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Positive Toeplitz operators on pluriharmonic
Bergman spaces

By

Eun Sun Choi

Abstract

We study Toeplitz operators on the pluriharmonic Bergman spaces
bp for 1 < p < ∞. We give characterizations of Toeplitz operators with
positive symbols to be bounded, compact and in the Schatten classes.
Also, we describe the essential spectra of Toeplitz operators with uni-
formly continuous symbols.
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1. Introduction

For fixed integer n ≥ 2, let B = Bn denote the open unit ball of C
n. A

function u ∈ C2(B) is said to be pluriharmonic if its restriction to an arbitrary
complex line that intersects the ball is harmonic as a function of single complex
variable. For 1 ≤ p < ∞, the pluriharmonic Bergman space bp = bp(B) is the
space of all complex-valued pluriharmonic functions u on B such that

‖u‖p =
{∫

B

|u|pdV

}1/p

< ∞,

where V denotes the normalized Lebesgue volume measure on B. It is well
known that bp is a closed subspace of Lp, and hence is a Banach space. In
particular, b2 is a Hilbert space. We will write Q for the Hilbert space orthog-
onal projection from L2 onto b2. Each point evaluation is a bounded linear
functional on b2. Hence, for each z ∈ B, there exists a unique function Rz ∈ b2

which has the reproducing property

(1.1) u(z) =
∫

B

uR̄z dV (z ∈ B)

for all u ∈ b2.
This research was supported by KOSEF(R01-2003-000-10243-0).
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A function f in B is pluriharmonic if and only if it admits a decomposition
f = g+h̄, where g and h are holomorphic. Furthermore, if f is in L2, then both
g and h are in A2 where A2 = A2(B) denotes the holomorphic Bergman space;
this is clearly a consequence of the boundedness of the Bergman projection P .

As a result of this observation we see that b2 = A2 + A2. In particular,
there is a simple relation between the pluriharmonic Bergman kernel Rz and
the well-known (holomorphic) Bergman kernel Kz;

(1.2) Rz = Kz + K̄z − 1.

Thus, the explicit formula of Rz is given by

Rz(w) =
1

(1 − w · z̄)n+1
+

1
(1 − z · w̄)n+1

− 1 (w ∈ B).

Here and elsewhere, z · w̄ = z1w̄1 + · · ·+ znw̄n denotes the ordinary Hermitian
inner product for points z, w ∈ C

n. Moreover, using reproducing properties,
we have

(1.3) ‖Rz(w)‖2
2 = R(z, z) ≈ 1

(1 − |z|)n+1
.

For ϕ ∈ L2 and for each z ∈ B, we have

(1.4) Qϕ(z) =
∫

B

ϕ(w)Rz(w)dV (w).

The formulas (1.1) and (1.2) lead us to the following representation of the
projection Q;

(1.5) Q(ϕ) = P (ϕ) + P (ϕ̄) − P (ϕ)(0)

for functions ϕ ∈ L2. From the explicit formula of Rz(w) = R(z, w), one can
see

(1.6) |R(z, w)| ≤ C

|1 − z · w̄|n+1
(z, w ∈ B)

so that Rz ∈ L∞. Thus, the orthogonal projection Q extends to an integral
operator, by means of (1.4), from L1 into the space of all pluriharmonic func-
tions on B. If 1 < p < ∞, then Q is a bounded projection from Lp onto bp.
The integral transform Q even extends to M, the space of all complex Borel
measures on B. Namely, for each µ ∈ M, the integral

Qµ(z) =
∫

B

R(z, w)dµ(w) (z ∈ B)

defines a pluriharmonic function on B. For µ ∈ M, the Toeplitz operator Tµ

with symbol µ is defined by

Tµu = Q(udµ)
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for u ∈ b∞. In case µ = fdV , we will write Tµ = Tf . Note that Tµ is densely
defined on bp for each 1 < p < ∞.

Toeplitz operators with positive symbols and uniformly continuous sym-
bols on Bergman space were well studied. Especially, Miao [5] obtained the
analogous results on the harmonic Bergman space of the ball. See [2] for re-
sults on the half-space and [3] for results on bounded smooth domains. In this
paper, we obtain analogous results on the pluriharmonic Bergman space of the
ball. In addition, we find the essential spectra of Toeplitz operator [Theorem
4.2]. Main idea used to prove Theorem 4.2 is motivated by [13].

In Section 2 some basic facts are collected. Section 3 is devoted to charac-
terizations of Toeplitz operators with positive symbols to be bounded, compact
and in the Schatten classes. In Section 4 we describe the essential spectra of
corresponding Toeplitz operators with uniformly continuous symbols.

Notation. We use the notation A ≈ B if A � B and B � A by writing
A � B for positive quantities A and B if the ratio A/B has a positive upper
bound. Constants will be explicitly denoted by the same letter C often with
subscripts and indicating dependency, which may change at each occurrence.
For 1 < p < ∞, we use q to denote the conjugate exponent of p, i.e., 1/p+1/q =
1. We also use the usual inner product notation

〈u, v〉 =
∫

B

uv̄ dV

whenever uv̄ ∈ L1.

