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Effective calculation of the geometric height
and the Bogomolov conjecture

for hyperelliptic curves over function fields

By

Kazuhiko Yamaki

Introduction

Let us begin with a brief survey on the Bogomolov conjecture. Let A be
an abelian variety over a field K. We assume that K is a number field for a
while. Let L be a symmetric ample line bundle on A and ĥL the Néron-Tate
height on A(K), where K is the algebraic closure of K. For a closed subvariety
V of A ⊗K K, we set

V (ε) := {P ∈ V (K) | ĥL(P ) ≤ ε}.

Theorem ([14]. Generalized Bogomolov conjecture). Suppose that V
is not the translation of an abelian subvariety by a torsion point. Then there
exists ε > 0 such that V (ε) is not Zariski dense in V .

This theorem was proved by Zhang in [14]. The original version due to
Bogomolov deals with a curve V embedded in its Jacobian variety, which was
proved by Ullmo in [8].

Let us recall the proof of Zhang. In [13], he introduced the notion of
admissible metric on a line bundle on V , and defined the admissible intersection
numbers and the admissible height, which are compatible with the Néron-Tate
height. Then, he found a key inequality called the fundamental inequality:

sup
W�V

{
inf

x∈(V \W )(K)
ĥL(x)

}
≥ “the admissible height of V ”,

where W ranges over all proper closed subvarieties of V . If the admissible height
is proved to be positive, the fundamental inequality leads the Bogomolov con-
jecture immediately, but in general it is quite hard to calculate. To avoid this
difficulty, Zhang proved the equidistribution theorem which says that a cer-
tain kind of sequence of small points should be equidistributed in the complex
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analytic space over an archimedean place. Then he showed that a sequence
of small points in V arising from a counter-example of the Bogomolov conjec-
ture should not be equidistributed although it should satisfy the conditions of
the equidistribution theorem. That contradiction leads us to the proof of the
conjecture.

The Bogomolov conjecture has been proved over other global fields. Mori-
waki in [7] invented a general arithmetic height function over a finitely generated
field K over Q, which coincides with the classical one if K is a number field.
If K is transcendental over Q, this height is determined after a choice of, so
called “polarization” of K. It should be remarked that Moriwaki’s arithmetic
height for a “big” polarization has a contribution of archimedean places. Fol-
lowing ideas of Zhang, he proved the generalized Bogomolov conjecture for this
new height over finitely generated fields, in which proof, the equidistribution
theorem at an archimedean place played a crucial role too.

It is believed that the Bogomolov conjecture over function fields with re-
spect to the classical geometric height also holds true under a natural additional
condition. However, the lack of archimedean places prevented us from using
an analogue of Zhang’s proof. Indeed, the geometric height is a special case of
Moriwaki’s arithmetic height, but the polarization giving it is far from a big
polarization. In spite of such a situation, Gubler recently proved it in [2] under
the assumption of the existence of a place v at which the abelian variety is to-
tally degenerated. His proof follows Zhang’s one replacing the equidistribution
theorem on the complex analytic space over an archimedean place by that over
the tropical analytic geometry over v. His proof shows us that Zhang’s idea
can be applied to a certain geometric case, but the tropical variety is not so
rich at the general place that we cannot enjoy the equidistribution theorem.

In spite of that, an effective version of the Bogomolov conjecture has al-
ready been proved for some curves in its Jacobian. The proofs are due to the
calculation of the admissible pairing in [12] on a curve. Let us recall it here.
Let Y be a nonsingular projective curve over an algebraically closed field k,
and let f : X → Y be a generically smooth semistable curve of genus g ≥ 2
over Y , where we assume X to be nonsingular. Let K denote the function field
of Y , K the algebraic closure of K, and let C denote the generic fiber of f .
Let JC be the Jacobian variety of C, j : C(K) → JC(K) a morphism defined
by j(x) = (2g − 2)x− ωC where ωC is the canonical divisor class of C, and let
‖·‖NT be the semi-norm arising from the Néron-Tate pairing on JC(K). We
set

BC(P ; r) :=
{

x ∈ C(K)
∣∣ ‖j(x) − P‖NT ≤ r

}
for P ∈ JC(K) and r ≥ 0, and set

rC(P ) :=

{
−∞ if #

(
BC(P ; 0)

)
= ∞,

sup
{
r ≥ 0

∣∣ #
(
BC(P ; r)

)
< ∞} otherwise.

Note that, with this notation, the Bogomolov conjecture is nothing but the
statement that rC(P ) > 0 for all P . The fundamental inequality here can be
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translated into the following important inequality, which says that, if (ωa
X/Y ·

ωa
X/Y )a > 0, then we have

inf
P∈JC(K)

rC(P ) ≥
√

(g − 1)(ωa
X/Y · ωa

X/Y )a,

where ωa
X/Y is the admissible dualizing sheaf and (·)a is the admissible pairing

(cf. [12, Theorem 5.6], [5, Corollary 2.3] and [3, Theorem 2.1]). Then, we have
the following conjecture, which is well-known as the effective version of the
Bogomolov conjecture.

Conjecture (Effective version of the geometric Bogomolov conjecture).
If f is non-isotrivial, then there exists an effectively calculated positive number
r0 with

inf
P∈JC(K)

rC(P ) ≥ r0.

The assumption of non-isotriviality is necessary, since a point in k-trace
has height 0. Here “effectively calculated” means that a concrete algorithm or
a formula to find r0 is required. It is not expected in the equidistributional
approach.

If we can calculate the admissible pairing effectively, then we obtain the
effective Bogomolov conjecture immediately by the above inequality. As in [12],
the admissible pairing is given by

(ωa
X/Y · ωa

X/Y )a = (ωX/Y · ωX/Y ) −
∑
y∈Y

εy,

where εy is the admissible constant arising from the harmonic analysis on the
reduction graph over y (cf. Subsection 1.3). Therefore, our problem is reduced
to the comparison of (ωX/Y ·ωX/Y ) and εy’s, and in fact, there are some earlier
results on the effective Bogomolov conjecture obtained in that way. In [3],
Moriwaki gave an answer for curves of genus 2. He also gave answers in [5], [4]
and finally in [6], for a curve f of which fibers are trees of irreducible components
in the case of char(k) = 0. The author gave an answer for non-hyperelliptic
curves of genus 3 in [9].

In this paper, we will give an affirmative answer to the effective geometric
Bogomolov conjecture for hyperelliptic semistable curve f following the way as
above (cf. Theorem 4.1 and Corollary 4.2). It is fortunate, in hyperelliptic case,
that we have a necessary explicit description of (ωX/Y ·ωX/Y ) as in [10] or [11].
Thus our main task is reduced to the calculation of the admissible constants,
and the most part of this paper are devoted to it.

This paper is organized as follows. In Section 1, we first fix the notion on
graphs and give some basic properties. After that, we recall what the admissible
constants are. In Section 2, we introduce an important class of graphs, called
hyperelliptic graphs. They will play a central role in this article. Section 3
will be mainly occupied by the struggle to obtain the concrete description of
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the admissible constants of hyperelliptic graphs. In the last section, we will
estimate the admissible constants, and obtain our result.

Acknowledgements. This paper is based on the master thesis of the
author. The author would like to express his sincere gratitude to Prof. Mori-
waki, who was the supervisor of the author, for his advice and encouragement.
The author is also deeply grateful to Prof. Zhang for suggesting that the author
should write this article for publication. Finally the author would like to thank
the referee for his valuable comments.

1. Admissible constants of graphs

1.1. Graphs
A graph G = (V, E, ∂) consists of two finite sets V and E, and a map

∂ : E → S2V , where S2V is the 2nd symmetric power of V . An element of V
is called a vertex and an element of E is called an edge. The map ∂ is called
the incidence relation, and for an edge e, the image ∂e is called the boundary
of e. We can naturally regard S2V as a subset of the power set of V , and
hence a boundary is regarded as a subset of V . A vertex in ∂e is called an
extremity of e. An edge e is called a line segment if it has two extremities and
is called a self-loop if it has only one extremity. For v, v′ ∈ V , a finite sequence
(e1, . . . , en) of edges such that v ∈ ∂e1, v

′ ∈ ∂en and ∂(ei) ∩ ∂(ei+1) 
= ∅ for
any i = 1, . . . , n − 1, is called a path from v to v′. If there exists path from v
to v′ for any distinct two v, v′ ∈ V , we say G is connected. A connected graph
without edges called a one-point graph. It is represented by its unique vertex.

For a graph G, we denote by Vert(G) the set of vertices and by Ed(G) the
set of edges. A subgraph of G means a graph G′ such that Vert(G′) ⊂ Vert(G),
Ed(G′) ⊂ Ed(G), with the incidence relation which is the restriction of that of
G. For a set S of edges, the subgraph generated by S is the subgraph such that
its vertices are the extremities of the edges in S and its set of edges is S.

A subgraph G′ is said to be saturated if any edge e ∈ Ed(G) with ∂e ⊂
Vert(G′) is necessarily an edge of G′. For a subset V ′ of Vert(G), there exists
a unique saturated subgraph H with Vert(H) = V ′. We call it the saturation
of V ′.

For subgraphs G1 and G2, we can define the intersection G1 ∩G2 and the
union G1 ∪ G2 as subgraphs in an obvious way. We say that G is a one-point
sum of G1 and G2 if neither G1 nor G2 is one-point graphs, G = G1 ∪ G2,
and G1 ∩ G2 is a one-point graph, say {v}. We write G = G1 ∨v G2 or simply
G = G1 ∨ G2. If G is a succession of one-point sums of subgraphs, we say G
is a sum of them. Note that if G is a connected graph without self-loop and if
G = G1 ∨ G2, then G1 and G2 are saturated.

Definition 1.1. Let G be a connected graph. We say G is reducible at v
if there exist subgraphs G1 and G2 with G = G1∨v G2. We say G is irreducible
at v if it is not reducible at v. We call a vertex at which G is reducible a jointing
vertex. We denote by J(G) the set of jointing vertices. We say G is reducible
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if J(G) 
= ∅, and say G is irreducible if J(G) = ∅.
Proposition 1.2. Let G be a connected graph.
(1) If G = G1 ∨v G2, then any path connecting a vertex in Vert(G1) \ {v}

to a vertex in Vert(G2) \ {v} passes through v.
(2) If G is irreducible at v ∈ Vert(G) then, for any w1, w2 ∈ Vert(G)\{v},

there exists a path not passing through v but connecting w1 and w2.

Proof. To show (1) we may assume there exist vertices w1 ∈ Vert(G1)\{v}
and w2 ∈ Vert(G2) \ {v}. Let l = (e1, . . . , en) be an arbitrary path from w1

to w2. Let k be the maximal integer with ek ∈ Ed(G1). Since v is the only
common vertex of G1 and G2, we have k < n, and ek+1 ∈ Ed(G2). Let w be
a common extremity of ek and ek+1. Then it is contained in both G1 and G2

and hence w = v. Thus we have (1).
Let us prove (2). We may assume there is no self-loop with v as the

extremity. Suppose contrary that for some w1, w2 ∈ Vert(G) \ {v}, any path
connecting w1 and w2 necessarily passes through v. Let V1 be the set of vertices
of G to which we can connect w1 by a path without meeting v halfway (allowing
v to appear as the terminus of the path), and let G1 be the saturation of V1.
Then G1 is a connected subgraph with w1 and v as vertices but without w2.
Let G′ be the saturation of (Vert(G) \ V1) ∪ {v}. Then G′ has w2 and v as
vertices. In particular, neither G1 nor G′ is a one-point graph. Accordingly,
it is enough to show G = G1 ∨v G2. By the definition of G1 and G′, we have
G1 ∩ G′ = {v}, and we also have Ed(G1) ∩ Ed(G′) = ∅ since there is no self-
loop with v. Therefore we are reduced to show Ed(G1) ∪ Ed(G′) = Ed(G).
Let us take any e ∈ Ed(G) \ Ed(G′). Then at least one extremity of e lies in
G1. From the construction of the set V1 of vertices of G1, the other vertex
must be in G1. Since G1 is saturated, we have e ∈ Ed(G1). Thus we have
Ed(G1) ∪ Ed(G′) = Ed(G).

Corollary 1.3. Suppose that G = G1 ∨v G2 and that G1 is irreducible
at v. Let H be a connected subgraph of G irreducible at v with G1 ⊂ H. Then
H = G1.

Proof. We may assume that there is no self-loop at v. It is enough to show
H ∩ G2 = {v}. Suppose that H and G2 has a common vertex w other than v.
Let v1 be a vertex of G1 other than v. Since H is irreducible at v, we can connect
w and v1 by a path in H not passing through v by Proposition 1.2. This path
is a one connecting a vertex in G1 and that in G2, keeping away from v. That
contradicts, again by Proposition 1.2, to the assumption G = G1 ∨v G2.

If G is reducible, we can write G = G1 ∨v1 G2. If G1 is again reducible, we
can write G1 as a one-point sum of its subgraphs. Repeating this process until
anyone becomes irreducible, we can write G as a sum of irreducible graphs:

G = (· · · ((G1 ∨ G2) ∨ G3) ∨ · · · ∨ Gn).

