξ1(ζ)ω + ζ ′ · e′;x, y)
ω · ∇Λ(ξ1(ζ)ω + ζ ′ · e′)

(
p.v.

1
ζ1

+ iπδ(ζ1)
)

dζ

(2π)d
.

(2.9)

Here the convergence is uniform with respect to (x, y) and locally uniform
with respect to λ. Hence I1,λ+iεf(x) → I1,λ+i0f(x) :=

∫
I1,λ+i0(x, y)f(y)dy in

L2
loc(R

d) locally uniformly with respect to λ. We prepare a lemma to estimate
the integral, which plays a crucial role in proving Theorem 2.3.

Lemma 2.4. Let b(x) ∈ C∞
0 (R), and ϕ(x) be real-valued C∞(R)- func-

tion. Assume that ϕ′(x) > 0 on supp b. Then for any positive integer N ,

∫ ∞

−∞
eiνϕ(x)b(x)p.v.

1
x
dx = ±iπeiνϕ(0)b(0) +O(|ν|−N)

as ν → ±∞, where O(|ν|−N) satisfies the estimate

|O(|ν|−N )| ≤ CN |supp b|‖b‖C2N+1‖ϕ‖C2N+3 |ν|−N

with some constant CN . Here |supp b| is the Lebesgue measure of supp b.

Proof. First we shall show the following: for any positive integer N ,

(2.10)
∫ ∞

−∞
eiνxb(x)p.v.

1
x
dx = ±iπb(0) +O(|ν|−N )

as ν → ±∞, where |O(|ν|−N)| ≤ CN |ν|−N
∫ |b(N+1)(x)|dx. In fact, the left-

hand side equals(
p.v.

1
x

)
ˆ∗ b̂(−ν) = −i

√
π/2 (sgn ν ∗ b̂)(−ν)

= −i
√
π/2

(
−
∫ ∞

−∞
b̂(ν′)dν′ + 2

∫ −ν

−∞
b̂(ν′)dν′

)
= iπb(0) +O(ν−N)

as ν → ∞, where b̂(ν) = 1√
2π

∫
e−iνxb(x)dx is the Fourier transform of b. The

asymptotics for the case ν → −∞ can be obtained similarly. Next we show



722 Minoru Murata and Tetsuo Tsuchida

the estimate in the lemma. Take χ(x) ∈ C∞
0 ((−1, 1)) such that χ = 1 near the

origin. We divide the integral in question into two parts∫ ∞

−∞
eiνϕ(x)b(x)p.v.

1
x
dx

=
∫ ∞

−∞
eiνϕ(x)b(x)p.v.

1
x
χ(|ν|1/2x) dx+

∫ ∞

−∞
eiνϕ(x) b(x)

x
(1 − χ(|ν|1/2x)) dx

=: J1(ν) + J2(ν).

Write ϕ(x) as

ϕ(x) = ϕ(0) + xϕ′(0) + r(x), r(x) = x2

∫ 1

0

(1 − θ)ϕ′′(θx)dθ,

and change the integral variables to y = |ν|1/2x to obtain

J1(ν) = eiνϕ(0)

∫ ∞

−∞
eiνϕ′(0)y/|ν|1/2

bν(y)p.v.
1
y
dy,

where bν(y) = eiνr(y/|ν|1/2)b(y/|ν|1/2)χ(y). Note that∫ ∞

−∞
|b(N+1)

ν (y)|dy ≤ CN |supp b|‖b‖CN+1‖ϕ‖CN+3

with some constant CN > 0 independent of |ν| > 1. Thus by (2.10) we obtain

J1(ν) = eiνϕ(0)(±iπb(0) +O(|ν|−N/2)) as ν → ±∞,

with |O(|ν|−N/2)| ≤ CN |supp b|‖b‖CN+1‖ϕ‖CN+3 |ν|−N/2. Next we estimate
J2(ν). Since ϕ′ 	= 0 on supp b, it follows that

J2(ν) = (−iν)−N

∫ ∞

−∞
eiνϕ(x)ΦN

(
b(x)
x

(1 − χ(|ν|1/2x))
)
dx,

where Φ is the differential operator given by Φu(x) = (u(x)/ϕ′(x))′. Using that

sup
x

|ΦN (b(x)(1 − χ(|ν|1/2x))/x)| ≤ CN‖b‖CN ‖ϕ‖CN+1 |ν|(N+1)/2,

we have |J2(ν)| ≤ CN |supp b|‖b‖CN ‖ϕ‖CN+1 |ν|(−N+1)/2.

Note that if x− y ∈ Vω (see (2.7) for the definition of Vω) then (x− y)1 ≥
c|(x − y)′| for some c > 0. Since ∂ξ1/∂ζ1 > 0 on suppψ1, Lemma 2.4 implies
that for any positive integer N and x− y ∈ Vω

I1,λ+i0(x, y)

= i

∫
Rd−1

(
ei[(x−y)1ξ1(ζ)+(x−y)′·ζ′] p1(ξ1(ζ)ω + ζ ′ · e′;x, y)

ω · ∇Λ(ξ1(ζ)ω + ζ ′ · e′)
)∣∣∣∣

ζ1=0

dζ ′

(2π)d−1

+O((x− y)−N
1 )

= i

∫
Rd−1

ei|x−y|[s1ξ1(0,ζ′)+s′·ζ′] p1(ξ1(0, ζ ′)ω + ζ ′ · e′;x, y)
ω · ∇Λ(ξ1(0, ζ ′)ω + ζ ′ · e′)

dζ ′

(2π)d−1

+O((|x− y|−N ),

(2.11)
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where s = (x− y)/|x− y| = s1ω + s′ · e′.
Since Λ(ξ1(0, ζ ′)ω + ζ ′ · e′) = λ, ζ ′ satisfies the equation ∂ζ′(s1ξ1(0, ζ ′) +

s′ · ζ ′) = 0 if and only if s is the direction of ∇Λ(ξ1(0, ζ ′)ω + ζ ′ · e′). So the
equation has a unique solution ζ ′ = ζ ′∗, and we have ξs = ξ1(0, ζ ′∗)ω + ζ ′∗ · e′.
We apply the stationary phase method (cf. [H, Theorem 7.7.5]) to the integral
in (2.11) to obtain that

I1,λ+i0(x, y)

=
i

(2π)d−1

(
2π

|x− y|
)(d−1)/2

ei[(x−y)1ξ1(0,ζ′
∗)+(x−y)′·ζ′

∗]eiπsgn Hess ξ1(0,ζ′
∗)/4

s
(d−1)/2
1 | detHess ξ1(0, ζ ′∗)|1/2

×
(
p(ξs;x, y)
ω · ∇Λ(ξs)

+O(|x− y|−1)
)

+O(|x− y|−N ).

(2.12)

Since

(Hess ξ1(0, ζ ′∗))jk := ∂ζj
∂ζk

ξ1(0, ζ ′∗)

= −(ω · ∇Λ(ξs))−1(∂ζj
ξ1ω + e′j) · Hess Λ(ξs)(∂ζk

ξ1ω + e′k),
(2.13)

the Hessian is negative definite, and so sgn Hess ξ1(0, ζ ′∗) = 1 − d.
We shall show that

ω · ∇Λ(ξs)s
(d−1)/2
1 | det Hess ξ1(0, ζ ′∗)|1/2

= |∇Λ(ξs)|−(d−3)/2| det(es,j · Hess Λ(ξs)es,k)jk|1/2,
(2.14)

where {es,1, . . . , es,d−1, s} is an orthonormal basis of Rd. By using (2.13) and
s1 = ω · ∇Λ(ξs)/|∇Λ(ξs)|, we have that the left-hand side of (2.14) equals

s1|∇Λ(ξs)|−(d−3)/2| det[(∂ζj
ξ1ω + e′j) · Hess Λ(ξs)(∂ζk

ξ1ω + e′k)]jk|1/2.

It suffices to show that

| det[(∂ζj
ξ1ω+e′j)·HessΛ(ξs)(∂ζk

ξ1ω+e′k)]jk| = s−2
1 | det(es,j ·Hess Λ(ξs)es,k)jk|.

Since {∂ζj
ξ1ω + e′j}d

j=2 and {es,j}d−1
j=1 are basis of the tangent space of Xλ

at ξs, we can write ∂ζj
ξ1ω + e′j =

∑d−1
k=1 bjkes,k, j = 2, . . . , d, for some B =

(bjk)j=2,...,d,k=1,...,d−1. Then

| det[(∂ζj
ξ1ω + e′j) · Hess Λ(ξs)(∂ζk

ξ1ω + e′k)]jk|
= (detB)2| det(es,j · Hess Λ(ξs)es,k)jk|.

On the other hand, since {es,1, . . . , es,d−1, s} is an orthonormal basis, we have

| detB| = | det(s, ∂ζ2ξ1ω + e′2, . . . , ∂ζd
ξ1ω + e′d))| = 1/s1,

where we used ∂ζj
ξ1 = −sj/s1 in the last equality. We have thus shown (2.14).

Combining (2.12) with (2.14), we obtain
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Lemma 2.5. For x− y ∈ Vω,

I1,λ+i0(x, y)

=
eiπ(3−d)/4ei(x−y)·ξs

(2π|x− y|)(d−1)/2

|∇Λ(ξs)|(d−3)/2p(ξs;x, y)
(det(es,j · Hess Λ(ξs)es,k)jk)1/2

(1 +O(|x− y|−1)).

By (2.5) we get the main term of the asymptotics.
In the same way as above, we obtain that I2,λ+i0(x, y) := lim

ε↓0
I2,λ+iε(x, y)

is equal to the right-hand side of (2.9) with p1(ξ;x, y) replaced by p2(ξ;x, y) :=
ψ2(ξ)p(ξ;x, y). Here the convergence is uniform with respect to (x, y) and
locally uniform with respect to λ. Hence I2,λ+iεf(x) → I2,λ+i0f(x)
:=
∫
I2,λ+i0(x, y)f(y)dy in L2

loc(R
d) locally uniformly with respect to λ. Since

∂ξ1/∂ζ1 = (ω · ∇Λ(ξ1(ζ)ω+ ζ ′ · e′))−1 < 0 on suppψ2, Lemma 2.4 implies that
the term with the factor iπδ(ζ1) cancels the one with the factor p.v.ζ−1

1 modulo
the remainder O((x− y)−N

1 ) = O(|x− y|−N ) for x − y ∈ Vω and any positive
integer N . Thus we obtain

Lemma 2.6. For any positive integer N , I2,λ+i0(x, y) = O(|x− y|−N )
for x− y ∈ Vω.

Next we treat I3,λ+iε.

Lemma 2.7. For any positive integer N ,

I3,λ+i0(x, y) := lim
ε↓0

I3,λ+iε(x, y) = O(|x− y|−N )

for x− y ∈ Vω.

Proof. We have

I3,λ+iε(x, y) =
∫

Dδ

ψ3(ξ)ei(x−y)·ξp(ξ;x, y)
Λ(ξ) − λ− iε

dξ

(2π)d
.

By using a partition of unity for suppψ3, it suffices to consider integrals re-
stricted on sufficiently small integral domains, i.e., let χ ∈ C∞

0 be a cutoff
function such that χ = 1 near a point ξ0 ∈ Xλ ∩ suppψ3 and consider the
integral

I3,λ+iε,χ(x, y) :=
∫

Dδ

χ(ξ)ψ3(ξ)ei(x−y)·ξp(ξ;x, y)
Λ(ξ) − λ− iε

dξ

(2π)d
.