2. Preliminaries

In this section we collect some basic facts which we need in later sections.
Let Aut(B) be the group of all biholomorphic maps of B onto B. It is known
that Aut(B) is generated by the unitary operator on C

n and the involutions
φz of the form

φz(w) =
z − Pz(w) − (1 − |z|2) 1

2 Qz(w)
1 − w · z̄

where z ∈ B, Pz is the orthogonal projection of C
n onto the subspace spanned

by z, i.e.,

Pz(w) =
w · z̄
|z|2 z if z 	= 0

and Qz = I − Pz. Recall that the well-known identity

(2.1) 1 − φz(w) · φz(a) =
(1 − |z|2)(1 − w · ā)
(1 − w · z̄)(1 − z · ā)

holds for all w, a ∈ B̄ (see Theorem 2.2.2 of [12]). The real Jacobian JRφz of
φz is given by

JRφz(w) =
(

1 − |z|2
|1 − w · z̄|2

)n+1

(w ∈ B).
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The pseudo-hyperbolic metric on B is defined as β(z, w) = |φz(w)|. Note that
β is Möbius invariant, i.e,

(2.2) β(z, w) = β(φa(z), φa(w)) (z, w ∈ B)

for each a ∈ B. For z ∈ B and r, 0 < r < 1, let the pseudo-hyperbolic ball
Er(z) with center z and radius r be defined by

Er(z) = {w ∈ B| β(z, w) < r}.

Since φz is an involution, we have Er(z) = φz(rB). Note that

(2.3) V (Er(z)) = V (φz(rB)) =
∫

φz(rB)

dV =
∫

rB

JRφz dV ≈ (1 − |z|)n+1.

Lemma 2.1. Let r ∈ (0, 1). For z, w ∈ B, we have 1 − |z| ≈ 1 − |w|
whenever w ∈ Er(z).

Proof. If w ∈ Er(z), then w = φz(a) for some |a| < r. It follows that

1 − |z| < |1 − wz̄| =
∣∣∣∣1 − |z|2

1 − az̄

∣∣∣∣ < 2(1 − |z|)
1 − r

.

Since the condition w ∈ Er(z) is symmetric, we have

1 − |w| < |1 − zw̄| =
∣∣∣∣1 − |w|2

1 − aw̄

∣∣∣∣ < 2(1 − |w|)
1 − r

.

Combining the above two estimates yields

1 − |z| ≈ |1 − wz̄| ≈ 1 − |w|.

This completes the proof.

Lemma 2.2. There exist some r0 ∈ (0, 1) and a constant C > 0 such
that

C−1 ≤ R(z, w)(1 − |z|)n+1 ≤ C

whenever w ∈ Er0(z) and z ∈ B.

Proof. It follows from (1.6) that R(z, w) � 1
(1 − |z|)n+1

for w ∈ Er(z).

To show the lower estimate, for every z ∈ B, (2.1) with the explicit formula of
R(z, w) leads to

R(z, w)(1 − |z|)n+1 = (1 − |z|)n+1

(
1

(1 − w · z̄)n+1
+

1
(1 − z · w̄)n+1

− 1
)

= (1 − φz(w) · z̄)n+1 + (1 − z · φz(w))n+1 − (1 − |z|)n+1.
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Consider the function

F (a, z) = (1 − a · z̄)n+1 + (1 − z · ā)n+1 − (1 − |z|)n+1.

Since F is uniformly continuous on B̄ × B̄, there exist some r0 such that
|F (0, z) − F (a, z)| < 1

2 whenever |a| ≤ r0, z ∈ B̄. It follows that

F (a, z) ≥ F (0, z) − 1
2

=
3
2
− (1 − |z|)n+1 ≥ 1

2
.

Now we conclude that

R(z, w)(1 − |z|)n+1 = F (φz(w), z) ≥ 1
2

as asserted.

Lemma 2.3. Let 1 < p < ∞. Then there is a constant C such that

C−1 ≤ ‖R(z, ·)‖p(1 − |z|)(1− 1
p )(n+1) ≤ C

for every z ∈ B.

Proof. Let z ∈ B. Fix r0 provided by Lemma 2.2. Then, it follows from
(2.3) that

‖R(z, ·)‖p
p �

∫
Er0 (z)

|R(z, w)|p dV (w)

� V (Er0(z))
(1 − |z|)p(n+1)

dV (w)

≈ (1 − |z|)(1−p)(n+1).

For the converse inequality, we have by Proposition 1.4.10 of [12]

‖R(z, ·)‖p
p =

∫
B

|R(z, w)|p dV (w)

�
∫

B

1
|1 − z · w̄|p(n+1)

dV (w)

� 1
(1 − |z|)(p−1)(n+1)

.

This completes the proof.

3. Positive Toeplitz operators

In this section we give characterizations of Toeplitz operators with positive
symbols to be bounded, compact and in the Schatten classes. For that purpose,
we first characterize Carleson measures in terms of the averaging function and
Berezin transform.
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Let 1 ≤ p < ∞. For µ ≥ 0, we say that µ is a Carleson measure on bp if
there exists a constant C > 0 such that∫

B

|u|p dµ ≤ C

∫
B

|u|p dV

for all u ∈ bp. So, µ is a Carleson measure on bp if and only if the inclusion
ip : bp → Lp(µ) is bounded.

For a positive Borel measure µ on B (simply µ ≥ 0) and r ∈ (0, 1), the
averaging function µ̂r of µ over the pseudohyperbolic balls Er(z) is defined by

µ̂r(z) =
µ(Er(z))
V (Er(z))

(z ∈ B).

Also, for 1 < p < ∞, we define the Berezin p-transform µ̃p on B by

µ̃p(z) =
∫

B

|rz,p|p dµ (z ∈ B)

where

rz,p(w) =
R(z, w)

||R(z, · )||p (w ∈ B)

is the Lp-normalized reproducing kernel.
Measures and their averaging functions have the following submean value

properties with respect to pseudohyperbolic balls.

Lemma 3.1. Let r, ε ∈ (0, 1). Then there exist constants C = Cr,ε such
that the following hold for all µ ≥ 0 and z ∈ B.

(1) µ(Er(z)) ≤ C

V (Er(z))

∫
Er(z)

µ(Eε(w)) dV (w).

(2) µ̂r(z) ≤ C

V (Er(z))

∫
Er(z)

µ̂ε(w) dV (w).