The right-hand side is usually written as G1 ∨ · · · ∨ Gn simply. We call it the
irreducible decomposition of G. A subgraph of G appearing in the irreducible
decomposition called an irreducible component of G.
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Remark 1.4. We have only mentioned the existence of an irreducible
decomposition, but we can actually show the uniqueness. We can therefore say
“the irreducible decomposition”.

Let G = (V, E, ∂) be a graph and let S be a subset of E. We would like to
define a contraction. We set ES := E \ S and VS := V/ ∼, where v ∼ v′ if and
only if there is an edge e ∈ S such that {v, v′} ⊂ ∂e. Then we have a natural
injective map ES → E and natural surjective map V → VS , and hence we have
an associated incidence relation ∂S : ES → S2VS with ∂. Thus we have a graph
GS := (VS , ES , ∂S). We call that operation or GS itself the contraction of S.
With complement, we write GS for GEd(G)\S .

There is a natural correspondence, denoted by contrS , from vertices and
edges of G to those of GS : For v ∈ Vert(G), let contrS(v) be the corresponding
vertex of GS by the natural surjection. For e ∈ Ed(G) \ S, then e ∈ Ed(GS)
and hence put contrS(e) := e. For e ∈ S, set contrS(e) := contrS(v) where v is
an extremity of e. We write contrS for contrEd(G)\S with complement.

Remark 1.5. We can regard an irreducible component not only as a
subgraph but also as a contraction. Indeed, if G = G1 ∨ G2, then G1 can be
canonically identified with GEd(G1). This point of view will later lead us to a
reasonable definition of the irreducible decomposition of polarized graphs.

Let DivR(G) be the R-vector space with basis Vert(G). Its element is
called an R-divisor or a polarization on G. For D =

∑
v∈Vert(G) dvv, define

deg(D) :=
∑

v∈Vert(G) dv. For a polarization D =
∑

v∈Vert(G) dvv on G, we
have the polarization

DS :=
∑

v∈Vert(G)

dv contrS(v)

associated with D. Note that deg(DS) = deg(D). We write DS for DEd(G)\S

as well.
Using this notion, we make the following definition (cf. Remark 1.5).

Definition 1.6. An irreducible component of a polarized graph (G, D)
is a polarized graph of form

(
GEd(G′), DEd(G′)

)
for some irreducible component

G′ of G.

For a graph G, let W(G) denote the dual vector space of the R-vector
space with basis Ed(G). We put

W>0(G) := {λ ∈ W(G) | λ(e) > 0 for any e ∈ Ed(G)}.

We call its element a weight. For a weight λ ∈ W>0(G), we call λ(e) the length
of e. We usually denote a weight by

λ = (λe)e∈Ed(G) = (λe),
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which indicates that the length of e is λe.
Suppose that G′ is a subgraph or a contraction of G. Then we have

Ed(G′) ⊂ Ed(G) canonically and hence we have canonical maps W(G) →
W(G′) and W>0(G) → W>0(G′). Thus a weight λ on G induces a weight on
G′, denoted by λ|G′ . If G′ is an irreducible component, then it has two induced
weights as a subgraph and as a contraction, but one coincides with the other.

Definition 1.7. Let (G, D, λ) be a polarized weighted graph. A polar-
ized weighted graph (G′, D′, λ′) is called an irreducible component of (G, D, λ)
if (G′, D′) is an irreducible component of (G, D) and λ′ = λ|G′ .

Let G = (V, E, ∂, λ) be a weighted graph. We mean, by a realization of G,
a metrized graph M equipped with two data, an inclusion V ↪→ M and a family
{e◦}e∈E of subsets of M indexed by E, satisfying the following conditions:

(1) e◦ is a 1-cell of M and {{v}}v∈V , {e◦}e∈E gives a cell decomposition of
M .

(2) For any e ∈ E,

cl(e◦) \ e◦ = ∂e,

where cl(e◦) is the closure of e◦ in M and ∂e is regarded as a subset of M .
(3) The length of e◦, and hence that of cl(e◦), equal λ(e).

Any weighted graph has a realization of it, and for two realizations, there is
an isometry between them compatible with the equipped data of cell decom-
position. Note that a weighted subgraph of G can be realized as a metrized
subgraph of a realization M of G and a contraction of weighted graphs can be
realized as a quotient space of M . For an edge e, a continuous map

se : [0, λ(e)] → M

which induces an isometry from (0, λ(e)) to e◦ is called an arc-length parameter
of e.

1.2. Remarks on the admissible constants
Let us recall several facts on a Green function on a metrized graph. For

details, see [12].
Let M be a connected metrized graph and let μ be an arbitrary measure

on M with total volume 1. Then, there exists a unique function gμ(x, y) on
M × M satisfying the following conditions.

(a) gμ is continuous, piecewise smooth in both x and y and symmetric in
x and y.

(b) For a fixed x, regard gμ(x, y) as a function on y, and we have

Δgμ = δx − μ,∫
M

gμμ = 0.

We call this function gμ the Green function for μ.
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Remark 1.8. Its uniqueness comes from some weaker conditions: Let
M , μ and gμ be as above. Fix an x ∈ M . Let h be a function on M such that
Δh = δx −μ and

∫
M

hμ = 0. Put f(y) := h(y)− gμ(x, y). Then f is a constant
function by [12, Lemma a.4], and since

∫
M

hμ = 0, it must be 0. Thus we have
h(y) = gμ(x, y) for all y ∈ M .

Let D be an R-divisor on M . If deg(D) 
= −2, then there exists a unique
measure μ(M,D) of total volume 1 on G such that

(1.1) gμ(M,D)(D, y) + gμ(M,D)(y, y)

is a constant function on y ∈ M . We call this measure μ(M,D) the admissible
metric of (M, D) and call gμ(M,D) the admissible Green function. Since the ad-
missible Green function is determined from (M, D), we write g(M,D) for gμ(M,D) .
We denote the constant (1.1) by c(M, D) and set

ε(M, D) = 2 deg(D)c(M, D) − g(M,D)(D, D).

We call this number the admissible constant of (M, D).
Let (G, D) be a polarized graph, λ a weight, and let Ḡλ be the realization

of (G, λ). Let v and w be vertices of G. Since a realization is unique up to
isometry compatible with the graph structure, the value g(Ḡλ,D)(v, w) does not
depend on the choice of realizations. Accordingly the admissible constants also
independent of the choice of realizations. Here we define functions g(G,D)(v, w)
and ε(G, D) on W>0(G) by

g(G,D)(v, w)(λ) := g(Ḡλ,D)(v, w), ε(G, D)(λ) := ε(Ḡλ, D).

We also define a function

rG(v, w) : W>0(G) → R

by rG(v, w)(λ) := gδv
(w, w), where δv is the dirac measure supported at v. It

is the resistance between v and w if Ḡλ is regarded as an electric circuit in a
natural way, and rG(v, w) is a rational function.

Remark 1.9. Let GS be the contraction of S ⊂ Ed(G). Then it is
immediate to see

lim
λe → 0 for e ∈ S

rG(v, w)(λ) = rGS
(contrS(v), contrS(w)) (λ|GS

)

if they are considered as a resistance in an electric circuit. Namely, the resis-
tance is compatible with the contractions. We will see later that the admissible
constants are also compatible with contractions.

We recall an explicit formula of the admissible metric in [12]. Let (G, D)
be a polarized graph with deg(D) 
= −2 and let λ be a weight on G. For
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e ∈ Ed(G), let G \ e◦ be the subgraph generated by Ed(G) \ {e} and let v and
w be the extremities of e. Put

(1.2) rG,e(λ) := rG\e◦(v, w)
(
λ|G\e◦

)
.

Then, [12, Lemma 3.7] says that the admissible metric on a realization Ḡλ is
given by

(1.3) μ(G,D) =
1

deg(D) + 2

⎛
⎝δD − δK +

∑
e∈Ed(G)

2
λ(e) + rG,e(λ)

dλ|e
⎞
⎠ ,

where dλ|e is the Lebesgue measure on e associated with the arc-length pa-
rameter. The coefficient of the Lebesgue measure on each edge is a rational
function on λ, and it is compatible with contractions.

We end this subsection by showing a useful formula on admissible con-
stants.

Proposition 1.10. Let (G, D) be a polarized graph with deg(D) 
= −2.
Suppose G1 and G2 are subgraphs with G1 ∨ G2 = G. Let us identify Gi with
GEd(Gi) for i = 1, 2. Let Di be the polarization on Gi defined as DEd(Gi). Then
we have

ε(G, D)(λ) = ε(G1, D1)(λ1) + ε(G2, D2)(λ2)

for any λ ∈ W(G)>0, where λi := λ|Gi
.

Proof. Let M be a realization of (G, λ), and let M1 and M2 be metrized
subgraphs of M realizing (G1, λ1) and (G2, λ2) respectively. By (1.3), we have

(1.4) μ(M,D) = μ(M1,D1) + μ(M2,D2) − δo,

where {o} = M1 ∩ M2. Consider the following function on M :

g(x) :=

{
g(M1,D1)(o, x) + g(M2,D2)(o, o) if x ∈ M1,
g(M2,D2)(o, x) + g(M1,D1)(o, o) if x ∈ M2.

Then, we can easily check that g is continuous on M , Δ(g) = δo − μ(M,D),
and

∫
M

gμ(M,D) = 0. Thus we have g(M,D)(o, x) = g(x) (cf. Remark 1.8).
Therefore, by [4, Lemma 4.1], we obtain the formula.

1.3. Admissible constants arising from a semistable fibration
Let Y be a smooth projective curve over k and let f : X → Y be a

generically smooth semistable curve of genus g ≥ 2. We assume that X is
nonsingular. Let X → X be the contraction of the (−2)-curves in the fibers of
f . Then we have the stable model f : X → Y .

Let us recall the metrized dual graph arising from the fiber over y ∈ Y (k).
Let Gy be the dual graph by configuration of the fiber Xy, that is, the graph
such that Vert(Gy) is the set of irreducible components of Xy, Ed(Gy) is the set
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of node of Xy, and the extremities of e ∈ Ed(Gy) are the irreducible components
which contain the branches making the node e. Further Gy is endowed with a
natural weight λy such that λy(e)+1 coincides with the number of (−2)-curves
contracted to e under X → X, or in other words, the node e is given formally
by the equation xy = tλy(e)+1 in X, where t is a regular local parameter at y
on Y . Then the metrized dual graph Ḡy in [12] is the realization of (Gy, λy).

Let ωX/Y be the relative dualizing sheaf of f . We define a divisor ωy on
Gy by

ωy :=
∑

v∈Vert(Gy)

(ωX/Y · v)v,

where (ωX/Y · v) means the intersection number of ωX/Y and a curve v in X.
Then, the admissible constant εy over y is defined to be the admissible constant
of the polarized metrized graph (Ḡy, ωy):

εy := ε(Ḡy, ωy) = ε(Gy, ωy)(λy).

It is a very important quantity in this paper.

2. Hyperelliptic graphs

In the sequel, let us fix a finite group 〈ι〉 of order 2 with the generator ι.

2.1. Definitions and first properties
An action of 〈ι〉 on a graph G is a pair of action on Vert(G) and that on

Ed(G) compatible with the incidence relation. If the action on Ed(G) is free,
we can naturally construct the quotient graph G/〈ι〉 such that Vert(G/〈ι〉) =
Vert(G)/〈ι〉 and Ed(G/〈ι〉) = Ed(G)/〈ι〉 with the incidence relation induced by
that of G.

Definition 2.1. A connected graph G equipped with an action of 〈ι〉 is
called a hyperelliptic graph if it satisfies the following conditions:

(a) G is not a one-point graph.
(b) Any edge is a line segment.
(c) ι(e) 
= e for any e ∈ G.
(d) The quotient graph G/〈ι〉 is a tree, that is, a graph without circuits.
(e) If a vertex v is not ι-fixed, then there exist at least 3 branches away

from v. In other words, the valence is at least 3 at any vertex.

Remark 2.2. There is no end in a hyperelliptic graph by (c) and (e),
and any end of G/〈ι〉 lies under an ι-fixed vertex of G by (e).

For each v ∈ Vert(G) and e ∈ Ed(G), let [v] ∈ Vert(G/〈ι〉) and [e] ∈
Ed(G/〈ι〉) denote their image by the quotient map in the sequel. More gener-
ally, we sometimes, for an object ∗ concerning G, denote by [∗] the correspond-
ing one of G/〈ι〉.
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Definition 2.3. Let G be a hyperelliptic graph. We say [v] ∈
Vert(G/〈ι〉) is fixed (resp. mobile) if its representative v ∈ Vert(G) is ι-fixed
(resp. not ι-fixed). We denote by FV(G/〈ι〉) the set of fixed vertices and
MV(G/〈ι〉) by that of mobile ones.

The next proposition characterizes the jointing vertices of hyperelliptic
graphs.

Proposition 2.4. Let G be a hyperelliptic graph and let v be a vertex
of G. Then the following statements are equivalent to each other.

(a) v is a jointing vertex.
(b) [v] is not an end of G/〈ι〉 but a fixed vertex.

