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Complex algebraic plane curves via
Poincaré–Hopf formula. III. Codimension

bounds

By

Maciej Borodzik and Henryk Żo�la̧dek

Abstract

This work is a continuation of the papers [BZ1] and [BZ2]. Here
we prove some estimates for the sum of codimensions of singularities of
affine planar rational curves.
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1. Introduction

In [BZ1] and [BZ2] we classified complex planar affine curves C with b1 = 1,
i.e. the rational curves with one place at infinity and one self-intersection and
the rational curves with two places at infinity and without self-intersections.
There we used essentially the inequality μ ≤ nν for the Milnor number μ of a
cuspidal singularity

(1.1) x = τn, y = c1τ + c2τ
2 + . . . ,

where the (intrinsic) codimension ν is the number of vanishing essential Puiseux
coefficients ci (see [BZ1]). Analogous bounds are used for other degenerations
(at the infinity and at the self-intersection). The sum of the Milnor numbers,
or of the δ-numbers, is calculated via the Poincaré–Hopf formula applied to a
suitable Hamiltonian vector field. The orders n are estimated by the degree of
the curve. The problem is to estimate the intrinsic codimension ν.

We introduced the so-called external codimension, which for the cuspidal
singularity equals

(1.2) extν = n+ ν − 2;
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in the next section we define the external codimension for other singularities.
We conjectured in [BZ1] (Conjecture 3.7) and in [BZ2] (Conjecture 2.40) that
the sum of external codimensions does not exceed the dimension of some natu-
rally defined space of curves modulo equivalences. More concretely, we claimed
that

∑
extν ≤ p+q−4−⌊qp⌋ in the case of polynomial lines x = ϕ(t), y = ψ(t),

degϕ = p < degψ = q; here p + q − 4 − ⌊qp⌋ is the dimension of the space of
such curves modulo some natural equivalences.

The problem of estimating the sum of codimensions of singularities of
projective rational curves was considered also by other authors. In the works
of S. Orevkov and M. Zaidenberg [OZ1], [OZ2], [Or] a notion of a rough M-
number of a singularity M was introduced via intersection numbers of some
divisors in the resolution of the singularity. For the cuspidal singularity (1.1),
when n is the multiplicity, the rough M-number coincides with extν. In Section
2 we generalize the Orevkov’s definition to the case of reducible singularities.
Using the BMY inequality one can prove the inequality (see [Or])

(1.3)
∑

MP ≤ 3d− 4,

where the sum runs over the singular points of a rational cuspidal projective
curve C ⊂ CP 2 of degree d. Since the dimension of the space of such curves
(modulo automorphisms of CP2) is 3d − 9, the bound (1.3) is presumably not
optimal.

In this paper we generalize the bound (1.3) to the cases of parametric lines
and parametric annuli. In particular, we prove the bounds

(1.4) extνinf +
∑

MP ≤ p+ q − 1−
⌊
q

p

⌋
+ #(double points)

for polynomial lines with the bi-degree (p, q) (Theorem 4.2), and

(1.5) extνinf +
∑

MP ≤ p+ q + r + s+ 1 + #(double points)

for curves of the form x = tp+a1t
p−1+. . .+ap+rt

−r, y = tq +. . .+bq+st
−s (with

some restrictions, see Theorem 4.3). The above extνinf is the codimension of a
degeneration of the curve at infinity, defined in the next section.

Our results concern only rational curves. But in the case of curves with pos-
itive genus the codimensions of singularities behave very improperly. Namely,
A. Hirano [Hir] constructed a series of curves Cn of degree d = 2 · 3n and
with s = 9

8 (9n − 1) simple cusps. Therefore the genus of Cn satisfies g ≤
1
2 (d − 1)(d − 2) − s = 7

8 · 9n − 3n+1 + 17
8 . On the other hand, the dimension

of the space of curves Md,g of degree d and genus g (modulo Aut(CP
2)) is

1
2 (d+ 1)(d+ 2)−#(double points)−dimGL(3,C) = 3d−9 + g. For the curves
Cn it equals dimMd,g = 7

8 ·9n +3n+1− 55
8 which is much smaller than the sum

of codimensions
∑
extνz = s.

We spent a lot of time trying to estimate
∑
extνP by the (essential) dimen-

sion of the corresponding space of curves using a kind of induction argument.
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However, the problem turned out very rigid; it can be reduced to showing that
infinite number of some determinants do not vanish. Calculation of examples
(see [BZ1], [BZ2] and Section 3) suggest that the sum of external codimensions
of singularities of a rational curve is bounded as expected.

There exist other, sheaf theoretical, approaches to the problem of moduli
of spaces of curves with given degree, genus, and types of singularities. There
notions like logarithmic deformations and 0-dimensional schemes are used. We
refer an interested reader to the works [FZ1], [FZ2], [GLS], [KlPi], [FLMN]. We
tried to use the latter methods to our problem, but without a visible success.

The paper is organized as follows. In the next section we introduce defini-
tions of the external codimensions and of the rough M-numbers. In Section 3
we discuss the problem of a bound for

∑
extνP and prove some positive results.

In Section 4 we generalize the Orevkov–Zaidenberg results about the numbers
MP and prove the bounds (1.4) and (1.5). Section 5 is devoted to an applica-
tion of the inequality (1.4) to a special version of the XVIth Hilbert problem
about the number of limit cycles for polynomial planar vector fields.

2. The local codimension and the rough M-number of a singular
point

2.1. Cuspidal singularity
Let (C, 0) be a germ of an analytic curve in (C2, 0), singular at 0. We

assume firstly that the singularity is cuspidal, i.e. that the curve has one
branch.

Let us fix a coordinate system (x, y) in C2 and assume that C �= {x = 0}.
Then the curve can be written in the form

(2.1) x = τn, y = c1τ + c2τ
2 + . . . , τ ∈ (C, 0).