Proof. Let z ∈ B, and µ ≥ 0. Here, χE denotes the characteristic function
of E. It follows that∫

Er(z)

µ(Eε(w)) dV (w) =
∫

Er(z)

∫
Eε(w)

dµ(a)dV (w)

=
∫

B

∫
Er(z)

χEε(w)(a) dV (w)dµ(a)

≥
∫

Er(z)

∫
Er(z)

χEε(a)(w) dV (w)dµ(a)

=
∫

Er(z)

V [Eε(a) ∩ Er(z)] dµ(a)

≥ µ(Er(z)) inf
a∈Er(z)

V [Eε(a) ∩ Er(z)].
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Thus, it remains to show that

(3.1) inf
a∈Er(z)

V [Eε(a) ∩ Er(z)] � (1 − |z|)n+1.

To see this, let a ∈ Er(z) and tζ = φz(a) where 0 ≤ t < r and ζ ∈ ∂B. It is
sufficient to consider the case ε < r

2 . Then we need to consider only two cases
i) 0 ≤ t < r − ε and ii) ε ≤ t < r. If 0 ≤ t < r − ε, then Eε(a) ⊂ Er(z).
Thus, it follows from Lemma 2.1 that we have (3.1). If ε ≤ t < r, then let
s = t − ε

N where N is chosen so large that N > 1−rε
1−r2 and put b = φz(sζ). It

suffices to show that Eδ(b) ⊂ Eε(a) ∩ Er(z) for some δ = δ(r, ε) to be chosen
later. Suppose w ∈ Eδ(b). Then we have, for δ ≤ ε

N ,

β(w, z) ≤ β(w, b) + β(b, z) < δ + s = δ + t − ε

N
< r

and thus Eδ(b) ⊂ Er(z). From (2.1), we can easily get the identity

|φtζ(sζ)|2 = 1 − (1 − t2)(1 − s2)
(1 − st)2

=
(t − s)2

(1 − st)2

for 0 < s < 1. Hence, we get

(3.2) |φtζ(sζ)| =
|t − s|
1 − st

.

It follows from (2.2) and (3.2) that we have

β(w, a) ≤ β(w, b) + β(a, b)
= δ + β(φz(a), φz(b))
= δ + β(tζ, sζ)

= δ +
t − s

1 − st

< δ +
ε

N − (rN − ε)r
≤ ε

if we choose δ ≤ ε(1 − 1
N−(rN−ε)r ). Thus we have Eδ(b) ⊂ Eε(a). So, taking

δ = min{ ε
N , ε(1 − 1

N−(rN−ε)r )}, we obtain Eδ(b) ⊂ Eε(a) ∩ Er(z). Since b ∈
Er(z), it follows from (2.3) and Lemma 2.1 that we have (3.1) as claimed.
So, (1) holds. Also, (2) follows from (1) and Lemma 2.1. This completes the
proof.

As an easy consequence of Lemma 3.1, we have the following.

Corollary 3.1. Let µ ≥ 0. If µ̂ε is bounded for some ε ∈ (0, 1), then
so is µ̂r for all r ∈ (0, 1).

Lemma 3.2. Let r ∈ (0, 1) and 1 < p < ∞, there exists a constant C
such that µ̂r ≤ Cµ̃p for any µ ≥ 0.
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Proof. Let z ∈ B. Assume r = r0 where r0 is the number provided by
Lemma 2.2. Then, by Lemma 2.2 and Lemma 2.3, we have∫

Er(z)

|rz,p|pdµ ≈ µ(Er(z))
(1 − |z|)n+1

≈ µ̂r(z)

so that

µ̂r(z) �
∫

Er(z)

|rz,p|pdµ ≤ µ̃p(z).

It follows from Corollary 3.1 that µ̂r ≤ Cµ̃p for a given r. This completes the
proof.

We also will need a decomposition of B whose proof is essentially the same
as the ball version of that for covering Lemma of [7]. So, we omit the details.

Lemma 3.3. Let r ∈ (0, 1). Then there exists a sequence {zi} in B
such that

(1) ∪∞
i=1E r

3
(zi) = B.

(2) There is a positive integer N such that each Er(zi) intersects at most
N of the balls Er(zi).

Note that |zi| → 1 as i → ∞. In what follows, the sequence {zi}={zi(r)}
will always refer to the sequence chosen in Lemma 3.3.

Now, we characterize Carleson measure on bp in terms of averaging func-
tions and Berezin transforms.

Theorem 3.1. Let 1 < p < ∞ and r ∈ (0, 1). For µ ≥ 0, The following
conditions are all equivalent.

(1) µ is a Carleson measure on bp.
(2) µ̃p is a bounded on B.
(3) µ̂r is a bounded on B.
(4) The sequence {µ̂r(zi)} is bounded.

Note that conditions (1) and (2) are independent of r, while conditions (3)
and (4) are independent of p. Thus, the notion of Carleson measures on bp is
independent of 1 < p < ∞. So, we will simply say that µ ≥ 0 is a Carleson
measure if one of the four conditions above holds for µ.

Proof. Since ||rz,p||p = 1 and µ is a Carleson measure, the implication
(1) ⇒ (2) follows immediately.

Next, the implication (2) ⇒ (3) follows from Lemma 3.2.
Clearly, we have (3) ⇒ (4).
Finally, suppose (4) and show (1). Let u ∈ bp. Since |u|p is plurisubhar-

monic, we have

|u(w)|p � 1
(1 − |w|)n+1

∫
E r

3
(w)

|u|pdV
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for w ∈ B. This, together with Lemma 2.1, yields

sup
w∈E r

3
(z)

|u(w)|p � sup
w∈E r

3
(z)

1
(1 − |w|)n+1

∫
E r

3
(w)

|u|pdV

� 1
(1 − |z|)n+1

∫
Er(z)

|u|pdV

� 1
V (Er(z))

∫
Er(z)

|u|pdV

for z ∈ B. Now by Lemma 3.3, we have∫
B

|u|pdµ ≤
∞∑

i=1

∫
E r

3
(zi)

|u|pdµ

≤
∞∑

i=1

µ(E r
3
(zi)) sup

w∈E r
3
(zi)

|u(w)|p

�
∞∑

i=1

µ(E r
3
(zi))

V (Er(zi))

∫
Er(zi)

|u|pdV

≤ N(sup
i

µ̂r(zi))
∫

B

|u|pdV

≤ C

∫
B

|u|pdV.