Proof. First suppose (a). To show that [v] is a fixed vertex, suppose
contrary that ι(v) 
= v. Since G/〈ι〉 is a tree and [v] is not an end (cf. Re-
mark 2.2), there exists ι-stable subgraphs G1 and G2 of G such that G/〈ι〉 =
(G1/〈ι〉) ∨[v] (G2/〈ι〉). Let [wi] be an end of G/〈ι〉 with wi ∈ Gi for i = 1, 2.
Note that ι(wi) = wi by Remark 2.2 again. Then, lifting up the geodesic in
G/〈ι〉 connecting [ι(v)](= [v]) and [wi], we can connect ι(v) and wi by a path
not through v. Accordingly we can connect w1 and w2 by a path not through
v. In a similar way, we find that any vertex of Gi other than v can be con-
nected to wi by a path not through v. Thus we see that any two vertices of G
other than v can be connected by a path not through v. That contradicts to
the assumption of v being a jointing vertex by Proposition 1.2. Thus we have
ι(v) = v.

Suppose that [v] is an end. Take any w1, w2 ∈ Vert(G). Let v′ be an ι-fixed
vertex other than v. Then we can connect [w1] and [v′] by a path not through
[v], and do the same thing for [w2] and [v′]. Using the lifts of these paths, we
can connect w1 and w2 by a path not through v but through v′. That is a
contradiction by Proposition 1.2, and hence [v] is not an end. Thus we obtain
(b).

To show the other direction, we will prove that [v] is an end of G/〈ι〉 if v is
not a jointing vertex and ι(v) = v. Let us take two arbitrary w1, w2 ∈ Vert(G)
other than v. Then by Proposition 1.2, we can connect w1 and w2 by a path
not through v. Pushing it down to the quotient, we have a path which connect
[w1] and [w2], but it does not pass through [v] since v is the only vertex over
[v]. That tells us that any two vertices of G/〈ι〉 other than [v] can be connected
by a path not through [v], which implies [v] must be an end.

We have the following result as an immediate corollary.

Corollary 2.5. Let G be an irreducible hyperelliptic graph and let v be
a vertex of G. Then [v] is a fixed vertex if and only if it is an end of G/〈ι〉.

The next proposition tells us one-point sum is compatible with the action
of 〈ι〉.

Proposition 2.6. Let G be a hyperelliptic graph. If G = G1∨v G2, then
ι(G1) = G1 and ι(G2) = G2.
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Proof. Let us show that G1 is stable by ι. We may assume that G1 is
irreducible at the jointing vertex v. Let [G1] be the image of G1 in G/〈ι〉. Let
us take arbitrary vertices w1 and w′

1 of G1 other than v. Since G1 is irreducible
at v, there exists a path not passing through v but connecting w1 and w′

1 by
Proposition 1.2. Since v is the only vertex over [v], the image of that path does
not pass through [v] but connects [w1] and [w′

1]. That implies that any two
vertex other than [v] can be connected by a path not through [v], and hence
[v] is an end of a tree [G1].

Let H be the largest subtree of G/〈ι〉 such that [G1] ⊂ H and that [v]
is an end of H. Then we see that the pull-back H̃ of H by the quotient
map G → G/〈ι〉 is a hyperelliptic subgraph having v as an ι-fixed vertex.
Accordingly, by virtue of Proposition 2.4, H̃ is irreducible at v, and hence we
have H̃ = G1 by Corollary 1.3. Thus G1 is ι-stable.

The following corollary says that the notion of one-point sum behaves well
among the hyperelliptic graphs.

Corollary 2.7. Let G be a hyperelliptic graph. If G = G1 ∨ G2, then
G1 and G2 are naturally hyperelliptic graphs.

Proof. Immediate from Proposition 2.4 and Proposition 2.6.

Definition 2.8. Let i be an integer. We say that [e] ∈ Ed(G/〈ι〉) is
i-jointed if the number of fixed extremities of [e] is equal to i. We denote by
Edi(G/〈ι〉) the set of i-jointed edges. By abuse of words, we say e ∈ Ed(G) is
i-jointed if so is [e].

Here we give some examples.

Example 2.9. Let G be an irreducible hyperelliptic graph with a 2-
jointed edge [e]. Then the extremities [v] and [w] of [e] are fixed vertices. Since
G is irreducible, we see, by Corollary 2.5, that G/〈ι〉 is the tree with a unique
edge [e]. The configuration of G looks like Figure 1.

� �

Figure 1.

Example 2.10. Let G be an irreducible hyperelliptic graph only with
1-jointed edges. Since G is irreducible, each edge of G/〈ι〉 has exactly one fixed
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vertex and any fixed vertex is an end of G/〈ι〉 by Corollary 2.5. Therefore,
G/〈ι〉 is a tree such that the number of edges coincides with that of ends. Since
such a graph is uniquely determined by this number, we can deduce G is also
determined by the number of edges. The configuration of G looks like Figure 2,
where ι acts vertically.

�

�

� �� � ��
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�
�
�
�

�
�
�
�
�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

· · · · · ·

�
��

	
		

�
��

�
��

Figure 2.

Let S be an ι-stable subset of edges of a hyperelliptic graph G. It is not
difficult to see that the contraction G′ of S is canonically a hyperelliptic graph
too.

Remark 2.11. Let G be a hyperelliptic graph. For S ⊂ Ed(G/〈ι〉), let
S̃ be the pull-back of S by the quotient map. By abuse of notation, we write
GS and GS for GS̃ and GS̃ . We also call GS the contraction of S by abuse of
words. In the most part of the sequel, only this kind of contractions appears.

Example 2.12. Let G be an irreducible hyperelliptic graph without 2-
jointed edges. Let e be a 0-jointied edge. Then we can see that the contraction
G{[e]} is also an irreducible hyperelliptic graph, and the genus does not change.
Contracting all the 0-jointied edges, we obtain an irreducible hyperelliptic graph
with 1-jointied edges only, which appeared in the previous example.

For the class of irreducible hyperelliptic graphs, let us consider the partial
order such that G′ is smaller than G if and only if G′ is the contraction of a
ι-stable subset of edges of G. Then above three examples tell us that, in the
class of irreducible hyperelliptic graphs, the ones in Example 2.9 and 2.10 are
the minimal irreducible hyperelliptic graphs with respect to this order.

Definition 2.13. Let G be an irreducible hyperelliptic graph. We say
G is minimal if it has no 0-jointed edges. We call GEd0(G) the minimal model
of G.

According to the above examples, we see that the minimal hyperelliptic
graphs are classified by the genus. More precisely, if G is a minimal hyperelliptic
graph of genus n, then we have the following.
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(1) If n = 1, then G consists of two 2-jointed edges e and ι(e), as Exam-
ple 2.9.

(2) If n > 1, then any edge is one-jointed, and # FV(G/〈ι〉) = n + 1 and
# MV(G/〈ι〉) = 1, as Example 2.10.

By contrast with minimality, we introduce the notion of maximality.

Definition 2.14. Let G be an irreducible hyperelliptic graph. We call
it a maximal hyperelliptic graph if bv = 3 for any v with [v] ∈ MV(G/〈ι〉),
where bv denotes the valence at v.

Generally, let G be a graph and let v be a vertex of G with bv > 3. Let k
be an integer with 3 ≤ k < bv. Then, there exists a graph G′ and an edge e′ of
G′ with the following properties (cf. [9, Figure 2]).

(a) e′ is a line segment
(b) G is the contraction of {e′}.
(c) If w and w′ are the extremities of e′, then bw = k and hence bw′ =

bv − k + 2.
Let us return to the hyperelliptic case. Any vertex v of G with ι(v) 
= v

has at least 3 branches. Suppose bv > 3. Then, applying the above operation ι-
equivariantly at v and ι(v), we find that there exist an irreducible hyperelliptic
graph G1 and a 0-jointied edge e with the following properties:

(a) (G1){[e]} = G.
(b) If w and w′ are the extremities of e, we have 3 ≤ bw, bw′ < bv.

Therefore, applying this process for all non-ι-fixed vertices successively, we can
achieve a maximal hyperelliptic graph:

Proposition 2.15. Let G be an irreducible hyperelliptic graph. Then
there exist a maximal hyperelliptic graph G′ and a set of 0-jointied edges S of
G′/〈ι〉 such that G′

S = G.

When we talk on hyperelliptic graphs, natural weights to be considered
are ι-invariant weights. The canonical surjection Ed(G) → Ed(G/〈ι〉) lets us
consider W(G/〈ι〉) as a subspace of W(G) and W>0(G/〈ι〉) as a subspace of
W>0(G). Then W(G/〈ι〉) is the set of the ι-invariants. We call a member λ of
W>0(G/〈ι〉) a hyperelliptic weight. We usually write

λ =
(
λ[e]

)
[e]∈Ed(G/〈ι〉) =

(
λ[e]

)
,

where λ[e] indicates the length of e or [e] with respect to the weight λ.
When G is a hyperelliptic graph and D is an ι-invariant polarization, we

call (G, D) a polarized hyperelliptic graph. As we mentioned before, we see
that for a polarized hyperelliptic graph (G, D), such quantities defined after
realization taken as the values of the admissible Green function at vertices, the
resistance between vertices, and hence the admissible constant, are functions
on λ ∈ W>0(G/〈ι〉). We denote these functions by

(2.1) g(G,D)(v, w), rG(v, w), ε(G, D)
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respectively.

2.2. Seriesization of an extreme circuit
In this subsection, we assume, for simplicity, that G is a maximal irre-

ducible hyperelliptic graph of genus more than 2. (General cases can be treated
as the contraction of edges of a maximal model.)

Definition 2.16. A set {[e0], [e1]} of 1-jointed edges of G/〈ι〉 is called
an extreme circuit if [e0] 
= [e1], and if [e0] and [e1] has a common extremity.

Let [v] be the common extremity of [e0] and [e1]. Then by the maximality,
[v] is an end of the subtree [H] generated by Ed0(G/〈ι〉). In particular, there
exists [e2] ∈ Ed0(G/〈ι〉) uniquely with an extremity [v]. On the other hand,
in G, the edges e0, e1, ι(e0) and ι(e1) generate a circuit. Thus {[e0], [e1]} is
considered as the data expressing a circuit at an extreme position.

Now let us introduce an operation to “seriesize” an extreme circuit. Let
{[e0], [e1]} be an extreme circuit, [v] the common extremity, and let [e2] be the
0-jointed edge with an extremity [v]. After a suitable choice of their represen-
tatives, we may assume v is the common extremity of e0, e1 and e2 in G. Let
G1 be the subgraph generated by {e0, e1, e2, ι(e0), ι(e1), ι(e2)} and let G′

1 be
the graph with an ι-action characterized by the following conditions: G′

1 is a
tree consisting of 2 edges, and ι-action on the set of edges is free. Then we
can write {e′0, ι(e′0)} for the set of edges and {v′0, v′1, ι(v′1)} for that of vertices,
where v′0 is the ι-fixed vertex on e′0 and v′1 is the other one on e′0. Now we
construct another hyperelliptic graph G′ which we obtain from G by replacing
the subgraph G1 with G′

1: namely, remove G1 from G and joint G′
1 so as v′1

and ι(v′1) to make up with the missing vertices v1 and ι(v1) (cf. Figure 3).

�

� �

�

�

�

�









�
�
��

�
�
��









v

ι(v)

v1

ι(v1)

e0 e1

e2

−→ �

�

�

��
�

�

�
�

�

v′
0

e′0

ι(e′0)

v′
1 = v1

Figure 3. Seriesization

Then, G′ is an irreducible hyperelliptic graph.

Definition 2.17. We call this G′ the seriesization of an extreme circuit
{[e0], [e1]}.

Remark 2.18. Let n and n′ be the genus of G and G′ respectively.
Then we have n′ = n − 1. There is a natural identification

Ed(G′/〈ι〉) \ {[e′0]} = Ed(G/〈ι〉) \ {[e0], [e1], [e2]}.
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We usually denote this set by E in the sequel.

It is more essential to treat seriesizations with weights. Let us denote by
E the common subset of edges in Remark 2.18. For a hyperelliptic weight λ =
(λ[e]) of G, we define a hyperelliptic weight λ′ of G′ as follows: For e′ ∈ Ed(G′),
if [e′] = [e′0] in Ed(G′/〈ι〉), then put

λ′
[e′] :=

λ[e0]λ[e1]

λ[e0] + λ[e1]
+ λ[e2],(2.2)

and otherwise, we have [e′] ∈ E and put

λ′
[e′] = λ[e′].

We call G′ with such a weight λ′ the seriesization of (G, λ). From the definition
of λ′, it has the following properties (cf. (1.2) for notation).

(1) For any e ∈ E , we have

r(G′,e)(λ′) = r(G,e)(λ).(2.3)

(2) We have

λ′
[e′

0]
+ r(G′,e′

0)
(λ′) = λ[e2] + r(G,e2)(λ).(2.4)

3. The admissible constants of hyperelliptic graphs

3.1. The admissible metric
For a hyperelliptic graph G with a hyperelliptic weight λ, the involution

ι can acts on its realization as an isometry, and the quotient is the realization
of the weighted tree (G/〈ι〉, λ). We call such metrized graph with an isometry
of order 2, a hyperelliptic metrized graph. In this subsection, we would like to
describe the admissible metric of hyperelliptic metrized graphs.