The form (2.1) is called the standard Puiseux expansion of C. We rewrite (2.1)
in the following topologically arranged Puiseux expansion

y = xm0(d0 + . . .) + xm̃1/n1

(
d1 + . . .+ xm̃r/n1...nr (dr + . . .) . . .

)
= xm0(d0 + . . .) + xm1/n1(d1 + . . .) + . . .+ xmr/n1...nr (dr + . . .)

(2.2)

where m̃j ≥ 1 and nj ≥ 2 are integers such that gcd(m̃j , nj) = 1 for j ≥ 1
and the coefficients dj �= 0 for j ≥ 1. The first polynomial term xm0(d0 + . . .)
may be absent (it is inessential). The dots in the j−th summand mean terms
xk/n1...nj . We have n = n1 . . . nr. The coefficients d1, . . . , dr indicated above
are called the essential Puiseux quantities. The coefficient d0 and those in the
dots are non-essential (provided d1 . . . dr �= 0).

The topological type of the singularity is uniquely determined by the char-
acteristic pairs (mj , nj). In particular, the Milnor number equals

μ =
r∑

j=1

(mjnj+1 . . . nr − 1)(nj − 1)nj+1 . . . nr
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(see [BZ1]).
If we fix the x−order n = ordx C > 1 and consider the space H of germs

(2.1) then the corresponding equisingularity stratum Hi(μ) ⊂ H (stratum with
μ =const containing C) is defined by a series of equalities of the form Cj = 0
and equations Ck �= 0. The number ν of equalities is called the y−codimension
of the stratum Hi(μ) and of the singularity (C, 0).

Lemma 2.1 ([BZ1], [Or]). We have

ν =
r∑

j=1

(
mj − 1−

⌊
mj − 1
nj

⌋)
=

r∑
j=1

(
m̃jnj+1 . . . nr − 1−

⌊
m̃j

nj

⌋)
,

where �a� denotes the integer part of the number a. Note that m̃j/nj are not
integers.

Proof. We have m1 − 1 terms xj/n1 before xm1/n1 and �m1/n1� of them
are non-essential (integer exponents). Next, we have m2 − 1 = m1n1 +m2 − 1
terms xj/n1n2 before xm2/n1n2 , where �m2/n2� of them are of the form xj/n1 .
Similarly we count the terms xj/n1...nk for k > 2.

Definition 2.1. The external codimension of the singularity (C, 0) as-
sociated with the coordinate system (x, y) is

extν = (n− 2) + ν.

Here n − 1 is the number of vanishing derivatives of x(τ ) and we extract 1
because the position τ0 of the singularity may vary.

Example 2.1. For the curve x = τ4, y = τ8 + τ10 + τ11 the y−codi-
mension is ν = 7. Indeed, we require c1 = c2 = c3 = c5 = c6 = c7 = c9 = 0.
The external codimension equals extν = 2 + 7 = 9.

Let us now forget about the fixed coordinate system. If the singular germ
(C, 0) is cuspidal then there exists a local holomorphic coordinate system x̃, ỹ
such that

(2.3) x̃ = τn, ỹ = τm + . . .

where 1 < n < m, m �= 0 (mod n) and n = mult0C is called the multiplicity of
C at 0; if C is defined by an equation F (x, y) = 0 then mult0C is the degree of
the first term in the Taylor expansion of F at 0. We have an expansion like in
(2.2), i.e.
(2.4)

ỹ = x̃m̃1/n1

(
d1 + . . .+ x̃m̃2/n1n2

(
d2 + . . .+ x̃m̃r/n1...nr (dr + . . .) . . .

))
,

where 1 < n1 < m1 = m̃1.
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Definition 2.2 ([Or]). The rough M-number of the singularity (C, 0)
equals

M = (mult0C − 2) +
r∑

j=1

(
m̃jnj+1 . . . nr − 1−

⌊
m̃j

nj

⌋)
.

Lemma 2.2. If (x, y) is a fixed coordinate system then for a singular
curve of the form (2.2) we have M ≤ extν. The equality holds only when
n ≤ m = m1n2 . . . nr.

Proof. If n = ordx C ≤ m then clearly M = extν. Assume that 1 < m <
n and denote y1 = y − xm0(d0 + . . .). Inverting the expansion (2.2) we get
x = y

n1/m1
1

(
d′1 + . . . y

m̃2/m1n2
1

(
d′2 + . . .+ y

m̃r/m1n2...nr

1 (d′r + . . .) . . .
))

.

Let m1 > 1. Lemma 2.1 gives M = (m− 2) + (n1 . . . nr − 1− �n1/m1�) +∑
j≥2 (m̃jnj+1 . . . nr − 1− �m̃j/nj�) = extν − �n1/m1�.

If m1 = 1 then M = extν − (n−m).

We see that M < extν always when m < n. For example, for the curve
x = τ4, y = τ2 + τ5 we have extν = (4− 2) + (5− 1−�5/4�) = 5, and after the
change x̃ = y, ỹ = y2−x = 2τ7 + . . ., we find M = (2−2)+(7−1−�7/3�) = 3.

2.2. Two branches
Let the germ (C, 0) consists of two branches, C = A+B.
Let us fix the coordinate system, and let n(A) and n(B) be the x−orders

of A and B respectively, i.e.

A : x = τn(A), y = d1τ + d2τ
2 + . . .

B : x = ιn(B), y = e1ι+ e2ι
2 + . . .

(2.5)

Definition 2.3. The y−codimension ν = ν(A + B) of the singularity
(A+B, 0) is the number of conditions of the form di = 0, ej = 0 or di = ej that
appear in the definition of the equisingularity stratum (containing A+B) in the
space of germs of the form (2.5). The external codimension of this singularity
is

extν = (n(A) + n(B)− 2) + ν(A+B).