(3.3)

Hence, µ is a Carleson measure on bp. The proof is complete.

The above proof shows that the implications (3) ⇒ (4) ⇒ (1) holds for
p = 1. So, we have the following.

Corollary 3.2. If µ ≥ 0 is a Carleson measure, µ is a Carleson mea-
sure on b1.

Also, by carefully examining the proof above, one can see that the following
equivalences between various quantities.

Corollary 3.3. Let 1 < p < ∞ and r ∈ (0, 1). For µ ≥ 0, we have

sup
0�=u∈bp

∫
B
|u|p dµ∫

B
|u|p dV

≈ sup
z∈B

µ̃p(z) ≈ sup
z∈B

µ̂r(z) ≈ sup
i

µ̂r(zi).

Having Theorem 3.1, we now turn to the characterizations of bounded
positive Toeplitz operators on bp. For µ ≥ 0, recall that the Toeplitz operator
Tµ densely defined on bp is given by

Tµu(z) =
∫

B

R(z, w)u(w) dµ(w)

for functions u ∈ b∞.
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Lemma 3.4. Let µ ≥ 0 be a Carleson measure. Then we have

〈Tµu, v〉 =
∫

B

uv̄ dµ

for u, v ∈ b∞.

Proof. Since µ is a Carleson measure on b1 by Corollary 3.2, we have∫
B

|R(z, w)| dµ(w) �
∫

B

1
|1 − z · w̄|n+1

dV (w)

for z ∈ B. It follows from Fubini’s theorem that∫
B

∫
B

|R(z, w)| dµ(w) dV (z) �
∫

B

∫
B

1
|1 − z · w̄|n+1

dV (w) dV (z) < ∞

for z ∈ B. This justifies interchanging the order of integrations below. Now,
for u, v ∈ b∞, we have

〈Tµu, v〉 =
∫

B

v(z)
∫

B

R(z, w)u(w) dµ(w) dV (z)

=
∫

B

u(w)
∫

B

R(z, w)v(z) dV (z) dµ(w)

=
∫

B

u(w)v(w) dµ(w).

The proof is complete.

We now give characterization of positive bounded Toeplitz operators in
terms of Carleson measures.

Theorem 3.2. Let µ ≥ 0 and 1 < p < ∞. Then, the following two
conditions are equivalent.

(1) Tµ : bp → bp is bounded.
(2) µ is a Carleson measure.

Moreover, ‖Tµ‖ is equivalent to any of quantities in Corollary 3.3.

Proof. First, assume that Tµ is bounded on bp. Let z ∈ B. We have by
Lemma 2.2, Lemma 2.3 and Lemma 3.4

|〈Tµrz,p, rz,q〉| ≥ (1 − |z|)n+1

∫
Er(z)

|R(z, w)|2 dµ(w) ≈ µ̂r(z)

for r = r0 where r0 is the number provided by Lemma 2.2. On the other hand,
since ‖rz,q‖q = 1, it follows from Hölder’s inequality that

(3.4) µ̂r(z) � |〈Tµrz,p, rz,q〉| ≤ ‖Tµrz,p‖p‖rz,q‖q ≤ ‖Tµ‖
for all z ∈ B, where ‖Tµ‖ denotes the operator norm of Tµ : bp → bp. Thus µ
is a Carleson measure by Theorem 3.1.
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Conversely, suppose that µ is a Carleson measure. Let u, v ∈ b∞. By
Lemma 3.4 and Corollary 3.3, we have

|〈Tµu, v〉| =
∣∣∣∣∫

B

uv̄ dµ

∣∣∣∣
≤
(∫

B

|u|p dµ

)1/p(∫
B

|v|q dµ

)1/q

� sup
z∈B

µ̂r(z)
(∫

B

|u|p dV

)1/p(∫
B

|v|q dV

)1/q

(3.5)

where the last inequality holds, because µ is a Carleson measure. Since the set
of pluriharmonic polynomials is dense in bp and bq, the duality argument shows
that Tµ is bounded on bp and ||Tµ|| � sup

z∈B
µ̂r(z). The proof is complete.

Next, we give the corresponding characterization for compact positive
Toeplitz operators. In order to do so, we introduce the notion of vanishing
Carleson measures. For µ ≥ 0 and 1 < p < ∞, we say that µ is a vanish-
ing Carleson measure on bp if the inclusion ip : bp → Lp(µ) is compact, or
equivalently, if ∫

B

|un|p dµ → 0

whenever un → 0 weakly in bp. To characterize vanishing Carleson measures
on bp, we first need the following.

Lemma 3.5. Let 1 < p < ∞. Then rz,p → 0 weakly in bp as |z| → 1.

Proof. If u ∈ bq, then by Lemma 2.3

|〈u, rz,p〉| ≤ C(1 − |z|)(1− 1
p )(n+1)|u(z)|.

Thus if u is a bounded function in bq, then |〈u, rz,p〉| → 0 as |z| → 1. Since
polynomials are dense in bq, this implies that |〈u, rz,p〉| → 0 as |z| → 1 for all
u ∈ bq. The proof is complete.

Now, we have a characterization for vanishing Carleson measures.

Theorem 3.3. Let 1 < p < ∞ and r ∈ (0, 1). For µ ≥ 0, the following
conditions are all equivalent.

