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Energy and Riemannian flows
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Abstract

We define and compute the energy of 1-foliations on riemannian
manifolds. We then derive the Euler-Lagrange equations associated with
the energy. We also prove that Riemannian flows on manifolds of con-
stant curvature are critical if and only if they are isometric. Finally we
prove that isometric flows on 3-manifolds are critical if and only if either
they are transverse to 2-dimensional foliations or they provide K-contact
structures.
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1. Introduction

There have been several studies of the energy of unit vector fields on rie-
mannian manifolds in recent years. The energy (or, up to a multiplicative con-
stant, the total bending) is a measure of deviation of a unit vector field from
being parallel; more precisely, the energy of a unit vector field N is the integral
over a compact manifold M of the squared norm of the covariant derivative of
N . See [3], [4], [11], [21], [22]. Most of these studies focus on the critical points
or the Euler-Lagrange equations associated with the energy.

In this paper, we study the variational problem of the energy functional in
general and then for Riemannian flows. We also interpret the energy integral
in terms of curvature functions associated with the flow. This is motivated by
the energy of liquid crystals.

A liquid crystal is an arrangement of molecules whose centers occupy well
determined positions in a 3-dimensional domain. While in an ordinary liquid
the molecules are in disorder, in a liquid crystal the molecules are ordered along
a foliation of dimension 1 (nematic) or dimension 2 (smectic).

To a liquid crystal, we associate a direction D on the region W of R3 filled
by the liquid crystal. When the liquid crystal is nematic, this direction D is
MSC 1991: 53C12, 53C15
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tangent to the foliation of dimension 1 that orders the molecules. Imagine a
nematic is ordered along a foliation L by parallel lines. If we impose constraints
(magnetic field, heating, etc.) the foliation L is deformed. Physicists associate
to this situation a free energy E. Locally, or in the absence of defects which
are points or curves in W , the direction D is given by a unit vector field N .
We have

(1.1) E = C1|divN |2 + C2|N.curlN |2 + C3|N ∧ curlN |2

where C1, C2, and C3 are constants. Compare with Section 2.

A special case that has been frequently studied is the one constant approx-
imation. See [1], [14].

To state the main results of this paper we recall some definitions and we fix
notations. Unless otherwise stated, (Mn+1, g) is a smooth, closed, connected
riemannian manifold of dimension n+1, n ≥ 2, and L a 1-foliation on M given
by a nonsingular unit vector field N . We suppose that M and L are oriented,
and we let µ be the volume form on M coming from the metric g. Let ∇ be
the Levi-Civita connection on TM , the tangent bundle to M , associated with

the metric g. We will call e(L)p =
1
2
|∇N |2(p) the energy density of L at the

point p. We define the energy of the foliation L by

(1.2) E(L) =
∫

M

e(L) µ

We say that the foliation L is harmonic if it is a critical foliation for this energy
functional under variations of L through foliations Lt, |t| < ε. This is motivated
by the harmonic map theory of Eells and Sampson [9].

In a previous paper [11] we studied harmonic foliations on compact Rie-
mann surfaces and their associated energies. Basically, they are given by the
real parts of meromorphic (holomorphic if possible) vector fields. Moreover,
their energy integral diverges (except on 2-tori T 2 the energy integral need
not diverge) and the finite part of the energy is given by the Green’s function
associated with the Laplace operator. See [11].

A very important class of foliations are the so-called “measured foliations”
or Riemannian foliations, for which the layers (or rather the leaves) are all
equidistant. See Section 2. One can think of a Riemannian foliation as being
a very rough mathematical model of a smectic liquid crystal. See [15].

We begin by recalling some notions related to foliations in general. Let L
be a p−dimensional oriented foliation on a smooth oriented manifold M (no
metric yet to be involved) of dimension n = p + q. A vector field Y on M is
projectable or an infinitesimal automorphism of L, if

[X,Y ] ∈ L for all X ∈ L

where L is the tangent bundle to L. This means that the local flow (global
if M is compact) of Y preserves the foliation, i.e. maps leaves into leaves. In



�

�

�

�

�

�

�

�

Energy and Riemannian flows 75

distinguished coordinates (x; y) = (x1, . . . , xp; y1, . . . , yq), such a vector field is
of the form

(1.3) Y =
p∑

i=1

ai
∂

∂xi
+

q∑
α=1

bα
∂

∂yα

with ai = ai(x, y) and
∂bα
∂xi

= 0, i.e. bα = bα(y).

A differential form ω of degree r is basic, if

(1.4) iXω = 0, θ(X)ω = 0 for X ∈ L.

Here iX and θ(X) are the interior product and the Lie derivative in the direction
X. By Cartan’s formula we have

(1.5) θ(X)ω = diXω + iXdω

where d is the exterior derivative.