Remark 1. We can write

ν(A+B) = ν(A) + ν(B) + νtan(A,B),

where ν(A) and ν(B) are the y−codimensions of A and B, and the tangency
codimension νtan(A,B) is the number of conditions di = ej that do not result
from di = 0, ej = 0.

Note also that on writing the equations di = ej , we must properly choose
the branches of the rational powers xα; it is done in a way that the common
part of the Puiseux series for the two branches is the longest possible.
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Example 2.2. If A : x = τ4, y = τ6 + τ7 and B : x = ι6, y = 2ι9 + ι11

then ν(A) = 4 (as d1 = d2 = d3 = d5 = 0), ν(B) = 8 (as e1 = e2 = e3 = e4 =
e5 = e7 = e8 = e10 = 0) and νtan(A,B) = 1 (as e4 = d6).

If A is as before and B : x = ι6, y = ι9 + ι11 we have νtan(A,B) = 2.

Lemma 2.3. Consider the longest possible common part of the Puiseux
expansions of the branches A and B represented in the topologically arranged
form

y = xl1/k1

(
f1 + . . . xl̃2/k1k2

(
f2 + . . .+ xl̃s−1/k1...ks−1 (fs−1 + . . .) . . .

))
,

(2.6)

gcd(l̃j , kj) = 1, and let the next terms be CA,Bx
ls/k1...ks , ls = l̃1k2 . . . ks + . . .+

l̃s, CA �= CB. Then we have

νtan(A,B) =

(
s∑

i=1

⌊
l̃i − 1
ki

⌋)
+ s− 1.

Proof. Firstly we note that in the above it is possible that k1 = 1 or
ks = 1. The vanishing essential coefficients in (2.6), i.e. those before xl/k1 ,
l < l1, or before xl/k1k2 , l < l1k1, etc., are not counted. The non-essential
coefficients (vanishing and non-vanishing) are taken into account. There are⌊
(l̃1 − 1)/k1

⌋
of them before xl1/k1 ,

⌊
l̃2/k2

⌋
=
⌊
(l̃2 − 1)/k2

⌋
of them between

f1 and xl̃2/k1k2 , etc. Finally we have s−1 essential coefficients f1, . . . , fs−1.

For now we leave a fixed coordinate system. We define the multiplicity
n = mult0C of a germ C = A + B as the order of the first nonzero term
in the Taylor expansion at 0 of the function F defining C. Choose a local
coordinate system x̃, ỹ such that ordx̃A = mult0A, ordx̃B = mult0B, thus
n(A) + n(B) = mult0C.

Definition 2.4. The rough M-number of the singularity (A + B, 0) is
defined by the formula

M = (ord0 C − 2) + ν(A) + ν(B) + νtan(A,B),

where ν(A) and ν(B) are the corresponding ỹ−codimensions.

2.3. Several branches
Let the curve (C, 0) consist of k branches, C = C1 + . . . + Ck. Denote

C ′ = C1 + . . .+ Ck−1.

Definition 2.5. If the coordinate system (x, y) is fixed, the y−codi-
mension and the external codimension of the singularity (C, 0) (with respect
to this system) are defined by

ν(C) = ν(C ′) + ν(Ck) + max
1≤j≤k−1

νtan(Cj , Ck),(2.7)

extν(C) =
(∑

n(Ci)− 2
)

+ ν(C),(2.8)



Complex algebraic curves III 535

where n(Ci) are the x−orders of Ci. We observe the recurrent relation

(2.9) extν(C) = extν(C ′) + extν(Ck) + max
1≤j≤k−1

νtan(Cj , Ck) + 2.

The rough M-number of the singularity (C, 0) is defined as

M = (mult0C − 2) + ν(C),

where mult0C is the multiplicity of C and ν(C) is the ỹ−codimension of C and
x̃, ỹ is the coordinate system such that ordx̃ Cj = mult0Cj . (This definition of
the rough M-number, as well as that from Definition 2.3, differs slightly from
a definition suggested by Orevkov in [Or]; see also Section 4.)

Proposition 2.1. extν(C) does not depend on the ordering of the bran-
ches C1, . . . , Ck.

Proof. It is sufficient to show that if we switch Ck−1 with Ck, the codi-
mension extν(C) does not change. We will use the following lemma, which
trivially results from Lemma 2.3.

Lemma 2.4. If A, B and C are three branches of one singular point
and we have νtan(A,C) < νtan(A,B) then νtan(A,C) = νtan(B,C).

Denote νrs = νtan(Cr, Cs). It is sufficient to prove the formula

max
j∈{1,...,k−2}
l∈{1,...,k−1}

νj,k−1 + νl,k = max
j∈{1,...,k−2}

l∈{1,...,k−2,k}
νj,k + νl,k−1,

which corresponds to the transposition (k − 1, k). If νk,k−1 is smaller or equal
to max νj,k and max νl,k−1, for j, l ≤ k − 2, we are clearly done. So assume
νk,k−1 > νk,j for all j ≤ k−2. Then, by Lemma 2.4, νk,j = νk−1,j . This proves
the proposition.

Example 2.3. If the branches Cj are smooth and pairwise transverse
then there are k − 2 conditions that C3, . . . , Ck pass through the intersection
C1 ∩ C2.

Remark 2. Formula (2.9) deserves special attention if Ck is a smooth
branch tangent to other branches. By (2.7), in turns out that (2.9) is still
valid, provided we define the external codimension of the smooth branch (at a
singular point) to be −1.