Let n be the outward unit normal vector toXλ at ξ0, i.e., n = ∇Λ(ξ0)/|∇Λ(ξ0)|.
Take {ẽ3, . . . , ẽd} such that {n, ω, ẽ3, . . . , ẽd} is a basis of Rd. Using the coor-
dinates (η1, η2, η̃) = (η1, η2, . . . , ηd), we change the integral variables such that
ξ = η1n + η2ω + η̃ · ẽ = η1n + η2ω +

∑d
j=3 ηj ẽj . Then putting p3(ξ;x, y) :=

χ(ξ)ψ3(ξ)p(ξ;x, y), we have

I3,λ+iε,χ(x, y)

=
D

(2π)d

∫
Rd

ei(x−y)·(η1n+η2ω+η̃·ẽ) p3(η1n+ η2ω + η̃ · ẽ;x, y)
Λ(η1n+ η2ω + η̃ · ẽ) − λ− iε

dη1dη2dη̃,
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where D = | det(n, ω, ẽ3, . . . , ẽd)|. We change the integral variables from
(η1, η2, η̃) to ζ = (ζ1, ζ2, ζ̃) such that ζ1 = Λ(η1n+ η2ω+ η̃ · ẽ)−λ and (ζ2, ζ̃) =
(η2, η̃). Then

I3,λ+iε,χ(x, y) =
∫
Rd

ei|x−y|s·(η1(ζ)n+ζ2ω+ζ̃·ẽ) r(ζ)
ζ1 − iε

dζ1dζ2dζ̃,

where

(2.15) r(ζ) :=
D

(2π)d
p3(η1(ζ)n+ ζ2ω + ζ̃ · ẽ;x, y)

∣∣∣∣∂η1∂ζ1

∣∣∣∣.
We may assume that n · ∇Λ > 0 on suppχ without loss of generality. Then
∂ζ1η1 = (n · ∇Λ)−1 < ∞. Since ζ1 = Λ(η1(ζ)n + ζ2ω + ζ̃ · ẽ) − λ, we have
∂ζ2η1 = −ω · ∇Λ/n · ∇Λ. Thus

∂ζ2(s · (η1(ζ)n+ ζ2ω)) = −ω · ∇Λ
n · ∇Λ

s · n+ s · ω =: t(ζ).

If s ∈ Vω and η1(ζ)n+ζ2ω+ζ̃ ·ẽ ∈ suppχψ3, then t(ζ) > 0 since Vω∩{∇Λ(ξ); ξ ∈
suppχψ3} = ∅. Then for any positive integer N ,

I3,λ+iε,χ(x, y) = (−i|x− y|)−N

∫
Rd

ei|x−y|s·(η1(ζ)n+ζ2ω+ζ̃·ẽ)T
Nr(ζ)
ζ1 − iε

dζ1dζ2dζ̃,

where Tr(ζ) = ∂ζ2(r(ζ)/t(ζ)). Thus we have

(−i|x− y|)NI3,λ+i0,χ(x, y) := lim
ε↓0

(−i|x− y|)NI3,λ+iε,χ(x, y)

=
∫
Rd

ei|x−y|s·(η1(ζ)n+ζ2ω+ζ̃·ẽ)TNr(ζ)
(

p.v.
1
ζ1

+ iπδ(ζ1)
)
dζ1dζ2dζ̃,

where the convergence is uniform with respect to (x, y) and locally uniform
with respect to λ. This implies that I3,λ+iε,χf(x) → I3,λ+i0,χf(x)
:=
∫
I3,λ+i0,χ(x, y)f(y)dy in L2(Rd) locally uniformly with respect to λ. Hence

it follows that I3,λ+i0,χ(x, y) = O(|x− y|−N). We have thus proved the lemma.

Next we treat I4,λ+iε. Since the functions of ξ, (1 − ψ(ξ))Fλ+iε(ξ, x) and

ψ(ξ)eix·ξQλ+iε(ξ)Uf(ξ, x) =
1

2πi

∮
|z′−λ|=2δ

ψ(ξ)Fz′(ξ, x)
z′ − λ− iε

dz′

have (2πZ)d-periodicity, we have

I4,λ+iεf(x) =
∫

(−π,π]d
(1 − ψ(ξ))Fλ+iε(ξ, x)

dξ

(2π)d

+
∫

(−π,π]d
ψ(ξ)eix·ξQλ+iε(ξ)Uf(ξ, x)

dξ

(2π)d
.
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Since (1−ψ(ξ))(R(ξ, λ+ iε)−R(ξ, λ)) → 0 in the norm of B(L2(Td)) as ε ↓ 0
uniformly on supp (1 − ψ(ξ)),∫

(−π,π]d
(1 − ψ(ξ))Fλ+iε(ξ, x)

dξ

(2π)d
= U−1(1 − ψ(ξ))R(ξ, λ+ iε)Uf(x)

→ I ′4,λ+i0f(x) := U−1(1 − ψ(ξ))R(ξ, λ)Uf(x)

=
∫

(−π,π]d
(1 − ψ(ξ))eix·ξR(ξ, λ)Uf(ξ, x)

dξ

(2π)d
,

in L2(Rd) as ε ↓ 0. Similarly, since ψ(ξ)(Qλ+iε(ξ) − Qλ(ξ)) → 0 in the norm
of B(L2(Td)) as ε ↓ 0 uniformly on suppψ(ξ), we have∫

(−π,π]d
ψ(ξ)eix·ξQλ+iε(ξ)Uf(ξ, x)

dξ

(2π)d
= U−1ψ(ξ)Qλ+iε(ξ)Uf(x)

→ I ′′4,λ+i0f(x) := U−1ψ(ξ)Qλ(ξ)Uf(x)

=
∫

(−π,π]d
ψ(ξ)eix·ξQλ(ξ)Uf(ξ, x)

dξ

(2π)d
,

in L2(Rd) as ε ↓ 0. Thus I4,λ+i0f(x) := lim
ε↓0

I4,λ+iεf(x) = I ′4,λ+i0f(x) +

I ′′4,λ+i0f(x), where the convergence is locally uniform with respect to λ.
We claim that

(2.16) (L− λ)I4,λ+i0f(x) = f(x) −
∫

Dδ

ψ(ξ)eix·ξP (ξ)Uf(ξ, x)
dξ

(2π)d
.

In fact, we have

(L− λ)I ′4,λ+i0f(x) = U−1(L(ξ) − λ)(1 − ψ(ξ))R(ξ, λ)Uf(x)

= U−1(1 − ψ(ξ))Uf(x),

and

(L− λ)I ′′4,λ+i0f(x) = U−1(L(ξ) − λ)ψ(ξ))Qλ(ξ)Uf(x)

= U−1ψ(ξ)
2πi

∮
|z′−λ|=2δ

(L(ξ) − z′ + z′ − λ)R(ξ, z′)Uf(x)
z′ − λ

dz′

= U−1ψ(ξ)Uf(x) − U−1ψ(ξ)P (ξ)Uf(x).

Hence we have (2.16).
Denote the integral kernel of the resolvent R(ξ, z) by R(ξ, z;x, y) for (ξ, z)

∈ Γ.

Lemma 2.8. The function R(ξ, z;x, y) is a measurable function on Γ×
Td × Td. For each fixed y ∈ Td, R(ξ, z;x, y) is the W 1,1(Td)-valued analytic
function on Γ; furthermore, R(ξ, z;x, y) ∈ H1

loc(T
d \{y}). For any compact set
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K in Γ and any multi-index α, there exists a constant CK,α > 0 such that for
(ξ, z) ∈ K

|∂α
ξ R(ξ, z;x, y)| ≤

{
CK,α(1 + | log |x− y||), d = 2,
CK,α|x− y|2−d, d ≥ 3.

Proof. See [GW] or [Mi], and use Cauchy’s integral formula.

Let Qλ(ξ;x, y), ξ ∈ ∪m∈Zd(Dδ + 2πm), be the integral kernel of Qλ(ξ):

Qλ(ξ;x, y) =
1

2πi

∮
|z′−λ|=2δ

R(ξ, z′;x, y)
z′ − λ

dz′.

Corollary 2.9. For each fixed y ∈ Td, Qλ(ξ;x, y) is the W 1,1(Td)-
valued analytic function on ∪m∈Zd(Dδ + 2πm); furthermore, Qλ(ξ;x, y) ∈
H1

loc(T
d \{y}). For any multi-index α, there exists a constant Cα such that for

ξ ∈ Dδ

|∂α
ξ Qλ(ξ;x, y)| ≤

{
Cα(1 + | log |x− y||), d = 2,
Cα|x− y|2−d, d ≥ 3.

The integral kernel I4,λ+i0(x, y) of I4,λ+i0 is written as I4,λ+i0(x, y) =
I ′4,λ+i0(x, y) + I ′′4,λ+i0(x, y), where

I ′4,λ+i0(x, y) =
∫

(−π,π]d

dξ

(2π)d
(1 − ψ(ξ))R(ξ, λ;x, y)ei(x−y)·ξ,

I ′′4,λ+i0(x, y) =
∫

(−π,π]d

dξ

(2π)d
ψ(ξ)Qλ(ξ;x, y)ei(x−y)·ξ.

Lemma 2.10. For any positive integer N , I4,λ+i0(x, y) = O(|x−y|−N).

Combining Lemmas 2.5, 2.6, 2.7, and the lemma, we complete the proof
of Theorem 2.3.

Proof. We suppose d ≥ 3. Since the case d = 2 is similarly shown, we
omit the proof. Let ρ > 0 and y ∈ Rd. Put χρ,y(x) := |B(ρ, y)|−1χB(ρ,y)(x),
where χB(ρ,y)(x) is the characteristic function of the ball B(ρ, y) and |B(ρ, y)|
is the volume. We shall show that for any positive integer N there exists CN

independent of ρ > 0 such that

(2.17) |I4,λ+i0χρ,y(x)| ≤ CN |x− y|−N .

We have

I ′4,λ+i0χρ,y(x)

=
∫

(−π,π]d
(1 − ψ(ξ))R(ξ, λ)


 ∑

m∈Zd

χρ,y(· −m)ei(x−·+m)·ξ


 (x)

dξ

(2π)d
.
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Note that for any multi-index α and m ∈ Zd

(2.18) ∂α
ξ R(ξ, λ) = ei2πm·x∂α

ξ R(ξ + 2πm, λ)e−i2πm·y.

Write s̃ = (x− ·+m)/|x− ·+m|. By using (i|x− ·+m|)−1s̃ · ∇ξe
i(x−·+m)·ξ =

ei(x−·+m)·ξ and the periodicity (2.18), we make integration by parts (N +N ′)-
times to obtain that

I ′4,λ+i0χρ,y(x) =
∑

|α|=N+N′
α1+α2=α

Cα1,α2

∫
(−π,π]d

dξ

(2π)d

× ∂α1
ξ (1 − ψ(ξ))∂α2

ξ R(ξ, λ)


 ∑

m∈Zd

χρ,y(· −m)
s̃αei(x−·+m)·ξ

|x− · +m|N+N ′


 ,

with some constants Cα1,α2 . Here N ′ is chosen sufficiently large later. Hence,
by Lemma 2.8 there exists CN+N ′ > 0 independent ρ > 0 such that

(2.19) |I ′4,λ+i0χρ,y(x)| ≤ CN+N ′ |x− y|−N−N ′ |[x] − [y]|2−d,

where [x] ∈ Td denotes the equivalence class of x. Similarly, by Corollary 2.9
we have (2.19) with I ′4,λ+i0χρ,y(x) replaced by I ′′4,λ+i0χρ,y(x). These imply that
for l ∈ Zd, |l| � 1, z ∈ (−1/2, 1/2]d,

|I4,λ+i0χρ,y(y + l + z)| ≤ CN+N ′ |l|−N−N ′ |z|2−d.

If l and z satisfy |l|−N ′ |z|2−d ≤ 1, i.e., |z| ≥ |l|−N ′/(d−2), then

|I4,λ+i0χρ,y(y + l + z)| ≤ CN |l|−N .

