Geometric inequalities outside a convex set in a Riemannian manifold

By
Keomkyo SEO

Abstract

Let M be an n-dimensional complete simply connected Riemannian manifold with nonpositive sectional curvature for $n=2,3$ and 4 . We prove the following Faber-Krahn type inequality for the first eigenvalue λ_{1} of the mixed boundary problem. A domain Ω outside a closed convex subset C in M satisfies $$
\lambda_{1}(\Omega) \geq \lambda_{1}\left(\Omega^{*}\right)
$$ with equality if and only if Ω is isometric to the half ball Ω^{*} in \mathbb{R}^{n}, whose volume is equal to that of Ω. We also prove the Sobolev type inequality outside a closed convex set C in M.

1. Introduction

One of the most important inequalities in geometric analysis is the FaberKrahn inequality. In the 1920 's, for a bounded domain $\Omega \subset \mathbb{R}^{n}$, Faber and Krahn proved independently the following inequality

$$
\begin{equation*}
\lambda_{1}(\Omega) \geq \lambda_{1}\left(\Omega^{*}\right) \tag{1.1}
\end{equation*}
$$

where equality holds if and only if Ω is a ball (See [1]). Here λ_{1} denotes the first Dirichlet eigenvalue and Ω^{*} is a ball of the same n-dimensional volume as Ω. For the first Neumann eigenvalue μ_{1}, in 1954 Szegö[10] showed that for a simply connected domain $\Omega \subset \mathbb{R}^{2}$

$$
\mu_{1}(\Omega) \leq \mu_{1}\left(\Omega^{*}\right)
$$

where Ω^{*} is as above and equality holds if and only if Ω is a disk. It should be mentioned that μ_{1} is the first positive eigenvalue of the Neumann boundary problem. Two years later Weinberger [11] generalized the inequality for $\Omega \subset$ $\mathbb{R}^{n}, n \geq 2$. On the other hand, for the first eigenvalue λ_{1} of the mixed boundary problem, Nehari [8, Theorem III] proved (1.1) for a simply connected bounded domain $\Omega \subset \mathbb{R}^{2}$ satisfying that a subarc $\alpha \subset \partial \Omega$ is concave with respect to

[^0]Ω. In this case Ω^{*} is a half disk of the same area as Ω. Equality holds if and only if Ω is a half disk. In Section 2, we prove the Faber-Krahn type inequality (Theorem 2.1) extending Nehari's result to a Riemannian manifold case.

In [9], the author has proved the Sobolev type inquality outside a closed convex set in a nonpositively curved surface. In Section 3, we study Sobolev type inequality outside a closed convex set in a 3 and 4-dimensional Riemannian manifold with nonpositive sectional curvature.

The key ingredient in the proofs of our theorems is the following relative isoperimetric inequality.

Theorem 1 ([2], [3], [5], [9]). Let M be an n-dimensional complete simply connected Riemannian manifold with nonpositive sectional curvature for $n=2,3$ and 4 , and let $C \subset M$ be a closed convex set with smooth boundary. Then for a domain $\Omega \subset M \sim C$ we have

$$
\begin{equation*}
\frac{1}{2} n^{n} \omega_{n} \operatorname{Vol}(\Omega)^{n-1} \leq \operatorname{Vol}(\partial \Omega \sim \partial C)^{n} \tag{1.2}
\end{equation*}
$$

where equality holds if and only if Ω is a Euclidean half ball.
Recently Choe-Ghomi-Ritoré [4] have proved that this inequality holds for a domain in \mathbb{R}^{n}.

Theorem 2 ([4]). Let $C \subset \mathbb{R}^{n}$ be a closed convex set with smooth boundary. Then for a domain $\Omega \subset \mathbb{R}^{n} \sim C$, (1.2) is still true and equality holds if and only if Ω is a Euclidean half ball.

2. Faber-Krahn type inequality

Let Ω be a bounded domain outside a closed convex subset C with smooth boundary in an n-dimensional Riemannian manifold M. The Laplacian operator Δ acting on functions is locally given by

$$
\Delta=\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{i}}\left(\sqrt{g} g^{i j} \frac{\partial}{\partial x^{j}}\right)
$$

where $\left(x^{1}, \ldots, x^{n}\right)$ is a local coordinate system, $\left(g^{i j}\right)$ is the inverse of the metric tensor $\left(g_{i j}\right)$, and $g=\operatorname{det}\left(g_{i j}\right)$. We consider the mixed eigenvalue problem as follows :

