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Sylow 2-subgroups and small nilquotients
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Abstract

The Smith equivalence of real representations of a finite group
has been studied by many mathematicians, e.g. J. Milnor, T. Petrie,
S. Cappell-J. Shaneson, K. Pawa�lowski-R. Solomon. For a given finite
group, let the primary Smith set of the group be the subset of real rep-
resentation ring consisting of all differences of pairs of prime matched,
Smith equivalent representations. The primary Smith set was rarely de-
termined for a nonperfect group G besides the case where the primary
Smith set is trivial. In this paper we determine the primary Smith set of
an arbitrary Oliver group such that a Sylow 2-subgroup is normal and
the nilquotient is isomorphic to the direct product of a finite number
of cyclic groups of order 2 or 3. In particular, we answer to a problem
posed by T. Sumi.
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1. Introduction

Let G be a finite group. Throughout this paper, we mean by a manifold
a smooth manifold, by a G-action on a manifold a smooth G-action on the
manifold, and by a real G-module a finite dimensional real G-representation
space. If M is a G-manifold with a G-fixed point x then the tangent space
Tx(M) at x of M has the induced linear G-action which is called the tangential
G-representation at x. It is interesting to ask how Tx(M) and Ty(M) are
similar to each other for x, y in MG, the G-fixed point set of M . Particularly,
the case where M is a sphere has been paid attention since P. Smith [24].
He asked whether the two tangential G-representations of a G-action on a
sphere with exactly two G-fixed points are isomorphic. There are well known
breakthroughs of the Smith problem. For examples, M. F. Atiyah-R. Bott [1],
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J. W. Milnor [9] studied the problem for semifree actions, G. E. Bredon [2]
did for 2-groups, C. U. Sanchez [23] did for groups of odd prime power order,
T. Petrie [18] did for odd order, abelian groups having at least 4 noncyclic Sylow
subgroups, S. E. Cappell-J. L. Shaneson [3] did for cyclic groups, E. Laitinen-
K. Pawa�lowski [8] did for perfect groups, K. Pawa�lowski-R. Solomon [16] did
related to the Laitinen conjecture. We also have contribution by E. C. Cho,
K. H. Dovermann, J. D. Randall, D. Y. Suh, T. Sumi, L. C. Washington and
etc. We can refer to articles [21], [16], [17], and [6] for surveys of history of the
study of the Smith problem and bibliography.

Two real G-modules V and W are called Smith equivalent, and written
V ∼S W , if there exists a homotopy sphere Σ with G-action such that Σ has
exactly two G-fixed points and the tangential G-representations at the two
points are isomorphic to V and W as real G-modules, namely ΣG = {a, b},
Ta(Σ) ∼= V and Tb(Σ) ∼= W . Here a homotopy sphere is a closed manifold
which is homotopy equivalent to the standard sphere of same dimension. Let
RO(G) denote the real representation ring. Define the Smith set S(G) by

S(G) = {[V ] − [W ] ∈ RO(G) | V ∼S W},
where V and W are real G-modules. K. Pawa�lowski-T. Sumi [17] determined
whether S(G) is trivial or nontrivial for most finite groups G of order ≤ 2000,
while they reported that the Smith sets for the groups G = SG(1176, 220),
SG(1176, 221) were not yet determined, where SG(m, n) denotes the ‘small
group’ of order m and type n as specified in GAP [5]. The present paper
answers:

Theorem 1.1. For the small groups G = SG(1176, 220), SG(1176,
221), the Smith sets S(G) are trivial, i.e. S(G) = 0.

This theorem shows that the Laitinen conjecture in [8] fails for G =
SG(1176, 220), SG(1176, 221) (see Conjecture 2.1). Thus it is interesting to
formulate the theorem above as a generalized criterion. For this purpose, we
need to prepare notation. Let P(G) denote the set of all subgroups P of G such
that the order of P is a power of a prime. In particular, the trivial group {e}
belongs to P(G). Two real G-modules V and W are said to be prime matched
if resG

P V ∼= resG
P W as real P -modules for all P ∈ P(G). For a subset A of

RO(G) and a set K of subgroups of G, let

AP = {[V ] − [W ] ∈ A | V and W are prime matched},
AK = {[V ] − [W ] ∈ A | dim V K = 0 = dim WK ∀ K ∈ K},

where V and W are real G-modules. We call S(G)P the primary Smith set. It is
known that if G does not have an element of order 8 then S(G) = S(G)P , while
if G has a normal subgroup N such that G/N is a cyclic group of order 8 then
S(G) �= S(G)P . If G is a nontrivial perfect group then S(G)P = RO(G){G}

P .
Let Gnil denote the smallest normal subgroup N of G such that G/N is nilpo-
tent. In the present paper, we refer to G/Gnil as the nilquotient of G. A finite
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group G is called an Oliver group if G is not a mod-P hyperelementary group,
namely there never exists a normal series P � H � G such that P and G/H
are of prime power order and H/P is cyclic. Due to the surveys in [21], [16],
[17], [6], the reader can see that S(G)P is rarely determined for a nonperfect
group G besides the case S(G)P = 0.