Let n denote the genus of G. For a subset S of Ed(G/〈ι〉) with #(S) = n,
we define a real number, denoted by δS

G or simply δS , in the following way: If GS

is a sum of minimal hyperelliptic graphs of genus 1, then we put δS
G = δS := 1.

Otherwise, we put δS
G = δS := 0. Note that δS = 1 if and only if all edges of

GS are 2-jointed. Using it, we define a polynomial function LG on W(G/〈ι〉)
by

LG(λ) :=
∑
S

δS
∏

[e]∈S

λ[e],

where S ranges over all subsets of Ed(G/〈ι〉) with #S = n. Further, for each
e ∈ Ed(G), we define P

[e]
G to be the polynomial function such that

LG(λ) − P
[e]
G (λ)λ[e]

does not contain the valuable λ[e].
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Example 3.1. Let G be the minimal hyperelliptic graph of genus n.
(1) If n = 1, then LG(λ) = λ[e].
(2) Suppose n > 1. Then Ed(G/〈ι〉) consists of (n + 1) 1-jointied edges,

namely, [e0], [e1], . . . , [en]. Put λ = (λ0, . . . , λn), where λ(ei) = λi. Taking ac-
count that a contraction of {ei, ι(ei)} is sum of n copies of minimal hyperelliptic
graphs of genus 1, we see

LG(λ) =
n∑

i=0

∏
k �=i

λk,

which is the n-the elementary symmetric polynomial on λ0, . . . , λn.

The polynomial LG has the following properties.

Lemma 3.2. Let G be a hyperelliptic graph.
(1) If G = G1 ∨ G2, then LG = LG1LG2 . If in addition e ∈ Ed(G1), then

P
[e]
G = P

[e]
G1

LG2 .
(2) Let G′ be the contraction of {e, ι(e)} and let λ′ be the associated weight

on G′ with λ. Then LG′(λ′) = limλ[e]→0 LG(λ).

Proof. The last equality in (1) immediately follows from the first one.
For S ⊂ Ed(G/〈ι〉), put Si := S ∩ Ed(Gi/〈ι〉) for i = 1, 2. Then, GS is a sum
of minimal hyperelliptic graphs of genus 1 if and only if so are both G1

S1 and
G2

S2 . Now it is obvious that LG = LG1LG2 .
The equality in (2) is obvious from the definition.

Let G be a maximal hyperelliptic graph of genus more than 2, with a
weight λ. Let {[e0], [e1]} be an extreme circuit and let G′ be the seriesization,
with the induced weight λ′. We adopt the notation in Subsection 2.2, and recall

E = Ed(G′/〈ι〉) \ {[e′0]} = Ed(G/〈ι〉) \ {[e0], [e1], [e2]}.
Lemma 3.3. With the notation above, we have(

λ[e0] + λ[e1]

)
LG′(λ′) = LG(λ),(

λ[e0] + λ[e1]

)
P

[e′
0]

G′ (λ′) = P
[e2]
G (λ),

and if [e] ∈ E, then (
λ[e0] + λ[e1]

)
P

[e]
G′ (λ′) = P

[e]
G (λ).

Proof. Let S be a set of n edges of G/〈ι〉. First note that if δS = 1, then
S ∩ {[e0], [e1], [e2]} coincides with one of

{[e0]}, {[e1]}, {[e0], [e1]}, {[e0], [e2]}, {[e1], [e2]}.(3.1)

For such an S, we define a subset of Ed(G′/〈ι〉) by

S′ :=

{
E ∩ S if #(S ∩ {[e0], [e1], [e2]}) = 1
(E ∩ S) ∪ {[e′0]} otherwise.
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Now, if δS = 1 then #(S′) = n−1 and δS′
= 1. Conversely, under the condition

that S ∩ {[e0], [e1], [e2]} is one of (3.1), suppose #(S′) = n − 1 and δS′
= 1.

Then it is easy to see δS = 1. This observation leads us to our formulas.

Now we can show an explicit formula for the admissible metric.

Proposition 3.4. Let (G, D) be a polarized hyperelliptic graph, λ a
weight, and let K be the canonical divisor of G. Suppose deg(D) 
= −2. Then,
the admissible metric on the realization Ḡλ is given by

μ(Ḡλ,D) =
1

deg(D) + 2

(
δD − δK +

∑
e∈Ed(G)

P
[e]
G (λ)

LG(λ)
(dλ|e)

)
.

Proof. By (1.4) and Lemma 3.2 (1), it is enough to show it for irreducible
hyperelliptic graphs. Then our assertion is an immediate consequence of the
following lemma and (1.3).

Lemma 3.5. Let G be an irreducible hyperelliptic graph and let λ be a
weight. Then for any e ∈ Ed(G), we have

2
λ[e] + r(G,e)(λ)

=
P

[e]
G (λ)

LG(λ)
.

Proof. We will prove our assertion by induction on the genus n of G. If
n ≤ 2, then G is minimal and we can obtain it by direct calculations.

Now, suppose that n > 2. Since the both sides of the equality is compatible
with the contraction (cf. Remark 1.9, (1.2) and Lemma 3.2)), we may assume
that G is maximal. Then, under the assumption of n > 2, there are at least
2 extreme circuit of G/〈ι〉. Let ([e0], [e1]) be an extreme circuit such that
[e0] 
= [e] and [e1] 
= [e]. We adopt the notation in Subsection 2.2.

By (2.3), (2.4) and the induction hypothesis, we have

2
λ[e] + r(G,e)(λ)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P
[e′

0]
G′ (λ′)

LG′(λ′)
if [e] = [e2],

P
[e]
G′ (λ′)

LG′(λ′)
otherwise.

(3.2)

Thus by Lemma 3.3, we obtain our equality.

3.2. The Green function as a piecewise quadratic function
Let (G, D) be a polarized hyperelliptic graph and let λ = (λ[e]) be a

hyperelliptic weight. Let Ḡ = Ḡλ be the realization with the isometric natural
action of ι and let π : Ḡ → Ḡ/〈ι〉 be the quotient.

Let us fix [o] ∈ FV(G/〈ι〉). The admissible metric on Ḡ is of form

μ(Ḡ,D) =
∑

v∈Vert(G)

a[v]δv +
∑

e∈Ed(G)

b[e]dλ|e.
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We define a measure ν on Ḡ/〈ι〉 by

2ν =
∑

v∈Vert(G)

a[v]δ[v] +
∑

e∈Ed(G)

b[e]dλ|[e],

where λ is regarded as a weight on G/〈ι〉 and hence dλ|[e] is the induced
Lebesgue measure on the edge [e]. If h is a piecewise smooth function on
Ḡ/〈ι〉 satisfying

Δh =
1
2
δ[o] − ν∫

hπ∗μ(Ḡ,D) = 0,
(3.3)

it is easy to check that

Δπ∗h = δo − μ(Ḡ,D)∫
π∗hμ(Ḡ,D) = 0,

and hence by Remark 1.8 we have

π∗h(x) = g(Ḡ,D)(o, x).

Thus we are interested in the solution of (3.3).
With the above notation, assume in addition that G is an irreducible hy-

perelliptic graph of genus n ≥ 2. We define a partial order ≺ in Vert(G/〈ι〉)
and Ed(G/〈ι〉) with respect to [o] as follows. First note that there exists
a unique geodesic connecting any two vertices since G/〈ι〉 is a tree. For
[v], [w] ∈ Vert(G/〈ι〉), we write [v] ≺ [w] if [v] is in a halfway of the geodesic
connecting [o] and [w]. Similarly, for [e], [e′] ∈ Ed(G/〈ι〉), we write [e] ≺ [e′] if
[e] 
= [e′] and [e] is a part of the geodesic connecting [o] and a vertex on [e′].

Let
{
s[e]

}
[e]∈Ed(G/〈ι〉) be a collection of arc-length parameters s[e] :

[
0, λ[e]

]
→ [e] such that s[e](0) ≺ s[e]

(
λ[e]

)
, where [e] ∈ Ed(G/〈ι〉) is regarded as a

closed line segment in the realization. For a function h on Ḡ/〈ι〉, let h[e] denote
h ◦ s[e] for simplicity. Then we have a collection

{
h[e]

}
[e]∈Ed(G/〈ι〉) of functions,

where each h[e] is defined on a closed interval
[
0, λ[e]

]
.

Let D be a polarization of form

(3.4) D =
∑

v

(bv − 2)v +
∑

[e]∈Ed1(G/〈ι〉)
2d[e]w[e],

where v ranges over the vertices of G with ι(v) 
= v, bv is the valence at
v, and w[e] is the ι-fixed extremity of e. For this kind of polarization, we
would like to describe the function h satisfying (3.3) in terms of the collection{
h[e]

}
[e]∈Ed(G/〈ι〉) of functions on intervals. To do that, we are going to define,

for all [e] ∈ Ed(G/〈ι〉), the rational functions α(G,D),[e], β(G,D),[e] and γ(G,D),[e]

on λ.
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In G/〈ι〉, there is exactly one edge starting from [o], which is denoted by
[e0]. First we put

α(G,D),[e](λ) = α[e](λ) :=
P

[e]
G (λ)

2(deg(D) + 2)LG(λ)
(3.5)

for each [e] ∈ Ed(G/〈ι〉). Note that we have

2
∑

[e]∈Ed(G/〈ι〉)
2αG,[e](λ)λ[e] +

∑
[e]∈Ed1(G/〈ι〉)

2d[e]

deg(D) + 2
= 1(3.6)

since the admissible metric has total volume 1 (cf. Proposition 3.4). Next for
any [e] ∈ Ed1(G/〈ι〉) \ {[e0]}, we put

(3.7) β(G,D),[e](λ) = β[e](λ) := − d[e]

deg(D) + 2
− 2α(G,D),[e](λ)λ[e].

For other [e] ∈ Ed(G/〈ι〉), we define β(G,D),[e](λ) by the following descending
induction. Since it is defined for the other 1-jointed edges than [e0], we already
have β(G,D),[e](λ) for the maximal edges with respect to ≺. Suppose that
β(G,D),[e′](λ) is defined for any [e′] that is next to [e] with respect to ≺. Then,
we put

(3.8) β(G,D),[e](λ) = β[e](λ) :=
∑
[e′]

β(G,D,),[e′](λ) − 2α(G,D),[e](λ)λ[e],

where [e′] ranges over the edges of G/〈ι〉 with [e] ≺ [e′]. Finally, let γ(G,D),[e] =
γ[e]’s be the solutions of the following equations:

γ(G,D),[e](λ) = α(G,D),[e′′](λ)λ[e′′]
2 + β(G,D),[e′′](λ)λ[e′′] + γ(G,D),[e′′](λ)(3.9)

for all [e′′] and [e] with [e′′] ≺ [e], and

2
∑

[e]∈Ed(G/〈ι〉)

(
1
3
α(G,D),[e](λ)λ[e]

2 +
1
2
β(G,D),[e](λ)λ[e]

+ γ(G,D),[e](λ)
)

(2α(G,D),[e](λ)λ[e])

+
∑

[e]∈Ed1(G/〈ι〉)\{[e0]}

2d[e]

deg(D) + 2
(
α(G,D),[e](λ)λ[e]

2 + β(G,D),[e](λ)λ[e]

+ γ(G,D),[e](λ)
)

+
2d[e0]

deg(D) + 2
γ(G,D),[e](λ)

= 0.

(3.10)
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It is not difficult to see that this system of equations on γ[e](λ)’s have a unique
solution (cf. (3.14)).

By the equation (3.9), there exists a function h on Ḡ/〈ι〉 such that

h[e](t) = α[e](λ)t2 + β[e](λ)t + γ[e](λ).

Such a function is unique and piecewise smooth, and moreover, taking account
of Proposition 3.4, we can check by a messy but straightforward computation
that h satisfies (3.3). Thus we can describe the admissible Green function as a
piecewise quadratic function.

The values of the Green function at vertices can be given by γ[e](λ)’s: Let
e be an edges of G, and let v be the nearer extremity of e to [o]. Then form
the construction above, we have

(3.11) g(G,D)(o, v)(λ) = γ[e](λ).

Thus, the γ[e]’s are important for the calculation of the admissible constants.

Remark 3.6. Here let us consider λ =
(
λ[e]

)
as a system of valuables,

and let R[λ] be the polynomial ring of them. Let R[λ](k) denote the subset of
homogeneous ones of degree k. From the above description, we can see

α[e](λ) ∈ 1
LG(λ)

R[λ](n−1)

and

β[e](λ) ∈ 1
LG(λ)

R[λ](n).

Accordingly we have, by (3.14) which follows from (3.9) and (3.10),

(3.12) γ[e](λ) − γ[e0](λ) ∈ 1
LG(λ)

R[λ](n+1).

It is also easy to see that γ[e](λ) is a rational function on λ. In fact, a little
more calculation (cf. (3.14) again) tells us

γ[e](λ) ∈ 1
LG(λ)2

R[λ](n+1).

Let us carry out the calculation for minimal graphs here.