$$
\begin{aligned}
\Delta u+\lambda u & =0 \quad \text { in } \quad \Omega \\
u & =0 \quad \text { on } \quad \partial \Omega \sim \partial C \\
\frac{\partial u}{\partial \nu} & =0 \quad \text { on } \quad \partial \Omega \cap \partial C
\end{aligned}
$$

where ν is the outward unit normal to $\partial \Omega$ along $\partial \Omega \cap \partial C$ and \sim denotes the set exclusion operator. Then, using the divergence theorem, we see that the first eigenvalue $\lambda_{1}(\Omega)$ of the mixed boundary problem satisfies

$$
\lambda_{1}(\Omega)=\inf _{u \in H_{0}^{1}(\Omega)} \frac{\int_{\Omega}|\nabla u|^{2}}{\int_{\Omega} u^{2}},
$$

where $H_{0}^{1}(\Omega)$ is the Sobolev space such that $u \in H_{0}^{1}(\Omega)$ vanishes on $\partial \Omega \sim \partial C$. We note that $u \in H_{0}^{1}(\Omega)$ need not vanish on $\partial \Omega \cap \partial C$.

First we show that the first eigenvalue of the mixed boundary problem for a half ball in space form $\mathbb{M}^{n}(\kappa)$ is equal to that of Dirichlet boundary problem for a ball in $\mathbb{M}^{n}(\kappa)$, where $\mathbb{M}^{n}(\kappa)$ denotes an n-dimensional complete Riemannian manifold of constant sectional curvature κ.

Proposition 2.1. Let $\lambda_{1}\left(B_{+}(r)\right)$ be the first mixed eigenvalue of a half ball $B_{+}(r)$ with radius r in $\mathbb{M}^{n}(\kappa)$ and $\lambda_{1}(B(r))$ the first eigenvalue of the Dirichlet boundary problem of a ball $B(r)$ with the same radius r in $\mathbb{M}^{n}(\kappa)$. If $\kappa>0$ assume $r<1 / \sqrt{\kappa}$. Then we have

$$
\lambda_{1}\left(B_{+}(r)\right)=\lambda_{1}(B(r))
$$

Proof. First let ϕ be an eigenfunction of $B_{+}(r)$ associated with $\lambda_{1}\left(B_{+}(r)\right)$. Then,

$$
\begin{aligned}
\Delta \phi+\lambda_{1}\left(B_{+}(r)\right) & =0 \quad \text { in } B_{+}(r) \\
\phi & =0 \text { on } \partial B_{+}(r) \sim \partial \mathbb{H} \\
\frac{\partial \phi}{\partial \nu} & =0 \text { on } \partial \mathbb{H}
\end{aligned}
$$

where $\partial \mathbb{H}$ denotes the boundary of the half space, which has flat geodesic curvature. We can extend the eigenfunction ϕ to $\tilde{\phi}$ defined on $B(r)$ by reflecting ϕ across $\partial \mathbb{H}$.

$$
\begin{aligned}
& \text { Using } \lambda_{1}(B(r))=\inf _{u \in H_{0}^{1}(B(r))} \frac{\int_{B(r)}|\nabla u|^{2}}{\int_{B(r)} u^{2}} \text {, we have } \\
& \text {) } \quad \lambda_{1}(B(r)) \leq \frac{\int_{B(r)}|\nabla \tilde{\phi}|^{2}}{\int_{B(r)} \tilde{\phi}^{2}}=\frac{\int_{B_{+}(r)}|\nabla \phi|^{2}}{\int_{B_{+}(r)} \phi^{2}}=\lambda_{1}\left(B_{+}(r)\right),
\end{aligned}
$$

where $H_{0}^{1}(B(r))$ is the Sobolev space on $B(r)$. Conversely let ψ be an eigenfunction of the Dirichlet problem in a ball B associated with $\lambda_{1}(B(r))$, that is,

$$
\begin{aligned}
\Delta \psi+\lambda_{1}(B(r)) & =0 \text { in } B(r) \\
\psi & =0 \text { on } \partial B(r)
\end{aligned}
$$

Since ψ is a radial function, $\frac{\partial \psi}{\partial \nu}=0$ on $\partial \mathbb{H}$. Hence ψ satisfies the boundary condition for the mixed eigenvalue problem. We immediately get

$$
\begin{equation*}
\lambda_{1}\left(B_{+}(r)\right) \leq \frac{\int_{B_{+}(r)}|\nabla \psi|^{2}}{\int_{B_{+}(r)} \psi^{2}}=\frac{\int_{B(r)}|\nabla \psi|^{2}}{\int_{B(r)} \psi^{2}}=\lambda_{1}(B(r)) \tag{2.2}
\end{equation*}
$$

Therefore we have $\lambda_{1}\left(B_{+}(r)\right)=\lambda_{1}(B(r))$ by (2.1) and (2.2).
We need the following well-known lemma before we prove our theorems.