Theorem 1.2. Let G be an Oliver group satisfying the conditions.
(1) A Sylow 2-subgroup of G is normal in G.
(2) Gnil �= G and G/Gnil is isomorphic to a direct product of cyclic groups

of order 3.
Then S(G)P coincides with RO(G){Gnil}

P .

We remark that G = SG(1176, 220) and SG(1176, 221) satisfy Condi-
tions (1) and (2) above, RO(G){Gnil}

P = 0, and the groups do not have an
element of order 8. Theorem 1.2 follows from Theorem 2.2 in which we treat
an arbitrary Oliver group G such that G has a normal Sylow 2-subgroup and

G/Gnil ∼= C2 × · · · × C2 × C3 × · · · × C3,

where Cp denotes a cyclic group of order p.
A word should be in order on group actions on disks. For an Oliver group

G and two real G-modules V and W , V ⊕U and V ⊕U with some real G-module
U can be the tangential representations at the fixed points of a G-action on a
disk with exactly two G-fixed points if and only if [V ]− [W ] ∈ RO(G){G}

P . Thus
local data around G-fixed points of G-actions on spheres are subtly different
from those on disks.

2. Generalization and proofs

Let G be a finite group and let S(G) denote the set of all subgroups of
G. For a prime p, let G{p} denote the smallest normal subgroup H such that
|G/H| is a power of p. Then we have

Gnil =
⋂
p

G{p},

where p runs over the set of all primes dividing |G|. We will use the following
families of subgroups of G. For a prime p, let

L(G, p) = {L ∈ S(G) | L ⊇ G{p}},
Lp(G) = {L ∈ L(G) | L � G and |G/L| = p},
L(G) =

⋃
q

L(G, q),

where q runs over the set of all primes dividing |G|.
The study of the Smith equivalence in the present paper needs the following

lemmas.
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Lemma 2.1 ([10, Lemma 2.1]). If K is a cyclic group of order 2 and M
a connected closed manifold of dimension ≥ 1 with K-action, then |MK | �= 1.

This lemma has a simple proof and we obtain the next by analogous ar-
guments.

Lemma 2.2. Let p be an odd prime. If K is a cyclic group of order p
and M a connected closed orientable manifold of dimension ≥ 1 with K-action,
then |MK | �= 1.

In addition, we recall Proposition 3.2 in A. Edmonds-R. Lee [4].

Lemma 2.3 (A. Edmonds-R. Lee). Let K be a finite group with a nor-
mal Sylow 2-subgroup and M a smooth K-manifold fulfilling H̃∗(M ; Z2) = 0.
Then MK is stably complex, and hence every connected component of MK is
orientable.

Let aG denote the number of all real conjugacy classes (g)± = (g) ∪ (g−1)
of elements g ∈ G such that the order of g is not a power of a prime. It is
known (and easily shown) that

rank RO(G){G}
P = aG − 1

if aG > 0. The Laitinen conjecture in [8] implies the next.

Conjecture 2.1 (AG-conjecture). If G is an Oliver group with aG ≥ 2
then S(G) �= 0.

A real G-module is called a gap module if the following two conditions are
fulfilled.

(1) V L = 0 for all L ∈ L(G).
(2) dim V P > 2 dim V H for all P ∈ P(G) and all H ∈ S(G) such that

H � P .

Lemma 2.4. For an arbitrary finite group G, S(G) ⊆ RO(G)L2(G). If
G/G{2} ∼= C2 × · · · × C2, where C2 is a cyclic group of order 2, then S(G) ⊆
RO(G){G{2}}.

Proof. Let [V ] − [W ] ∈ S(G). We may suppose V G = 0 = WG. By [10,
Proposition 2.2],

(2.1) V N ∼= WN as real G-modules for any N � G such that |G/N | = 2.

Thus S(G) ⊆ RO(G)L2(G).
Let L = G{2} and suppose G/L = C2 × · · · × C2. By the representation

theory, it holds that

V L =
⊕

N�G: |G/N |=2

V N and WL =
⊕

N�G: |G/N |=2

WN
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as real G-modules. Thus (2.1) implies V L ∼= WL as real G-modules. Thus we
get

S(G) ⊆ RO(G){G{2}}.

Similarly we obtain the next lemma.