In distinguished coordinates (x; y) = (x1, . . . , xp; y1, . . . , yq) of L a basic
form of degree r is of the form

(1.6) ω =
∑

α1<...<αr

ωα1...αr
dyα1 ∧ . . . ∧ dyαr

where the functions ωα1...αr
(y) are independent of x, i.e.

∂ωα1...αr

∂xi
= 0.

It is clear that projectable vector fields and basic differential forms descend
to the local quotient U/L where U is an open distinguished set.

Finally, a foliation L is Riemannian if one can equip each transversal sub-
manifold with a metric invariant by the holonomy pseudogroup of L. A metric
g on M is bundle-like, if it induces an invariant metric on each transversal
submanifold. In distinguished coordinates (x; y) = (x1, . . . , xp; y1, . . . , yq), of L
such a metric g is of the form
(1.7)

g =
p∑

i,j=1

gij(x; y)dxi ⊗ dxj +
p,q∑

i=1,α=1

giα(x, y)dxi ⊗ dyα +
q∑

α,β=1

gαβ(y)dyα ⊗ dyβ

where the functions gαβ(y) are independent of x. For more details about Rie-
mannian foliations see [20].

We now suppose that the foliation L is one dimensional. Let Q ∼= L⊥ (via
g) be the normal bundle of L, and S be the shape operator on Q. See Section
2.

We prove the following theorem.
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Theorem 1.1. Let L be an oriented Riemannian flow on a closed ori-
ented riemannian manifold (Mn+1, g) of dimension n+ 1, n ≥ 2. We assume
that g is bundle-like with respect to L and that the mean curvature form of L
is basic with respect to g. Then the flow L is harmonic if and only if

(1.8) g(Ric(N) − 2S(∇NN), E) = 0 for all E ∈ Q

where Ric(N) is the Ricci curvature operator in the direction N .

Moreover, if (M, g) has constant sectional curvature C then the following holds.

The flow L is harmonic if and only if it is isometric, and in this case,

E(L) =
nC

2
V ol(M) if n is even, and E(L) = 0 otherwise, where V ol(M) is

the volume of M with respect to the metric g.

Remarks 1.2. (i) A result of Dominguez [8] insures that any bundle-
like metric can be modified to another bundle-like for which the mean curvature
of L is basic.

(ii) If the curvature C satisfies C < 0, then the flow L can’t be Riemannian.
See [17]. See also [10].

(iii) Every Riemannian flow on a closed manifold is locally isometric. See
[19]; we recall the key ideas in his proof. Let τ be the metric dual of the vector
field ∇NN . Then dτ = 0 [20]; it follows that, locally τ = df for some C∞

function f . The Lie derivative of the metric g in the direction e−fN is zero;
i.e., θ(e−fN)g = 0. In particular, the flow L is locally geodesible with respect
to the metric g1 defined by

(1.9) g1 = e2fg|L ⊕ g|L⊥

However, in general L is not locally geodesible with respect to the original
metric g. Also note that if M is simply connected then L is globally isometric.

(iv) If (M, g) is an Einstein manifold and L Riemannian, then L is har-
monic if and only if the vector field ∇NN is an asymptotic direction at all
points of M .

Corollary 1.3. Let L be a Riemannian flow on a closed oriented rie-
mannian manifold M . If L is transverse to a foliation F , then L is harmonic
if and only if the Ricci curvature in the direction N is proportional to N .

Now we recall some definitions and facts about contact manifolds. A (2n+
1)−dimensional manifold M has an almost contact structure if its structural
group is reducible to U(n)× 1 or equivalently if it admits a nonsingular vector
field ξ (the so-called characteristic vector field), a one-form η and a (1, 1)−tensor
φ satisfying

(1.10) η(ξ) = 1, φ2 = −I + η ⊗ ξ
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where I denotes the field of identity transformations of the tangent spaces at
all points. In particular the conditions above imply that φ(ξ) = 0, η ◦ φ = 0,
and the endomorphism φ has rank 2n at every point in M . A riemannian
metric g on M satisfying g(φ(X), φ(Y )) = g(X,Y ) − η(X)η(Y ), for all vector
fields X and Y , is called compatible with the almost contact structure, and
(ξ, η, φ, g) is called an almost contact metric structure, and (M, ξ, η, φ, g) is
called an almost contact metric manifold. We note that there is always at
least a metric g compatible with a given almost contact structure. See [2].
Moreover, we define the fundamental 2−form Φ by Φ(X,Y ) = g(X,φ(Y )). If
in addition, dη = Φ holds, then (M,η) is called a contact metric manifold, that
is η satisfies η∧(dη)n 	= 0, and (M, ξ, η, φ, g) is called a contact metric manifold.
Finally, if M is a contact metric manifold and the characteristic vector field ξ is
Killing with respect to the metric g, i.e. θ(ξ)g = 0 then (M, ξ, η, φ, g) is called
a K−contact manifold. It is important to remark that the fact that M is a
K−contact manifold implies some very interesting restrictions on the curvature
of M ; for instance the sectional curvature of every plane section containing ξ
is equal to 1, i.e. RξXξX = g(X,X) for all vector fields X orthogonal to ξ.
See [2]. Here R is the Riemann curvature tensor. As a consequence, the Ricci
curvature Ric(ξ) = 2nξ. It is also remarkable that, when M carries a contact
metric structure, the condition Ric(ξ) = 2nξ is also sufficient. See [2].

