J. Math. Kyoto Univ. (JMKYAZ) 47-3 (2007), 657–664

Geometric inequalities outside a convex set in a Riemannian manifold

By

Keomkyo Seo

Abstract

Let M be an n-dimensional complete simply connected Riemannian manifold with nonpositive sectional curvature for n = 2, 3 and 4. We prove the following Faber-Krahn type inequality for the first eigenvalue λ_1 of the mixed boundary problem. A domain Ω outside a closed convex subset C in M satisfies

 $\lambda_1(\Omega) \ge \lambda_1(\Omega^*)$

with equality if and only if Ω is isometric to the half ball Ω^* in \mathbb{R}^n , whose volume is equal to that of Ω . We also prove the Sobolev type inequality outside a closed convex set C in M.

1. Introduction

One of the most important inequalities in geometric analysis is the Faber-Krahn inequality. In the 1920's, for a bounded domain $\Omega \subset \mathbb{R}^n$, Faber and Krahn proved independently the following inequality

(1.1)
$$\lambda_1(\Omega) \ge \lambda_1(\Omega^*)$$

where equality holds if and only if Ω is a ball (See [1]). Here λ_1 denotes the first Dirichlet eigenvalue and Ω^* is a ball of the same *n*-dimensional volume as Ω . For the first Neumann eigenvalue μ_1 , in 1954 Szegö[10] showed that for a simply connected domain $\Omega \subset \mathbb{R}^2$

$$\mu_1(\Omega) \le \mu_1(\Omega^*),$$

where Ω^* is as above and equality holds if and only if Ω is a disk. It should be mentioned that μ_1 is the first positive eigenvalue of the Neumann boundary problem. Two years later Weinberger [11] generalized the inequality for $\Omega \subset \mathbb{R}^n$, $n \geq 2$. On the other hand, for the first eigenvalue λ_1 of the mixed boundary problem, Nehari [8, Theorem III] proved (1.1) for a simply connected bounded domain $\Omega \subset \mathbb{R}^2$ satisfying that a subarc $\alpha \subset \partial\Omega$ is concave with respect to

²⁰⁰⁰ Mathematics Subject Classification(s). 58J50, 35P15 Received April 16, 2007

Keomkyo Seo

 Ω . In this case Ω^* is a half disk of the same area as Ω . Equality holds if and only if Ω is a half disk. In Section 2, we prove the Faber-Krahn type inequality (Theorem 2.1) extending Nehari's result to a Riemannian manifold case.

In [9], the author has proved the Sobolev type inquality outside a closed convex set in a nonpositively curved surface. In Section 3, we study Sobolev type inequality outside a closed convex set in a 3 and 4-dimensional Riemannian manifold with nonpositive sectional curvature.

The key ingredient in the proofs of our theorems is the following relative isoperimetric inequality.

Theorem 1 ([2], [3], [5], [9]). Let M be an n-dimensional complete simply connected Riemannian manifold with nonpositive sectional curvature for n=2, 3 and 4, and let $C \subset M$ be a closed convex set with smooth boundary. Then for a domain $\Omega \subset M \sim C$ we have

(1.2)
$$\frac{1}{2}n^{n}\omega_{n}\operatorname{Vol}(\Omega)^{n-1} \leq \operatorname{Vol}(\partial\Omega \sim \partial C)^{n},$$

where equality holds if and only if Ω is a Euclidean half ball.

Recently Choe-Ghomi-Ritoré [4] have proved that this inequality holds for a domain in \mathbb{R}^n .

Theorem 2 ([4]). Let $C \subset \mathbb{R}^n$ be a closed convex set with smooth boundary. Then for a domain $\Omega \subset \mathbb{R}^n \sim C$, (1.2) is still true and equality holds if and only if Ω is a Euclidean half ball.