In [Or] Orevkov proposed the following

Conjecture 2.1. The sum of rough M-numbers of a rational curve C
in CP2 does not exceed the dimension of the space of such curves (modulo
Aut(CP2)), i.e. 3 degC − 9.
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Example 2.4. Consider the quasi-homogeneous curve

C0 : xq = yp,

where 1 < p < |q| and gcd(p, q) = 1. If q > p + 1 and p ≥ 2 then this
curve has two singular points, denoted by 0 and∞, with the rough M-numbers
M0 = p+ q− 3−�q/p� and M∞ = 2q− p− 3−�q/(q − p)�; thus M0 +M∞ =
3 degC0 − 6 − �q/p� − �q/(q − p)� ≤ 3 degC0 − 9. If q < 0, the curve has two
singularities with the sum of the rough M-numbers equal 3 degC0 − 8− �q/p�.

2.4. Subtle codimensions
The notion of the subtle codimension is very useful when we have a singu-

larity given in a parametric form, with fixed orders of branches. This happens,
for instance, when we are dealing with degeneracies at infinity. In fact, assume
a curve is given by a pair of polynomials x(t), y(t) of bidegree (p, q), (q > p,
q �= kp for k ∈ Z). Then at infinity not only the order of u(t) = x/y, but also
of w(t) = 1/y is determined by (p, q).

Definition 2.6. Let us fix two positive integers n andm, not necessarily
distinct. Consider the space Hn,m of germs of parametric curves of type

(2.10) x = τn y = τm + c1τ
m+1 + . . . , τ ∈ (C, 0).

Then, if a given unibranched singularity C can be written in the form (2.10),
we can consider the equisingularity stratum Hn,m(C) ⊂ Hn,m containing C.
By a subtle codimension ν′ (with respect to (n,m)) we mean codimHn,m(C) ⊂
Hn,m.

Remark 3. The subtle codimension for one branch can be expressed
by the codimension by the obvious formula

(2.11) ν′ = ν −
(
m− 1−

⌊
m− 1
n

⌋)
.

Remark 4. If C is presented in the form

y = xm/n + c1x
(m+1)/n + . . .

then ν′ counts the vanishing essential Puiseux term in this expansion.

Now let us try to extend the definition of the subtle codimension to the
case of singularities with more branches. Similarly as in previous subsections,
we have first to define the subtle tangency codimension.

Let A and B be two branches of a singularity parametrised similarly to
(2.5):

A : x = τn(A), y = d0τ
m(A) + d1τ

m(A)+1 + d2τ
m(A)+2 + . . .

B : x = ιn(B), y = e0ι
m(B) + e1ι

m(B)+1 + e2ι
m(B)+2 + . . . ,

(2.12)

where e0d0 �= 0.
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Definition 2.7. The subtle codimension ν′ = ν′(A + B) (with respect
to n(A), n(B), m(A) and m(B)) of the singularity (A + B, 0) is the number
of conditions di = 0, ej = 0 (i, j ≥ 1) and di = ej (i, j ≥ 0) that appear in
the definition of the equisingularity stratum of A + B in the space of germs
(2.12). The subtle tangency codimension is the number of conditions of the
form di = ej that do not result from di = 0 and ej = 0. In other words

(2.13) ν′tan(A,B) = ν′(A+B)− ν′(A)− ν′(B)

The subtle tangency codimension influences the intersection index of bran-
ches A and B as it has already been shown in [BZ1].

Example 2.5. If n(B)m(A)− n(A)m(B) �= 0 the intersection index of
the branches A and B does not depend on e’s and d’s, provided d0e0 �= 0. The
subtle tangency codimension is then equal to 0.

The following lemma is a direct consequence of Definition 2.7

Lemma 2.5. If n(B)m(A)− n(A)m(B) = 0 and we consider the com-
mon part of the Puiseux expansions of A and B

(2.14) y = c0x
m(A)
n(A) + c1x

m(A)+1
n(A) + · · ·+ csx

m(A)+s
n(A)

then the subtle tangency codimension is the number of essential terms in (2.14).

Now we are ready to define the subtle codimension for singularities of
arbitrary number of branches. The formula is recursive as in Definition 2.5.

Definition 2.8. Let C = C1 + · · · + Ck be a singular point with k
branches and C ′ = C1 + · · ·+ Ck−1. The subtle codimension of C is

ν′(C) = ν′(C ′) + ν′(Ck) + max
1≤j≤k−1

ν′tan(Cj , Ck).

The arguments of the proof of Proposition 2.1 are valid also in the subtle
case. Hence the subtle codimension is well–defined.

Remark 5. The notion of the subtle codimension of multiple branches
is, at the first insight, quite artificial. However it turns out to be very useful in
the estimates. One can compare for example Proposition 2.11, and 2.17 from
[BZ1] in which the subtle codimension plays a crucial role.

2.5. Parametric lines
A general rational curve C in the affine plane can be written in the form

x = ϕ(t), y = ψ(t) with rational functions ϕ, ψ. Let s1, . . . , sM be the poles of
the vector–valued function ξ(t) = (ϕ, ψ) (t) and let

(
p(1), q(1)

)
, . . .,

(
p(M), q(M)

)
be the corresponding orders of poles, i.e. max

(
p(j), q(j)

)
> 0 for each point sj .

Usually, we consider a whole space Curv of such curves with fixed positions
and order of poles.

The curves can be transformed using:
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• changes of the parameter t,
• Cremona transformations of the plane.

Therefore some restrictions onto the above data
(
sj , p

(j), q(j)
)

are imposed. We
describe them in two cases, considered in [BZ1] and [BZ2].

In this subsection we consider (topological) immersions of C (or the para-
metric lines), thus

M = 1.

So we set s1 = ∞ and hence ϕ and ψ are polynomials of degree p and q,
respectively. Applying elementary transformations of the form (x, y+P (x)) or
(x + Q(y), y) we can assume that either ψ(t) ≡ 0 (further we do not consider
this case), or

(2.15) 0 < p < q, q/p �∈ Z.

Such curves form an affine space Curv = Curvp;q. The changes t → αt + β,
x→ γx+ δ, y → εy + P (x), degP ≤ �q/p�, generate the group of equivalences
Eq = Eqp;q which acts on Curv. The dimension of the space Curv/Eq is

(2.16) σ := dimCurv − dimEq = p+ q − 4− �q/p� .
(We do not consider the problem of existence and of structure of this quotient).