Next we consider the case |z| < r := |l|−N ′/(d−2). Since I4,λ+i0χρ,y belongs to
H1

loc(R
d), and satisfies (2.16) with f replaced by χρ,y, the Hölder continuity

of solutions (cf. [St, Théorème 7.2] or [GT, Theorem 8.22]) implies that there
exist α, K > 0 independent of y ∈ Rd, l ∈ Zd, |l| � 1, ρ > 0, such that for
z, z′ ∈ (−1/2, 1/2]d

|I4,λ+i0χρ,y(y + l + z) − I4,λ+i0χρ,y(y + l + z′)|

≤ K|z − z′|α
(

sup
z∈(−1/2,1/2]d

|I4,λ+i0χρ,y(y + l + z)| +M

)
,

(2.20)

where M is the constant

M := C sup
ξ∈Dδ

‖p(ξ; ·, ·)‖C(Td×Td)

≥
∥∥∥∥
∫

Dδ

ψ(ξ)e−i(y+l+z)·ξP (ξ)Uχρ,y(ξ, [y + z])
dξ

(2π)d

∥∥∥∥
Lp((−1/2,1/2]d)

, p > d/2,



Elliptic operators with periodic coefficients 729

where the Lp-norm is taken with respect to z-variable. Take z′ such that |z′| = r
in (2.20). Then

sup
|z|<r

|I4,λ+i0χρ,y(y + l + z)|

≤ C|l|−N +K(2r)α

(
sup

z∈(−1/2,1/2]d
|I4,λ+i0χρ,y(y + l + z)| +M

)

≤ C|l|−N +K(2r)α max

(
sup
|z|<r

|I4,λ+i0χρ,y(y + l + z)|, C|l|−N

)
+MK(2r)α.

Choose N ′ so large that −αN ′/(d − 2) ≤ −N , and take |l| so large that
K(2r)α < 1/2. Then we have

sup
|z|<r

|I4,λ+i0χρ,y(y + l + z)| ≤ CN |l|−N .

We thus obtain (2.17). Since

I4,λ+i0χρ,y(x) − I4,λ+i0(x, y) =
∫

(I4,λ+i0(x, y + z) − I4,λ+i0(x, y))χρ,0(z) dz,

Lebesgue’s theorem implies that for fixed x, I4,λ+i0χρ,y(x) → I4,λ+i0(x, y) as a
function of y in L1

loc as ρ ↓ 0. We have thus shown the lemma.

Remark 2.11. We can show that Gλ+i0 admits the following asymp-
totic expansion as |x − y| → ∞: There exist functions gj(x, y), j = 1, 2, · · · ,
such that for any natural number n

Gλ+i0(x, y) =
eiπ(3−d)/4

|∇Λ(ξs)|
√
Kλ(ξs)

ei(x−y)·ξs

(2π|x− y|)(d−1)/2

×
(
p(ξs;x, y) +

n∑
j=1

gj(x, y)
|x− y|j +O(|x− y|−n−1)

)
.

In order to prove this expansion, we have only to apply to the integral in (2.11)
the stationary phase method which gives the asymptotic expansion with the
higher order terms; and note Lemmas 2.6, 2.7, and Lemma 2.10. In principle,
we can explicitly calculate the functions gj(x, y), which are written by using
the derivatives of Λ(ξ) and p(ξ;x, y) at ξ = ξs.

3. Asymptotics of derivatives of the Green functions

Let G(m)
λ±i0(x, y) be the integral kernel of lim

ε↓0
( d
dλ

)m
R(λ± iε). Our aim of

this section is to prove the following.

Theorem 3.1. Let Λ(0) < λ < λconv. Then G
(m)
λ+i0(x, y), m ≥ 1, ad-
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mits the following asymptotics as |x− y| → ∞:

G
(m)
λ+i0(x, y)

=
(
i|x− y|
|∇Λ(ξs)|

)m
eiπ(3−d)/4

|∇Λ(ξs)|
√
Kλ(ξs)

ei(x−y)·ξs

(2π|x− y|)(d−1)/2

uξs
(x)uξs

(y)
‖uξs

‖2

× (1 +O(|x− y|−1)),

(3.1)

where s = (x− y)/|x− y|.
We prove the following theorem, which clearly implies Theorem 3.1.

Theorem 3.2. Let Λ(0) < λ < λconv. For any ω ∈ Sd−1, there exist
a conic neighborhood Vω of ω and a constant Cω > 0 such that G(m)

λ+i0(x, y)
satisfies the asymptotics (3.1), where |O(|x − y|−1)| ≤ Cω|x − y|−1 for any
x− y ∈ Vω.

As will be clearly seen in the proof of the theorem, for f ∈ L2 with compact

support, the convergence of lim
ε↓0
( d
dλ

)m
R(λ±iε)f in L2

loc is locally uniform with

respect to λ. Hence lim
ε↓0
( d
dλ

)m
R(λ± iε)f =

( d
dλ

)m
R(λ± i0)f . Let

Q(m)
z (ξ) :=

(
d

dz

)m

Qz(ξ) =
m!
2πi

∮
|z′−λ|=2δ

R(ξ, z′)
(z′ − z)m+1

dz′,

for (ξ, z) ∈ ∪m∈Zd(Dδ + 2πm) × {z ∈ C; |z − λ| < δ}, and denote its inte-
gral kernel by Q(m)

z (ξ;x, y). We need a lemma which follows from Lemma 2.8
immediately. Set (x)+ = max{x, 0} for x ∈ R.

Lemma 3.3. For any compact set K in Γ, any multi-index α, and m ≥
0, there exists a constant CK,α,m > 0 such that for (ξ, z) ∈ K

|∂α
ξ ∂

m
z R(ξ, z;x, y)|

≤



CK,α,m(1 + | log |x− y||)(1−m)+ , d = 2,
CK,α,m|x− y|−(d−2−2m)+ , d ≥ 3, d 	= 2 + 2m,
CK,α,m(1 + | log |x− y||), d ≥ 3, d = 2 + 2m.

Furthermore, for any multi-index α and m ≥ 0, there exists a constant Cα,m

such that for ξ ∈ Dδ

|∂α
ξ Q

(m)
λ (ξ;x, y)| ≤




Cα,m(1 + | log |x− y||)(1−m)+ , d = 2,
Cα,m|x− y|−(d−2−2m)+ , d ≥ 3, d 	= 2 + 2m,
Cα,m(1 + | log |x− y||), d ≥ 3, d = 2 + 2m.

Proof of Theorem 3.2. We use the same notations as in Section 2. Since
R(ξ, z) is a bounded operator-valued holomorphic function on {(ξ, z) ∈ Cd ×
C; z /∈ σ(L(ξ))}, by (2.1) and (2.2) we have(

d

dλ

)m

R(λ+ iε)f(x) =
∫

(−π,π]d
eix·ξ

(
d

dλ

)m

R(ξ, λ+ iε)Uf(ξ, x)
dξ

(2π)d
.
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By (2.3) we have(
d

dλ

)m

R(ξ, λ+ iε) =
m!P (ξ)

(Λ(ξ) − λ− iε)m+1
+Q

(m)
λ+iε(ξ), ξ ∈ Dδ.

The same argument as in Section 2 shows that for f ∈ L2(Rd) with compact
support, (

d

dλ

)m

R(λ+ iε)f(x) =
4∑

j=1

I
(m)
j,λ+iεf(x),

where

I
(m)
j,λ+iεf(x) := m!

∫
Dδ

ψj(ξ)eix·ξP (ξ)Uf(ξ, x)
(Λ(ξ) − λ− iε)m+1

dξ

(2π)d
, j = 1, 2, 3,

I
(m)
4,λ+iεf(x) := m!

∫
(−π,π]d

(1 − ψ(ξ))eix·ξR(ξ, λ+ iε)m+1Uf(ξ, x)
dξ

(2π)d

+
∫

Dδ

ψ(ξ)eix·ξQ(m)
λ+iε(ξ)Uf(ξ, x)

dξ

(2π)d
.

Here ψj , j = 1, 2, 3, and ψ =
∑3

j=1 ψj are the cutoff functions given below
(2.6).

First we treat I(m)
1,λ+iε. By the same calculation as stated in the case I1,λ+iε

we obtain that the integral kernel I(m)
1,λ+iε(x, y) of I(m)

1,λ+iε equals

I
(m)
1,λ+iε(x, y)

= m!
∫
Rd

ei[(x−y)1ξ1(ζ)+(x−y)′·ζ′] p1(ξ1(ζ)ω + ζ ′ · e′;x, y)
ω · ∇Λ(ξ1(ζ)s+ ζ ′ · e′) (ζ1 − iε)−m−1 dζ

(2π)d

=
∫
Rd

∂m
ζ1

(
ei[(x−y)1ξ1(ζ)+(x−y)′·ζ′] p1(ξ1(ζ)ω + ζ ′ · e′;x, y)

ω · ∇Λ(ξ1(ζ)ω + ζ ′ · e′)
)

(ζ1 − iε)−1 dζ

(2π)d
,

where p1(ξ;x, y) := ψ1(ξ)p(ξ;x, y). Taking the limit ε ↓ 0, we have

I
(m)
1,λ+i0(x, y) := lim

ε↓0
I
(m)
1,λ+iε(x, y)

=
∫
Rd

∂m
ζ1

(
ei[(x−y)1ξ1(ζ)+(x−y)′·ζ′] p1(ξ1(ζ)ω + ζ ′ · e′;x, y)

ω · ∇Λ(ξ1(ζ)ω + ζ ′ · e′)
)

×
(

p.v.
1
ζ1

+ iπδ(ζ1)
)

dζ

(2π)d

=
∫
Rd

dζ

(2π)d
ei[(x−y)1ξ1(ζ)+(x−y)′·ζ′]

(
p.v.

1
ζ1

+ iπδ(ζ1)
)

×
(

(i(x− y)1∂ζ1ξ1)
m p1(ξ1(ζ)ω + ζ ′ · e′;x, y)
ω · ∇Λ(ξ1(ζ)ω + ζ ′ · e′) +

m−1∑
j=0

(x− y)j
1a

(m)
j (ζ;x, y)

)
,

(3.2)
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where a(m)
j (ζ;x, y) are C(Td × Td)-valued smooth functions. Since ∂ζ1ξ1 =

(ω·∇Λ(ξ1(ζ)ω+ζ ′ ·e′))−1 > 0 on supp ψ1, Lemma 2.4 implies that for x−y ∈ Vω

and any positive N ,

I
(m)
1,λ+i0(x, y) = i

∫
Rd−1

dζ ′

(2π)d−1

[
ei[(x−y)1ξ1(ζ)+(x−y)′·ζ′]

×
(

(i(x− y)1)m p1(ξ1(ζ)s+ ζ ′ · e′;x, y)
(ω · ∇Λ(ξ1(ζ)ω + ζ ′ · e′))m+1

+
m−1∑
j=0

(x− y)j
1a

(m)
j (ζ;x, y)

)]∣∣∣∣
ζ1=0

+O(|x− y|−N ).

(3.3)

Applying the stationary phase method, we have for x− y ∈ Vω

I
(m)
1,λ+i0(x, y)

=
(
i|x− y|
|∇Λ(ξs)|

)m
eiπ(3−d)/4ei(x−y)·ξs

(2π|x− y|)(d−1)/2

|∇Λ(ξs)|(d−3)/2

(det(es,j · Hess Λ(ξs)es,k)jk)1/2

× uξs
(x)uξs

(y)
‖uξs

‖2
(1 +O(|x− y|−1)),

which gives the main term. Here we have used (x− y)1/ω · ∇Λ(ξs) =
|x− y|/|∇Λ(ξs)|.

In the same way as above, we obtain that I(m)
2,λ+i0(x, y) := lim

ε↓0
I
(m)
2,λ+iε(x, y)

is equal to the right-hand side of (3.2) with p1 replaced by p2. Since

∂ζ1ξ1 = (ω · ∇Λ(ξ1(ζ)ω + ζ ′ · e′))−1 < 0 on suppψ2,

Lemma 2.4 implies that the term with the factor iπδ(ζ1) cancels the one with
the factor p.v.ζ−1

1 modulo the remainder O(|x − y|−N ) for x − y ∈ Vω. Thus
we obtain that for any positive integer N ,

(3.4) I
(m)
2,λ+i0(x, y) = O(|x− y|−N ) for x− y ∈ Vω.

Next we treat I(m)
3,λ+iε. Let χ be the cutoff function appeared in the proof

of Lemma 2.7. By the same calculation as stated in the proof of Lemma 2.7, it
suffices to estimate the quantity

I
(m)
3,λ+iε,χ(x, y) := m!