2. Faber-Krahn type inequality

Let Ω be a bounded domain outside a closed convex subset C with smooth boundary in an *n*-dimensional Riemannian manifold M. The Laplacian operator Δ acting on functions is locally given by

$$\Delta = \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^i} \left(\sqrt{g} g^{ij} \frac{\partial}{\partial x^j} \right),$$

where (x^1, \ldots, x^n) is a local coordinate system, (g^{ij}) is the inverse of the metric tensor (g_{ij}) , and $g = \det(g_{ij})$. We consider the mixed eigenvalue problem as follows :

$$\begin{aligned} \Delta u + \lambda u &= 0 \quad \text{in} \quad \Omega \\ u &= 0 \quad \text{on} \quad \partial \Omega \sim \partial C \\ \frac{\partial u}{\partial \nu} &= 0 \quad \text{on} \quad \partial \Omega \cap \partial C, \end{aligned}$$

where ν is the outward unit normal to $\partial\Omega$ along $\partial\Omega \cap \partial C$ and \sim denotes the set exclusion operator. Then, using the divergence theorem, we see that the first eigenvalue $\lambda_1(\Omega)$ of the mixed boundary problem satisfies

$$\lambda_1(\Omega) = \inf_{u \in H_0^1(\Omega)} \frac{\int_{\Omega} |\nabla u|^2}{\int_{\Omega} u^2},$$

where $H_0^1(\Omega)$ is the Sobolev space such that $u \in H_0^1(\Omega)$ vanishes on $\partial \Omega \sim \partial C$. We note that $u \in H_0^1(\Omega)$ need not vanish on $\partial \Omega \cap \partial C$.

First we show that the first eigenvalue of the mixed boundary problem for a half ball in space form $\mathbb{M}^n(\kappa)$ is equal to that of Dirichlet boundary problem for a ball in $\mathbb{M}^n(\kappa)$, where $\mathbb{M}^n(\kappa)$ denotes an *n*-dimensional complete Riemannian manifold of constant sectional curvature κ .

Proposition 2.1. Let $\lambda_1(B_+(r))$ be the first mixed eigenvalue of a half ball $B_+(r)$ with radius r in $\mathbb{M}^n(\kappa)$ and $\lambda_1(B(r))$ the first eigenvalue of the Dirichlet boundary problem of a ball B(r) with the same radius r in $\mathbb{M}^n(\kappa)$. If $\kappa > 0$ assume $r < 1/\sqrt{\kappa}$. Then we have

$$\lambda_1(B_+(r)) = \lambda_1(B(r))$$

Proof. First let ϕ be an eigenfunction of $B_+(r)$ associated with $\lambda_1(B_+(r))$. Then,

$$\begin{aligned} \Delta \phi + \lambda_1(B_+(r)) &= 0 \quad \text{in} \quad B_+(r) \\ \phi &= 0 \quad \text{on} \quad \partial B_+(r) \sim \partial \mathbb{H} \\ \frac{\partial \phi}{\partial \nu} &= 0 \quad \text{on} \quad \partial \mathbb{H}, \end{aligned}$$

where $\partial \mathbb{H}$ denotes the boundary of the half space, which has flat geodesic curvature. We can extend the eigenfunction ϕ to $\tilde{\phi}$ defined on B(r) by reflecting ϕ across $\partial \mathbb{H}$.

Using
$$\lambda_1(B(r)) = \inf_{u \in H_0^1(B(r))} \frac{\int_{B(r)} |\nabla u|^2}{\int_{B(r)} u^2}$$
, we have

(2.1)
$$\lambda_1(B(r)) \le \frac{\int_{B(r)} |\nabla \tilde{\phi}|^2}{\int_{B(r)} \tilde{\phi}^2} = \frac{\int_{B_+(r)} |\nabla \phi|^2}{\int_{B_+(r)} \phi^2} = \lambda_1(B_+(r)),$$

where $H_0^1(B(r))$ is the Sobolev space on B(r). Conversely let ψ be an eigenfunction of the Dirichlet problem in a ball B associated with $\lambda_1(B(r))$, that is,

$$\Delta \psi + \lambda_1(B(r)) = 0 \text{ in } B(r)$$

$$\psi = 0 \text{ on } \partial B(r).$$

Since ψ is a radial function, $\frac{\partial \psi}{\partial \nu} = 0$ on $\partial \mathbb{H}$. Hence ψ satisfies the boundary condition for the mixed eigenvalue problem. We immediately get

(2.2)
$$\lambda_1(B_+(r)) \le \frac{\int_{B_+(r)} |\nabla \psi|^2}{\int_{B_+(r)} \psi^2} = \frac{\int_{B(r)} |\nabla \psi|^2}{\int_{B(r)} \psi^2} = \lambda_1(B(r)).$$

Therefore we have $\lambda_1(B_+(r)) = \lambda_1(B(r))$ by (2.1) and (2.2).