Lemma 2.1. Let Ω be a domain in an n-dimensional Riemannian manifold M and let f be any eigenfunction with the first eigenvalue λ_{1} for mixed eigenvalue problem. Then f is strictly positive or strictly negative in Ω.

Proof. Note that

$$
\lambda_{1}(\Omega)=\frac{\int_{\Omega}|\nabla f|^{2}}{\int_{\Omega} f^{2}}=\frac{\left.\int_{\Omega}|\nabla| f\right|^{2}}{\int_{\Omega} f^{2}} .
$$

It follows that $|f|$ also is an eigenfunction associated with λ_{1} and $|f| \in$ $C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ by elliptic regularity theory $[7]$. We also have $\Delta|f|=-\lambda_{1}|f| \leq 0$. Using maximum principle we have $|f|>0$ in Ω and hence $f>0$ or $f<0$ in Ω.

We now prove the following Faber-Krahn type inequality for the mixed eigenvalue problem using symmetrization and relative isoperimetric inequality.

Theorem 2.1. Let M be an n-dimensional complete simply connected Riemannian manifold with nonpositive sectional curvature for $n=2,3$ and 4 , and let $C \subset M$ be a closed convex set with smooth boundary. Then for a domain $\Omega \subset M \sim C$, we have

$$
\begin{equation*}
\lambda_{1}(\Omega) \geq \lambda_{1}\left(\Omega^{*}\right) \tag{2.3}
\end{equation*}
$$

where Ω^{*} is a half ball in \mathbb{R}^{n}, whose volume is equal to that of the domain Ω. Equality holds if and only if the domain Ω is isometric to the half ball Ω^{*} in \mathbb{R}^{n}.

Proof. Let f be the first eigenfunction of Ω, that is,

$$
\begin{aligned}
\Delta f+\lambda_{1}(\Omega) f & =0 \quad \text { in } \Omega \\
f & =0 \quad \text { on } \partial \Omega \sim \partial C \\
\frac{\partial f}{\partial \nu} & =0 \quad \text { on } \partial \Omega \cap \partial C
\end{aligned}
$$

We may assume that f is nonnegative by lemma 2.1. Consider the set $\Omega_{t}=$ $\{x \in \Omega: f(x)>t\}$ and $\Gamma_{t}=\{x \in \Omega: f(x)=t\}$. Using a symmetrization procedure, we construct the concentric geodesic half ball Ω_{t}^{*} in \mathbb{R}^{n} such that $\operatorname{Vol}\left(\Omega_{t}^{*}\right)=\operatorname{Vol}\left(\Omega_{t}\right)$ for each t, and $\Omega_{0}^{*}=\Omega^{*}$. We define a function $F: \Omega^{*} \rightarrow \mathbb{R}_{+}$ such that F is a radially decreasing function and $\partial \Omega_{t}^{*} \sim \partial \mathbb{H}=\left\{x \in \Omega^{*}\right.$: $F(x)=t\}$.
Then it suffices to prove

$$
\begin{align*}
\int_{\Omega} f^{2} d v & =\int_{\Omega^{*}} F^{2} d v \tag{2.4}\\
\int_{\Omega}|\nabla f|^{2} d v & \geq \int_{\Omega^{*}}|\nabla F|^{2} d v \tag{2.5}
\end{align*}
$$

For (2.4), using the co-area formula [6],

$$
\begin{aligned}
\int_{\Omega} f^{2} d v & =\int_{0}^{\infty} \int_{\Gamma_{t}} \frac{f^{2}}{|\nabla f|} d A_{t} d t=\int_{0}^{\infty} t^{2}\left(\int_{\Gamma_{t}} \frac{d A_{t}}{|\nabla f|}\right) d t \\
& =-\int_{0}^{\infty} t^{2} \frac{d}{d t} \operatorname{Vol}\left(\Omega_{t}\right) d t=-\int_{0}^{\infty} t^{2} \frac{d}{d t} \operatorname{Vol}\left(\Omega_{t}^{*}\right) d t=\int_{\Omega^{*}} F^{2} d v
\end{aligned}
$$

where $d A_{t}$ is the $(n-1)$-dimensional volume element on Γ_{t}. Here we have used the identity

$$
\frac{d}{d t} \operatorname{Vol}\left(\Omega_{t}\right)=-\int_{\Gamma_{t}}|\nabla f|^{-1} d A_{t} .
$$