∫
Rd

ei|x−y|s·(η1(ζ)n+ζ2ω+ζ̃·ẽ) r(ζ)
(ζ1 − iε)m+1

dζ1dζ2dζ̃,

where r(ζ) is given in (2.15). For any positive integer N and x− y ∈ Vω,

I
(m)
3,λ+iε,χ(x, y)

= m!(−i|x− y|)−N

∫
Rd

ei|x−y|s·(η1(ζ)n+ζ2ω+ζ̃·ẽ) TNr(ζ)
(ζ1 − iε)m+1

dζ1dζ2dζ̃

= (−i|x− y|)−N

∫
Rd

∂m
ζ1

[ei|x−y|s·(η1(ζ)n+ζ2ω+ζ̃·ẽ)TNr(ζ)]
ζ1 − iε

dζ1dζ2dζ̃,
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where T is the operator given in the proof of Lemma 2.7. Thus we have
lim
ε↓0

I
(m)
3,λ+iε,χ(x, y) = O(|x− y|−N+m) for x− y ∈ Vω. Hence for any positive N ,

(3.5) I
(m)
3,λ+i0(x, y) := lim

ε↓0
I
(m)
3,λ+iε(x, y) = O(|x− y|−N ), x− y ∈ Vω.

Next we treat I(m)
4,λ+iε. In the same way as stated in the case of I4,λ+iε we

have

I
(m)
4,λ+i0f(x) := lim

ε↓0
I
(m)
4,λ+iεf(x) = I

′(m)
4,λ+i0f(x) + I

′′(m)
4,λ+i0f(x),

where

I
′(m)
4,λ+i0f(x) := m!U−1(1 − ψ(ξ))R(ξ, λ)m+1Uf(x),

I
′′(m)
4,λ+i0f(x) := U−1ψ(ξ)Q(m)

λ (ξ)Uf(x).

We claim that for m ≥ 1

(3.6) (L− λ)I(m)
4,λ+i0f(x) = mI

(m−1)
4,λ+i0f(x).

In fact

(L− λ)I ′(m)
4,λ+i0f(x) = m!U−1(L(ξ) − λ)(1 − ψ(ξ))R(ξ, λ)m+1Uf(x)

= m!U−1(1 − ψ(ξ))R(ξ, λ)mUf(x) = mI
′(m−1)
4,λ+i0 f(x),

(L− λ)I ′′(m)
4,λ+i0f(x) = U−1ψ(ξ)(L(ξ)− λ)Q(m)

λ (ξ)Uf(x)

= U−1ψ(ξ)
m!
2πi

∮
(L(ξ) − z′ + z′ − λ)R(ξ, z′)

(z′ − λ)m+1
dz′Uf(x)

= mU−1ψ(ξ)Q(m−1)
λ (ξ)Uf(x) = mI

′′(m−1)
4,λ+i0 f(x).

We shall show that for any positive integer N there exists CN,m indepen-
dent of ρ > 0 such that

(3.7) |I(m)
4,λ+i0χρ,y(x)| ≤ CN,m|x− y|−N ,

where χρ,y is defined in the proof of Lemma 2.10. Once this is proved, for
any positive integer N the integral kernel I(m)

4,λ+i0(x, y) of I(m)
4,λ+i0 satisfies the

estimate

(3.8) I
(m)
4,λ+i0(x, y) = O(|x− y|−N ),

which can be proved in the same way as in the proof of Lemma 2.10. We show
(3.7) by induction on m ≥ 0. We have already shown (3.7) in the case m = 0 in
Section 2, since I(0)

4,λ+i0χρ,y(x) = I4,λ+i0χρ,y(x). Let m ≥ 1. In the same way
as in the proof of Lemma 2.10, using (2.18) and Lemma 3.3, we obtain that for
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any positive integers N , N ′, there exists CN+N ′ such that for l ∈ Zd, |l| � 1,
z ∈ (−1/2, 1/2]d,

|I(m)
4,λ+i0χρ,y(y + l + z)|

≤



CN+N ′ |l|−N−N ′
Cm, d = 2,

CN+N ′ |l|−N−N ′ |z|−(d−2−2m)+ , d ≥ 3, d 	= 2 + 2m,
CN+N ′ |l|−N−N ′

(1 + | log |z||), d ≥ 3, d = 2 + 2m.

Hence, indeed, we have (3.7) in the case d = 2 or the case d < 2 + 2m. In the
following we assume that d > 2+2m. The case d = 2+2m is similarly shown. In
the case |z| ≥ r := |l|−N ′/(d−2−2m), we have |I(m)

4,λ+i0χρ,y(y+ l+ z)| ≤ CN |l|−N .
Consider the case |z| < r. By the induction hypothesis, we can choose a
constant Mm which is independent of l, |l| � 1, and satisfies

Mm ≥ m‖I(m−1)
4,λ+i0χρ,y(y + l + ·)‖Lp((−1/2,1/2]d), p > d/2.

Since I(m)
4,λ+i0χρ,y belongs to H1

loc(R
d), and satisfies (3.6) with f replaced by

χρ,y, the Hölder continuity of solutions implies that there exist α, K > 0
independent of y ∈ Rd, l ∈ Zd, |l| � 1, ρ > 0, such that for z, z′ ∈ (−1/2, 1/2]d

|I(m)
4,λ+i0χρ,y(y + l + z) − I

(m)
4,λ+i0χρ,y(y + l + z′)|

≤ K|z − z′|α( sup
z∈(−1/2,1/2]d

|I(m)
4,λ+i0χρ,y(y + l + z)| +Mm).

(3.9)

Take z′ such that |z′| = r in (3.9). Then

sup
|z|<r

|I(m)
4,λ+i0χρ,y(y + l + z)|

≤ C|l|−N +K(2r)α( sup
z∈(−1/2,1/2]d

|I(m)
4,λ+i0χρ,y(y + l + z)| +Mm)

≤ C|l|−N +K(2r)α max( sup
|z|<r

|I(m)
4,λ+i0χρ,y(y + l + z)|, C|l|−N ) +KMm(2r)α.

Choose N ′ so large that −αN ′/(d− 2 − 2m) ≤ −N , and take |l| so large that
K(2r)α < 1/2. Then we have

sup
|z|<r

|I(m)
4,λ+i0χρ,y(y + l + z)| ≤ CN |l|−N .

We thus obtain (3.7). We have proved Theorem 3.2.

4. The limiting absorption principle

We denote by Bs, s ∈ R, the space

Bs :=


v ∈ L2

loc(R
d); ‖v‖Bs

:=
∞∑

j=1

Rs
j

(∫
Rj−1<|x|<Rj

|v(x)|2dx
)1/2

<∞

 ,
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where R0 = 0, Rj = 2j−1 for j > 0. The dual space B∗
s is the set

B∗
s =


v ∈ L2

loc(R
d); ‖v‖B∗

s
:= sup

j≥1
R−s

j

(∫
Rj−1<|x|<Rj

|v(x)|2dx
)1/2

<∞

 .

The main theorem of this section is the following

Theorem 4.1. Let Λ(0) < λ < λconv. The operator
( d
dλ

)m
R(λ ± i0),

m ≥ 0, is bounded from B 1
2+m to B∗

1
2+m

.

Proof. Since for |x− y| < 1

|G(m)
λ+i0(x, y)| ≤




Cm(1 + | log |x− y||)(1−m)+ , d = 2,
Cm|x− y|−(d−2−2m)+ , d ≥ 3, d 	= 2 + 2m,
Cm(1 + | log |x− y||), d ≥ 3, d = 2 + 2m,

the operator with the integral kernel G(m)
λ+i0(x, y)χ1(|x − y|) is bounded on

L2(Rd), where χ1(r) is a C∞([0,∞))-function such that χ1(r) = 1 for 0 ≤
r ≤ 1/2, and χ1(r) = 0 for 1 ≤ r.

For |x− y| large, we use the decomposition G(m)
λ+i0(x, y) =

4∑
j=1

I
(m)
j,λ+i0(x, y),

m ≥ 1, as in Section 3. (The case m = 0 is proved in the same way by using
the decomposition as in Section 2.) Let ω ∈ Sd−1, and Vω be such a conic
neighborhood of ω as in Theorem 3.2. Let χ2 be a C∞-function on Sd−1 such
that χ2 = 1 near ω and χ2 = 0 outside of Vω ∩Sd−1. By (3.4), (3.5), and (3.8),
we have for any positive N and x− y ∈ Vω,

(4.1)
4∑

j=2

I
(m)
j,λ+i0(x, y) = O(|x− y|−N ).

Thus the operator with the kernel (1−χ1(|x− y|))χ2( x−y
|x−y| )

∑4
j=2 I

(m)
j,λ+i0(x, y)

is bounded on L2(Rd).
By using the coordinates ((x− y)1, (x− y)′) as in (2.8), we have by (3.3)

that for any positive N and x− y ∈ Vω, I(m)
1,λ+i0(x, y) has the expression

I
(m)
1,λ+i0(x, y)

=
∫
Rd−1

ei[(x−y)1ξ1(0,ζ′)+(x−y)′·ζ′]
m∑

j=0

(x− y)j
1ã

(m)
j (ζ ′;x, y) dζ ′

+O(|x− y|−N ).

(4.2)

Here, since p(ξ;x, y) = ϕξ(x)ϕξ(y)/‖ϕξ‖2 for some C(Td)-valued smooth func-
tion ϕξ, ã

(m)
j (ζ ′;x, y) is written as

ã
(m)
j (ζ ′;x, y) =

L∑
l=1

v
(m)
j,l (ζ ′, x)w(m)

j,l (ζ ′, y),
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where v(m)
j,l (ζ ′, x), w(m)

j,l (ζ ′, x) ∈ C∞
0 (Rd−1;C(Td)) and for any multi-index α,

(4.3) sup
ζ′

‖∂α
ζ′v

(m)
j,l (ζ ′, ·)‖C(Td) + sup

ζ′
‖∂α

ζ′w
(m)
j,l (ζ ′, ·)‖C(Td) ≤ Cm,α.

Let

Kf(x) :=
∫
Rd

(1 − χ1(|x− y|))χ2(
x− y

|x− y| )(x− y)j
1

×
(∫

Rd−1
ei[(x−y)1ξ1(0,ζ′)+(x−y)′·ζ′]v

(m)
j,l (ζ ′, x)w(m)

j,l (ζ ′, y)dζ ′
)
f(y)dy.

By (4.1) and (4.2), the theorem follows from the following estimate: for any
f, g ∈ C∞

0 (Rd),

|〈Kf, g〉| =
∣∣∣∣
∫
Rd

Kf(x)g(x)dx
∣∣∣∣ ≤ Cm,j‖f‖B 1

2+j
‖g‖B 1

2 +j
.

Let us show this estimate. For simplicity, we write χ3(x− y) :=
(1 − χ1(|x − y|))χ2( x−y

|x−y| ), v(ζ
′, x) := v

(m)
j,l (ζ ′, x), and w(ζ ′, y) := w

(m)
j,l (ζ ′, y).

Put

χ̂3(x1, ξ
′) := (2π)−(d−1)/2

∫
Rd−1

e−ix′·ξ′
χ3(x1, x

′)dx′,

F̂ (ζ ′, y1, ξ′) := (2π)−(d−1)/2

∫
Rd−1

e−iy′·ξ′
w(ζ ′, y1, y′)f(y1, y′)dy′,

Ĝ(ζ ′, x1, ξ
′) := (2π)−(d−1)/2

∫
Rd−1

e−ix′·ξ′
v(ζ ′, x1, x′)g(x1, x′)dx′.