Theorem 1.1 has also the following Corollary.

Corollary 1.4. Let M2n+1 be a K−contact manifold with structure
tensors (ξ, η, φ, g). Then the foliation L defined by the characteristic vector
field ξ is harmonic. Moreover, E(L) = V ol(M).

We now restrict the dimension of the manifold M to 3. We have:

Theorem 1.5. Let L be an oriented isometric flow on a closed oriented
riemannian manifold (M3, g) of dimension 3. We assume that the metric g is
bundle-like with respect to L. Then the following properties are equivalent:

(i) L is harmonic;

(ii) L is either transverse to a 2-dimensional foliation F and E(L) = 0, or
L is transverse to a contact structure on M and E(L) = V ol(M, g).

This paper is organized as follows: In Section 2, we give a geometric ex-
pression of the energy using the symmetric functions of the curvature of the
orthogonal distribution L⊥; we also give a criteria for a flow to be harmonic by
deriving the Euler-Lagrange equations associated with the energy. In Section
3 we prove Theorem 1.1 by using the results of Section 2. In Section 4, we
prove Theorem 1.5 by showing that the integrability tensor of the orthogonal
distribution L⊥ is constant. Finally, Section 5 will be devoted to comments.

2. Energy of flows

Let the foliation L be 1−dimensional and the dimension of M be n + 1.
Let also L = TL be the tangent bundle to L and Q ∼= L⊥ (via g) the normal
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bundle of L.

The second fundamental form B of the plane field Q is defined in terms of
the unit vector field N by

(2.1) B(X,Y ) = g(∇XN,Y ) for X,Y ∈ Q

Note that B is not necessarily symmetric. Actually the symmetry of B is
equivalent to the integrability of the distribution Q. To B we associate the
shape operator S : Q −→ Q defined by g(S(X), Y ) = B(X,Y ) for X,Y ∈ Q.

Recall that the symmetric functions of the curvature ηk of Q are defined
at any point x ∈M by

(2.2) det(I + tBx) = Σn
k=0 ηk(x) tk

where I is the identity endomorphism of Q, and Bx is viewed as the shape
operator in the direction N . Observe that η1(x) = trace Bx is the mean
curvature of Q, and ηn(x) = det(Bx).

Finally, let A be the integrability tensor of Q defined by

(2.3) A(X,Y ) = g([X,Y ], N) for X, Y ∈ Q

where [X,Y ] denotes the Lie bracket of X and Y . Observe that A(X,Y ) =
g(∇Y N,X)− g(∇XN,Y ) measures the deviation of the operator B from being
symmetric.

We prove the following proposition.

Proposition 2.1. Let L be a 1-foliation on a riemannian manifold
(Mn+1, g) given by a nonsingular unit vector field N . Then the energy density
of L is given by

(2.4) e(L) =
1
2
k2 +

1
2
η2
1 − η2 +

1
4
|A|2

where k = |∇NN | is the geodesic curvature of the leaves, η1 and η2 are the
symmetric functions of Q, and |A|2 is the Hilbert-Schmidt norm of the tensor
A.

Proof. We compute |∇N |2(p) for p ∈ M . To do that, consider a local
orthonormal frame (E0, E1, . . . , En) defined in a neighborhood of p such that

E0(p) = N(p) and E1(p) =
∇NN

|∇NN | (p) (if (∇NN)(p) = 0, then any E1 will

be convenient).

The matrix of ∇N at the point p relative to the frame above is given by
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g(∇Ea
N,Eb) for a, b = 0, 1, . . . , n+ 1, or



0 k 0 . . . 0
0 a11 a12 . . . a1n

0 a21 a22 . . . a2n

. . . . . . .

. . . . . . .

. . . . . . .
0 an1 an2 . . . ann




Note that {aij} is the matrix of the second fundamental form B of the
hyperplane field Q. Therefore, the energy density of L at p is

e(L) =
1
2
k2 +

1
2
|B|2.

The proof of the proposition follows immediately from the following linear
algebra lemma whose proof is elementary.

Lemma 2.2. For any n× n matrix A = {aij}, we have

(2.5) |A|2 = Σi,j=1,2,...,n a2
ij = η2

1 − 2η2 + Σi<j |aij − aji|2

where η1 and η2 are the symmetric functions of the matrix A.