(1) µ is a vanishing Carleson measure on bp.
(2) lim

|z|→1
µ̃p(z) = 0.

(3) lim
|z|→1

µ̂r(z) = 0.

(4) lim
i→∞

µ̂r(zi) = 0.
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One can see from the theorem above that the notion of vanishing Carleson
measures on bp is also independent of 1 < p < ∞. So, we will simply say that
µ ≥ 0 is a vanishing Carleson measure if one of the four conditions above holds
for µ.

Proof. Since rz,p → 0 weakly in bp as |z| → 1 by Lemma 3.5, we clearly
have (1) ⇒ (2).

The implication (2) ⇒ (3) can be easily seen from Lemma 3.2.
Since |zi| → 1, we have (3) ⇒ (4).
Finally, we assume (4) and show (1). Let {un} be a sequence converging

to 0 weakly in bp and {zi} be the sequence from Lemma 3.3. By (3.3), we have

(3.6)
∫

B

|un|p dµ �
∑
i<j

∫
Er/3(zi)

|un|p dµ + N sup
i≥j

µ̂r(zi)
∫

B

|un|p dV

for any i, j. Here, N is the positive integer provided by Lemma 3.3. Since
un → 0 weakly in bp, one can easily see that un → 0 uniformly on compact
subsets of B and {un} is bounded in Lp-norm. Thus, fixing j and taking the
limit n → ∞ in (3.6), we obtain

lim sup
n

∫
B

|un|p dµ � sup
i≥j

µ̂r(zi)

for each j. By assumption, taking the limit j → ∞, we conclude

lim sup
n

∫
B

|un|p dµ = 0.

Namely, µ is a vanishing Carleson measure, as desired. The proof is complete.

As a result corresponding to Theorem 3.2, we characterize compact positive
Toeplitz operators in terms of vanishing Carleson measures.

Theorem 3.4. Let µ ≥ 0 and 1 < p < ∞. Then, the following two
conditions are equivalent.

(1) Tµ : bp → bp is compact.
(2) µ is a vanishing Carleson measure.

Proof. First, suppose that Tµ is compact. By (3.4), we have

µ̂r(z) � |〈Tµrz,p, rz,q〉| ≤ ‖Tµrz,p‖p

for all z ∈ B. Since rz,p → 0 weakly in bp by Lemma 3.5, we have

µ̂r(z) � ||Tµrz,p||p → 0 (|z| → 1).

Thus, by Theorem 3.3, we conclude that µ is a vanishing Carleson measure.
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Now, suppose that µ is a vanishing Carleson measure. Let {un} be a
sequence converging to 0 weakly in bp and v ∈ b∞. By (3.5) and a duality
argument, we obtain

‖Tµun‖p ≤ C

(∫
B

|un|p dµ

)1/p

.

Then by assumption, we see that ‖Tµun‖p → 0 as n → ∞. The proof is
complete.

We now turn to the characterization of positive Schatten class Toeplitz op-
erators. Before proceeding, let’s review briefly some basic facts about Schatten
class operators.

For a compact operator T on a separable Hilbert space X, let {sm(T )} be
the nonzero eigenvalues (listed by multiplicity) of |T | = (T ∗T )1/2 arranged so
that the sequence is non-increasing, where T ∗ denotes the Hilbert space adjoint
of T . This sequence is called the singular value sequence of T . For 1 ≤ p < ∞,
we say T is a Schatten p-class operator if

||T ||Sp(X) =

(∑
m

|sm(T )|p
)1/p

< ∞.

Let Sp(X) be the space of all Schatten p-class operators on X. As is well
known, Sp(X) is a Banach space with the above norm and is a two-sided ideal
in the space of all bounded linear operators on X.

Also, for T ∈ S1(X) and an orthonormal basis {em} for X, the sum

tr(T ) =
∑
m

〈Tem, em〉

is absolutely convergent and independent of the choice of {em}. The sum above
is called the trace of T . If T ∈ Sp(X) and T ≥ 0, we have

||T ||Sp(X) = [tr(T p)]1/p

for 1 ≤ p < ∞. See [7], for example, for more information and related facts.
In the rest of this section we use the notations Sp = Sp(b2), µ̃ = µ̃2 and

rz = rz,2 for simplicity. Also, the measure dλ is defined on B by

dλ(z) = R(z, z)dV (z).

Note that ||R(z, ·)||22 = R(z, z). Hence, using the same arguments of Lemma
13 in [9], we have

(3.7) tr(T ) =
∫

B

〈TR(z, ·), R(z, ·)〉 dV (z) =
∫

B

〈Trz, rz〉 dλ(z)

for every T ∈ S1.
We now give a characterization of positive Toeplitz operators belonging to

Sp in terms of Lp-behavior of the averaging function and Berezin transform of
symbol measures.
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Theorem 3.5. Let 1 ≤ p < ∞ and r ∈ (0, 1). For µ ≥ 0, the following
conditions are all equivalent.

(1) Tµ ∈ Sp .
(2) µ̃ ∈ Lp(λ).
(3) µ̂r ∈ Lp(λ).
(4)

∑
i

µ̂r(zi)p < ∞.

Moreover, we have

||Tµ||Sp
≈

(∫
B

|µ̃|p dλ

)1/p

≈

(∫
B

|µ̂r|p dλ

)1/p

≈

(∑
i

µ̂r(zi)p

)1/p

.

Proof. First, suppose (1) and show (2). Since Tµ ≥ 0, it follows from
(3.7) that

||Tµ||pSp
= tr(T p

µ) =
∫

B

〈T p
µrz, rz〉 dλ(z).

By Proposition 6.3.3 of [7] and Lemma 3.4, we have

||Tµ||pSp
≥
∫

B

〈Tµrz, rz〉p dλ(z) =
∫

B

µ̃(z)p dλ(z).