Then by Planchrel’s formula with respect to x′-variable,

〈Kf, g〉 = (2π)(d−1)/2

∫
dx1dy1dζ

′dξ′(x− y)j
1e

i(x−y)1ξ1(0,ζ′)χ̂3(x1 − y1, ξ
′ − ζ ′)

× F̂ (ζ ′, y1, ξ′)Ĝ(ζ ′, x1, ξ′)

= (2π)(d−1)/2

∫
dx1dy1dη

′dξ′(x− y)j−d+1
1 ei(x−y)1ξ1(0,ξ′−η′/(x−y)1)

× χ̂3(x1 − y1, η
′/(x− y)1)F̂ (ξ′ − η′/(x− y)1, y1, ξ′)

× Ĝ(ξ′ − η′/(x− y)1, x1, ξ′).

Hence

|〈Kf, g〉| ≤ C

∫
dx1dy1|x1 − y1|j−d+1‖χ̂3((x− y)1, ·/(x− y)1)‖L1(Rd−1)

× sup
η′

‖F̂ (· − η′/(x− y)1, y1, ·)‖L2(Rd−1) sup
η′

‖Ĝ(· − η′/(x− y)1, x1, ·)‖L2(Rd−1).
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We claim that for some constant C independent of y1 and x1,

sup
η′

‖F̂ (· − η′/(x− y)1, y1, ·)‖L2(Rd−1) ≤ C‖f(y1, ·)‖L2(Rd−1),

sup
η′

‖Ĝ(· − η′/(x− y)1, x1, ·)‖L2(Rd−1) ≤ C‖g(x1, ·)‖L2(Rd−1).

In fact, for any h ∈ C∞
0 (Rd−1),∫

Rd−1
h(ξ′)F̂ (ξ′ − η′/(x− y)1, y1, ξ′)dξ′

= (2π)−(d−1)/2

∫
dy′f(y1, y′)

∫
e−iy′·ξ′

w(ξ′ − η′/(x− y)1, y1, y′)h(ξ′)dξ′

= (2π)−(d−1)

∫
dy′f(y1, y′)

×
∫∫

e−i(y′−x′)·ξ′
w(ξ′ − η′/(x− y)1, y1, y′)ȟ(x′)dx′dξ′,

where ȟ is the inverse Fourier transform of h. By (4.3) and the integration by
parts, we have for any positive N∣∣∣∣

∫
e−i(y′−x′)·ξ′

w(ξ′ − η′/(x− y)1, y1, y′)dξ′
∣∣∣∣ ≤ C(1 + |x′ − y′|)−N .

Thus we have∣∣∣∣
∫
Rd−1

h(ξ′)F̂ (ξ′ − η′/(x− y)1, y1, ξ′)dξ′
∣∣∣∣ ≤ C‖h‖L2(Rd−1)‖f(y1, ·)‖L2(Rd−1).

The inequality for Ĝ follows in the same way as above. Furthermore, we claim
that for some constant C independent of (x− y)1,

(x− y)1−d
1 ‖χ̂3((x− y)1, ·/(x− y)1)‖L1(Rd−1) ≤ C.

In fact, we have for t := (x− y)1 large

t1−dχ̂3(t, η′/t) = t1−d

∫
e−iη′·z′/tχ2(

t

(t2 + z′2)1/2
,

z′

(t2 + z′2)1/2
)dz′

=
∫
e−iη′·z′

χ2(
1

(1 + z′2)1/2
,

z′

(1 + z′2)1/2
)dz′,

which is a rapidly decreasing function of η′ independent of t. Hence we have

|〈Kf, g〉|
≤ C

∫
dx1dy1(x− y)j

1‖f(y1, ·)‖L2(Rd−1)‖g(x1, ·)‖L2(Rd−1)

≤ C

∫
(1 + |x1|)j‖g(x1, ·)‖L2(Rd−1)dx1

∫
(1 + |y1|)j‖f(y1, ·)‖L2(Rd−1)dy1

≤ C‖f‖B 1
2+j

‖g‖B 1
2 +j

,
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where the last inequality is shown in the same way as Theorem 2.4 of [AH]. We
have thus proved the theorem.

5. The one dimensional case

In the one dimensional case we shall show that the Green functions Gλ±i0

are written as a product of an exponential function and a periodic function,
and that the limiting absorption principle holds for all λ in the interior of the
spectrum. We shall also calculate the resolvent kernel for all λ ∈ R in the
resolvent set.

In this section, let

L = − d

dx

(
a(x)

d

dx

)
+ c(x),

where a(x) and c(x) are real-valued periodic functions with period 1. Assume
that a ∈ L∞(R) and 0 < µ ≤ a(x) ≤ µ−1 for some constant µ, and that
c ∈ L1

loc(R). Corresponding to this operator, we consider the equation

(5.1)
d

dx

(
y1(x)
y2(x)

)
=
(

0 a(x)−1

c(x) − z 0

)(
y1(x)
y2(x)

)

for z ∈ C. By the standard iteration method of ordinary differential equations,
we can find unique solutions to (5.1), (c1(x, z), c2(x, z)) and (s1(x, z), s2(x, z))
with the initial conditions(

c1(0, z)
c2(0, z)

)
=
(

1
0

)
and

(
s1(0, z)
s2(0, z)

)
=
(

0
1

)
,

respectively, in the space of C2-valued absolutely continuous functions AC(R)2.
We can also see that cj(x, z) and sj(x, z) are C([−R,R])-valued entire functions
of z for any R.

For each ζ ∈ C, the eigenvalue problem

(5.2)




y ∈ H1
loc(R)

Ly = zy
y(x+ 1) = eiζy(x) (ζ-periodicity)

is equivalent to{
(y1, y2) ∈ AC(R)2

(y1, y2) satisfies (5.1) and y1 satisfies the ζ-periodicity

under the relation y1 = y, y2 = ay′. Writing a solution to (5.2) as y(x) =
α1c1(x, z)+α2s1(x, z), |α1|2 + |α2|2 	= 0, by the ζ-periodicity we have (M(z)−
eiζI)α = 0, where

M(z) :=
(
c1(1, z) s1(1, z)
c2(1, z) s2(1, z)

)
, α =

(
α1

α2

)
.
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We see that det(M(z) − eiζI) = 0 if and only if

(5.3) D(z) = eiζ + e−iζ ,

where D(z) := c1(1, z)+s2(1, z) is the discriminant, which is an entire function.
Hence the existence of non-trivial solution of (5.2) is equivalent to (5.3).

A function y is an eigenfunction of (5.2) if and only if u(x) = e−ixζy(x)
is an eigenfunction of L(ζ) with the same eigenvalue. Here L(ζ) = e−ixζLeixζ

is an operator on L2(T) with compact resolvent with the domain D(L(ζ)) =
{u ∈ H1(T);L(ζ)u ∈ L2(T)}. Regarding L as the selfadjoint operator on
L2(R) with the domain D(L) = {u ∈ H1(R);Lu ∈ L2(R)}, we have the
direct integral decomposition ULU−1 =

∫ ⊕
(−π,π]

L(ξ)dξ, where U is the unitary
operator defined in Section 2 with d = 1 (cf. [RS]).

We denote the eigenvalues of L(ξ) by λ1(ξ) ≤ λ2(ξ) ≤ · · · for ξ ∈ R
counted with multiplicities. Each λn(ξ) is known to be continuous on R. We
summarize several facts, which can be proved in ways similar to those in [E],
[Ku], [Ma], and [RS]. Each λn(ξ) is real analytic on (0, π), and for ξ ∈ (0, π),
λn(ξ) is a nondegenerate eigenvalue of L(ξ). There exists a sequence of real
numbers

−∞ < µ1 < ν1 ≤ ν2 < µ2 ≤ µ3 < ν3 ≤ · · ·
such that it tends to infinity and has the following properties:

(i) The spectrum σ(L) of L is ∪∞
n=1([µ2n−1, ν2n−1]∪ [ν2n, µ2n]); and |D(λ)|

≤ 2, λ ∈ R, if and only if λ ∈ σ(L).
(ii) D(λ) = 2 only at λ = µj , and D(λ) = −2 only at λ = νj .
(iii) D′(λ) < 0 on (−∞, ν1) and (µ2n−1, ν2n−1), andD′(λ) > 0 on (ν2n, µ2n).
(iv) λ′2n−1(ξ) > 0 and λ′2n(ξ) < 0 on (0, π); in the interval [0, π], λ2n−1(ξ)

increases from µ2n−1 to ν2n−1, and λ2n(ξ) decreases from µ2n to ν2n; λn(kπ +
ξ) = λn(kπ − ξ) for any integer k and real ξ.

(v) If λ2n−1(π) = λ2n(π), then λ2n−1(π − 0) 	= 0; if λ2n(0) = λ2n+1(0),
then λ2n+1(0 + 0) 	= 0

(vi) If ν2n−1 	= ν2n, then D′(ν2n−1) 	= 0 and D′(ν2n) 	= 0, and ν2n−1 and
ν2n are nondegenerate eigenvalues of L(π); if µ2n 	= µ2n+1, then D′(µ2n) 	= 0
and D′(µ2n+1) 	= 0 and µ2n and µ2n+1 are nondegenerate eigenvalues of L(0); if
ν2n−1 = ν2n or µ2n = µ2n+1, then D′ = 0 at these points, and these are doubly
degenerate eigenvalues of L(π) or L(0), respectively; if D(λ) ≥ 2 (≤ −2) and
D′(λ) = 0, then D′′(λ) < 0 (> 0).

We denote byGz(x, y) the integral kernel of the resolvent R(z) := (L−z)−1

for z in the resolvent set. We use the notations (u, v) =
∫ 1

0
u(x)v(x) dx and

‖u‖2 = (u, u).
First, let λ be in the interior of σ(L). Then the only one of the following

four cases holds:
(I) λ = λ2n−1(ξ) ∈ (µ2n−1, ν2n−1) for some ξ ∈ (0, π),

(II) λ = λ2n(ξ) ∈ (ν2n, µ2n) for some ξ ∈ (−π, 0),
(III) λ = λ2n−1(π) = λ2n(π) = ν2n−1 = ν2n,
(IV) λ = λ2n(0) = λ2n+1(0) = µ2n = µ2n+1.
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Theorem 5.1. Assume that λ is in the interior of σ(L). There ex-

ists the limit lim
ε↓0
( d
dλ

)m
R(λ ± iε)f(x) in L2

loc(R) for m ≥ 0 and f ∈ L2(R)

with compact support, and the convergence is locally uniform in the interior of
σ(L). The integral kernels Gλ+i0(x, y) and G

(m)
λ+i0(x, y) of lim

ε↓0
R(λ + iε) and

lim
ε↓0
( d
dλ

)m
R(λ+ iε), m ≥ 1, admit the following expressions:

Case (I).

Gλ+i0(x, y) = Gλ+i0(y, x) =
iei(x−y)ξ

λ′2n−1(ξ)
uξ(x)uξ(y)

‖uξ‖2
, y ≤ x,

G
(m)
λ+i0(x, y) = G

(m)
λ+i0(y, x)

=
(

i

λ′2n−1(ξ)

)m+1

(x− y)mei(x−y)ξ uξ(x)uξ(y)
‖uξ‖2

(1 +O(|x− y|−1)), y ≤ x.

Here uξ is an eigenfunction corresponding to the eigenvalue λ2n−1(ξ).

Case (II). Gλ+i0(x, y) and G
(m)
λ+i0(x, y) admit the same expressions as

in (I) with λ′2n−1(ξ) replaced by λ′2n(ξ), and with uξ being an eigenfunction
corresponding to the eigenvalue λ2n(ξ).

Case (III). With uξ being a C(T)-valued holomorphic function in a neigh-
borhood of π such that ‖uξ‖ 	= 0, (L(ξ) − λ2n−1(ξ))uξ = 0 for ξ ≤ π, and
(L(ξ) − λ2n(ξ))uξ = 0 for π < ξ,

Gλ+i0(x, y) = Gλ+i0(y, x) =
iei(x−y)π

λ′2n−1(π − 0)
uπ(x)uπ(y)

‖uπ‖2
, y ≤ x,

G
(m)
λ+i0(x, y) = G

(m)
λ+i0(y, x)

=
(

i

λ′2n−1(π − 0)

)m+1

(x− y)mei(x−y)π uπ(x)uπ(y)
‖uπ‖2

× (1 +O(|x− y|−1)), y ≤ x.