For (2.5), using Hölder inequality we have

$$
\begin{aligned}
\int_{\Gamma_{t}} d A_{t} & =\int_{\Gamma_{t}}|\nabla f|^{1 / 2}|\nabla f|^{-1 / 2} d A_{t} \\
& \leq\left(\int_{\Gamma_{t}}|\nabla f|\right)^{1 / 2}\left(\int_{\Gamma_{t}}|\nabla f|^{-1}\right)^{1 / 2} \\
& =\left(\int_{\Gamma_{t}}|\nabla f|\right)^{1 / 2}\left(-\frac{d}{d t} \operatorname{Vol}\left(\Omega_{t}\right)\right)^{1 / 2} .
\end{aligned}
$$

From the relative isoperimetric inequality (1.2) as mentioned in the introduction, we see that

$$
\begin{align*}
\int_{\Gamma_{t}}|\nabla f| d A_{t} & \geq \frac{\operatorname{Vol}\left(\Gamma_{t}\right)^{2}}{-\frac{d}{d t} \operatorname{Vol}\left(\Omega_{t}\right)} \tag{2.6}\\
& \geq \frac{\operatorname{Vol}\left(\Gamma_{t}^{*}\right)^{2}}{\int_{\Gamma_{t}^{*}}|\nabla F|^{-1} d A_{t}^{*}}=\int_{\Gamma_{t}^{*}}|\nabla F| d A_{t}^{*}
\end{align*}
$$

where $\Gamma_{t}^{*}=\left\{x \in \Omega^{*}: F(x)=t\right\}$, and $d A_{t}^{*}$ is the $(n-1)$-dimensional volume element on Γ_{t}^{*}. Integrating in t, we get (2.5). To have equality, the second inequality in (2.6) should become equality. Since equality in the relative isoperimetric inequality holds if and only if Ω is isometric to a half ball in \mathbb{R}^{n}, we get the conclusion.

Using [4], we can also prove the following.
Theorem 2.2. Let $C \subset \mathbb{R}^{n}$ be a closed convex set with smooth boundary. Then for a domain $\Omega \subset \mathbb{R}^{n} \sim C$, we have

$$
\begin{equation*}
\lambda_{1}(\Omega) \geq \lambda_{1}\left(\Omega^{*}\right) \tag{2.7}
\end{equation*}
$$

where Ω^{*} is a half ball in \mathbb{R}^{n}, whose volume is equal to that of the domain Ω. Equality holds if and only if the domain Ω is isometric to the half ball Ω^{*} in \mathbb{R}^{n}.

3. Sobolev type inequality

In this section we prove Sobolev type inequality outside a closed convex set in a Riemannian manifold.

Theorem 3.1. Let M be an n-dimensional complete simply connected Riemannian manifold with nonpositive sectional curvature for $n=2,3$ and 4. Let $C \subset M$ be a closed convex set. Then we have

$$
\frac{1}{2} n^{n} w_{n}\left(\int_{M \sim C}|f|^{\frac{n}{n-1}} d A\right)^{n-1} \leq\left(\int_{M \sim C}|\nabla f| d A\right)^{n}, f \in W_{0}^{1,1}(M \sim C)
$$

Equality holds if and only if up to a set of measure zero, $f=c \chi_{D}$ where c is a constant and D is a half ball in \mathbb{R}^{n}.

Proof. For simplicity, we assume $f \geq 0$. By the co-area formula

$$
\int_{M}|\nabla f| d v=\int_{0}^{\infty} \operatorname{Area}(f=\sigma) d \sigma
$$

We apply the relative isoperimetric inequality (1.2) to obtain

$$
\int_{M}|\nabla f| d v=\int_{0}^{\infty} \operatorname{Area}(f=\sigma) d \sigma \geq n\left(\frac{\omega_{n}}{2}\right)^{\frac{1}{n}} \int_{0}^{\infty} \operatorname{Vol}(f>\sigma)^{\frac{n-1}{n}} d \sigma
$$