So, we have (2).
It follows from Lemma 3.2 that∫

B

µ̂r(z)p dλ(z) �
∫

B

µ̃(z)p dλ(z).

So, we have (2) ⇒ (3).
Now, suppose (3) and show (4). By Lemma 3.1 and Jensen’s inequality,

we have

µ̂r(zi)p � 1
(1 − |zi|)n+1

∫
Er(zi)

µ̂r(z)p dV (z) ≈
∫

Er(zi)

µ̂r(z)p dλ(z)

for all i. Summing up all these together, we have∑
i

µ̂r(zi)p �
∑

i

∫
Er(zi)

µ̂r(z)p dλ(z) � N

∫
B

µ̂r(z)p dλ(z) < ∞

where N is the positive integer provided by Lemma 3.3. Thus, we have (4).
Finally, suppose (4) and show (1). First, consider the case p = 1. By (3.7)

and Lemma 3.4, we have

tr(Tµ) =
∫

B

∫
B

|R(z, w)|2 dµ(w) dx =
∫

B

R(w, w) dµ(w).

Thus, by Lemma 2.1 and Lemma 3.3, we have

tr(Tµ) ≤
∑

i

∫
Er(zi)

R(z, z) dµ(z) ≈
∑

i

µ̂r(zi) < ∞.



Positive Toeplitz operators on pluriharmonic Bergman spaces 261

So, we have Tµ ∈ S1. Now, consider the case 1 < p < ∞. For any ζ ∈ C with
0 ≤ Re ζ ≤ 1, define a complex Borel measure µζ on B by

dµζ(z) =
∑

i

[µ̂r(zi)]
pζ−1

χEr(zi)(z) dµ(z)

and consider corresponding Toeplitz operators Tµζ
acting on b2. Note Tµ ≤

Tµ 1
p

. Thus, the complex interpolation (see Theorem 2.2.7 of [7]) gives

||Tµ||Sp
≤ ||Tµ 1

p

||Sp
≤ M

1− 1
p

0 M
1
p

1 ,

where M0 = sup{||Tµζ
|| : Re ζ = 0} and M1 = sup{||Tµζ

||S1 : Re ζ = 1}. One
can see M0 < ∞ by the same argument as in the proof of Theorem 12 of [9].
To estimate M1, let {un} and {vn} be two orthonormal bases for b2. Then, for
Re ζ = 1, it follows from the same way as in the proof of Theorem 12 of [9] that∑

k

|〈Tµζ
un, vn〉| ≤

∑
n

∫
B

|un||vn| d|µζ | ≤
∫

B

R(z, w) d|µζ |(z)

and thus

||Tµζ
||S1 �

∑
n

[µ̂r(zi)]
p−1

∫
Er(zi)

R(z, z) dµ(z) ≈
∑

n

µ̂r(zi)p.

So, we have

||Tµ||pSp
� M1 �

∑
i

(µ̂r(zi))
p

< ∞.

This completes the proof.

4. Toeplitz operators with continuous symbols

In this section, we describe the essential spectra of Toeplitz operators with
uniformly continuous symbols. Let’s recall the notion of the essential spectrum.
Fix p with 1 < p < ∞. Let Lp be the algebra of all bounded linear operators
on bp and Kp be the two sided compact ideal of Lp. For an operator T ∈ Lp

and a complex number λ, we say that λ ∈ σe(T ; bp), the essential spectrum
of T , if (T − λ) + Kp is not invertible in the Calkin algebra Lp/Kp. In other
words, λ ∈ σe(T ; bp) if and only if T − λ is not Fredholm.

For f ∈ L∞(B), the Hankel operators acting on bp with symbol f is defined
by

Hfu = (I − Q)(fu)

for all u ∈ bp. The operator Hf is clearly bounded on bp;

‖Hf‖ ≤ ‖f‖∞.

In what follows, we use Ap = Ap(B), 0 < p < ∞ to denote the holomorphic
Bergman space, i.e, Ap = H(B)∩Lp where H(B) is the space of all holomorphic
function on B.
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Lemma 4.1. If v ∈ A1 and v(0) = 0, then we have

P (wiv̄) = P (w̄iv)(0)

for all 1 ≤ i ≤ n where wi is the i-th coordinate function.

Proof. See Lemma 5 of [10].

Recall that the Bloch space B = B(B) is the space of all holomorphic
functions f on B with the property that the function (1−|z|2)|∂f(z)| is bounded
on B where ∂ = ( ∂

∂z1
, . . . , ∂

∂zn
). The little Bloch space B0 = B0(B) is the

subspace of B consisting of functions f such that

(1 − |z|2)|∂f(z)| → 0 as |z| → 1−.

Let hf denote the Hankel operator acting on Ap with symbol f ∈ L∞(B)
defined by

hfu = (I − P )(fu)

for all u ∈ Ap.

Lemma 4.2. Let 1 < p < ∞ and v ∈ H(B). Then hv̄ is compact on Ap

if and only if v ∈ B0.

Proof. See Corollary 24 of [8].

Lemma 4.3. Let 1 < p < ∞. If f ∈ C(B̄), then hf is compact on Ap.

Proof. It is clear that hf = 0 for f ∈ H∞. Moreover, it is known that
for f ∈ H∞, hf̄ is compact on Ap if and only if f ∈ B0 by Lemma 4.2. Since
H∞ ∩ C(B̄) ⊂ B0, we have hf̄ is compact on Ap for f ∈ H∞ ∩ C(B̄). Since
holomorphic and antiholomorphic monomials span a uniformly dense subset of
C(B̄), hf is compact on Ap. This completes the proof.