Case (IV). With uξ being a C(T)-valued holomorphic function in a neigh-
borhood of 0 such that ‖uξ‖ 	= 0, (L(ξ) − λ2n+1(ξ))uξ = 0 for 0 ≤ ξ, and
(L(ξ) − λ2n(ξ))uξ = 0 for ξ < 0,

Gλ+i0(x, y) = Gλ+i0(y, x) =
i

λ′2n+1(0 + 0)
u0(x)u0(y)

‖u0‖2
, y ≤ x,

G
(m)
λ+i0(x, y) = G

(m)
λ+i0(y, x)

=
(

i

λ′2n+1(0 + 0)

)m+1

(x− y)mu0(x)u0(y)
‖u0‖2

(1 +O(|x− y|−1)), y ≤ x.
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Proof. (I) Since D′(λ) < 0 on (µ2n−1, ν2n−1), there exists a holomorphic
inverse function D−1 of D on an open set containing (−2, 2). Put λ(ζ) :=
D−1(eiζ +e−iζ) for ζ in an open set containing (0, π). We have λ(ξ) = λ2n−1(ξ)
for ξ ∈ (0, π). Let

α(ζ) = (α1(ζ), α2(ζ)) := (−s1(1, λ(ζ)), c1(1, λ(ζ))− eiζ).

Since α(ξ) 	= 0 for ξ ∈ (0, π), α(ζ) is an eigenvector of M(λ(ζ)) corresponding
to the eigenvalue eiζ for ζ in an open set containing (0, π). Thus yζ(x) :=
α1(ζ)c1(x, λ(ζ)) + α2(ζ)s1(x, λ(ζ)) satisfies (5.2) with z replaced by λ(ζ). So
uζ(x) := e−iζxyζ(x) is a C(T)-valued holomorphic eigenfunction of L(ζ) cor-
responding to the eigenvalue λ(ζ). Since λ′2n−1(ξ) > 0 on (0, π), the in-
verse function theorem implies that there exists a holomorphic function ζ(z)
on an open set containing (µ2n−1, ν2n−1) such that λ(ζ(z)) = z. For each
λ ∈ (µ2n−1, ν2n−1), if ε > 0 is small enough, yζ(λ+iε)(x) is a solution to the
equation Ly = (λ + iε)y. Taking the complex conjugate of this equation and
replacing ε by −ε, we obtain that yζ(λ−iε)(x) is also a solution. Since ζ ′(λ) > 0,
we obtain the linearly independent solutions to Ly = (λ+ iε)y:

yζ(λ+iε)(x) = eiζ(λ+iε)xuζ(λ+iε)(x)

= exp[(iζ(λ) − εζ ′(λ) +O(ε2))x]uζ(λ+iε)(x),

yζ(λ−iε)(x) = e−iζ(λ−iε)xuζ(λ−iε)(x)

= exp[(−iζ(λ) + εζ ′(λ) +O(ε2))x]uζ(λ−iε)(x).

Let [y, ỹ](x) := a(x)(y(x)ỹ′(x) − y′(x)ỹ(x)) be the Wronskian of two solutions
y and ỹ. Then

Gλ+iε(x, y) =
{
yζ(λ+iε)(x)yζ(λ−iε)(y)/[yζ(λ+iε), yζ(λ−iε)](0), y ≤ x,

yζ(λ+iε)(y)yζ(λ−iε)(x)/[yζ(λ+iε), yζ(λ−iε)](0), x ≤ y,

(cf. §5.3 in [E]). Since [yζ(λ+iε), yζ(λ−iε)](x) is a constant independent of x and
ζ(λ+ iε) = ζ(λ− iε), it follows that

[yζ(λ+iε), yζ(λ−iε)](0)

=
∫ 1

0

(
[uζ(λ+iε), uζ(λ−iε)](x) − 2iζ(λ+ iε)a(x)uζ(λ+iε)(x)uζ(λ−iε)(x)

)
dx.

On the other hand, we have

∫ 1

0

[
a(x)

(
d

dx
+ iζ(λ+ iε)

)
uζ(λ+iε)(x)

(
d

dx
− iζ(λ+ iε)

)
uζ(λ−iε)(x)

+ c(x)uζ(λ+iε)(x)uζ(λ−iε)(x)
]
dx = (λ+ iε)(uζ(λ+iε), uζ(λ−iε)).
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Differentiating both sides of this equation with respect to λ, we have

iζ ′(λ+ iε)
∫ 1

0

(
[uζ(λ+iε), uζ(λ−iε)](x)

− 2iζ(λ+ iε)a(x)uζ(λ+iε)(x)uζ(λ−iε)(x)
)
dx

= (uζ(λ+iε), uζ(λ−iε)).

Thus

iζ ′(λ+ iε)[yζ(λ+iε), yζ(λ−iε)](0) = (uζ(λ+iε), uζ(λ−iε)).

Therefore we have for y ≤ x

Gλ+iε(x, y) = Gλ+iε(y, x) = iζ ′(λ+ iε)eiζ(λ+iε)(x−y)uζ(λ+iε)(x)uζ(λ−iε)(y)
(uζ(λ+iε), uζ(λ−iε))

.

Taking the limit ε ↓ 0, we have the existence of the limit lim
ε↓0

R(λ± iε)f(x) and

Gλ+i0(x, y) = lim
ε↓0

Gλ+iε(x, y) =
iei(x−y)ξ

λ′2n−1(ξ)
uξ(x)uξ(y)

‖uξ‖2
, y ≤ x,

where ξ = ζ(λ), i.e., λ2n−1(ξ) = λ. Furthermore, we can see that for any

integer m ≥ 1, the limit lim
ε↓0
( d
dλ

)m
R(λ± iε)f(x) exists and

G
(m)
λ+i0(x, y) = lim

ε↓0

(
d

dλ

)m

Gλ+iε(x, y)

=
(

i

λ′2n−1(ξ)

)m+1

(x− y)mei(x−y)ξ uξ(x)uξ(y)
‖uξ‖2

(1 +O(|x− y|−1)), y ≤ x.

We have thus proved the case (I). The case (II) is proved in the same way as
(I).

(III) Assume that λ2n−1(π) = λ2n(π) = ν2n−1 = ν2n. Since ν2n is a doubly
degenerate eigenvalue and L(ξ) is selfadjoint for ξ real, Theorem XII.13 in [RS]
implies that there exist holomorphic eigenvalues E1(ζ) and E2(ζ) of L(ζ) near
ζ = π such that E1(π) = E2(π) = ν2n. If ξ ∈ R, each of λ2n−1(ξ) and λ2n(ξ)
must be equal to one of Ej(ξ), j = 1, 2. Since D(Ej(ξ)) = 2 cos ξ near ξ = π,
we have

D′′(Ej(ξ))E′
j(ξ)

2 +D′(Ej(ξ))E′′
j (ξ) = −2 cos ξ.

So, since D′(ν2n) = 0 and D′′(ν2n) > 0, we obtain that E′
j(π) 	= 0 (which

implies the fact (v) stated before Theorem 5.1). Since{
λ′2n−1(ξ) > 0, ξ < π,
λ′2n(ξ) > 0, π < ξ,

and
{
λ′2n−1(ξ) < 0, π < ξ,
λ′2n(ξ) < 0, ξ < π,
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we conclude that there exist holomorphic functions E1(ζ) and E2(ζ) on an open
set containing (0, 2π) such that

E1(ξ) =
{
λ2n−1(ξ), 0 ≤ ξ ≤ π,
λ2n(ξ), π ≤ ξ ≤ 2π, E2(ξ) =

{
λ2n(ξ), 0 ≤ ξ ≤ π,
λ2n−1(ξ), π ≤ ξ ≤ 2π.

Since E′
1(ξ) > 0 on (0, 2π), the inverse function theorem implies that there

exists a holomorphic function ζ(z) on an open set containing (µ2n−1, µ2n) such
that E1(ζ(z)) = z.

Let p(ξ) be the eigenprojection for the eigenvalue eiξ of M(E1(ξ)) for
ξ ∈ (0, π) ∪ (π, 2π):

p(ξ) := (−2πi)−1

∮
|z−eiξ|=δ

(M(E1(ξ)) − z)−1dz

=
−1

eiξ − e−iξ

(
s2(1, E1(ξ)) − eiξ −s1(1, E1(ξ))
−c2(1, E1(ξ)) c1(1, E1(ξ)) − eiξ

)
,

where δ > 0 is taken so that eiξ is the only eigenvalue of M(E1(ξ)) inside
the circle |z − eiξ| = δ. Since s2(1, ν2n) + 1 = c1(1, ν2n) + 1 = s1(1, ν2n) =
c2(1, ν2n) = 0 (cf. [E, p.7 and p.29]), ξ = π is a removable singularity of p(ξ).
We have (p(ξ))11 	= 0 on (0, 2π), since

(p(π))11 = (2i)−1∂ξ(s2(1, E1(ξ))−eiξ)|ξ=π = (2i)−1(∂zs2(1, ν2n)E′
1(π)+i) 	= 0.

Thus p(ξ) is a real analytic rank one matrix on (0, 2π). Note that the holomor-
phically extended p(ζ) to an open set containing (0, 2π) is the eigenprojection
for the eigenvalue eiζ of M(E1(ζ)). Thus the function

yζ(x) := (p(ζ))11c1(x,E1(ζ)) + (p(ζ))21s1(x,E1(ζ))

is a solution to (5.2) with z replaced by E1(ζ); and so uζ(x) = e−iζxyζ(x) is
a C(T)-valued holomorphic eigenfunction of L(ζ) corresponding to E1(ζ) on
an open set containing (0, 2π). Thus as in the case (I), since ζ ′(λ) > 0 for
λ ∈ (µ2n−1, µ2n), yζ(λ+iε)(x) and yζ(λ−iε)(x) are linearly independent solutions
to Ly = (λ+ iε)y. Hence, as in the proof of (I) we have

Gν2n+i0(x, y) = lim
ε↓0

Gν2n+iε(x, y) =
iei(x−y)π

E′
1(π)

uπ(x)uπ(y)
‖uπ‖2

, y ≤ x,

and for any integer m ≥ 1,

G
(m)
ν2n+i0(x, y) = lim

ε↓0

(
d

dλ

)m

Gν2n+iε(x, y)

=
(

i

E′
1(π)

)m+1

(x− y)mei(x−y)π uπ(x)uπ(y)
‖uπ‖2

(1 +O(|x− y|−1)), y ≤ x.

Note that E′
1(π) = λ′2n−1(π − 0). We have thus proved (III). (IV) is proved

similarly. From the proof above it follows that the convergence lim
ε↓0
( d
dλ

)m
R(λ±

iε)f(x) is locally uniform with respect to λ.

The following is a direct consequence of Theorem 5.1.



744 Minoru Murata and Tetsuo Tsuchida

Corollary 5.2. Let λ be in the interior of σ(L). Then
( d
dλ

)m
R(λ±i0),

m ≥ 0, is bounded from B 1
2+m to B∗

1
2+m

.

Proof. Let f ∈ C∞
0 (R). Since Theorem 5.1 yields that

∣∣∣∣
(
d

dλ

)m

R(λ+ i0)f(x)
∣∣∣∣ ≤ Cm(1 + |x|)m

∫
R

(1 + |y|)m|f(y)|dy

≤ Cm(1 + |x|)m‖f‖B 1
2+m

,

it follows that∥∥∥∥
(
d

dλ

)m

R(λ+ i0)f(x)
∥∥∥∥

B∗
1
2 +m

≤ Cm‖(1+|x|)m‖B∗
1
2 +m

‖f‖B 1
2+m

≤ Cm‖f‖B 1
2+m

.