Remark 2.3. Let M be a region of the Euclidean space R3. Then

(2.6) e(L) =
1
2
|N ∧ curlN |2 +

1
2
|divN |2 +

1
2
|N.curlN |2 − η2

This follows from the following interpretations:

k = |N ∧ curlN | is the geodesic curvature of the leaves of L,

η1 = trace B = divN is the mean curvature of the distribution Q, and

|A| = |N.curlN | is the nonintegrability term of Q. See [13], [14], [18].

Remark 2.4. For any vector field X on a closed riemannian manifold
(M, g) we have the following integral formula

(2.7)
∫

M

|∇X|2µ =
∫

M

{
1
2
|θ(X)g|2 − |divX|2 +Ric(X)

}
µ

For a proof see [16, 5.9, 5.10]. This will be used to prove Proposition 2.6.

Assume for now that the flow L is Riemannian. The expression of the
energy will simplify considerably. Recall that L is Riemannian if one can equip
each transversal submanifold with a metric invariant by the holonomy pseu-
dogroup of L. We will suppose that the metric g on M is bundle-like; i.e.,
it induces a holonomy invariant metric on the normal bundle Q. With these
assumptions, the orthogonal distribution Q is totally geodesic, the operator B
is antisymmetric, and the mean curvature η1 vanishes.

We prove the following:
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Proposition 2.5. Let L be a Riemannian flow on a closed riemannian
manifold (Mn+1, g). Then

(2.8) E(L) =
∫

M

(
1
2
k2 + η2

)
µ =

∫
M

(
1
2
k2 +

1
2
Ric(N)

)
µ

If moreover, (M, g) has constant sectional curvature C (necessarily nonnega-
tive), then

(2.9) E(L) =
∫

M

1
2
k2 µ+

nC

2
V ol(M)

Proof. It is easy to see that the second symmetric function η2 = Σi<j |aij |2
= −1

2
trace(B2). Thus by an integral formula due to Ranjan [17], we have

(2.10)
∫

M

η2 µ =
1
2

∫
M

Ric(N) µ

where Ric(N) = g(Ric(N), N) is the Ricci curvature in the direction N . The
statements follow immediately from Proposition 2.1 and the fact that Ric(N) =
nC in the constant curvature case.

To state the next proposition we introduce the following differential oper-
ators. Let S2(M) be the bundle of smooth symmetric (0, 2)−tensors on M and
χ(M) the Lie algebra of C∞ vector fields. Define

δ : S2(M) −→ χ(M) and δ∗ : χ(M) −→ S2(M)

by

δh = −tr12∇h = −
n+1∑
i=1

(∇ei
h)(ei,−) where e1, . . . , en+1 is a local orthonor-

mal frame, and δ∗X =
1
2
θ(X)g; here θ(X)g is the Lie derivative of the metric

g in the direction X. δ∗ is the adjoint of δ with respect to the global scalar
product 〈, 〉 on M that is 〈δh,X〉 = 〈h, δ∗X〉. See [5].

We have:

Proposition 2.6. Let L be an oriented flow defined by a unit vector
field N on a closed oriented riemannian manifold (Mn+1, g) of dimension n+1.
Then L is harmonic if and only if the “vertical tension field”

(2.11) τ (N) = 2δδ∗N + ∇H +Ric(N)

is parallel to N , where H is the mean curvature of the orthogonal distribution
to L and Ric(N) is the Ricci curvature in the direction N .

Proof. For any vector field Y perpendicular to N we consider variations
of the flow L by foliations Lt given by vector fields of the form
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Nt = N + tY . By Remark 2.4 the energy of Lt

(2.12)

E(Lt) =
∫

M

1
2
|∇Nt|2µ =

∫
M

{
1
4
|θ(Nt)g|2 − 1

2
|divNt|2 +

1
2
Ric(Nt)

}
µ

Write 〈, 〉 =
∫

M

g(, )µ and ωt = ω + tψ where ω and ψ are the dual forms of

N and Y respectively. Also observe that if d∗ is the adjoint of the exterior
derivative d, we have divN = −d∗ω = H the mean curvature of the orthogonal
distribution Q ≈ L⊥.

We compute

d

dt
E(Lt)|t=0

= 2
〈
d

dt
|t=0δ

∗Nt, δ
∗N

〉
−

〈
d

dt
|t=0d

∗ωt, d
∗ω

〉
+

〈
d

dt
|t=0Ric(ωt), ω

〉

since Ricci is symmetric. Thus

d

dt
E(Lt)|t=0 = 2〈δ∗Y, δ∗N〉 − 〈d∗ψ, d∗ω〉 + 〈Ric(ψ), ω〉

= 2〈δδ∗N,Y 〉 − 〈dd∗ω, ψ〉 + 〈Ric(ω), ψ〉
= 〈2δδ∗N + ∇H +Ric(N), Y 〉.