Remark. For holomorphic function f and g, we will use the fact that
f + ḡ ∈ bp for 1 < p < ∞ implies f, g ∈ Ap by the boundedness of the Bergman
projection P . As a result of this observation with Ap ∩ Ap

0 = {0}, we see that
bp = Ap ⊕ Ap

0 where Ap
0 = {v ∈ Ap : v(0) = 0}.

Let 1 < p < ∞. Recall that q is the conjugate exponent of p. The
annihilator of Aq is defined by

(Aq)⊥ = {u ∈ bp : 〈u, v〉 = 0 for all v ∈ Aq}.

Lemma 4.4. For 1 < p < ∞, we have Ap
0 = (Aq)⊥.

Proof. For a given function ū ∈ Ap
0, we have

〈ū, v〉 =
∫

ūv̄dV = u(0)v(0) = 0
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for all v ∈ Aq. Therefore ū ∈ (Aq)⊥. Conversely, if we choose u ∈ (Aq)⊥, then
by the remark, there is a unique decomposition u = u′ + ū′′ where u′ ∈ Ap

and ū′′ ∈ Ap
0. Note from (Aq)∗ ∼= Ap that Ap ∩ (Aq)⊥ = {0}. Thus, with the

previous inclusion Ap
0 ⊂ (Aq)⊥, we have u′ = 0 and u = ū′′. Consequently

u ∈ Ap
0. This completes the proof.

Theorem 4.1. Let 1 < p < ∞. If f ∈ C(B̄), Then Hf is compact on
bp.

Proof. Fix 1 < p < ∞ and let φ ∈ bp. Then, by the remark and Lemma
4.4, we have bp = Ap ⊕ (Aq)⊥. Thus there are functions u ∈ Ap and v ∈ (Aq)⊥

such that φ = u + v̄. Let

E = {f ∈ C(B̄)|Hf ∈ Kp}.
We will show E = C(B̄). First, we need to show zi ∈ E where zi is the i-th
coordinate function. Since Q(ziu) = ziu, we have

Hzi
(u) = (I − Q)(ziu) = 0.

Also, by Lemma 4.1, we have

Hzi
(v̄) = (I − Q)(ziv̄)

= (I − P )(z̄iv) − P (ziv̄) + P (z̄iv)(0)

= (I − P )(z̄iv)

= hz̄i
(v).

Let M : bp −→ (Aq)⊥ be the projection defined by

(4.1) M(φ) = v̄.

Let u = φ − v̄. Then u ∈ Ap and φ = u + v̄. Because

‖M(φ)‖p = ‖v‖p = ‖P (φ̄)‖p ≤ ‖φ̄‖p,

M is bounded linear operator. It follows from (4.1) that

Hzi
(φ) = hz̄i

(v) = hz̄i
◦ M̄(φ).

By Lemma 4.3, we have Hzi
∈ Kp. Next, we show z̄i ∈ E. Because Q(z̄iv̄) =

z̄iv̄, we have

Hz̄i
(v̄) = (I − Q)(z̄iv̄) = 0.

Next, by (1.5) and Lemma 4.1, we have

Hz̄i
(u) = Hz̄i

(ũ)
= (I − Q)(z̄iũ)

= (I − P )(z̄iũ) − P (zi
¯̃u) + P (z̄iũ)(0)

= (I − P )(z̄iũ)
= hz̄i

(u − u(0))
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where ũ = u − u(0). It follows that

Hz̄i
(φ) = hz̄i

(u − u(0)).

Letting E0φ = φ(0), we obtain

Hz̄i
= hz̄i

◦ (I − M − E0).

Clearly, E is a closed subspace of C(B̄). Also, we know that 1, zi, z̄j ∈ E. Now,
for any f ∈ C(B̄), straightforward calculation shows that

Hfg = H ′
fHg + HfTg

where H ′
f denotes the Hankel operator extended to the whole Lp. Thus, it

follows that E is a closed subalgebra of C(B̄) containing all the polynomials in
zi and z̄j where i, j = 1, . . . , n. By the Stone-Weierstrass Theorem, E = C(B̄).
Therefore Hf is compact for every f ∈ C(B̄). This completes the proof.

As a consequence of Theorem 4.1, we have the following which will be used
in the proof of Theorem 4.2 below.

Corollary 4.1. Let 1 < p < ∞. If f, g ∈ C(B̄), Then Tfg − TgTf and
TfTg − TgTf are compact on bp.

Proof. For any f, g ∈ L∞, a straightforward calculation yields

(4.2) Tfg − TgTf = T ′
gHf

where T ′
g denotes the Toeplitz operator extended to the whole Lp. Thus, it

follows from (4.2) and Theorem 4.1 that Tfg − TgTf is compact on bp if f ∈
C(B̄). Hence TfTg − TgTf is compact on bp for f, g ∈ C(B̄). The proof is
complete.

Proposition 4.1. Let 1 < p < ∞. If f ∈ L∞(B) has compact support,
then Tf is compact on bp.

Proof. Let K be compact subset of B on which f is supported. Suppose
{un} is a bounded sequence in bp. Then {un} is uniformly bounded on each
compact subset of B. So, {un} is a normal family. Hence there exists plurihar-
monic function u on B such that some subsequence {unj

} of {un} converges
uniformly on K to u. Thus {unj

f} converges in bp to uf . Hence

Tf (unj
) −→ Tf (u)

in bp. Therefore Tf is compact bp. This completes the proof.

We are now ready to give a characterization of σe(Tf ; bp) for 1 < p < ∞.

Theorem 4.2. Let 1 < p < ∞ and f ∈ C(B̄). Then σe(Tf ; bp) =
f(∂B).
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Proof. Fix p. First, we show f(∂B) ⊂ σe(Tf ; bp). If we choose ζ ∈
f(∂B), then there is a η ∈ ∂B such that f(η) = ζ. We claim that Tf−ζ is
not a Fredholm operator, so that ζ ∈ σe(Tf ; bp). We will prove this claim by
contradiction. Suppose that Tf−ζ is a Fredholm operator. Then, there exists
Φ ∈ Lp such that ΦTf−ζ − I ∈ Kp. By Lemma 3.5, it follows that

‖(I − ΦTf−ζ)(rz,p)‖p → 0 as |z| → 1.