Example 3.7. Let G be a minimal hyperelliptic graph of genus n > 1.
We use the same notation as that in Example 3.1. Let wi denote the ι-fixed
vertex of ei and let D =

∑n
i=0 2diwi be a polarization with deg(D) 
= −2. We

fix o := w0. Let λ = (λ0, λ1, . . . , λn) be a weight, where λi = λ(ei). Under those
notations, let us describe αi := α[ei](λ), βi := β[ei](λ) and γi := γ[ei](λ). Let σk

denote the k-th elementary symmetric polynomial on λ0, λ1, . . . , λn and let σ
(i)
k
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denote the k-th elementary symmetric polynomial on λ0, . . . , λi−1, λi+1, . . . , λn.
Then, by Example 3.1 and (3.5), we have

αi =
σ

(i)
n−1

2(deg(D) + 2)σn
,

and by (3.7) and (3.8), we see

βi =

⎧⎪⎪⎨
⎪⎪⎩

d0

deg(D) + 2
− 1

2
if i = 0,

− di

deg(D) + 2
− σ

(i)
n−1λi

(deg(D) + 2)σn
otherwise.

From (3.9) and (3.10) we can obtain

γ0 = −
n∑

i=1

(
2
3
αiλi

2 + βiλi

)
(2αiλi) −

n∑
i=1

2di

deg(D) + 2
(αiλi

2 + βiλi)

+

(
4
3
α0λ0

2 + β0λ0

)
(2α0λ0) +

(
2d0

deg(D) + 2
− 1

)
(α0λ0

2 + β0λ0).

Using equalities

σ
(i)
n−1λi

2 = σnλi − σn+1

n∑
i=0

(
σ

(i)
n−1

)2
λi

3 = σn

(
σnσ1 − (2n + 1)σn+1

)
,

we have

γ0 =
2

3(deg(D) + 2)2

(
n∑

i=0

(1+3di+3di
2)λi+(n−1)

σn+1

σn

)
−
(

2d0 + 1
deg(D) + 2

−1
2

)
λ0.

Using the description as quadratic functions, let us show that the val-
ues of Green function and hence the admissible constants are compatible with
contraction. Let G be an irreducible hyperelliptic graph with such a polariza-
tion D as (3.4), and let λ be a hyperelliptic weight. For an edge e ∈ Ed(G),
let contr : G → G′ be the contraction of {e, ι(e)}, and let D′ and λ′ be the
associated polarization and weight on G′.

Lemma 3.8. Under the situation above, let o be an ι-fixed vertex and
let v be any vertex. Then we have

lim
λ[e]→0

g(G,D)(o, v)(λ) = g(G′,D′) (contr(o), contr(v))
(
λ′)

and

lim
λ[e]→0

ε(G, D)(λ) = ε (G′, D′) (λ′) .
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Proof. To show the first equality, it is enough to see that

lim
λ[e]→0

α(G,D),[e′](λ) = α(G′,D′),[e′](λ′)

lim
λ[e]→0

β(G,D),[e′](λ) = β(G′,D′),[e′](λ′)

lim
λ[e]→0

γ(G,D),[e′](λ) = γ(G′,D′),[e′](λ′),

for any [e′] ∈ Ed(G/〈ι〉)\{[e]}, which can be straightforwardly verified by their
definitions.

The second equality follows from the first equality and the fact that the
resistances are compatible with the contractions.

3.3. Denominator of the admissible constant
The purpose of this subsection is to show that ε(G, D) is a rational func-

tion with a denominator LG, namely, LGε(G, D) is a polynomial function on
W>0(G/〈ι〉). To do that, we will show that for one o ∈ Vert(G) with ι(o) = o
and any v ∈ Vert(G), the functions g(G,D)(o, w) and rG(o, w) have a denomi-
nator LG.

Let us look at g(G,D)(o, v) first. As in Remark 3.6, we know that αG,[e],
βG,[e] and γG,[e] are rational functions on the weight λ. Moreover, we see that
αG,[e] and βG,[e] have a denominator LG. Then how about γG,[e]? Indeed, it
will be technically the most important question for our goal. The next lemma
gives us an answer.

Lemma 3.9. Let G be an irreducible hyperelliptic graph of genus n ≥ 2
and let D be a polarization as (3.4) with deg(D) 
= −2. Let w be an ι-fixed
vertex and w′ be any vertex. Then LG(λ)g(G,D)(w, w′)(λ) is a homogeneous
polynomial function on λ of degree n + 1.

Proof. We show our assertion by induction on the genus n. If n = 2,
then it is minimal and hence it follows from Example 3.7. Suppose we have our
assertion for those of genus up to n − 1.

Let G be an irreducible hyperelliptic graph of genus n(> 2). By virtue
of Lemma 3.2 (2) and Lemma 3.8, we may assume that it is maximal. Let
o1 and o2 be ι-fixed vertices of G. Taking account of (3.11) and (3.12), we
see that if LG is a denominator of g(G,D)(oi, oj) for some i, j = 1, 2, then so
is it for any i, j = 1, 2. Therefore, it is enough to show that LGg(G,D)(o, o)
is a homogeneous polynomial of degree n + 1, for o such that there exists an
extreme circuit {[e0], [e1]} with [o] ∈ [e0].

Now we adopt the notation in Subsection 2.2: let [e0] and [e1] be the 1-
jointed edges jointed at [v], and let [e2] be the 0-jointed edge going away from
[v]. Let G′ be the seriesization of {[e0], [e1]} and let λ′ be the associated weight
with λ. Recall that the genus of G′ is n − 1.Let v′0 be the ι-fixed vertex in G′

1
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as before. We write o′ := v′0 to indicate that it is the “origin” of the new graph
G′. We define a polarization D′ on G′ associated with D as (3.4) by

D =
∑

v

(bv − 2)v +
∑

[e]∈Ed1(G′/〈ι〉)\{[e′
0]}

2d[e]w[e] + (2d[e0] + 2d[e1] + 2)w[e′
0]
,

where we note w[e′
0]

= [o′] = [v′0]. Note also that deg(D′) = deg(D).
To simplify the notation, we write α[e], β[e] and γ[e] for αG,[e](λ), βG,[e](λ)

and γG,[e](λ) respectively, and similarly we write α′
[e], for αG′,[e](λ′), etc. Now

our purpose is to show LG(λ)γ[e0] is a polynomial function on λ under the
induction hypothesis that L(G′,ι)(λ′)γ′

[e′
0]

is a polynomial function on λ′.
Before proceeding the proof, recall that, as in Remark 2.18, there are

identifications between sets of edges of G/〈ι〉 and sets of edges of G′/〈ι〉:

E = Ed(G′/〈ι〉) \ {[e′0]} = Ed(G/〈ι〉) \ {[e0], [e1], [e2]}.

Further, we have naturally

Ed1(G′/〈ι〉) \ {[e′0]} = Ed1(G/〈ι〉) \ {[e0], [e1]},

which is denoted by E1, and

Ed0(G′/〈ι〉) = Ed0(G′/〈ι〉) \ {[e2]},

which is denoted by E0. Moreover, for [e] ∈ E , we put

E≺[e]
0 := {[e′] ∈ E0 | [e′] ≺ [e]}.

By the equations (3.9), we have

γ[e] =
∑

[e′]∈
“
E≺[e]
0

”
∪{[e2]}

(
α[e′]λ[e′]

2 + β[e′]λ[e′]
)

+ α[e0]λ[e0]
2 + β[e0]λ[e0] + γ[e0].

(3.13)

Substituting (3.13) to (3.10) and taking account of (3.6),we find
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α[e0]λ[e0]
2 + β[e0]λ[e0] + γ[e0]

+ 2
∑
[e]∈E

(
1
3
α[e]λ[e]

2 +
1
2
β[e]λ[e] + S[e]

)
(2α[e]λ[e])

+ 2
(

1
3
α[e2]λ[e2]

2 +
1
2
β[e2]λ[e2]

)

+ 2
(

1
3
α[e1]λ[e1]

2 +
1
2
β[e1]λ[e1]

)

+ 2
(
− 2

3
α[e0]λ[e0]

2 − 1
2
β[e0]λ[e0]

)

+
∑

[e]∈E1

2d[e]

deg(D) + 2
(
α[e](λ)λ[e]

2 + β[e](λ)λ[e] + S[e]

)

+
2d[e1]

deg(D) + 2
(
α[e1](λ)λ[e1]

2 + β[e1](λ)λ[e1]

)
− 2d[e0]

deg(D) + 2
(α[e0]λ[e0]

2 + β[e0]λ[e0])

= 0,

(3.14)

where we put

S[e] :=
∑

[e′]∈
“
E≺[e]
0

”
∪{[e2]}

(α[e′]λ[e′]
2 + β[e′]λ[e′]).

From (3.14), we see that LG
2 is a denominator of γ[e0]. In the similar way, we

find

α′
[e′

0]

(
λ[e0]λ[e1]

λ[e0] + λ[e1]

)2

+ β′
[e′

0]

(
λ[e0]λ[e1]

λ[e0] + λ[e1]

)
+ γ′

[e′
0]

+ 2
∑
[e]∈E

(
1
3
α′

[e]λ[e]
2 +

1
2
β′

[e]λ[e] + S′
[e]

)
(2α′

[e]λ[e])

+ 2
(

1
3
α′

[e′
0]

λ′
e′
0

2 +
1
2
β′

[e′
0]
λ′

[e′
0]

−
(

α′
[e′

0]

(
λ[e0]λ[e1]

λ[e0] + λ[e1]

)2

+ β′
[e′

0]

(
λ[e0]λ[e1]

λ[e0] + λ[e1]

)))(
2α′

[e′
0]

λ′
e′
0

)

+
∑

[e]∈E1

2d[e]

deg(D) + 2

(
α[e](λ)λ[e]

2 + β[e](λ)λ[e] + S′
[e]

)

− 2d[e0] + 2d[e1] + 2
deg(D) + 2

(
α′

[e′
0]

(
λ[e0]λ[e1]

λ[e0] + λ[e1]

)2

+ β′
[e′

0]

(
λ[e0]λ[e1]

λ[e0] + λ[e1]

))

= 0,
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where we put

S′
[e] :=

∑
[e′]∈

“
E≺[e]
0

”
(α′

[e′]λ[e′]
2 + β′

[e′]λ[e′]) + α′
[e′

0]
λ′

[e′
0]

2 + β′
[e′

0]
λ′

[e′
0]

−
(

α′
[e′

0]

(
λ[e0]λ[e1]

λ[e0] + λ[e1]

)2

+ β′
[e′

0]

(
λ[e0]λ[e1]

λ[e0] + λ[e1]

))
.

We would like to compare γ[e0] with γ′
[e′

0]
. First, by (3.2) and the definition

of α[e], we have α[e] = α′
[e] for [e] ∈ E and α[e2] = α′

[e′
0]
. Then by (3.7) and

(3.8), we have β[e] = β′
[e] for [e] ∈ E . Therefore, by (3.8), we also have

β′
[e′

0]
= β[e2] − 2α′

[e′
0]

(
λ[e0]λ[e1]

λ[e0] + λ[e1]

)
.

From these equalities, we can check easily

α′
[e′

0]
λ′

e′
0

2 + β′
[e′

0]
λ′

[e′
0]
−
(

α′
[e′

0]

(
λ[e0]λ[e1]

λ[e0] + λ[e1]

)2

+ β′
[e′

0]

(
λ[e0]λ[e1]

λ[e0] + λ[e1]

))

= α[e2]λ[e2]
2 + β[e2]λ[e2],

which tells us S[e] = S[e′]. Further, we can see

(
1
3
α′

[e′
0]

λ′
e′
0

2 +
1
2
β′

[e′
0]
λ′

[e′
0]

−
(

α′
[e′

0]

(
λ[e0]λ[e1]

λ[e0] + λ[e1]

)2

+ β′
[e′

0]

(
λ[e0]λ[e1]

λ[e0] + λ[e1]

)))(
2α′

[e′
0]
λ′

e′
0

)

= −
(

2
3
α′

[e′
0]

(
λ[e0]λ[e1]

λ[e0] + λ[e1]

)2

+
1
2
β′

[e′
0]

(
λ[e0]λ[e1]

λ[e0] + λ[e1]

))(
2α′

[e′
0]

(
λ[e0]λ[e1]

λ[e0] + λ[e1]

))

+
(

1
3
α[e2]λ[e2]

2 +
1
2
β[e2]λ[e2]

)(
2α[e2]λ[e2]

)
.

Accordingly, we find
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γ[e0] = γ′
[e′

0]
+

(
2d[e0]

deg(D) + 2
− 1

)(
α[e0]λ[e0]

2 + β[e0]λ[e0]

)

−
(

2d[e0] + 2d[e1] + 2
deg(D′) + 2

− 1

)(
α′

[e′
0]

(
λ[e0]λ[e1]

λ[e0] + λ[e1]

)2

+ β′
[e′

0]

(
λ[e0]λ[e1]

λ[e0] + λ[e1]

))

+ 2

(
2
3
α[e0]λ[e0]

2 +
1
2
β[e0]λ[e0]

)
(2α[e0]λ[e0])

− 2

(
1
3
α[e1]λ[e1]

2 +
1
2
β[e1]λ[e1]

)
(2α[e1]λ[e1])

− 2

(
2
3
α′

[e′
0]

(
λ[e0]λ[e1]

λ[e0] + λ[e1]

)2

+
1
2
β′

[e′
0]

(
λ[e0]λ[e1]

λ[e0] + λ[e1]

))(
2α′

[e′
0]

(
λ[e0]λ[e1]

λ[e0] + λ[e1]

))
.