Lemma 2.5. If G is a finite group with a normal Sylow 2-subgroup then

dim V N = dim WN

holds for arbitrary [V ]− [W ] ∈ S(G) and arbitrary N � G such that |G/N | is a
prime. In particular,

S(G) ⊆ RO(G)L2(G)∪L3(G).

If furthermore G/G{3} ∼= C3 × · · · × C3, where C3 is a cyclic group of order 3,
then S(G) ⊆ RO(G){G{3}}.

Proof. Let Σ be a homotopy sphere with G-action such that ΣG = {a, b},
a �= b. Set V = Ta(Σ) and W = Tb(Σ). Let N be a normal subgroup of G with
|G/N | = p. We are going to prove dim V N = dim WN by showing the contrary
assumption that dim V N �= dim WN implies a contradiction. Let ΣN

a and
ΣN

b denote the connected components of ΣN containing a and b, respectively.
The assumption implies dim ΣN

a > 0 or dim ΣN
b > 0. In particular, we get

dim Σ > 0. If ΣN
a = ΣN

b then dim V N = dim WN . Thus, we have ΣN
a �= ΣN

b .
Each connected component of ΣN is a connected component of ΣN � {a} or
ΣN �{b}. Since Σ is a homotopy sphere of dimension ≥ 1, Σ�{a} and Σ�{b}
are homeomorphic to the Euclidean space. By Lemma 2.3, each connected
component of ΣN � {a} and ΣN � {b} is orientable. Thus ΣN

a and ΣN
b are

orientable. Note (ΣN
a )G/N = {a} and (ΣN

b )G/N = {b}. But by Lemma 2.2, this
can not happen. Namely we have encountered with a contradiction, and hence
proved dim V N = dim WN .

Note that if |G/N | = 3 then V N ∼= WN follows from dim V G = dim WG

and dim V N = dim WN . By arguments similar to ones in Proof of
Lemma 2.4, we obtain S(G) ⊆ RO(G)L3(G). By Lemma 2.4, we get S(G) ⊆
RO(G)L2(G)∪L3(G).

The next theorem immediately follows.

Theorem 2.1. If G is a finite group with a normal Sylow 2-subgroup
and

G/Gnil ∼= C2 × · · · × C2 × C3 × · · · × C3

then S(G) ⊆ RO(G)L(G)

A finite group G is called a gap group if there exists a gap real G-module.
It is known that any Oliver group G satisfying one of the following conditions
is a gap group.
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(1) G = G{2} ([7, Theorem 2.3]).
(2) |G/Gnil| is divisible by (at least 2) distinct odd primes ([7, Theo-

rem 2.3]).
(3) A Sylow 2-subgroup of G is normal in G ([13, Proposition 4.3]).

If G is a nilpotent Oliver group then Conditions (2) and (3) above are satisfied.
We can show the next fact by computation using data available from GAP

[5] and the details are left to the reader.

Fact 2.1. If G is either SG(1176, 220) or SG(1176, 221) then the fol-
lowing properties hold.

(1) G is an Oliver group, i.e. not a mod P hyperelementary group.
(2) Any element of G is not of order 8.
(3) A Sylow 2-subgroup of G is normal in G.
(4) G{3} = [G, G] and |G/G{3}| = 3.
(5) G = G{p} for any prime p �= 3.
(6) G/Gnil ∼= C3 (the cyclic group of order 3).
(7) RO(G)L(G)

P = RO(G)G{3}
P = 0.

(8) G is a gap group.

Hence if G is either SG(1176, 220) or SG(1176, 221) then

S(G) = S(G)P ⊆ ROG{3}
P = 0.

We have proved Theorem 1.1.
Recall Realization Theorem in [16].

Lemma 2.6 (K. Pawa�lowski-R. Solomon). If G is a gap Oliver group
then RO(G)LP ⊆ S(G)P .

We, however, do not know whether there exists an Oliver group G such that
RO(G)LP �⊆ S(G)P . Since any Oliver group with a normal Sylow 2-subgroup is
a gap group, we obtain the next.

Theorem 2.2. If G is an Oliver group with a normal Sylow 2-subgroup
and

G/Gnil ∼= C2 × · · · × C2 × C3 × · · · × C3

then

S(G)P = RO(G)L(G)
P (= RO(G)L2(G)∪L3(G)

P ).



�

�

�

�

�

�

�

�

The Smith sets of finite groups 225

Department of Mathematics

Graduate School of Natural Science and Technology

Okayama University

Okayama, 700-8530, Japan

Department of Mathematics

Graduate School of Natural Science and Technology

Okayama University

Okayama, 700-8530, Japan

e-mail: morimoto@ems.okayama-u.ac.jp

Department of Environmental and Mathematical Sciences

Faculty of Environmental Science and Technology

Okayama University

Okayama, 700-8530, Japan

References

[1] M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic
complexes: II. Applications, Ann. of Math. 88 (1968), 451–491.