Therefore

(4.3) ‖(ΦTf−ζ)(rz,p)‖p → 1 as |z| → 1.

On the other hand, we have

‖ΦTf−ζ(rz,p)‖p
p ≤ ‖Φ‖‖Tf−ζ(rz,p)‖p

p

� ‖(f − ζ)rz,p‖p
p

=
∫

Aδ

|(f − ζ)rz,p|pdV +
∫

B\Aδ

|(f − ζ)rz,p|pdV

= I1(z) + I2(z)

for δ > 0. We can easily see that |w − η| decrease to 0 as |1 − w · η̄| decrease
to 0. So, given ε > 0, we can find δ > 0 such that w ∈ B and |1 − w · η̄| < δ
implies |f(w) − ζ| < ε since f ∈ C(B̄). Therefore we have

I1(z) =
∫

Aδ

|(f − ζ)rz,p|pdV

≤ εp

∫
Aδ

|rz,p|pdV

≤ εp.

Also, we know that

I2(z) =
∫

B\Aδ

|(f − ζ)rz,p|pdV

≤ ‖f − ζ‖p
L∞

‖Rz‖p
p

∫
B\Aδ

|Rz|pdV

≤ C(1 − |z|)(p−1)(n+1)

∫
|1−w·η̄|≥δ

1

|1 − z · w̄| 2p(n+1)
2

dV (w).

Letting z → η, we obtain I2(z) → 0. Consequently,

lim sup
z→η

‖ΦTf−ζ(rz,p)‖p ≤ ε

for each 0 < ε < 1. Since ε > 0 is arbitrary, we have

‖ΦTf−ζ(rz,p)‖p → 0
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as z → η. This gives a contradiction to (4.3).
Next, we show σe(Tf ; bp) ⊂ f(∂B). We need to show that if ζ ∈ C\f(∂B),

then Tf−ζ is invertible in the Calkin algebra. Suppose ζ /∈ f(∂B). Then there
are 0 < r < 1 and g ∈ C(B̄) satisfying (f −ζ)g = 1 on B̄\B(0, r). The function
h = 1− (f − ζ)g is compactly supported, so by Proposition 4.1, Th is compact
on bp(B). Using (4.2) we have

Tf−ζTg = T(f−ζ)g − T ′
f−ζHg = I − Th − T ′

f−ζHg.

By Lemma 4.1, the operator T ′
f−ζHg is compact on bp, thus Th + T ′

f−ζHg is
compact on bp, and consequently Tf−ζ is right-invertible in the Calkin algebra.
Similarly, we can also see that Tf−ζ is left-invertible in the Calkin algebra. The
proof is complete.

Let ||Tf ||p,e denote the norm of Tf : bp → bp in the Calkin algebra of bp.
Then, we have the following consequence. So, ||Tf ||p,e is the distance from Tf

to Kp.

Corollary 4.2. Let 1 < p < ∞ and f ∈ C(B̄). Then we have

(4.4) ||f ||L∞(∂B) ≤ ‖Tf‖p,e

and the equality holds for p = 2.

Proof. The assertion (4.4) follows from Theorem 4.2 and the spectral
radius formula. It is easily seen that T ∗

f = Tf̄ . Thus, Corollary 4.1 shows that
Tf is normal in the Calkin algebra, so that ‖Tf‖e = ρ(Tf ) (See [4], Theorem
7.12). Hence, the equality holds in (4.4) for p = 2. This completes the proof.

Department of Mathematics
Korea University
Seoul 136-701, Korea
e-mail: eschoi93@korea.ac.kr

References

[1] B. R. Choe and Y. J. Lee, The essential spectra of Toeplitz operators with
symbols in H∞ + C, Math. Japonica 45 (1), (1997), 57–60.

[2] B. R. Choe, H. Koo and H. Yi, Positive Toeplitz operators between the
harmonic Bergman spaces, Potential Anal. 17 (2002), 307–335.

[3] B. R. Choe, Y. J. Lee and K. Na, Toeplitz operators on harmonic Bergman
spaces, Nagoya Math. J. 174 (2004), 165–186.

[4] H. R. Dowson, Spectral theory of linear operators, Academic Press, 1978.

[5] J. Miao, Toeplitz operators on harmonic Bergman spaces, Integral Equa-
tions Operator Theory 27 (1997), 426–438.



Positive Toeplitz operators on pluriharmonic Bergman spaces 267

[6] K. Stroethoff, Compact Toeplitz operator on weighted harmonic Bergman
space, J. Austral. Math. Soc. (Series A) 64 (1998), 136–148.

[7] K. Zhu, Operator Theory in Function Spaces, Marcell-Dekker, New York,
1990.

[8] , BMO and Hankel operators on Bergman space, Pacific J. Math.
155 (2) (1992), 377–395.

[9] , Positive Toeplitz operators on weighted Bergman spaces of bounded
symmetric domains, J. Operator Theory 20 (1988), 329–357.

[10] Y. J. Lee and K. Zhu, Some differential and integral equation with ap-
plications to Toeplitz operators, Integral Equation Operator Theory 44-4
(2002), 466–479.

[11] R. Timoney, Bloch functions in several complex variables, J. Reine Angew.
Math. 319 (1980), 1–22.

[12] W. Rudin, Function theory in the unit ball of Cn, Springer-Verlag, New
York, 1980.

[13] X. Zeng, Toeplitz operators on Bergman spaces, Houston J. Math. 18 (3)
(1992), 387–407.