(3.15)

Recall that our goal is to show

γ[e0] ∈
1

LG(λ)
R[λ](n+1).

As in Remark 3.6, we have

γ[e0] ∈
1

LG(λ)2
R[λ](2n+1).

Since λ[e0] + λ[e1] and LG(λ) are co-prime to each other, it is enough to show

(λ[e0] + λ[e1])
aLG(λ)γ[e0] ∈ R[λ]

for some a ∈ N.
By the induction hypothesis, we have

LG′(λ′)γ′
[e0]

∈ R[λ′].

Therefore, taking account of Lemma 3.3, (3.5) and (3.7), we can see that the
first two lines in the right-hand side of (3.15) lie in

1
(λ[e0] + λ[e1])aLG(λ)

R[λ]

for some a ∈ N. Further, eliminating β[e1] by

β[e1] = − d[e1]

deg(D) + 2
− 2α[e1]λ[e1],

we are reduced to show

α[e0]
2λ[e0]

3 + α[e1]
2λ[e1]

3 − α′
[e′

0]
2

(
λ[e0]λ[e1]

λ[e0] + λ[e1]

)3

∈ 1
(λ[e0] + λ[e1])aLG(λ)

R[λ]
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for some a ∈ N.
For simplicity, let us put λ0 := λ[e0], λ1 := λ[e1], P0 := P

[e0]
G , P1 := P

[e1]
G ,

P2 := P
[e2]
G and L := LG. Comparing (3.6) for G and that for G′, we have

(3.16) 2α′
[e′

0]

(
λ[e0]λ[e1]

λ[e0] + λ[e1]

)
= − 1

deg(D) + 2
+ 2α[e0]λ[e0] + 2α[e1]λ[e0].

Recalling

α[e0] =
P0

2(deg(D) + 2)L
α[e1] =

P1

2(deg(D) + 2)L
α[e′

0]
=

P2

2(deg(D) + 2)L
,

we have by (3.16)

P2λ0λ1 ≡ (λ0 + λ1)(P0λ0 + P1λ1) mod L

in R[λ]. Thus, we are reduced to show

(λ0 + λ1)P0
2λ0

3 + (λ0 + λ1)P1
2λ1

3 − (P0λ0 + P1λ1)2λ0λ1 ≡ 0 mod L

in R[λ].
Let B be the polynomial such that λ0λ1B is the sum of all the monomials

of L which are divisible by λ0λ1. Then, since L is symmetric on λ0 and λ1 and
any monomial in L has the factor λ0 or λ1, we can see that there is another
polynomial C such that L = λ0λ1B + (λ0 + λ1)C. Note that B and C are
the polynomials which does not have the indeterminate λ0 nor λ1. By the
definitions, we have P0 = λ1B + C, P1 = λ0B + C and hence

P0λ0 + P1λ1 ≡ λ0λ1B mod L.

Then, we see

(λ0 + λ1)P0
2λ0

3 + (λ0 + λ1)P1
2λ1

3 − (P0λ0 + P1λ1)2λ0λ1

= (λ0 + λ1)P0λ0
2(P0λ0 + P1λ1)

+ (λ0 + λ1)P1λ1(P1λ1
2 − P0λ0

2) − (P0λ0 + P1λ1)2λ0λ1

≡ (λ0 + λ1)P0λ0
2(λ0λ1B)

+ (λ0 + λ1)P1λ1(λ1
2λ0B + λ1

2C − λ0
2λ1B − λ0

2C) − (λ0λ1B)2λ0λ1

mod L

= (λ0 + λ1)P0λ0
2(λ0λ1B) + (λ1

2 − λ0
2)P1λ1(λ0λ1B)

+ (λ0 + λ1)(λ1
2 − λ0

2)P1λ1C − (λ0λ1B)2λ0λ1.

Here we have

(λ0 + λ1)P0λ0
2 + (λ1

2 − λ0
2)P1λ1 − (λ0λ1B)λ0λ1

= (λ0 + λ1)
(
λ0(λ0λ1B) + λ0

2C
)− (λ0λ1B)λ0λ1 + (λ1

2 − λ0
2)P1λ1

= λ0
2
(
λ0λ1B + (λ0 + λ1)C

)
+ (λ1

2 − λ0
2)P1λ1

≡ (λ1
2 − λ0

2)P1λ1 mod L.
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Therefore, we have

(λ0 + λ1)P0
2λ0

3 + (λ0 + λ1)P1
2λ1

3 − (P0λ0 + P1λ1)2λ0λ1

≡ (λ1
2 − λ0

2)P1λ1(λ0λ1B) + (λ0 + λ1)(λ1
2 − λ0

2)P1λ1C mod L

= (λ1
2 − λ0

2)P1λ1

(
λ0λ1B + (λ0 + λ1)C

)
≡ 0 mod L,

thus, we complete the proof of our assertion.

Next let us consider the resistances.

Lemma 3.10. Let G be an irreducible hyperelliptic graph of genus n
and let o be an ι-fixed vertex of G. Then, for any vertex v, the function

LG(λ)rG(o, v)(λ)

on λ ∈ W>0(G/〈ι〉) is a homogeneous polynomial function of degree n + 1.

Proof. We proceed in four steps.

Step 1. The case of ι(v) = v. In this case, it is elementary to see

rG(o, v)(λ) =
1
2

∑
[e]

λ[e],

where [e] ranges over all edges of G/〈ι〉 between [o] and [v].

Step 2. The case where o and v are the extremities of an edge. We know

2
λ[e] + rG,[e](λ)

=
P

[e]
G (λ)

LG(λ)
.

Since
1

rG(o, v)
=

1
λ[e]

+
1

rG,[e](λ)

by Ohm’s Law, we obtain our assertion.

Step 3. The case where v is the extremity of a 1-jonted edge e with ι(v) 
=
v. Let o′ be the other extremity of e. We know

rG(o, v) = g(G,D)(o, o) − 2g(G,D)(o, v) + g(G,D)(v, v)
rG(o′, v) = g(G,D)(o′, o′) − 2g(G,D)(o′, v) + g(G,D)(v, v).

Therefore by Lemma 3.9, rG(o, v) − rG(o′, v) has a denominator LG. Since
rG(o′, v) has a denominator LG by Step 2, and so does rG(o, v).
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Step 4. General case. We will prove our assertion by induction on n. If
n ≤ 2, we are in a situation above.

Now let us assume n > 2. We may assume that ι(v) 
= v and that no
1-jointed edge has v as an extremity by virtue of Step 3. Then, the subtree H
of G/〈ι〉 generated by Ed0(G/〈ι〉) is not a chain, that is to say, it has at least
3 ends. Therefore, there exist two distinct extreme circuits {[e00], [e01]} and
{[e10], [e11]} away from [o]. Then considering the seriesization of each of them,
we can see by the induction hypothesis that both (λ[e00] + λ[e01])

aLG(λ) and
(λ[e10] + λ[e11])

aLG(λ) are denominators of rG(o, v)(λ) for some a ∈ N. Since
λ[e00] + λ[e01] and λ[e10] + λ[e11] are co-prime to each other as polynomials, we
find that LG(λ) is a denominator. Thus, we obtain our assertion.

Now we can obtain the following proposition.

Proposition 3.11. Let G be a hyperelliptic graph of genus n and let D
be a polarization as in (3.4) with deg(D) 
= −2. Then,

LG(λ)ε(G, D)(λ)

is a homogeneous polynomial function of degree n + 1 on the λ ∈ W(G).

Proof. By virtue of Lemma 3.2 and Proposition 1.10, we may assume G
to be irreducible. Then our result follows from Lemma 3.9, Lemma 3.10 and
[4, Lemma 4.1], except for n = 1. If n = 1, we can prove Theorem 3.14 directly
and hence we omit it.

3.4. An explicit formula for the admissible constants
In this subsection, we will prove an explicit formula for the admissible

constant of a hyperelliptic graph.
Let G be a hyperelliptic graph. We define a polynomial function MG on

λ ∈ W (G/〈ι〉) as follows. For a subset T of Ed(G/〈ι〉) with #T = n + 1 we
define cT

G = cT in the following way: If # MV
(
GT̃ /〈ι〉

)
= 1, then we put

cT
G = cT := #

(
Ed1

(
GT /〈ι〉))− 2,

and otherwise we put cT
G = cT := 0. Note that cT = k − 1 if and only if GT is

a sum of n− k copies of minimal hyperelliptic graph of genus 1 and a minimal
hyperelliptic graph of genus k. Then we define MG by

MG(λ) :=
∑
T

cT
∏

[e]∈T

λ[e],

where T ranges over all subsets of Ed(G/〈ι〉) with #T = n + 1. Note that
MG = 0 as a polynomial if G have only 2-jointed edges.

Example 3.12. Let G be the minimal hyperelliptic graph of genus n.
(1) If n = 1, then MG(λ) = 0.
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(2) Suppose n > 1. Then Ed(G/〈ι〉) consists of (n + 1) 1-jointied edges,
namely, [e0], [e1], . . . , [en]. We write λ = (λ0, . . . , λn), where λ(ei) = λi. Then
we have MG(λ) = (n − 1)

∏n
i=0 λi.

The polynomial MG is compatible with the operations of the one-point
sum and the contraction:

Lemma 3.13. Let G be a hyperelliptic graph.
(1) If G = G1 ∨ G2, then MG = LG1MG2 + LG2MG1 .
(2) Let G′ be the contraction of {e, ι(e)} and let λ′ be the associated weight

with λ. Then MG′(λ′) = limλ[e]→0 MG(λ).

Proof. Let n denote the genus of G. Let T be a subset of Ed(G/〈ι〉)
with #(T ) = n + 1, and put T1 = T ∩ Ed(G1/〈ι〉) and T2 = T ∩ Ed(G2/〈ι〉).
Then, by the definitions, we can see that cT

G = k−1 if and only if “δT1
G1

= 1 and
cT2
G2

= k−1” or “δT2
G2

= 1 and cT1
G1

= k−1”. Accordingly we can find MG1LG2 +
LG1MG2 = MG. The equality in (2) is obvious from the definition.

Let D be a polarization on G as (3.4). For any [e] ∈ Ed(G/〈ι〉), the
contraction G{[e]} is the minimal hyperelliptic graph of genus 1, and associated
polarization on G{[e]} with D is of form av+bw, where v and w are the vertices
and a, b ∈ R. We put tp([e]) := min{a, b}. Now, we can explicitly express
ε(G, D) by means of LG and MG:

Theorem 3.14. Let G be a hyperelliptic graph, and let D be a po-
larization as (3.4) with deg(D) 
= −2. Then, for any hyperelliptic weight
λ ∈ W>0(G/〈ι〉), we have

ε(G, D)(λ)

=
∑

[e]∈Ed(G/〈ι〉)

2 deg(D) + 3 tp([e])(deg(D) − tp([e]))
3(deg(D) + 2)

λ[e]+
2 deg(D)

3(deg(D) + 2)
MG(λ)
LG(λ)

.

Before going on to the proof, we check the theorem for minimal hyperel-
liptic graphs:

Lemma 3.15. If G is minimal of genus n, then Theorem 3.14 holds.

Proof. If n = 1, it is easy to see from [4, Proposition 4.2, Corollary 4.3].
Let G be the minimal hyperelliptic graph of genus n > 1. We adopt the

notation in Example 3.7. In addition, let v be a vertex with ι(v) 
= v. We can
see that

rG(w0, v)(λ) = rG(w0, ι(v))(λ) = λ0 −
σ

(0)
n−1λ0

2

2σn
=

1
2

(
λ0 +

σn+1

σn

)
,

rG(w0, wi)(λ) =
1
2
(w0 + wi)
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by Ohm’s law. Therefore taking account of Example 3.7, we obtain, for i 
= 0,

(deg(D) + 2)g(G,ι,D)(w0, v)(λ) + rG(w0, v)(λ)

=

(
d0 − deg(D)

2

)
λ0 + (deg(D) + 2)γ0,

(deg(D) + 2)g(G,D)(w0, wi)(λ) + rG(w0, wi)(λ)

= − diλi +

(
d0 − deg(D)

2

)
λ0 + (deg(D) + 2)γ0.

Thus by [4, Lemma 4.1],

ε(G, D)(λ) = −
n∑

i=1

2di
2λi + (deg(D) − 2d0)

(
d0 − deg(D)

2

)
λ0

+ (deg(D))(deg(D) + 2)γ0.

Now, our formula can be straightforwardly verified from Example 3.7.

Let us start the proof of Theorem 3.14. Put

F(G,D)(λ)

:=
∑

[e]∈Ed(G/〈ι〉)

2 deg(D) + 3 tp(e)(deg(D) − tp(e))
3(deg(D) + 2)

λ[e]+
2 deg(D)

3(deg(D) + 2)
MG(λ)
LG(λ)

and put

P(G,D) := LGε(G, D) − LGF(G,D).