659

We need the following well-known lemma before we prove our theorems.

Keomkyo Seo

Lemma 2.1. Let Ω be a domain in an n-dimensional Riemannian manifold M and let f be any eigenfunction with the first eigenvalue λ_1 for mixed eigenvalue problem. Then f is strictly positive or strictly negative in Ω .

Proof. Note that

$$\lambda_1(\Omega) = \frac{\int_{\Omega} |\nabla f|^2}{\int_{\Omega} f^2} = \frac{\int_{\Omega} |\nabla |f||^2}{\int_{\Omega} f^2}$$

It follows that |f| also is an eigenfunction associated with λ_1 and $|f| \in C^2(\Omega) \cap C^0(\overline{\Omega})$ by elliptic regularity theory[7]. We also have $\Delta |f| = -\lambda_1 |f| \leq 0$. Using maximum principle we have |f| > 0 in Ω and hence f > 0 or f < 0 in Ω .

We now prove the following Faber-Krahn type inequality for the mixed eigenvalue problem using symmetrization and relative isoperimetric inequality.

Theorem 2.1. Let M be an n-dimensional complete simply connected Riemannian manifold with nonpositive sectional curvature for n=2,3 and 4, and let $C \subset M$ be a closed convex set with smooth boundary. Then for a domain $\Omega \subset M \sim C$, we have

(2.3)
$$\lambda_1(\Omega) \ge \lambda_1(\Omega^*),$$

where Ω^* is a half ball in \mathbb{R}^n , whose volume is equal to that of the domain Ω . Equality holds if and only if the domain Ω is isometric to the half ball Ω^* in \mathbb{R}^n .

Proof. Let f be the first eigenfunction of Ω , that is,

$$\Delta f + \lambda_1(\Omega) f = 0 \quad \text{in} \quad \Omega$$

$$f = 0 \quad \text{on} \quad \partial \Omega \sim \partial C$$

$$\frac{\partial f}{\partial \nu} = 0 \quad \text{on} \quad \partial \Omega \cap \partial C.$$

We may assume that f is nonnegative by lemma 2.1. Consider the set $\Omega_t = \{x \in \Omega : f(x) > t\}$ and $\Gamma_t = \{x \in \Omega : f(x) = t\}$. Using a symmetrization procedure, we construct the concentric geodesic half ball Ω_t^* in \mathbb{R}^n such that $\operatorname{Vol}(\Omega_t^*) = \operatorname{Vol}(\Omega_t)$ for each t, and $\Omega_0^* = \Omega^*$. We define a function $F : \Omega^* \to \mathbb{R}_+$ such that F is a radially decreasing function and $\partial \Omega_t^* \sim \partial \mathbb{H} = \{x \in \Omega^* : F(x) = t\}$.

Then it suffices to prove

(2.4)
$$\int_{\Omega} f^2 dv = \int_{\Omega^*} F^2 dv,$$

(2.5)
$$\int_{\Omega} |\nabla f|^2 dv \ge \int_{\Omega^*} |\nabla F|^2 dv$$

For (2.4), using the co-area formula [6],

$$\int_{\Omega} f^2 dv = \int_0^{\infty} \int_{\Gamma_t} \frac{f^2}{|\nabla f|} dA_t dt = \int_0^{\infty} t^2 \Big(\int_{\Gamma_t} \frac{dA_t}{|\nabla f|} \Big) dt$$
$$= -\int_0^{\infty} t^2 \frac{d}{dt} \operatorname{Vol}(\Omega_t) dt = -\int_0^{\infty} t^2 \frac{d}{dt} \operatorname{Vol}(\Omega_t^*) dt = \int_{\Omega^*} F^2 dv,$$

where dA_t is the (n-1)-dimensional volume element on Γ_t . Here we have used the identity

$$\frac{d}{dt} \operatorname{Vol}(\Omega_t) = -\int_{\Gamma_t} |\nabla f|^{-1} dA_t$$