Since the vector field Y is arbitrary perpendicular to N , the Proposition
follows immediately.

Remarks 2.7. (i) One could also use variations of L through foliations
Lt given by vector fields of the form Nt = N+tξY defined on a smooth compact
domain D with smooth boundary, and ξ is a C∞ function on D vanishing on
the boundary ∂D.

(ii) The energy of L is given by

(2.13) E(L) =
1
2

∫
M

g(τ (N), N)µ

Corollary 2.8 ([21]). Let L be an isometric flow on a closed oriented
riemannian manifold (M, g). The L is harmonic if and only if the Ricci cur-
vature Ric(N) is parallel to N .

Proof. If L is isometric then δ∗N = 0; moreover, isometric flows are
Riemannian because their flows preserve the orthogonal distribution. Hence
H = 0 and the corollary is proved.

Example 2.9. The Hopf flow L tangent to the fibration π : S2n+1 −→
CPn is harmonic because it is isometric and S2n+1, the unit sphere in R2n+2

with the induced metric, has constant curvature 1; here CPn is the complex
projective space of complex dimension n. Note that the energy of L is given

by
2n
2
V ol(S2n+1) = n

2πn+1

n!
=

2πn+1

(n− 1)!
. Use Proposition 2.5.
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We finish this section by recalling the following theorem which plays a
crucial role in the proof of Theorem 1.1.

Theorem 2.10 ([6]). Let (Mn+1, g) be a closed riemannian manifold
of constant curvature C, and L an oriented 1-foliation on M . We assume M
is oriented. Then

∫
M

µk µ =




C
k
2

(
n/2
k/2

)
V ol(M), if n and k are even,

0 , otherwise.

See also [13].

Remark 2.11. Observe that when the dimension of M is even, then
C=0. This follows from the fact that M admits a nonsingular flow L, which
implies that the characteristic Euler−Poincaré χ(M) of M is zero.

3. Proof of Theorem 1.1

Proof. We begin with the proof of the first statement; since L is Rie-
mannian we have H = 0; whence by Proposition 2.6 it suffices to prove that
δδ∗N = −S(∇NN) when we restrict the operator δδ∗N to the normal bundle
L⊥.

Let e1, e2, . . . , en, en+1 be a local orthonormal frame defined on an open
set U such that en+1 = N and e1, e2, . . . , en are projectables; this is possible
because the flow is Riemannian; moreover, we assume that this local frame is

consistent with the orientation of M . We will write ∇NN =
n∑

i=1

kiei for some

local functions ki and h = 2δ∗N = θ(N)g. The matrix g(∇eA
N, eB), A,B =

1, 2, . . . , n+ 1 of ∇N with respect to the frame above may be written




0 a12 a13 . . . a1n 0
−a12 0 a23 . . . a2n 0
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . an−1,n 0

−a1n −a2n . . . −an−1,n 0 0
k1 k2 k3 . . . kn 0




where {ai,j},i,j=1,2,...,n is the matrix of the second fundamental form of L⊥ or
also the matrix of the operator S; it is antisymmetric because L is Riemannian.
Therefore, since h = 2δ∗N = {(∇N) + (∇N)t} ((∇N)t is the transpose of
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(∇N)) we have

h =




0 0 . . . 0 k1

0 0 . . . 0 k2

. . . . . . .

. . . . . . .

. . . . . . .
0 0 . . . 0 kn

k1 k2 . . . kn 0




In order to save writing we agree to use the following range of indices

1 ≤ i, j, k ≤ n; 1 ≤ A,B,C ≤ n+ 1.

The matrix h is of course symmetric, and satisfies h(ei, ej) = 0,
h(en+1, en+1) = 0, and h(en+1, ei) = ki.

We compute next δh(ei). We have

δh(ei) = −
∑
A

(∇eA
h)(eA, ei)

= −
∑
A

{eA(h(eA, ei)) − h(∇eA
eA, ei) − h(∇eA

ei, eA)}

= −N(ki) +
∑
A

{h(∇eA
eA, ei) + h(∇eA

ei, eA)}

Note that the assumption on the curvature form of L being basic implies
that N(ki) = 0.

For simplicity we will use the Christoffel symbols ∇eA
eB =

∑
C

ΓC
ABeC .

Thus

δh(ei) =
∑
A

∑
B

ΓB
AAh(eB, ei) +

∑
A

∑
B

ΓB
Aih(eB, eA)

Now
∑
A

∑
B

ΓB
AAh(eB, ei) =

∑
A

Γn+1
AA ki = 0 because Γn+1

AA = g(∇eA
eA, N) = 0

and
∑
A

∑
B

ΓB
Aih(eB, eA) =

∑
A

Γn+1
Ai h(en+1, eA) +

∑
A

∑
j

Γj
Aih(ej , eA)

=
∑

j

Γn+1
ji kj +

∑
j

Γj
n+1,ikj .