[2] G. E. Bredon, Representations at fixed points of smooth actions of compact
groups, Ann. of Math. (2) 89 (1969), 515–532.

[3] S. E. Cappell and J. L. Shaneson, Representations at fixed points, Group
Actions on Manifolds (Boulder, Colo., 1983), Contemp. Math. 36, Amer.
Math. Soc., Providence, RI, 1985, pp. 151–158.

[4] A. L. Edmonds and Ronnie Lee, Fixed point sets of group actions on Eu-
clidean space, Topology 14 (1975), 339–345.

[5] GAP, Groups, Algorithms and Programming, a System for Computa-
tional Discrete Algebra, Release 4.3, 06 May 2002, URL: http://www.gap-
system.org.

[6] X.M. Ju, The Smith isomorphism question: A review and new results,
RIMS Kokyuroku no. 1569 (2007), Res. Inst. Math. Sci., Kyoto Univ.,
43–51.

[7] E. Laitinen and M. Morimoto, Finite groups with smooth one fixed point
actions on spheres, Forum Math. 10 (1998), 479–520.

[8] E. Laitinen and K. Pawa�lowski, Smith equivalence of representations for
finite perfect groups, Proc. Amer. Math. Soc. 127 (1999), 297–307.

[9] J. W. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358–
426.



�

�

�

�

�

�

�

�

226 Akihiro Koto, Masaharu Morimoto and Yan Qi

[10] M. Morimoto, The Smith problem and a counterexample to Laitinen’s con-
jecture, RIMS Kokyuroku no. 1517 (2006), Res. Inst. Math. Sci., Kyoto
Univ., 25–31.

[11] , Construction of smooth actions on spheres for Smith equivalent
representations, RIMS Kokyuroku no. 1569 (2007), Res. Inst. Math. Sci.,
Kyoto Univ., 52–58.

[12] , Smith equivalent Aut(A6)-representations are isomorphic, ac-
cepted by Proc. Amer. Math. Soc.

[13] M. Morimoto, T. Sumi and M. Yanagihara, Finite groups possessing gap
modules, in: Geometry and Topology, Aarhus 1998, Contemp. Math. 258,
Amer. Math. Soc., Providence, 2000, pp. 329–342.

[14] B. Oliver, Fixed point sets and tangent bundles of actions on disks and
Euclidean spaces, Topology 35 (1996), 583–615.

[15] R. Oliver, Fixed point sets of groups on finite acyclic complexes, Comment.
Math. Helv. 50 (1975), 155–177.

[16] K. Pawa�lowski and R. Solomon, Smith equivalence and finite Oliver groups
with Laitinen number 0 or 1, Algebr. Geom. Topol. 2 (2002), 843–895.

[17] K. Pawa�lowski and T. Sumi, Finite groups with Smith equivalent, non-
isomorphic representations, in Proc. 33rd Symposium on Transforma-
tion Groups, in Yokohama 2006, (ed. T. Kawakami), Wing Co. Ltd.,
Wakayama, Japan, 2007, pp. 68–76.

[18] T. Petrie, Three theorems in transformation groups, Algebraic Topology
(Aarhus 1978), Lecture Notes in Math. 763, Springer Verlag, Berlin-
Heidelberg-New York, 1979, pp. 549–572.

[19] , The equivariant J homomorphism and Smith equivalence of rep-
resentations, Current Trends in Algebraic Topology (London, Ont., 1981),
CMS Conf. Proc. 2, Part 2, Amer. Math. Soc., Providence, RI, 1982,
pp. 223–233.

[20] , Smith equivalence of representations, Math. Proc. Cambridge Phi-
los. Soc. 94 (1983), 61–99.

[21] T. Petrie and J. Randall, Transformation Groups on Manifolds, Marcel
Dekker, Inc., New York and Basel, 1984.

[22] , Spherical isotropy representations, Publ. Math. IHES 62 (1985),
5–40.

[23] C. U. Sanchez, Actions of groups of odd order on compact orientable man-
ifolds, Proc. Amer. Math. Soc. 54 (1976), 445–448.



�

�

�

�

�

�

�

�

The Smith sets of finite groups 227

[24] P. A. Smith, New results and old problems in finite transformation groups,
Bull. Amer. Math. Soc. 66 (1960), 401–415.

[25] T. Sumi, Finite groups possessing Smith equivalent, nonisomorphic repre-
sentations, RIMS Kokyuroku no. 1569 (2007), Res. Inst. Math. Sci., Kyoto
Univ., 170–179.