For (2.5), using Hölder inequality we have

$$\begin{split} \int_{\Gamma_t} dA_t &= \int_{\Gamma_t} |\nabla f|^{1/2} |\nabla f|^{-1/2} dA_t \\ &\leq \Big(\int_{\Gamma_t} |\nabla f| \Big)^{1/2} \Big(\int_{\Gamma_t} |\nabla f|^{-1} \Big)^{1/2} \\ &= \Big(\int_{\Gamma_t} |\nabla f| \Big)^{1/2} \Big(-\frac{d}{dt} \operatorname{Vol}(\Omega_t) \Big)^{1/2}. \end{split}$$

From the relative isoperimetric inequality (1.2) as mentioned in the introduction, we see that

(2.6)
$$\int_{\Gamma_t} |\nabla f| dA_t \ge \frac{\operatorname{Vol}(\Gamma_t)^2}{-\frac{d}{dt} \operatorname{Vol}(\Omega_t)} \ge \frac{\operatorname{Vol}(\Gamma_t^*)^2}{\int_{\Gamma_t^*} |\nabla F|^{-1} dA_t^*} = \int_{\Gamma_t^*} |\nabla F| dA_t^*,$$

where $\Gamma_t^* = \{x \in \Omega^* : F(x) = t\}$, and dA_t^* is the (n-1)-dimensional volume element on Γ_t^* . Integrating in t, we get (2.5). To have equality, the second inequality in (2.6) should become equality. Since equality in the relative isoperimetric inequality holds if and only if Ω is isometric to a half ball in \mathbb{R}^n , we get the conclusion.

Using [4], we can also prove the following.

Theorem 2.2. Let $C \subset \mathbb{R}^n$ be a closed convex set with smooth boundary. Then for a domain $\Omega \subset \mathbb{R}^n \sim C$, we have

(2.7)
$$\lambda_1(\Omega) \ge \lambda_1(\Omega^*),$$

where Ω^* is a half ball in \mathbb{R}^n , whose volume is equal to that of the domain Ω . Equality holds if and only if the domain Ω is isometric to the half ball Ω^* in \mathbb{R}^n .

Keomkyo Seo

3. Sobolev type inequality

In this section we prove Sobolev type inequality outside a closed convex set in a Riemannian manifold.

Theorem 3.1. Let M be an n-dimensional complete simply connected Riemannian manifold with nonpositive sectional curvature for n=2,3 and 4. Let $C \subset M$ be a closed convex set. Then we have

$$\frac{1}{2}n^n w_n \Big(\int_{M \sim C} |f|^{\frac{n}{n-1}} dA \Big)^{n-1} \le \Big(\int_{M \sim C} |\nabla f| dA \Big)^n, f \in W_0^{1,1}(M \sim C).$$

Equality holds if and only if up to a set of measure zero, $f = c\chi_D$ where c is a constant and D is a half ball in \mathbb{R}^n .

Proof. For simplicity, we assume $f \ge 0$. By the co-area formula

$$\int_{M} |\nabla f| dv = \int_{0}^{\infty} \operatorname{Area}(f = \sigma) d\sigma.$$

We apply the relative isoperimetric inequality (1.2) to obtain

$$\int_{M} |\nabla f| dv = \int_{0}^{\infty} \operatorname{Area}(f = \sigma) d\sigma \ge n \left(\frac{\omega_{n}}{2}\right)^{\frac{1}{n}} \int_{0}^{\infty} \operatorname{Vol}(f > \sigma)^{\frac{n-1}{n}} d\sigma.$$