Lemma 3.1. Γn+1
ji = Γj

n+1,i

Proof. Γn+1
ji = g(∇ej

ei, N) = −g(∇ej
N, ei) = −g([ej , N ] + ∇Nej , ei) =

−g(∇Nej , ei) (because ej is projectable) = g(∇Nei, ej) = Γj
n+1,i. The lemma
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is proved.

Thus δh(ei) = 2
∑

j

Γn+1
ji kj and the first statement of the Theorem follows

immediately because the Γn+1
ji ’s are the negatives of the coefficients of the

second fundamental form.

To prove the rest of the statements in Theorem 1.1, we suppose that (M, g)
has constant sectional curvature C, in particular Ric(N) = nCN .

If the flow L is isometric then it is geodesible and since N has unit length
we have ∇NN = 0. Therefore L is harmonic. We now prove the converse that
is we suppose that L is harmonic.

If C = 0 then η2 = 0 by Theorem 2.10, but then L is transverse to a totally
geodesic n-dimensional foliation F ; now the foliation F lifts to a foliation by
hyperplanes of the universal cover Rn+1 of M , and this implies that L is a
foliation by geodesics. It is easy to see that the flow L is isometric with respect
to the metric g; i.e. θ(N)g = 0 (θ(N)g is the Lie derivative of the metric g in
the direction N). Note that in this case L is the projection of a linear foliation
on the torus Tn+1. Also observe that if S ≡ 0 or if n + 1 is even then C = 0
by Remark 2.11 , and L is a foliation by geodesics by the same argument.

If C > 0, then S is not identically 0 and n + 1 is odd. Let Σ = {p ∈ M :
(∇NN)(p) = 0}. Note that the assumption on the mean curvature of L being
basic implies that the set Σ is saturated by L that is if p ∈ Σ then the leaf Lp

through p is inside Σ.

Now since L is harmonic, we have ∇NN ∈ KerS; this clearly implies that
the function ηn is zero on M\Σ. We claim that Σ 	= ∅. Actually µ(Σ) > 0.
If µ(Σ) = 0 then since the function ηn is bounded on M , we have:

∫
M

ηn µ =
∫

M\Σ
ηn µ+

∫
Σ

ηn µ = 0.

But this contradicts Theorem 2.10. Our claim is sustained. We will prove
that Σ = M . We will follow the exact notations in [6]. For any point p in
Σ consider a local orthonormal frame e1, e2, . . . , en+1 defined on an open set
U ⊂M containing p such that e1, e2, . . . , en are projectables, en+1 = N , and the
frame is consistent with the orientation ofM . We also let θ1, θ2, . . . , θn+1 be the
dual coframe. Since L is Riemannian and since e1, e2, . . . , en are projectables,
the forms θ1, θ2, . . . , θn are basic. Recall that the connection forms associated
with the frame e1, e2, . . . , en+1 are defined by

(3.1) ωi,j(u) = g(∇uei, ej)

Define the differential n−forms ψk on U using the polynomials in t by

(3.2) Σn
k=0ψkt

k = (tθ1 + ω1,n+1) ∧ . . . ∧ (tθn + ωn,n+1).
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By [6, pages 22, 23] the forms ψk are well defined and satisfy

(3.3) ψk ∧ θn+1 = ηn−k µ.

Moreover there are n−forms τk such that
(3.4)

dτk = ψk ∧ θn+1 −C
n−k

2

(
n/2

(n− k)/2

)
µ =

{
ηn−k − C

n−k
2

(
n/2

(n− k)/2

)}
µ

The forms τk are defined by

τk = (−1)n+1

×
(

1
n−kψk+1 + C(k+2)

(n−k)(n−k−2)ψk+3 + . . .+ C
n−k−2

2
(k+2)(k+4)...(n−2)

2.4.6...(n−2) ψn−1

)
(3.5)

See [6, page 28]. We will prove that the forms τk are basic.

Lemma 3.2. The coefficients {aij} of the second fundamental form of
L⊥ are basic inside Σ.

Proof. The flow L is isometric inside Σ because it is Riemannian and its
leaves are geodesics. Therefore the form dθn+1 is basic. Now since the frame
e1, e2, . . . , en is projectable the functions dθn+1(ei, ej) for i, j = 1, 2, . . . , n, are
basic. But

dθn+1(ei, ej) = ei(θn+1(ej)) − ej(θn+1(ei)) − θn+1[ei, ej ]
= −g(∇ei

ej −∇ej
ei, en+1) = g(∇ei

N, ej) − g(∇ej
N, ei) = 2aij .

The lemma is proved.

Lemma 3.3. The forms ψk are basic inside Σ.