Note that, because of the choice (2.15), we distinguished a coordinate
system (x, y). A curve ξ ∈ Curv, ξ(t) = (tp + . . . , tq + . . .), has its Puiseux
expansion at infinity

y = xq/p + c
(∞)
1 x(q−1)/p + . . .

Definition 2.9. The external codimension extν∞ = extν∞(C) of the
degeneration at t =∞ is the number of vanishing essential Puiseux coefficients
cj = c

(∞)
j in the latter expansion. In other words this is the subtle codimension

of C at infinity (see Remark 4). We shall also use the notation extνinf = extν∞.

Note that the finite dimensional space Curv contains non-primitive curves
(or multiply covered curves), i.e. the curves ξ of the form ξ(t) = ξ̃◦ω(t), where ξ̃
is a polynomial immersion of C into the plane and ω : C→ C is a polynomial of
degree > 1. Such curves have singularities of infinite codimension. We denote
by Mult the subspace of non-primitive curves (in [BZ1] it was denoted by Σsin

∞ ).
We have the following

Conjecture 2.2. For any non-primitive curve from Curvp;q the sum of
external codimensions of its singularities does not exceed σ + 1.

The equality can hold only for curves of the form x =
∏

(t−tj)nj , y =
∏

(t−
tj)mj ψ̃(t), mj , nj > 0 after putting the self-intersection point to x = y = 0.

Example 2.6. (a) The space Curvp;q, gcd(p, q) = 1, contains the quasi-
homogeneous curve ξ0 : x = tp, y = tq, and the curves equivalent to it. For
this curve we have extν∞ = 0 and extν0 = p+q−3−�q/p� and that is larger than
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σ. The latter fact can be explained by the property that C0 = ξ0(C) is invariant
with respect to a one parameter subgroup of the group of automorphisms of
C2.

(b) Consider the curve x = t2(1− t)6, y = t2(1− t)8(1+2t) from Curv8;11.
Near t = 0 we have x = t2(1− 6t+ . . .) and y = t2(1− 6t+ . . .), so c1 = c3 = 0.
Near s = 1 − t = 0 we have x = s6(1 − 2s + . . .) and y = 3s8(1 − 8

3s + . . .)
and hence c1 = c2 = c3 = c4 = c5 = c7 = c9 = 0. It follows that extν0 =
(2 + 6− 2) + 2 + 7 = 15, whereas σ = 14.

Remark 6. In [BZ1] we proposed a stronger conjecture:
∑
extνz ≤ σ

(see Conjecture 3.7 in [BZ1]). We classified the parametric lines with b1 = 1
under the latter hypothesis. Example 2.6 shows that the latter conjecture is
not true. But it turns out that no new curves obeying Conjecture 2.2 arise in
this classification.

Namely, the case with x = tα(1 − t)β, y = tγ(1 − t)δψ̃(t) is treated in
[BZ1] separately; especially when deg ψ̃ = 1. Some slight improvement in that
analysis shows that there are no new cases of lines with one self-intersection.

2.6. Parametric annuli : M = 2
(We follow [BZ2].) Assuming the poles to be at t = 0 and t = ∞ the

components ϕ, ψ are Laurent polynomials

(2.17) ϕ = tp + α1t
p−1 + . . .+ αp+rt

−r, ψ = tq + β1t
q−1 + . . .+ βq+st

−s.

If we apply a suitable Cremona transformation and, possibly, change t → 1/t,
we can assume that the curve is of one of the following four types.

Definition 2.10. A curve given by (2.17) is of type
(
+
+

)
if

0 < p < q, 0 < r < s gcd(r, s) ≤ gcd(p, q) min
(
q

p
,
s

r

)
�∈ Z;

the curve is of type
(−+
+−
)

if

0 < q < p, 0 < r < s, and p+ r ≤ q + s;

it is of type
(−
+

)
if

0 < −r ≤ p, q > 0, s > 0, and
q

p
�∈ Z;

it is of type
(−
−
)

if

0 < −r ≤ p, 0 < −q ≤ s, and p+ r ≤ q + s.

Graphically we can present these types like that
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q s

p r

0

Type
(
+
+

)
:

q s

p r

0

Type
(
+−
−+

)
:

q s

p −|r|

0

Type
(
+
−
)
:

−|q| s

p −|r|

0

Type
(
+−
−+

)
:

The dimension of the space Curv/Eq equals

(2.18) σ := dimCurv/Eq = p+ r + q + s− 1− ε− k,

where ε = 2 for type
(
+
+

)
and type

(−+
+−
)
, ε = 1 for type

(−
+

)
and ε = 0 for type(−

−
)

and k := min
(⌊

q
p

⌋
,
⌊

s
r

⌋)
for type

(
+
+

)
, k :=

⌊
q
p

⌋
for type

(−
+

)
and k = 0 for

types
(−+
+−
)

and
(−
−
)
.

Definition 2.11. We define extν0 and extν∞ exactly like in Defini-
tion 2.9, i.e. via the Puiseux expansions y = y(x) at t → 0 and at t → ∞.
So extν0 (resp. extν∞) is the subtle codimension of the branch of C as t → 0
(resp. t → ∞). If the two branches of C intersect at infinity, the tangency
codimension νtan is defined to be the subtle tangency codimension (see Defini-
tion 2.7) of two branches at infinity. In particular νtan = 0 if ps �= rq, or if the
two branches are disjoint. Finally we put

extνinf = extν0 + extν∞ + νtan.

as the external codimension of C at infinity. In short, extνinf is the sum of
subtle codimensions of all singularities of C that are located at the line at
infinity.