Since we have

$$\int_{M} |f|^{\frac{n}{n-1}} dv = \int_{0}^{\infty} \operatorname{Vol}(f^{\frac{n}{n-1}} > \rho) d\rho = \frac{n}{n-1} \int_{0}^{\infty} \operatorname{Vol}(f > \sigma) \sigma^{\frac{1}{n-1}} d\sigma,$$

it suffices to show that

$$\int_0^\infty \operatorname{Vol}(f > \sigma)^{\frac{n-1}{n}} d\sigma \ge \left(\frac{n}{n-1}\right)^{\frac{n-1}{n}} \left(\int_0^\infty \operatorname{Vol}(f > \sigma) \sigma^{\frac{1}{n-1}} d\sigma\right)^{\frac{n-1}{n}}.$$

Define

$$F(\sigma) := \operatorname{Vol}(f > \sigma),$$

$$\varphi(t) := \int_0^t F(\sigma)^{\frac{n-1}{n}} d\sigma,$$

$$\psi(t) := \left(\int_0^t F(\sigma) \sigma^{\frac{1}{n-1}} d\sigma\right)^{\frac{n-1}{n}}$$

Then we can see that $\varphi(0) = \psi(0) = 0$. Since $F(\sigma)$ is monotone decreasing, we obtain

$$\varphi'(t) \ge \left(\frac{n}{n-1}\right)^{\frac{n-1}{n}} \psi'(t).$$

It follows that

$$\varphi(\infty) \ge \left(\frac{n}{n-1}\right)^{\frac{n-1}{n}}\psi(\infty).$$

Moreover it is easy to see that quality holds if and only if f is $c\chi_D$ where c is a constant and D is a half ball in \mathbb{R}^n .

Applying the same arguments as in the proof of the above theorem and the relative isoperimetric inequality (1.2), we also have the following theorem.

Theorem 3.2. Let $C \subset \mathbb{R}^n$ be a closed convex set with smooth boundary. Then we have

$$\frac{1}{2}n^n w_n \Big(\int_{\mathbb{R}^n \sim C} |f|^{\frac{n}{n-1}} dA\Big)^{n-1} \leq \Big(\int_{\mathbb{R}^n \sim C} |\nabla f| dA\Big)^n, \quad f \in W_0^{1,1}(\mathbb{R}^n \sim C).$$

Equality holds if and only if up to a set of measure zero, $f = c\chi_D$ where c is a constant and D is a half ball in \mathbb{R}^n .

Remark. In our Theorem 3.1 and 3.2, the function f may not vanish on ∂C . It is sufficient that f is compactly supported in the relative topology on $S \sim C$ for a closed convex set $C \subset S$.

School of Mathematics Korea Institute for Advanced Study 207-43 Cheongnyangni 2-dong Dongdaemun-gu, Seoul 130-722 Korea e-mail: kseo@kias.re.kr

References

- I. Chavel, Eigenvalues in Riemannian Geometry, Academic Press, New York, 1984.
- [2] J. Choe, Relative isoperimetric inequality for domains outside a convex set, Archives Inequalities Appl. 1 (2003), 241–250.
- [3] _____, The double cover relative to a convex set and the relative isoperimetric inequality, J. Austral. Math. Soc. 80 (2006), 375–382.
- [4] J. Choe, M. Ghomi and M. Ritore, *The relative isoperimetric inequality outside convex domains in* ℝⁿ, Calc. Var. Partial Differential Equations 29 (2007), 421–429.
- [5] J. Choe and M. Ritore, The relative isoperimetric inequality in Cartan-Hadamard 3-manifolds, J. Reine Angew. Math. 605 (2007), 179–191.
- [6] H. Federer, Geometric Measure Theory, Springer-Verlag, New York, 1969.
- [7] D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order, Second edition, Springer-Verlag, Berlin, 1983.
- [8] Z. Nehari, On the principal frequency of a membrane, Pacific J. Math. 8 (1958), 285–293.

$Keomkyo\ Seo$

- [9] K. Seo, Relative isoperimetric inequality on a curved surface, J. Math. Kyoto Univ. 46 (2006), 525–533.
- [10] G. Szegö, Inequalities for certain eigenvalues of a membrane of given area, J. Rational Mech. Anal. 3 (1954), 343–356.
- [11] H. Weinberger, An isoperimetric inequality for the N-dimensional free membrane problem, J. Rational Mech. Anal. 5 (1956), 633–636.