Proof. From the definition of ψk and from the fact that the forms θ1, . . . ,
θn are basic, it suffices to prove that the connection forms ωi,n+1, i = 1, 2, . . . , n
are basic. We have

iNωi,n+1 = ωi,n+1(N) = g(∇Nei, N) = −g(∇NN, ei) = 0

and

(θ(N)ωi,n+1)(ej) = N(ωi,n+1(ej)) − ωi,n+1[N, ej ] = N(g(∇ej
ei, N)) − 0.

(because [N, ej ] is proportional to N)

Therefore (θ(N)ωi,n+1)(ej) = −N(aji). But N(aji) = 0 by the previous
lemma.

We continue the proof of the Theorem. By the previous lemma the forms
τk are basic. Since the forms τk are of degree n, dτk = 0 for all k. In particular,
dτ0 = 0. But

dτ0 = (ηn − C
n
2 )µ. This clearly implies ηn = C

n
2 inside Σ.
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Now, since M is connected, and since ηn = 0 on M\Σ and because Σ 	= ∅,
we have M\Σ = ∅. Therefore Σ = M and the foliation L is isometric and
harmonic.

Proof of Corollary 1.3

Proof. If L is transverse to a foliation F , then S vanishes identically.
Therefore L is harmonic if and only if Ric(N) is proportional to N .

Proof of Corollary 1.4

Proof. It suffices to observe that for a K−contact structure on M , the
characteristic vector field ξ is isometric and has unit length; moreover Ric(N) =
2N . See [2].

4. Proof of Theorem 1.5

Proof. Let the flow L be isometric and given by a unit vector field N ; we
also write λ the metric dual of N . Note that since the flow L is isometric with
respect to the given metric g, we have ∇NN = 0 and therefore

L harmonic ⇐⇒ Ric(N) is parallel to N

by Theorem 1.1; however, to keep the computations as minimal as possible we
will derive the Euler-Lagrange equations for the energy.

The matrix of the second fundamental form B is of the form(
0 β
−β 0

)

where β is a C∞ function that measures the nonintegrablity of the distribution
L⊥; by Proposition 2.1 the energy of L is given by

(4.1) E(L) =
∫

M

β2 µ =
1
2

∫
M

| ∗ (λ ∧ dλ)|2 µ,

where ∗ is the Hodge star operator.

For any 1-form ψ perpendicular to λ we consider variations of the form

λt = λ+ tψ and write β(t) = ∗(λt ∧ dλt).

We have

(4.2) E(Lt) =
∫

M

|β(t)|2 µ =
1
2

∫
M

| ∗ (λt ∧ dλt)|2 µ

We compute
d

dt
E(Lt)|t=0 =

∫
M

β(λ ∧ dψ + ψ ∧ dλ).

Since d(ψ ∧ βλ) = dψ ∧ (βλ) − ψ ∧ d(βλ), we have by Stokes theorem

d

dt
E(Lt)|t=0 =

∫
M

ψ ∧ dλ− ψ ∧ d(βλ) =
∫

M

(dλ− d(βλ)) ∧ ψ
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Lemma 4.1. dλ ∧ ψ = 0

Proof. Since the orbits of N are geodesics we have iNdλ = 0 (actually
the form dλ is basic; i.e., θ(N)dλ = 0); this implies that dλ = ψ ∧ α for some
local 1-form α perpendicular to λ. Therefore dλ ∧ ψ = 0.

Thus
d

dt
E(Lt)|t=0 = −

∫
M

dβ ∧ λ ∧ ψ.

Hence L is harmonic if and only if dβ ∧ λ ∧ ψ = 0 or equivalently dβ|L⊥ = 0.

We will prove that N(β) = 0. On the one hand we have

θ(N)(dλ ∧ λ) = (θ(N)dλ) ∧ λ+ dλ ∧ (θ(N)λ) = dλ ∧ (iNdλ+ diNλ) = 0,

and on the other hand, since dλ ∧ λ = 2βµ we have

θ(N)(βµ) = 0 or dβ ∧ iNµ+ βθ(N)µ = 0;

But then dβ ∧ iNµ = 0 because θ(N)µ = div(N)µ = 0; This relation
clearly implies that N(β) = 0.

Hence dβ = 0 and β is constant (M is connected!).

Without loss of generality β = 0 or β = 1.

If β = 0 then L is transverse to a codimension 1 foliation F and E(L) = 0.

If β = 1 then the 1−form λ provides a contact structure; moreover since N
is isometric we get a K−contact structure on M ; in addition E(L) = vol(M).
Observe that Ric(N) = 2N in this case. The theorem is proved.

Example 4.2. (i) Let M be a closed Riemann surface equipped with a
smooth metric of constant curvature C. let T 1M be the unit tangent bundle
equipped with its canonical metric coming form the metric of M . See [2]. The
vertical foliation L tangent to the fibres is isometric. Moreover, if the genus
g of M is not equal to 1, it is well known that this foliation is transverse to
a contact structure; thus it is harmonic; in addition, its energy is given by

vol(T 1M) =
8π2(1 − g)

C
. If g = 1 then T 1M is trivial, the flow L is clearly

harmonic, and its energy is 0.