In [BZ2, Conjecture 2.40] we stated the following

Conjecture 2.3. For any non-primitive algebraic annulus of one of the
types described in Definition 2.10 the sum of external codimensions of its local
degenerations does not exceed σ = dimCurv/Eq.
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3. Bounds for the external codimensions

3.1. Regularity of sequences of Puiseux
The problem of estimating the sum of external codimensions of several

singular points of an affine rational curve can be reduced to the problem of
regularity of some sequences of regular functions on suitably defined spaces of
curves.

Definition 3.1. Let Z be a normal quasi-projective complex variety
and let f1, f2, . . ., fk ∈ C[Z] be a sequence of regular functions on Z. We say
that this sequence is regular at x0 ∈ Z if any fj , j ≤ k, is not a zero divisor
in the ring Ox0/(f1, · · · , fj−1). (Here Ox0 is the local ring of germs at x0 of
holomorphic functions on Z.)

Therefore each variety Vj = {f1 = · · · = fj = 0} has codimension exactly
j (if it is not empty). In particular, Vn+1 = ∅, n = dimZ, and we can assume
that k ≤ dimZ + 1.

In the standard definition of regular sequence, see [GrHa], one requires that
the number of functions equals dimZ and that the fj belong to the maximal
ideal of Ox0 . In the sequel we shall assume that either all fj vanish at x0 or
that f1(x0) = · · · = fk−1(x0) = 0 �= fk(x0).

The role of the space Z in Definition 3.1 will be played by several spaces
of the form

(3.1) Z = Curv \Mult ,

where Curv is a space of curves ξ = (ϕ(t), ψ(t)) of given form and Mult denotes
the subspace of Curv consisting of non-primitive curves.

For example, when we want to estimate extν0 for a cuspidal singularity at
t = 0 of a parametric line then we take

(3.2) Curv = {ϕ = ant
n + . . .+ apt

p, ψ = b1t+ . . .+ bqt
q : anapbq �= 0} ,

i.e. with fixed the x−order at t = t0 = 0. When estimating the external
codimensions of a collection of cuspidal singularities, we take

(3.3) Curv =
{
ϕ =

∫ t

0

∏
(τ − ti)ni−1dτ, ψ = b1t+ . . .+ bqt

q

}
,

where ti �= tj for i �= j and bq �= 0. To deal with a self-intersection of several
local branches we use the space

(3.4) Curv =
{
ϕ =

∏
(t− tj)nj · ϕ̃(t), ψ = t

∏
(t− tj) · ψ̃(t)

}
,

where ti �= tj for i �= j, ϕ̃, ψ̃ are polynomials and ϕ̃(ti) �= 0.
It is easy to generalize the definition of the space Curv in the cases of para-

metric annuli and/or with several simultaneous cuspidal and self-intersection
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singularities. Note that when generalizing the space (3.3) to the case with Lau-
rent polynomials ϕ and ψ, i.e. when t0 = 0 and n0 < 0, we must ensure the
vanishing of the residuum at τ = 0 of the subintegral form in the formula for
ϕ in (3.3).

The space Curv is acted on by a suitable group Eq of equivalences, gener-
ated by rescalings of x, y, t and by corresponding elementary transformations,
like in Subsections 2.5 and 2.6. The subspace Mult is invariant with respect
to this action, so Eq acts on Z.

The role of functions fj : X → C in Definition 3.1 is played by functions
obtained from the Puiseux coefficients c(j)i in the Puiseux expansions

y = yj = c
(j)
1 (x− xj)1/nj + c

(j)
2 (x− xj)2/nj + . . .

of local branches of the curve C at points (xj , yj) = ξ(tj) (also for tj =∞).
For cuspidal singularities we consider so-called admissible sequences of es-

sential Puiseux coefficients ci = c
(j)
i , which obey the following rule:

Condition 3.1. If cj0n′ , n′ = n/n′′ < n, j0 �= 0 (mod n′′), belongs
to this sequence then also all the coefficients ci, i < j0n

′, i �= 0 (mod n′′) or
i = jn′, j �= 0 (mod n′′), stay in the sequence before cj0n′ .

For example, if n = 6 then the sequence (c1, c2, c3, c5, c7) is admissible, but
the sequence (c1, c2, c5, c7, c9) is not admissible.

The tangency quantities c(A)
i −c(B)

j for an intersection of two local branches
A and B are ordered in natural way, by the degree of the corresponding Puiseux
monomials.

It is easy to see that the coefficients c(j)i , treated as functions of (a, b),
a = (an, . . . , ap), b = (b1, . . . , bq) in (3.2) are bi–homogeneous with respect to
the changes (a, b)→ (λa, μb), λ, μ ∈ C∗ and take the form

c
(j)
i = ĉ

(j)
i · α−κij

j ,

where αj is the leading coefficient in the Taylor (or Laurent) expansion of ϕ
at tj , ϕ = xj + αj(t − tj)nj + h.o.t., κij are positive rational exponents and
ĉ
(j)
i = ĉ

(j)
i (a, b) are polynomials, linear in b and homogeneous in a. Namely, the

modified Puiseux quantities ĉ(j)i are the functions fm ∈ C[Z] from Definition 3.1.
Also the tangency quantities c(A)

i − c(B)
j can be modified in a similar fashion.

We have the following interpretation of the conjectures from Section 2.

Proposition 3.1. Conjecture 2.2 would follow from the following hy-
pothetical properties:

(a) If ξ ∈ Curv are not of the form

(3.5)
(∏

(t− tj)nj ,
∏

(t− tj) · ψ̃(t)
)

then any admissible sequence f1, . . . , fk, which consists of modified essential
Puiseux quantities of local branches at ti and/or modifies tangency quantities,
is regular at points of a suitable space Z = Curv \Mult of parametric lines.