Next we study the case that the parameter λ ∈ R is in the resolvent
set of L. This case is equivalent to |D(λ)| > 2. D(λ) > 2 if and only if
λ ∈ A+ := (−∞, µ1) ∪ [∪∞

n=1(µ2n, µ2n+1)]; and D(λ) < −2 if and only if
λ ∈ A− := ∪∞

n=1(ν2n−1, ν2n). Consider a function eη +e−η on (0,∞), and solve
the equation

eη + e−η = D(λ)

with respect to η, where λ ∈ A+. By the implicit function theorem, we have
a unique solution η(λ) which is real analytic on A+. Similarly, define η(λ) on
A− by eη + e−η = −D(λ). Note that dimKer (L(±iη(λ)) − λ) = 1 for λ ∈ A+

and dim Ker (L(π ± iη(λ)) − λ) = 1 for λ ∈ A− (cf. [E, p.6]).

Theorem 5.3. (i) Let λ ∈ A+. Let uλ and vλ be real-valued eigenfunc-
tions of L(iη(λ)) and L(−iη(λ)) corresponding to the eigenvalue λ, respectively.

Suppose D′(λ) 	= 0. Then (uλ, vλ) 	= 0 and

(5.4) Gλ(x, y) = Gλ(y, x) = −η′(λ)e−η(λ)(x−y)uλ(x)vλ(y)
(uλ, vλ)

, y ≤ x.

Suppose D′(λ) = 0. Then there exists a solution ψvλ
∈ H1(T) of the equation

(L(−iη(λ)) − λ)ψ = vλ such that (uλ, ψvλ
) 	= 0, and

(5.5) Gλ(x, y) = Gλ(y, x) = −η
′′(λ)
2

e−η(λ)(x−y)uλ(x)vλ(y)
(uλ, ψvλ

)
, y ≤ x.

(ii) Let λ ∈ A−. Let uλ and vλ be eigenfunctions of L(π + iη(λ)) and
L(π − iη(λ)) corresponding to the eigenvalue λ, respectively.

Suppose D′(λ) 	= 0. Then (uλ, vλ) 	= 0 and

Gλ(x, y) = Gλ(y, x) = −η′(λ)e(iπ−η(λ))(x−y)uλ(x)vλ(y)
(uλ, vλ)

, y ≤ x.
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Suppose D′(λ) = 0. Then there exists a solution ψvλ
∈ H1(T) of the equation

(L(π − iη(λ)) − λ)ψ = vλ such that (uλ, ψvλ
) 	= 0, and

Gλ(x, y) = Gλ(y, x) = −η
′′(λ)
2

e(iπ−η(λ))(x−y)uλ(x)vλ(y)
(uλ, ψvλ

)
, y ≤ x.

Proof. Let λ ∈ A+. Since c1(1, λ)−e±η(λ) and s2(1, λ)−e±η(λ) = e∓η(λ)−
c1(1, λ) do not vanish simultaneously on a neighborhood of each λ ∈ A+, there
exist nonzero real analytic eigenvectors α±(λ) = (α±,1(λ), α±,2(λ)) of M(λ)
corresponding to the eigenvalues eη(λ) and e−η(λ), respectively. Then yλ(x) :=
α−,1(λ)c1(x, λ)+α−,2(λ)s1(x, λ) and zλ(x) := α+,1(λ)c1(x, λ)+α+,2(λ)s1(x, λ)
are solutions to (5.2) with ζ replaced by iη(λ) and −iη(λ). Thus uλ(x) :=
eη(λ)xyλ(x) and vλ(x) := e−η(λ)xzλ(x) are C(T)-valued real analytic eigenfunc-
tions on A+ of L(iη(λ)) and L(iη(λ))∗ = L(−iη(λ)) corresponding to the eigen-
value λ, respectively. Hence yλ(x) = e−η(λ)xuλ(x) and zλ(x) = eη(λ)xvλ(x) are
linearly independent solutions, and so

Gλ(x, y) =
{
yλ(x)zλ(y)/[yλ, zλ](0), y ≤ x,
yλ(y)zλ(x)/[yλ, zλ](0), x ≤ y.

Since [yλ, zλ](x) is a constant independent of x, it follows that

[yλ, zλ](0) =
∫ 1

0

([uλ, vλ](x) + 2η(λ)a(x)uλ(x)vλ(x))dx.

On the other hand, we have

∫ 1

0

[
a(x)

(
d

dx
− η(λ)

)
uλ(x)

(
d

dx
+ η(λ)

)
vλ(x) + c(x)uλ(x)vλ(x)

]
dx

= λ(uλ, vλ).

Differentiating both sides of this equation with respect to λ, we have

−η′(λ)
∫ 1

0

([uλ, vλ](x) + 2η(λ)a(x)uλ(x)vλ(x))dx = (uλ, vλ).

Hence

(5.6) −η′(λ)[yλ, zλ](0) = (uλ, vλ).

Suppose D′(λ) 	= 0. Then η′(λ) = D′(λ)/(eη(λ) − e−η(λ)) 	= 0 and

Gλ(x, y) = −η′(λ)e−η(λ)(x−y)uλ(x)vλ(y)/(uλ, vλ), y ≤ x.

Suppose D′(λ) = 0. Then η′(λ) = 0 and η′′(λ) = D′′(λ)/(eη(λ) − e−η(λ)) < 0.
Differentiating (5.6), we have

(5.7) η′′(λ)[yλ, zλ](0) = −(uλ, vλ)′.
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Therefore

Gλ(x, y) = −η′′(λ)e−η(λ)(x−y)uλ(x)vλ(y)/(uλ, vλ)′, y ≤ x.

By (5.6), (uλ, vλ) = 0. Moreover, since η′(λ) = 0,

(5.8) (L(iη(λ)) − λ)∂λuλ = uλ and (L(−iη(λ)) − λ)∂λvλ = vλ.

Put ψvλ
= ∂λvλ. Then ψvλ

is a solution of (L(−iη(λ)) − λ)ψ = vλ. By (5.8),
we have

(∂λuλ, vλ)= (∂λuλ, (L(−iη(λ)) − λ)∂λvλ)
= ((L(iη(λ))− λ)∂λuλ, ∂λvλ) = (uλ, ∂λvλ).

Thus (uλ, vλ)′ = 2(uλ, ψvλ
), which together with (5.7) implies that (uλ, ψvλ

) 	=
0. Therefore we have (5.5). The assertion (ii) is proved similarly.

We have seen that in the formula (5.4) and (5.5) the different factor
uλ(x)vλ(y)

(uλ, vλ)
or

uλ(x)vλ(y)
(uλ, ψvλ

)
appears according to whether D′(λ) does not van-

ish or not. This is related to the Laurent expansion of (L(iη(λ)) − z)−1 with
respect to z around λ.

Proposition 5.4. Let λ ∈ A+. If D′(λ) 	= 0, the eigenvalue λ of
L(iη(λ)) is nondegenerate and its eigenprojection has the integral kernel
uλ(x)vλ(y)

(uλ, vλ)
; and if D′(λ) = 0, the eigenvalue λ of L(iη(λ)) is degenerate and

its eigennilpotent has the integral kernel
uλ(x)vλ(y)
(uλ, ψvλ

)
. Similar statement holds

for λ ∈ A−.

Proof. We shall represent the integral kernel R(ζ, z;x, y) of the resolvent
R(ζ, z) := (L(ζ) − z)−1, by using cj(x, z) and sj(x, z). Let (ζ, z) ∈ Γ :=
{(ζ, z) ∈ C2; z /∈ σ(L(ζ))}. Put

k(z;x, y) :=
{
c1(x, z)s1(y, z), y ≤ x,
s1(x, z)c1(y, z), x ≤ y.

For f ∈ C∞
0 (0, 1), put

Kzf(x) :=
∫
k(z;x, y)f(y)dy.

Since (L− z)Kzf(x) = f(x) and (L− z)eixζR(ζ, z)e−ixζf(x) = f(x) on (0, 1),
eixζR(ζ, z)e−ixζf(x) −Kzf(x) is a solution to Ly = zy. Thus

(5.9) eixζR(ζ, z)e−ixζf(x) −Kzf(x) = αc1(x, z) + βs1(x, z)

for some α and β. Since R(ζ, z)e−ixζf(x) ∈ D(L(ζ)) has the periodicity, we
get
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(5.10)
Kzf(x)+αc1(x, z)+βs1(x, z) = e−iζ(Kzf(x+1)+αc1(x+1, z)+βs1(x+1, z)),

so putting x = 0, we have

(5.11) α = e−iζ

[
c1(1, z)

∫ 1

0

s1(y, z)f(y)dy + αc1(1, z) + βs1(1, z)
]
.

Differentiating both sides of (5.10) with respect to x and putting x = 0, we
have ∫ 1

0

c1(y, z)f(y)dy + β

= e−iζ

[
c2(1, z)

∫ 1

0

s1(y, z)f(y)dy + αc2(1, z) + βs2(1, z)
]
.

(5.12)

Note that (ζ, z) ∈ Γ if and only if δ(ζ, z) := D(z) − eiζ − e−iζ 	= 0. Solving
(5.11) and (5.12) with respect to (α, β), we have

(
α
β

)
= δ(ζ, z)−1

∫ 1

0

[(
s1(1, z)

eiζ − c1(1, z)

)
c1(y, z)

+
(
e−iζ − c1(1, z)

−c2(1, z)
)
s1(y, z)

]
f(y)dy.

Combining this with (5.9), we obtain that

R(ζ, z;x, y) = eiζ(y−x)k(z;x, y) +
eiζ(y−x)s(ζ, z;x, y)
D(z) − eiζ − e−iζ

,

where

s(ζ, z;x, y) :=[s1(1, z)c1(x, z) + (eiζ − c1(1, z))s1(x, z)]c1(y, z)
+ [(e−iζ − c1(1, z))c1(x, z) − c2(1, z)s1(x, z)]s1(y, z).

Suppose D′(λ) 	= 0. For z near λ, we have D(z) − eη(λ) − e−η(λ) = (z −
λ)Fλ(z) for some Fλ(z) such that Fλ(λ) = D′(λ) 	= 0. Thus R(iη(λ), z;x, y)
has a pole λ of order one with the residue

r1(λ;x, y) := D′(λ)−1e(x−y)η(λ)s(iη(λ), λ;x, y).

This implies that the eigenvalue λ of L(iη(λ)) is nondegenerate and its eigen-
projection has the integral kernel −r1(λ;x, y). On the other hand, the eigen-
projection and its adjoint are projections onto the spaces Ker (L(iη(λ)) − λ)
and Ker (L(−iη(λ)) − λ), respectively, so the eigenprojection has the integral

kernel
uλ(x)vλ(y)

(uλ, vλ)
. Therefore

uλ(x)vλ(y)
(uλ, vλ)

= −r1(λ;x, y).
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Let λ0 ∈ R satisfy D′(λ0) = 0. For z near λ0, we have D(z) − eη(λ0) −
e−η(λ0) = (z−λ0)2H(z) for some H(z) such that H(λ0) = D′′(λ0)/2 	= 0. Thus
R(iη(λ0), z;x, y) has a pole λ0 of order two:

R(iη(λ0), z;x, y) = r2(x, y)(z − λ0)−2 +O((z − λ0)−1),

where

r2(x, y) := 2D′′(λ0)−1e(x−y)η(λ0)s(iη(λ0), λ0;x, y).

Hence the eigenvalue λ0 of L(iη(λ0)) is degenerate and its eigennilpotent has

the integral kernel −r2(x, y). We shall show that
uλ(x)vλ(y)
(uλ, ψvλ

)
= −r2(x, y) at

λ = λ0. Since

∂zc1(x, z) =
∫ x

0

(c1(x, z)s1(t, z) − s1(x, z)c1(t, z))c1(t, z) dt,

∂zs2(x, z) =
∫ x

0

(c2(x, z)s1(t, z) − s2(x, z)c1(t, z))s1(t, z) dt

(cf. [E]), we have for λ ∈ A+

D′(λ) = ∂λc1(1, λ) + ∂λs2(1, λ)

=
∫ 1

0

[c2(1, λ)s1(x, λ)2 + (c1(1, λ) − s2(1, λ))c1(x, λ)s1(x, λ)

− s1(1, λ)c1(x, λ)2]dx

= −
∫ 1

0

s(iη(λ), λ;x, x)dx.