Since we have

$$
\int_{M}|f|^{\frac{n}{n-1}} d v=\int_{0}^{\infty} \operatorname{Vol}\left(f^{\frac{n}{n-1}}>\rho\right) d \rho=\frac{n}{n-1} \int_{0}^{\infty} \operatorname{Vol}(f>\sigma) \sigma^{\frac{1}{n-1}} d \sigma
$$

it suffices to show that

$$
\int_{0}^{\infty} \operatorname{Vol}(f>\sigma)^{\frac{n-1}{n}} d \sigma \geq\left(\frac{n}{n-1}\right)^{\frac{n-1}{n}}\left(\int_{0}^{\infty} \operatorname{Vol}(f>\sigma) \sigma^{\frac{1}{n-1}} d \sigma\right)^{\frac{n-1}{n}}
$$

Define

$$
\begin{aligned}
F(\sigma) & :=\operatorname{Vol}(f>\sigma) \\
\varphi(t) & :=\int_{0}^{t} F(\sigma)^{\frac{n-1}{n}} d \sigma \\
\psi(t) & :=\left(\int_{0}^{t} F(\sigma) \sigma^{\frac{1}{n-1}} d \sigma\right)^{\frac{n-1}{n}}
\end{aligned}
$$

Then we can see that $\varphi(0)=\psi(0)=0$. Since $F(\sigma)$ is monotone decreasing, we obtain

$$
\varphi^{\prime}(t) \geq\left(\frac{n}{n-1}\right)^{\frac{n-1}{n}} \psi^{\prime}(t)
$$

It follows that

$$
\varphi(\infty) \geq\left(\frac{n}{n-1}\right)^{\frac{n-1}{n}} \psi(\infty)
$$

Moreover it is easy to see that quality holds if and only if f is $c \chi_{D}$ where c is a constant and D is a half ball in \mathbb{R}^{n}.

Applying the same arguments as in the proof of the above theorem and the relative isoperimetric inequality (1.2), we also have the following theorem.

Theorem 3.2. Let $C \subset \mathbb{R}^{n}$ be a closed convex set with smooth boundary. Then we have

$$
\frac{1}{2} n^{n} w_{n}\left(\int_{\mathbb{R}^{n} \sim C}|f|^{\frac{n}{n-1}} d A\right)^{n-1} \leq\left(\int_{\mathbb{R}^{n} \sim C}|\nabla f| d A\right)^{n}, \quad f \in W_{0}^{1,1}\left(\mathbb{R}^{n} \sim C\right)
$$

Equality holds if and only if up to a set of measure zero, $f=c \chi_{D}$ where c is a constant and D is a half ball in \mathbb{R}^{n}.

Remark. In our Theorem 3.1 and 3.2, the function f may not vanish on ∂C. It is sufficient that f is compactly supported in the relative topology on $S \sim C$ for a closed convex set $C \subset S$.

> School of Mathematics
> Korea Institute for Advanced Study
> 207-43 Cheongnyangni 2-DONG
> Dongdaemun-Gu, Seoul 130-722
> Korea
> e-mail: kseo@kias.re.kr

References

[1] I. Chavel, Eigenvalues in Riemannian Geometry, Academic Press, New York, 1984.
[2] J. Choe, Relative isoperimetric inequality for domains outside a convex set, Archives Inequalities Appl. 1 (2003), 241-250.
[3] _, The double cover relative to a convex set and the relative isoperimetric inequality, J. Austral. Math. Soc. 80 (2006), 375-382.
[4] J. Choe, M. Ghomi and M. Ritore, The relative isoperimetric inequality outside convex domains in \mathbb{R}^{n}, Calc. Var. Partial Differential Equations 29 (2007), 421-429.
[5] J. Choe and M. Ritore, The relative isoperimetric inequality in CartanHadamard 3-manifolds, J. Reine Angew. Math. 605 (2007), 179-191.
[6] H. Federer, Geometric Measure Theory, Springer-Verlag, New York, 1969.
[7] D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order, Second edition, Springer-Verlag, Berlin, 1983.
[8] Z. Nehari, On the principal frequency of a membrane, Pacific J. Math. 8 (1958), 285-293.
[9] K. Seo, Relative isoperimetric inequality on a curved surface, J. Math. Kyoto Univ. 46 (2006), 525-533.
[10] G. Szegö, Inequalities for certain eigenvalues of a membrane of given area, J. Rational Mech. Anal. 3 (1954), 343-356.
[11] H. Weinberger, An isoperimetric inequality for the N-dimensional free membrane problem, J. Rational Mech. Anal. 5 (1956), 633-636.

[^0]: 2000 Mathematics Subject Classification(s). 58J50, 35P15
 Received April 16, 2007