Complex algebraic curves III 543

(b) If ξ’s are of the form (3.5) then for any sequence f1, . . . , fσ+2 as above,
σ = dimZ/Eq, and for any z0 ∈ Z, either the subsequence f1, . . . , fσ+1 is
regular at z0 or f1(z0) = . . . = fσ+1(z0) = 0 but fσ+2(z0) �= 0.

Proposition 3.2. Conjecture 2.3 would follow from the following hy-
pothetical property :

Any admissible sequence f1, . . . , fk, as above is regular at points a of suit-
able space Z = Curv \Mult of parametric annuli.

If a sequence f1, . . . , fk is regular at points of Z then the maximal codimen-
sion of the varieties Vj = {f1 = . . . = fj = 0} does not exceed σ = dimZ/Eq.
Sometimes this maximal codimension is smaller than σ.

Example 3.1. Let p = 4, q = 6. Here the space of curves can be
identified with (C6 \ 0)/C∗ via the representation ϕ = t4 + a3t

3 + a2t
2 + a1t,

ψ = t6+b3t3+b2t2+b1t and a suitable action of C∗ stemming from the dilations
of t. Thus σ = dimCurv/Eq = 5. The subspace Mult consists of primitive
curves of the form ϕ = ω2 + a2ω, ψ = ω3 + b2ω, ω = t2, and has codimension
4.

One can calculate the first topologically essential Puiseux quantities at
infinity: c(∞)

1 = c1 = −3
2a3, c3 = b3− 3

2a1, c5 = b1 + 3
24a1a2, c7 = a1(b2− 3

4a
2
2),

c9 = − 1
16a

3
1. We see that the equalities c1 = c3 = . . . = c9 = 0 lead to

a1 = b1 = b3 = a3 = 0, i.e. we land in the subspace Mult of non-primitive
curves. The variety {c1 = c3 = c5 = c7 = 0} consists of two components: Mult
and a subvariety V (of codimension 4) such that c9|V �≡ 0.

We have not found any example with similar behavior of the Puiseux
quantities associated with finite singularities.

3.2. Conjectures 2.2 and 2.3
Let us present our heuristic arguments behind Conjectures 2.2 and 2.3.

We begin with the case of parametric lines with cuspidal singularities.
Our initial idea was to use induction with respect to the number of critical

points of ϕ. The case with one critical point corresponds to ϕ = tp. Then
the coefficients bi, i �= 0 (mod p), in ψ = b1t+ . . . play the role of the Puiseux
coefficients c(0)i . The maximal intrinsic codimension of this singularity is νmax =
q−1−�q/p�, i.e. when gcd(p, q) = 1. It corresponds to extν = p+q−3−�q/p� =
σ + 1, σ = dimCurvp,q/Eqp,q.

Suppose that ϕ =
∫ t

0
τn−1(τ − t1)m−1dτ , n + m = p + 1, i.e. with two

critical points. Let us look what happens in the limit t1 → 0. One can expect
that fi ∼ tθi

1 · fi|t1=0, where fi|t1=0 are some modified Puiseux quantities of
the limiting curves; unfortunately, we do not have any rigorous proof of this
statement. The codimensions ν0 and ν1 should then satisfy ν0 + ν1 ≤ νmax.
Therefore, before the limit we should have extν0 + extν1 = (n+ ν0− 2) + (m+
ν1− 2) ≤ (p+ 1)− 4 + (q− 1−�q/p�) = σ. It is smaller than extν in the limit.

However, when we try the same with ϕ = tn(t−t1)m, n+m = p, where the
parameters t0 = 0 and t1 correspond to a double point of C and t1 → 0, then
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the same counting of codimensions gives extν0 = (n+m−2)+(ν0+ν1 +νtan) ≤
(p− 2) + (q− 1− �q/p�) = σ+ 1 before the limit. It is the same as extν in the
limit.

These examples suggest that collapsing of several critical points of ϕ (some
of which may be not singular for ξ) results in increasing of the sum of external
codimensions by 1, while collapsing of several branches of self-intersection of C
to a cuspidal singularity does not change the sum of external codimensions.

If one can apply several times the procedure of collapsing of critical points
then the sum of external codimensions should be even smaller that σ. For
example, elementary calculations show that, if a polynomial curve of the bi-
degree (p, q) = (5, 6) has four cuspidal singularities then

∑
extνj = 4, while

σ = 6.
In the case of parametric annuli it looks as if any collapsing of a self-

intersection can be preceded by a collapse of some critical points (maybe to
t = ∞). Also in the case of several self-intersection points it seems that the
collapsing of some such self-intersection to a cuspidal singularity can be pre-
ceded by a collapse of critical points.

3.3. Determinants and rigidity
Consider a cuspidal singularity at t = 0. For simplicity assume that n =

ord0 ϕ is prime. We have

ϕ = tn(α0 + . . .+ αp−nt
p−n)

and the essential Puiseux coefficients are ci = c
(0)
i , i �= (mod n). If the initial

ν = l(n − 1) + ρ, 0 ≤ ρ ≤ n − 2, of these coefficients vanish then we have the
representation

(3.6) ψ = d1ϕ+ . . .+ dlϕ
l +O(tq0+1), q0 = nl + ρ,

near t = 0. If ψ is a polynomial of degree q, which we assume ≤ q0, then we
get q0 − q conditions for vanishing of the coefficients

bq+1, . . . , bq0

in the Taylor series
∑
bjt

j of the polynomial d1ϕ(t) + . . . + dlϕ
l(t). Then ψ

equals the part of degree ≤ q of the latter polynomial. The coefficients bj are
functions of the coefficients α = (α0, . . . , αp−n) and d1, . . . , dl, moreover, they
are linear in dj ’s. The distinguished coefficients bi do not depend on dj for
j ≤ l0 = �q/p�; we denote d = (dl0+1, . . . , dl).