As eigenfunctions of L(iη(λ)) and L(−iη(λ)) for λ ∈ A+ near λ0, we can choose
uλ and vλ as follows: (i) when c1(1, λ0) − e−η(λ0) 	= 0,

uλ(x) := eη(λ)x[−s1(1, λ)c1(x, λ) + (c1(1, λ) − e−η(λ))s1(x, λ)],
vλ(x) := e−η(λ)x[(c1(1, λ) − e−η(λ))c1(x, λ) + c2(1, λ)s1(x, λ)];

(ii) when c1(1, λ0) − eη(λ0) 	= 0,

uλ(x) := eη(λ)x[(c1(1, λ) − eη(λ))c1(x, λ) + c2(1, λ)s1(x, λ)],
vλ(x) := e−η(λ)x[−s1(1, λ)c1(x, λ) + (c1(1, λ) − eη(λ))s1(x, λ)].

Let us treat the former case. (The latter is done similarly.) We have

s1(1, λ)c2(1, λ)= c1(1, λ)s2(1, λ) − 1
= c1(1, λ)(eη(λ)x + e−η(λ)x − c1(1, λ)) − 1
= (eη(λ)x − c1(1, λ))(c1(1, λ) − e−η(λ)x).

Thus

uλ(x)vλ(y) = −eη(λ)(x−y)(c1(1, λ) − e−η(λ))s(iη(λ), λ;x, y),
(uλ, vλ) = (c1(1, λ) − e−η(λ))D′(λ).
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So (uλ, vλ)′ = (c1(1, λ) − e−η(λ))D′′(λ) at λ = λ0. Therefore

uλ(x)vλ(y)
(uλ, ψvλ

)
= 2

uλ(x)vλ(y)
(uλ, vλ)′

= −2
eη(λ)(x−y)s(iη(λ), λ;x, y)

D′′(λ)
= −r2(x, y)

at λ = λ0. We have thus shown the proposition.

Finally, we give an asymptotic expansion of the Green function Gz(x, y)
as the spectral parameter z approaches one of edges of the spectrum of L. We
show it in a direct and elementary way, although the expansion of resolvents
for Schrödinger operators with periodic potentials is given by [G, Corollary
4.2]. Let ∆+ := C \ [0,∞). We denote by z

1
2 a branch of the square root of

z ∈ ∆+ such that z
1
2 =

√
reiθ/2 for z = reiθ, 0 < θ < 2π, r > 0. Note that

λ is an edge of the spectrum of L if and only if |D(λ)| = 2 and D′(λ) 	= 0. If
D(λ) = 2 and D′(λ) 	= 0, there exist real-valued linearly independent solutions
u and ψ of Ly = λy such that u is a real-valued periodic function with period 1
and ψ(x) = xu(x) + v(x) for some real-valued periodic function v with period
1; if D(λ) = −2 and D′(λ) 	= 0, there exist real-valued linearly independent
solutions u and ψ of Ly = λy such that u is a real-valued semi-periodic function
with semi-period 1, i.e., u(x + 1) = −u(x), and ψ(x) = xu(x) + v(x) for some
real-valued semi-periodic function v with semi-period 1 (cf. [E, p.7 and p.29]).

Theorem 5.5. Assume that µ2n−1 is an edge of the spectrum of L.
Then for any integer m ≥ −1 one has the expansion for small z−µ2n−1 ∈ ∆+

Gz(x, y) =
m∑

j=−1

(z − µ2n−1)
j
2 qj(x, y) + rm(z;x, y),

where rm(z;x, y) satisfies the estimate: for any 0 ≤ θ ≤ 1

|rm(z;x, y)| ≤ Cm|z − µ2n−1|(m+θ)/2(|x− y| + 1)m+1+θ.

Furthermore, qj(x, y) is of the form

qj(x, y) = qj(y, x) =
j+1∑
k=0

(x− y)kqj,k(x, y), y ≤ x,

for some qj,k(x, y) ∈ C(T× T). In particular,

q−1(x, y) =
i√

2λ′′2n−1(0)
u(x)u(y)
‖u‖2

,

q0(x, y) = q0(y, x) = λ′′2n−1(0)−1(u(x)ψ(y) − ψ(x)u(y))/‖u‖2, y ≤ x,

where λ′′2n−1(0) > 0, and u and ψ are real-valued linearly independent solutions
of Ly = µ2n−1y such that u is a periodic function with period 1 and ψ(x) =
xu(x) + v(x) for some periodic function v with period 1.



750 Minoru Murata and Tetsuo Tsuchida

Remark 5.6. If ν2n−1, ν2n, or µ2n is an edge of the spectrum, a similar
expansion holds around it.

Proof. Since D(µ2n−1) = 2 and D′(µ2n−1) < 0, there exists a holomor-
phic inverse function D−1 of D near D = 2. Put λ(ζ) = D−1(eiζ + e−iζ)
near ζ = 0. Then λ(ξ) = λ2n−1(ξ) ≥ µ2n−1 for small ξ ∈ R and λ′(0) = 0.
Furthermore, since D(λ(ξ)) = 2 cos ξ, we have

D′′(λ(ξ))λ′(ξ)2 +D′(λ(ξ))λ′′(ξ) = −2 cos ξ.

This implies that λ′′(0) = −2/D′(µ2n−1) > 0. Therefore we can choose a suffi-
ciently small positive number R such that the set {λ(ζ); Im ζ > 0, |ζ| < R} is a
subdomain of C \ [µ2n−1,∞). We have also that s1(1, µ2n−1) and c2(1, µ2n−1)
are not both zero (cf. [E, p.29]). So we can choose a holomorphic eigenvec-
tor (α1(ζ), α2(ζ)) of M(λ(ζ)) corresponding to the eigenvalue eiζ near ζ = 0.
Put yζ(x) := α1(ζ)c1(x, λ(ζ)) + α2(ζ)s1(x, λ(ζ)). Then uζ(x) := e−iζxyζ(x)
is a holomorphic eigenfunction of L(ζ) corresponding to the eigenvalue λ(ζ)
near ζ = 0. Let C+ := {ζ ∈ C; Im ζ > 0}. For small ζ ∈ C+, since
λ(ζ) = λ(ζ̄), it follows that yζ = eiζxuζ and yζ̄ = e−iζxuζ̄ are linearly in-
dependent solutions to Ly = λ(ζ)y. Hence as in the proof of Theorem 5.1,
since i[yζ , yζ̄ ](0) = λ′(ζ)(uζ , uζ̄), we have for y ≤ x and small ζ ∈ C+

(5.13)
Gλ(ζ)(x, y) = Gλ(ζ)(y, x) = yζ(x)yζ̄(y)/[yζ , yζ̄ ](0) = iλ′(ζ)−1ei(x−y)ζpζ(x, y),

where pζ(x, y) := uζ(x)uζ̄(y)/(uζ , uζ̄) is a C(T×T)-valued holomorphic func-
tion near ζ = 0. Let y ≤ x. We write the Taylor expansion of ei(x−y)ζpζ(x, y)
with respect to ζ as follows:

(5.14) ei(x−y)ζpζ(x, y) =
m∑

j=0

q̃j(x, y)ζj + r̃m(ζ;x, y),

where

(5.15) q̃j(x, y) =
j∑

k=0

(x− y)kq̃j,k(x, y)

for some q̃j,k(x, y) ∈ C(T × T), and r̃m(ζ;x, y) satisfies the estimate: for any
0 ≤ θ ≤ 1

(5.16) |r̃m(ζ;x, y)| ≤ Cm|ζ|m+θ(|x− y| + 1)m+θ.

Let us show this remainder estimate. We have

ei(x−y)ζ =
m∑

j=0

(i(x− y)ζ)j

j!
+

(i(x− y)ζ)m+1

m!

∫ 1

0

(1 − t)meit(x−y)ζdt.
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Thus ∣∣∣∣ei(x−y)ζ −
m∑

j=0

(i(x− y)ζ)j

j!

∣∣∣∣ ≤ (|x− y||ζ|)m+1

(m+ 1)!
,

since Re [it(x− y)ζ] ≤ 0. This implies that

|r̃m(ζ;x, y)| ≤ Cm|ζ|m+1(|x− y| + 1)m+1.

On the other hand, since

r̃m(ζ;x, y) = r̃m−1(ζ;x, y) − q̃m(x, y)ζm,

we have

|r̃m(ζ;x, y)| ≤ Cm|ζ|m(|x− y| + 1)m.

Hence we get the desired estimate (5.16). We see that q̃0(x, y) = p0(x, y) and
q̃1(x, y) = i(x − y)p0(x, y) + ∂ζpζ(x, y)|ζ=0. We shall show that q̃1(x, y) =
i(ψ(x)u(y)−u(x)ψ(y))/‖u‖2, where u(x) and ψ(x) = xu(x)+ v(x) are linearly
independent solutions stated in the theorem. We have

∂ζyζ |ζ=0 = α′
1(0)c1(x, µ2n−1) + α′

2(0)s1(x, µ2n−1) = ixu0 + ∂ζuζ |ζ=0,

∂ζyζ̄ |ζ=0 = α′
1(0)c1(x, µ2n−1) + α′

2(0)s1(x, µ2n−1) = −ixu0 + ∂ζuζ̄ |ζ=0.

So ∂ζyζ |ζ=0 and ∂ζyζ̄ |ζ=0 = ∂ζyζ |ζ=0 are solutions of Ly = µ2n−1y, and we
have u0 = cu and ∂ζyζ |ζ=0 = icψ + c′u for some c, c′ ∈ C. Hence

∂ζuζ |ζ=0 = icv(x) + c′u(x), ∂ζuζ̄ |ζ=0 = −icv(x) + c′u(x).

Using this we have

q̃1(x, y) = i(x− y)p0(x, y) + ∂ζpζ(x, y)|ζ=0

= i(x− y)p0(x, y) +
∂ζ(uζ(x)uζ̄(y))|ζ=0

‖u0‖2
− p0(x, y)

(uζ , uζ̄)′|ζ=0

‖u0‖2

= i(x− y)
u(x)u(y)
‖u‖2

+
(icv(x) + c′u(x))cu(y) + cu(x)(−icv(y) + c′u(y))

|c|2‖u‖2

− u(x)u(y)
‖u‖2

2Re(icv + c′u, cu)
|c|2‖u‖2

= i(x− y)u(x)u(y)/‖u‖2 + i(v(x)u(y) − u(x)v(y))/‖u‖2

= i(ψ(x)u(y) − u(x)ψ(y))/‖u‖2.

There exists an entire function F (z) such that F (ζ2) = eiζ + e−iζ − 2; F (z) is
real for real z, F (0) = 0, and F ′(0) = −1. So there exists an inverse function
F−1 of F near the origin. Thus for δ > 0 small, the map z ∈ {z ∈ ∆+ +µ2n−1;
|z − µ2n−1| < δ} �→ ζ(z) := (F−1(D(z) − 2))

1
2 ∈ C+ is conformal from the

disc with the cut to the intersection of a neighborhood of the origin and C+.
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Note that λ(ζ(z)) = z. Noting that D(z)−2 = D′(µ2n−1)(z−µ2n−1)+O((z−
µ2n−1)2) and F−1(w) = −w +O(w2), we have the Puiseux series

(5.17) ζ(z) =
∞∑

j=0

aj(z − µ2n−1)j+ 1
2 ,

where a0 =
√|D′(µ2n−1)| =

√
2/λ′′2n−1(0). Note that λ′(ζ(z))−1 = ζ ′(z). By

(5.13), (5.14) and (5.17),

Gz(x, y) = iζ ′(z)ei(x−y)ζ(z)pζ(z)(x, y)

= i


 ∞∑

j=0

aj

(
j +

1
2

)
(z − µ2n−1)j−1/2




 m∑

j=0

q̃j(x, y)ζ(z)j + r̃m(ζ(z);x, y)




=
m∑

j=−1

(z − µ2n−1)j/2qj(x, y) + rm(z;x, y).

This together with (5.15) and (5.16) yields the desired expansion.
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