Let us show P(G,D) = 0 by induction on l := #
(
Ed(G/〈ι〉)). If l ≤ 2, then G is

minimal, and it is nothing more than Lemma 3.15. Next, we assume that we
have our assertion up to l (l ≥ 2) and will prove it for l + 1. First, we consider
the case where G is reducible. Then, we can write G = G1 ∨ G2 and Gi is a
hyperelliptic graph for i = 1, 2. Put Di = DEd(Gi), which is a polarization on
Gi. Then by virtue of Proposition 1.10 and Lemma 3.2, we have

P(G,D) = LG2P(G1,D1) + LG1P(G2,D2).

Since #
(
Ed(Gi/〈ι〉)

) ≤ l for i = 1, 2, we have P(G,D) = 0 by the induction
hypothesis.

Next we consider the case where G is irreducible. We may assume that G
is not minimal by Lemma 3.15. Then, the genus n of G is less than l. Here we
note the following claim.

Claim 1. Let P be a homogeneous polynomial on Y1, . . . , Ym of degree
d with d < m. Suppose that P (a1, . . . , am) = 0 if ai = 0 for some i. Then, we
have P = 0 as a polynomial.
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Proof. For a (k1, . . . , kd) with 1 ≤ k1 ≤ k2 ≤ · · · ≤ kd ≤ m, let
m(k1, . . . , kd) be the coefficient of the monomial Yk1 · · ·Ykd

in P , i.e., P =∑
k1≤k2≤···≤kd

m(k1, . . . , kd)Yk1 · · ·Ykd
. For any (k1, . . . , kd), let us take an in-

teger k ∈ {1, . . . , m} \ {k1, . . . , kd}, and put

Pk(Y1, . . . , Ym) :=
∑

k1≤···≤kd,ki �=k

m(k1, . . . , kd)Yk1 · · ·Ykd
.

Then, we have

Pk(Y1, . . . , Ym) = P (Y1, . . . , Yk−1, 0, Yk+1, . . . , Ym) = 0,

and hence m(k1, . . . , kd) = 0. Thus we have our assertion.

Take any λ ∈ W>0(G/〈ι〉). By virtue of Proposition 3.2 and Lemma 3.8,
we have

lim
λ([e])→0

P(G,D)(λ) = P(G{[e]},D{ι(e)})
(
λG{[e]}

)
for any [e] ∈ (Ed /〈ι〉). Since #

(
Ed
(
G{e,ι(e)}/〈ι〉

))
< l, the right-hand side is

equal to 0 by the induction hypothesis. Since deg
(
P(G,D)

)
= n + 1 is less than

(l + 1), where n is the genus of G, we can see P(G,D) = 0 by the above claim.
Thus, we complete the proof of Theorem 3.14.

4. Effective version of the geometric Bogomolov conjecture
for hyperelliptic curves

4.1. Main results
Let f : X → Y be a semistable curve of genus g ≥ 2 as in the introduction.

We say that f is hyperelliptic if there is an action of a finite group 〈ι〉 of order
2 that induces the hyperelliptic involution on the generic fiber.

In order to describe our results, let us recall the notion of types of nodes.
Let P be a node of a semistable curve Z of genus g over an algebraically closed
field. We can assign a number i to the node P , called the type of P , in the
following way. Let ν : ZP → Z be the partial normalization at P . If ZP is
connected, then i = 0. Otherwise, i is the minimum of arithmetic genera of the
two connected components of ZP . We denote by δi(Z) the number of nodes
of type i, and by δi(X/Y ) the number of nodes of type i in all the fibers of
f : X → Y , i.e., δi(X/Y ) =

∑
y∈Y δi(Xy).

In case of hyperelliptic curves, we can further define the notion of subtype
for nodes of type 0. Let Xy be a fiber of f . It should be called a semistable
hyperelliptic curve over k with the involution ιy = ι|Xy

. Let P be a node of Xy

of type 0. We can also assign a number j to the pair of nodes (P, ι(P )) of type
0, which we call the subtype of (P, ι(P )), in the following way (see [1, §4 (b)]
and [11] for details). If P = ι(P ), we set j = 0. If P 
= ι(P ), then the partial
normalization (Xy)P,ι(P ) at P and ι(P ) has two connected components since
Xy/〈ιy〉 is a tree of smooth rational curves. We set j to be the minimum of the
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arithmetic genera of the two connected components of (Xy)P,ι(P ). We denote
by ξ0(Xy) the number of nodes of type 0 and of subtype 0, and by ξj(Xy) the
number of such pairs of nodes of type 0 and of subtype j for j ≥ 1. Note that
0 ≤ j ≤ [ g−1

2

]
and

δ0(Xy) = ξ0(Xy) +
[ g−1

2 ]∑
j=1

2ξj(Xy).

Further, we put

ξj(X/Y ) =
∑
y∈Y

ξj(Xy).

The following theorem is our main result.

Theorem 4.1. Let f : X → Y be a generically smooth semistable hy-
perelliptic curve of genus g ≥ 3 in which Y is a nonsingular projective curve
over an algebraically closed field k and X is also nonsingular. Assume that f
is not smooth. Let r1 be the number given below:

(a) If g = 3, 4, then

r1 =
g − 1

g(2g + 1)

·

⎛
⎜⎝2g − 5

12
ξ0(X/Y ) +

[ g−1
2 ]∑

j=1

(
2j(g − 1 − j) − 1

)
ξj(X/Y ) +

[ g
2 ]∑

i=1

4i(g − i)δi(X/Y )

⎞
⎟⎠ .

(b) If g ≥ 5, then

r1 =
g − 1

g(2g + 1)

·

⎛
⎜⎝2g − 5

12
ξ0(X/Y ) +

[ g−1
2 ]∑

j=1

6j(g − 1 − j) − 2g − 4
3

ξj(X/Y )

+
[ g
2 ]∑

i=1

4i(g − i)δi(X/Y )

⎞
⎟⎠ .

Then we have

(ωa
X/Y · ωa

X/Y )a ≥ r1 > 0,

where (ωa
X/Y · ωa

X/Y )a is the admissible self-pairing of the admissible dualizing
sheaf.

Recall that, as we mentioned in the introduction, we have

inf
P∈JC(K)

rC(P ) ≥
√

(g − 1)(ωa
X/Y · ωa

X/Y )a
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if (ωa
X/Y ·ωa

X/Y )a is positive. Thus we obtain an answer to the effective version
of the geometric Bogomolov conjecture for hyperelliptic curves as a corollary:

Corollary 4.2. In the same situation as above, let r1 be the positive
number in Theorem 4.1. Then we have

inf
P∈JC(K)

rC(P ) ≥
√

(g − 1)r1.

4.2. Estimate of the admissible constant from the above
The goal of this subsection is Proposition 4.5. To prove it, we have to

prepare some more notations.
Let G be an irreducible hyperelliptic graph of genus > 1. Let E0 denote

the power set of Ed0(G/〈ι〉). (There is nothing to do with “E0” in the pre-
vious section.) Note that for any S ∈ E0, we have naturally Ed1(G/〈ι〉) =
Ed1

(
G((Ed0(G/〈ι〉))\S)/〈ι〉

)
and S = Ed0

(
G((Ed0(G/〈ι〉))\S)/〈ι〉

)
. For an S ∈ E0,

put

MV{S} := MV
(
G((Ed0(G/〈ι〉))\S)/〈ι〉

)
,

and for any [v] ∈ MV{S}, let ES
1 ([v]) be the set of those 1-jointed edges of

G/〈ι〉 which, as edges of G((Ed0(G/〈ι〉))\S)/〈ι〉, have [v] as an extremity. We set

νS
1 ([v]) := #ES

1 ([v]).

Let σS
[v] and τS

[v] be the
(
νS
1 ([v]) − 1

)
-th and the νS

1 ([v])-th elementary sym-
metric polynomials on the valuables {λ[e]}[e]∈ES

1 ([v]) respectively. Further we
put

νS
0 ([v]) := #

{
[e] ∈ Ed0

(
G((Ed0(G/〈ι〉))\S)/〈ι〉

) ∣∣ [v] ∈ ∂[e]
}

νS([v]) := νS
0 ([v]) + νS

1 ([v]).

By definition, νS([v]) is nothing but the valence at v in G((Ed0(G/〈ι〉))\S).
First, we note the following lemma.

Lemma 4.3. In the above situation, we have the following equalities:

LG(λ) =
∑
S∈E0

⎛
⎝ ∏

[v]∈MV{S}
σS

[v]

⎞
⎠ ∏

[e]∈S

λ[e],

MG(λ) =
∑
S∈E0

⎛
⎝ ∑

[v]∈MV{S}

⎛
⎝(νS([v]) − 2)τS

[v]

∏
[v′]∈MV{S}\{[v]}

σS
[v′]

⎞
⎠
⎞
⎠ ∏

[e]∈S

λ[e].

Proof. For a fixed S ∈ E0, let S′ be a subset of Ed(G/〈ι〉) such that
#S′ = n and S′ ∩ Ed0(G/〈ι〉) = S. Note that

GS′
=
(
GEd0(G/〈ι〉)\S

)
(Ed1(GEd1(G/〈ι〉)\S)\S′) .
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Then, it is not difficult to see that δS′
= 1 if and only if we have, for each

[v] ∈ MV{S},
#
(
ES

1 ([v]) \ S′) = 1,

or equivalently,

#
(
ES

1 ([v]) ∩ S′) = νS
1 ([v]) − 1.

Our first equality follows from this observation.
Let us fix S ∈ E0. Let T be a subset of Ed(G/〈ι〉) such that #T = n + 1

and T ∩ Ed0(G/〈ι〉) = S. Then we have also

GT =
(
GEd0(G/〈ι〉)\S

)
(Ed1(GEd1(G/〈ι〉)\S)\T) .

Let [v] ∈ MV{S} and let l be a positive integer. Then it is not difficult to see
that cT = l and [v] ∈ MV

(
GT /〈ι〉), if and only if ES

1 ([v]) ⊂ T , l + 2 = νS([v])
and

#
(
ES

1 ([v′])
) ∩ T = νS

1 ([v′]) − 1

for any [v′] ∈ MV{S} \ {[v]}. From this observation, we can obtain our second
equality.

Using the expression in the above lemma, we can prove the following in-
equalities.

Lemma 4.4. Let G be an irreducible hyperelliptic graph of genus n. For
any λ ∈ W>0(G/〈ι〉), we have

MG(λ)
LG(λ)

≤
∑

[e]∈Ed0(G/〈ι〉)
λ[e] +

1
4

∑
[e]∈Ed1(G/〈ι〉)

λ[e].

Moreover, if n ≤ 4, then we have

MG(λ)
LG(λ)

≤ 1
2

∑
[e]∈Ed0(G/〈ι〉)

λ[e] +
1
4

∑
[e]∈Ed1(G/〈ι〉)

λ[e].

Proof. By the above lemma, we have

LG(λ)

⎛
⎝ ∑

[e]∈Ed0(G/〈ι〉)
λ[e] +

1
4

∑
[e]∈Ed1(G/〈ι〉)

λ[e]

⎞
⎠

=

⎛
⎝∑

S∈E0

∏
[v]∈MV{S}

σS
[v]

∏
[e]∈S

λ[e]

⎞
⎠
⎛
⎝ ∑

[e]∈Ed0(G/〈ι〉)
λ[e]

⎞
⎠

+

⎛
⎝∑

S∈E0

∏
[v]∈MV{S}

σS
[v]

∏
[e]∈S

λ[e]

⎞
⎠
⎛
⎝1

4

∑
[e]∈Ed1(G/〈ι〉)

λ[e]

⎞
⎠ .

(4.1)
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Taking account that Ed1(G/〈ι〉) =
∐

[v]∈MV{S} ES
1 ([v]) and using an elementary

inequality

(a1 + · · ·+ ak)(a1a2 · · · ak−1 + a2a3 · · · ak + · · ·+ aka1 · · · ak−2) ≥ k2a1a2 · · · ak,

which holds for non-negative numbers, we have⎛
⎝ ∏

[v]∈MV{S}
σS

[v]

⎞
⎠
⎛
⎝1

4

∑
[e]∈Ed1(G/〈ι〉)

λ[e]

⎞
⎠

=
1
4

∑
[v]∈MV{S}

⎛
⎝σS

[v]

⎛
⎝ ∑

[e]∈ES
1 ([v])

λ[e]

⎞
⎠ ∏

[v′]∈MV{S}\{[v]}
σS

[v′]

⎞
⎠

≥
∑

[v]∈MV{S}

⎛
⎝(νS

1 ([v])
)2

4
τS
[v]

∏
[v′]∈MV{S}\{[v]}

σS
[v′]

⎞
⎠ .

Let us go on to the estimate of (4.1). Suppose S 
= ∅. For any [e] ∈ S,
let ∂+[e] and ∂−[e] denote the extremities of [e]. We put c([e])
:= contrEd0(G/〈ι〉)\(S\{[e]})([e]) for simplicity. Note that it is a vertex of
GEd0(G/〈ι〉)\(S\{[e]})/〈ι〉. Then, we have

σ
S\{[e]}
c([e]) = τS

∂+[e]σ
S
∂−[e] + σS

∂+[e]τ
S
∂−[e].