(ii) Let f : M −→M be an isometry of a closed riemannian surface (M, g).
The suspension of f gives a 3−dimensional manifold Mf which is a fibre bundle
over the circle S1. The fibres are diffeomorphic to M . Let p : Mf −→ S1 be the
projection. The horizontal lift (with respect to a connection) of the canonical

vector field
∂

∂θ
on S1 gives a 1−dimensional foliation L on Mf . This flow is

transverse to the foliation of Mf by the fibres. Let G = g ⊕ p∗dθ2 be the
Kaluza-Klein metric on Mf obtained from g and the pullback metric dθ2 on
S1. The flow L is Riemannian because h is an isometry, it is also geodesible.
Thus L is isometric and therefore it is harmonic; moreover, its energy is 0.
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Remark 4.3. Isometric flows on 3−dimensional manifolds are Seifert
bundles that is all the leaves are compact and have finite holonomy. The
converse is also true. See [7].

5. Comments

The variational problem studied in this paper is contained in the well
known Weitzenböck formula (even without any assumptions on the flow L); to
see this we suppose that N is a unit vector field tangent to L and let λ be the
metric dual of N . Observe that since |∇N |2 = |∇λ|2

(5.1) E(L) =
1
2

∫
M

|∇λ|2µ =
1
2
〈∇λ,∇λ〉

where 〈, 〉 is the global scalar product on M . The Weitzenböck formula reads

(5.2) �λ = −∇∗∇λ+Ric(λ)

where ∇∗ is the adjoint connection of ∇ with respect to the global scalar
product 〈, 〉 , � is the laplace operator; by taking the scalar product of the
previous formula with λ and integrating over M we get

(5.3) 〈�λ, λ〉 = −〈∇∗∇λ, λ〉 + 〈Ric(λ), λ〉

or

(5.4) E(L) = −〈�λ, λ〉 + 〈Ric(λ), λ〉

Now since the operators � and Ricci are both symmetric, the variational prob-
lem leads to �λ−Ric(λ) is proportional to λ; see also [22].

In this context it is worthwhile to note the following fact.

Proposition 5.1. Let M be a closed manifold and F a foliation of
codimension one defined by a closed nonsingular 1-form λ. Let also L be a
1-dimensional foliation given by a nonsingular vector field N and transverse
to F . Then there is a metric g on M for which L is harmonic if and only if
Ric(N) is parallel to N .

Proof. First observe that the foliation F is Riemannian; a transverse

invariant measure is given by | ∫
γ

λ| where γ is any local transverse path. Let

g be a bundle-like metric on M for which N is of unit length and the mean
curvature of F is basic with respect to F . Notice that �λ = −dH = −N(H)λ
because H is constant along F .

Therefore, using the Weitzenböck formula we have

L is harmonic if and only if Ric(λ) is parallel to λ.
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Remark 5.2. In the previous proposition, the manifold M cannot be
simply connected and the flow L is not necessarily Riemannian. Moreover, M
is a fibre bundle over the circle S1.

However, in general using the Weitzenböck formula, it is hard to derive
geometric information about the flow L and the computations are unpleasant.

During this work we found that the Ricci curvature tensor is a serious ob-
stacle to a reasonable characterization of harmonic Riemannian flows except in
dimension 3; The constant curvature assumption seems to fit within the aspect
of harmonic flows.
A forthcoming paper by the author tackles harmonic conformal flows on man-
ifolds of constant curvature.

The University of Texas of the Permian Basin
e-mail: fawaz a@utpb.edu
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108 (1983), 201–213.

[14] R. Langevin, Energie et géométrie intégrale, Peniscola (1982), Springer
Lecture Notes in Math. 1045 (1984), 95–103.

[15] V. Poenaru, Some aspects of the theory of defects of order media and gauge
fields related to foliations, Comm. Math. Phys. 80 (1981), 127–136.

[16] W. Poor, Differential geometric structures, McGraw Hill Book Company,
New York etc. 1981.

[17] A. Ranjan, Structural equations and an integral formula for foliated man-
ifolds, Geom. Dedicata 20 (1986), 85–91.

[18] R. A. P. Rogers, Some differential properties of the orthogonal trajectories
of a congruence of curves, with an application to curl and divergence of
vectors, Proceeding of the Royal Irish Academy section A, 6, p. 92–117
(1912).

[19] P. Tondeur, A characterization of Riemannian flows, Proceedings of the
Amer. Math. Society 125-11 (1997), 3403–3405.

[20] , Geometry of foliations, Monogr. Math. 90, Birkhäuser, 1997.
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