By this formula, we see that

∑
[e]∈S

⎛
⎝ ∏

[v]∈MV{S\{[e]}}
σ

S\{[e]}
[v]

⎞
⎠

=
∑
[e]∈S

⎛
⎝τS

∂+[e]σ
S
∂−[e]

∏
[v]∈MV{S\{[e]}}\{c([v])}

σ
S\{[e]}
[v]

+σS
∂+[e]τ

S
∂−[e]

∏
[v]∈MV{S\{[e]}}\{c([v])}

σ
S\{[e]}
[v]

⎞
⎠

=
∑
[e]∈S

⎛
⎝τS

∂+[e]σ
S
∂−[e]

∏
[v]∈MV{S}\{∂+[e],∂−[e]}

σS
[v]

+σS
∂+[e]τ

S
∂−[e]

∏
[v]∈MV{S}\{∂+[e],∂−[e]}

σS
[v]

⎞
⎠

=
∑
[e]∈S

⎛
⎝τS

∂+[e]

∏
[v]∈MV{S}\{∂+[e]}

σS
[v] + τS

∂−[e]

∏
[v]∈MV{S}\{∂−[e]}

σS
[v]

⎞
⎠

=
∑

[v]∈MV{S}

⎛
⎝νS

0 ([v])τS
[v]

∏
[v′]∈MV{S}\{[v]}

σS
[v′]

⎞
⎠ .

(4.2)
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Here we set

E(k)
0 := {S ∈ E0 | #(S) = k},

for each k. Then we have⎛
⎜⎝ ∑

S∈E(k)
0

∏
[v]∈MV{S}

σS
[v]

∏
[e]∈S

λ[e]

⎞
⎟⎠
⎛
⎝ ∑

[e′]∈Ed0(G/〈ι〉)
λ[e′]

⎞
⎠

≥
∑

S∈E(k)
0

⎛
⎝ ∑

[e′]∈Ed0(G/〈ι〉)\S

⎛
⎝ ∏

[v]∈MV{S}
σS

[v]

∏
[e]∈S

λ[e]λ[e′]

⎞
⎠
⎞
⎠

=
∑

T∈E(k+1)
0

⎛
⎝∑

[e]∈T

⎛
⎝ ∏

[v]∈MV{T\{[e]}}
σ

T\{[e]}
[v]

⎞
⎠ ∏

[e]∈T

λ[e]

⎞
⎠

=
∑

T∈E(k+1)
0

⎛
⎝ ∑

[v]∈MV{T}

⎛
⎝νS

0 ([v])τT
[v]

∏
[v′]∈MV{T}\{[v]}

σT
[v′]

⎞
⎠ ∏

[e]∈T

λ[e]

⎞
⎠ ,

where we used (4.2) at the last equality. Thus, we have

LG(λ)

⎛
⎝ ∑

[e]∈Ed0(G/〈ι〉)
λ[e] +

1
4

∑
[e]∈Ed1(G/〈ι〉)

λ[e]

⎞
⎠

≥
∑
S∈E0

⎛
⎝ ∑

[v]∈MV{S}

⎛
⎝((νS

1 ([v])
)2

4
+ νS

0 ([v])

)
τS
[v]

∏
[v′]∈MV{S}\{[v]}

σS
[v′]

⎞
⎠ ∏

[e]∈S

λ[e]

⎞
⎠ .

Since (
νS
1 ([v])

)2
4

+ νS
0 ([v]) >

(
νS
1 ([v]) − 1

)
+
(
νS
0 ([v]) − 1

)
= νS([v]) − 2

for any [v], we obtain the first inequality.
We can also obtain

LG(λ)

⎛
⎝1

2

∑
[e]∈Ed0(G/〈ι〉)

λ[e] +
1
4

∑
[e]∈Ed1(G/〈ι〉)

λ[e]

⎞
⎠

≥
∑
S∈E0

⎛
⎝ ∑

[v]∈MV{S}

⎛
⎝((νS

1 ([v])
)2

4
+

νS
0 ([v])

2

)
τS
[v]

∏
[v′]∈MV{S}\{[v]}

σS
[v′]

⎞
⎠ ∏

[e]∈S

λ[e]

⎞
⎠

in the same way. If n ≤ 4, then we can see #
(
Ed0(G/〈ι〉)) ≤ 2, and hence

νS
0 ([v]) ≤ 2 for any S ∈ E0 and [v] ∈ MV{S}. Therefore, we have(

νS
1 ([v])

)2
4

+
νS
0 ([v])

2
≥ (νS

1 ([v]) − 1
)

+
(
νS
0 ([v]) − 1

)
= νS([v]) − 2,
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and we obtain the second inequality.

Accordingly we have the following estimate.

Proposition 4.5. With the same notation as that of Theorem 3.14, we
have the following inequalities.

(1) For any hyperelliptic graph G and for any λ ∈ W>0(G/〈ι〉), we have

ε(G, D)(λ)

≤
∑

tp([e]) �=0

4 deg(D) + 3 tp([e])(deg(D) − tp([e]))
3(deg(D) + 2)

λ[e]+
∑

tp([e])=0

5 deg(D)
6(deg(D) + 2)

λ[e].

(2) If every irreducible component of G is of genus less than 5, then

ε(G, D)(λ)

≤
∑

tp([e]) �=0

deg(D) + tp([e])(deg(D) − tp([e]))
deg(D) + 2

λ[e] +
∑

tp([e])=0

5 deg(D)
6(deg(D) + 2)

λ[e].

Proof. By the compatibility with one-point sum, we may assume G to be
irreducible. Since we know that e is 1-jointed if tp(e) = 0, our inequalities are
immediate from Theorem 3.14 and the above lemma.

4.3. Proof of Theorem 4.1
Now we are ready to complete the proof of Theorem 4.1. We recall (ωa

X/Y ·
ωa

X/Y )a = (ωX/Y · ωX/Y ) −∑y∈Y εy. Let us compare (ωX/Y · ωX/Y ) with the
admissible constants. Since f is hyperelliptic, we have

(ωX/Y · ωX/Y ) =
g − 1
2g + 1

ξ0(X/Y ) +
[ g−1

2 ]∑
j=1

6j(g − 1 − j) + 2(g − 1)
2g + 1

ξj(X/Y )

+
[ g
2 ]∑

i=1

(
12i(g − i)

2g + 1
− 1

)
δi(X/Y )

by virtue of [1, Proposition 4.7], or [11] for char(k) = 2, with Noether’s formula.
There is no problem in this part.

Let us consider the admissible constants. Let f : X → Y be the stable
model of f : X → Y , Gy the dual graph of Xy =

(
f
)−1

(y) and let λ = λy

be the associated weight (cf. Subsection 1.3). The hyperelliptic involution ι
naturally acts on Gy and λ is invariant under the action.

Lemma 4.6. For Gy, we have the following properties.
(1) If e ∈ Ey is a self-loop, then ι(e) = e.
(2) If bv ≤ 2, then ι(v) = v and the irreducible component corresponding

to v has positive genus.
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Proof. Since Xy/〈ι〉 is a tree of smooth rational curves, an irreducible
component of Xy with self-intersection is stable by the hyperelliptic involution.
Thus we see that a self-loop of Gy is ι-fixed. The assertion (2) follows from
the assumption of stability of Xy and that the hyperelliptic quotient has genus
0.

Let Eold be the subset of Ed(Gy) defined as follows: e ∈ Eold if and only if
“ι(e) 
= e” or “e is not a self-loop, ι(e) = e and the action of ι on the extremities
of e is the identity”. Let Gy,old be the subgraph generated by Eold. Then, since
the nodes in Ed(Gy) \ Eold are the nodes mapped to the regular points by the
quotient map Xy → Xy/〈ι〉, we find that the quotient graph Gy,old/〈ι〉 is the
dual graph of Xy/〈ι〉. Thus Gy,old/〈ι〉 is a tree.

Now we define a graph G+
y to be the graph obtained from Gy by dividing

all the edges in Ed(Gy) \ Eold into two line segments. Then we can write

Vert(G+
y ) = Vnew � Vold,

where Vold = Vert (Gy) and Vnew denotes the set of vertices which newly appear
as a division point of edges in Ed(Gy) \ Eold, and

Ed(G+
y ) = Enew � Eold,

where Enew is the set of edges which newly appear as fragments in the division
of edges of Gy. Moreover, the hyperelliptic involution acts naturally on G+

y

as follows: On Vold and on Eold, the action is the same as that on Gy. For
v ∈ Vnew, we have ι(v) = v and for e ∈ Enew, the edge ι(e) is the other
fragment. We can induce a natural weight λ+ on G+

y from λ so that if e1 and
e2 are the fragments of e,

λ+
e1

= λ+
e2

=
λe

2
.

It is ι-invariant.
By the definition of the action and the fact that Gy,old/〈ι〉 is a tree, we

find G+
y /〈ι〉 is a tree. By the construction, the realization of

(
G+

y , λ+
)

is the
metrized graph Ḡy associated with the (semi)stable model as in [12].

Since the intersection of ωX/Y with a (−2)-curve is 0, the canonical polar-
ization ωy can be regarded a divisor on Gy, i.e., it is supported in Vert(Gy).
Therefore it is also regarded as a polarization of G+

y .
Finally, let G+

y,1 be the graph obtained by contracting all the ι-fixed edges
of G+

y . Then, taking account of Lemma 4.6 (2), we can see that G+
y,1 with

the ι-action is a hyperelliptic graph by its construction unless it is a one-point
graph. Note that it is endowed with a natural weight λ+

1 := λ+|Gy,1 , which is a
hyperelliptic weight. Let ωy,1 be the polarization of G+

y,1 associated with ωy on
G+

y . Since any vertex v of G+
y,1 with ι(v) 
= v corresponds to smooth rational

component, the coefficient of such v in ωy,1 is equal to bv − 2.
To the contrary, let G+

y,2, λ+
2 and ωy,2 be the contractions of the non-ι-

fixed edges. Taking account that a non-ι-fixed edge itself generate an irreducible



Geometric Bogomolov conjecture for hyperelliptic curves 441

component of G+
y , we have

εy = ε(G+
y , ωy)(λ+) = ε(G+

y,1, ωy,1)(λ+
1 ) + ε(G+

y,2, ωy,2)(λ+
2 )

by virtue of Proposition 1.10.
By the definition of the weight λ+

1 , we see

∑
[e]∈Ed(G+

y,1/〈ι〉),tp(e)=0

λ+
1 ([e]) =

1
2
ξ0(Xy)

and ∑
[e]∈Ed(G+

y,1/〈ι〉),tp(e)=j

λ+
1 ([e]) = ξj(Xy)

Suppose g ≥ 5. Then by Proposition 4.5 (1), we have

ε(Ḡy,1, ωy,1) ≤ 5(g − 1)
12g

ξ0(Xy) +
[ g−1

2 ]∑
j=1

4(g − 1) + 6j(g − 1 − j)
3g

ξj(Xy),

and by [6, Corollary 5.8], we have

ε(Ḡy,2, ωy,2) ≤
[ g
2 ]∑

i=1

(
4i(g − 1)

g
− 1

)
δi(Xy),

where we used deg(ωy) = 2(g − 1). Consequently we have

εy ≤ 5(g − 1)
12g

ξ0(Xy) +
[ g−1

2 ]∑
j=1

4(g − 1) + 6j(g − 1 − j)
3g

ξj(Xy)

+
[ g
2 ]∑

i=1

(
4i(g − 1)

g
− 1

)
δi(Xy).

Therefore,

(ωa
X/Y · ωa

X/Y )a

≥ (g − 1)(2g − 5)
12g(2g + 1)

ξ0(X/Y ) +
[ g−1

2 ]∑
j=1

2(g − 1)(3j(g − 1 − j) − g − 2)
3g(2g + 1)

ξj(X/Y )

+
[ g
2 ]∑

i=1

4(g − 1)i(g − i)
g(2g + 1)

δi(X/Y ).

Now since g ≥ 5, we have

3j(g − 1 − j) − g − 2 ≥ 3(g − 2) − g − 2 = 2(g − 4) > 0,
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which shows (ωa
X/Y · ωa

X/Y )a > 0. Thus, we obtain our main result for g ≥ 5.
Secondly, let us consider the case of g ≤ 4. Then the genus of Gy is at

most 4. Therefore, we can apply the inequality of Proposition 4.5 (2), and by
the same way as above, we obtain an inequality

εy ≤ 5(g − 1)
12g

ξ0(Xy) +
[ g−1

2 ]∑
j=1

g − 1 + 2j(g − 1 − j)
g

ξj(Xy)

+
[ g
2 ]∑

i=1

(
4i(g − 1)

g
− 1

)
δi(Xy),

and hence we find

(ωa
X/Y · ωa

X/Y )a

≥ (g − 1)(2g − 5)
12g(2g + 1)

ξ0(X/Y ) +
[ g−1

2 ]∑
j=1

(g − 1)(2j(g − 1 − j) − 1)
g(2g + 1)

ξj(X/Y )

+
[ g
2 ]∑

i=1

4(g − 1)i(g − i)
g(2g + 1)

δi(X/Y ).

All the coefficients of ξj(X/Y ) and δi(X/Y ) are positive if g ≥ 3, thus we have
reached our main result for g = 3, 4.

Department of Mechanical Engineering and Science
Graduate School of Engineering
Kyoto University, Kyoto, 606-8501, Japan
e-mail: yamaki@kusm.kyoto-u.ac.jp
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