We get a system of linear equations

(3.7) A(α)d = 0,

where A(α) is the matrix of coefficients aij(α) before dj in the expression for
bi. The system (3.7) has an obvious solution d = 0, but this corresponds to a
multiply covered curve ξ = (ϕ, 0). We are interested in the solutions such that
d �= 0 and we arrive to the condition

(3.8) rankA(α) < l − l0.
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This condition defines a system of algebraic equations on α. If l−l0 ≤ q0−q
(which usually occurs) then (3.8) is equivalent to the vanishing of (q0−q)−(l−l0)
minors of the matrix A(α). The conditions (3.7) and (3.8) for q0 − q not too
small constitute very rigid conditions onto the curves; usually their solution
consists of isolated points in the space Z/Eq. They do not allow deformation
of curves with given codimension ν.

Since we consider only non-primitive curves, we should avoid solutions α
to (3.8) which correspond to composed polynomials ϕ, ϕ = ϕ̃ ◦ ω for ω =
tn + . . ., and such that the kernel of A(α) consists of d’s which define composed
polynomials, ψ = ψ ◦ ω.

Example 3.2. Let n = 2 and p = 3, i.e. ϕ = t2 + t3 (after normaliza-
tion). Assuming q0 = 9, i.e. c1 = c3 = . . . = c9 = 0 and ν = 5, and q = 8, we
get one equation b9 = 0 for the coefficient before t9 in d3ϕ

3(t) + d4ϕ
4(t).

If we assume q = 7 then we get two conditions b8 = b9 = 0. For q = 5
we get four conditions b6 = . . . = b9 = 0 for d2ϕ

2 + d3ϕ
3 + d4ϕ

4. It is easy to
check that in the latter two cases the only solution is d = 0.

We have the following observation.

Lemma 3.1. Let ϕ = t2 + t3. Then the problem of regularity of the
sequences c1, c3, . . . , c2ν+1 for complex polynomial lines can be reduced to the
same problem in the class of polynomial curves (ϕ, ψ) with real coefficients.

The same holds true when ϕ =
∫
τn−1(τ−1)m−1dτ with two critical points

or ϕ = tm(t− 1)n.
Moreover, the statement holds also when ϕ = t2 + t3 and ψ is a Laurent

polynomial in t.

Proof. The first two statements follow from the reality of the matrix A(α).
When ψ = b−2st

−2s+. . .+bqtq, s > 0, the function ψ̃ = ψϕs is a polynomial
and the essential Puiseux coefficients for (ϕ, ψ̃) correspond to the essential
Puiseux coefficients for (ϕ, ψ). (Note that the case with odd ord0 ψ is trivial).
We consider polynomials χ(t) = d0 + d1ϕ+ . . .+ dlϕ

l (mod tq0+1) and add the
conditions χ(−1) = χ′(−1) = . . . = χ(s−1)(−1) = 0 to the system of bi = 0.
The reality of this new system is preserved.

In the representation (3.6) we assumed that n is prime. If n is not prime
we can use an analogue of the representation (3.6) with rational powers of ϕ.

Also an analogous expansion can be used to study the Puiseux and tan-
gency quantities at a self-intersection, e.g. when ϕ = tn(t−t1)m(α0+. . .+αut

u).
When we consider sequences consisting of several singular points the situ-

ation becomes more complex and we omit its discussion.

3.4. The argument principle
It is easy to check the validity of Conjectures 2.2 and 2.3 for curves with

low degree (Laurent) polynomials ϕ, ψ. But when at least one of these degrees
is unbounded the problem becomes very difficult. Therefore the following result
should be interesting.
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We consider curves ξ with ϕ = 3t2 − 2t3, which has two critical points
t = 0 and t = 1 with the critical values ϕ = 0 and ϕ = 1 respectively. Let us
define the algebraic function t(x) by

2t3 − 3t2 + x = 0.

It has three branches t1(x), t2(x) and t3(x). Assume that t1 < t2 < t3 when
0 < x < 1. As x tends to the critical value x = 0 the branches t1(x) and
t2(x) tend to the critical point t = 0; as x tends to the critical value x = 1 the
branches t2(x) and t3(x) tend to the second critical point t = 1. As x moves
along a small loop around x = 0 (in the complex x−plane) the points t1(x) and
t2(x) turn around t = 0 (two times slower) and finally exchange their positions.
Analogously, as x moves along a small loop around x = 1 the points t2(x) and
t3(x) turn around t = 1 and finally exchange their positions. Therefore the
functions t1(x) + t2(x), t1(x)t2(x) and t3(x) are analytic near x = 0 and the
functions t2(x) + t3(x), t2(x)t3(x) and t1(x) are analytic near x = 1.

We note the following relations between the codimensions of singularities
and certain invariants of some algebraic functions:

(i) the codimension of the cuspidal singularity at t = 0 equals ν0 =
ordx=0 χ12(x), where

χij(x) =
ψ(ti)− ψ(tj)

ti − tj ;

(ii) the codimension ν1 at t = 1 equals ordx=1 χ23;
(iii) the tangency codimension of a self-intersection ξ(ti(x∗)) = ξ(tj(x∗))

equals νtan = ordx=x∗ χij − 1;
(iv) sometimes we shall use interpretation of ν0 as 1

2 (ordz=0 η12(z) − 1),
where

ηij(z) = (ψ ◦ ti − ψ ◦ tj) |x=z2 ,

and analogously we shall interpret other invariants.
We distinguish the following cases:

1. ψ ∈ C[t] and we estimate ν0;
(in the sequel cases we assume ψ ∈ C[t, t−1])

2. estimation of ν0 and of ν1 for ψ ∈ C[t, t−1];
3. estimation of ν1 + ν2;
4. estimation of νtan + ν0 where νtan is the codimension of the self-inter-

section ξ(t1) = ξ(t2) of two smooth branches;
5. estimation of νtan for the self-intersection ξ(t1) = ξ(t3);
6. estimation of the sum of νtan for two self-intersections ξ(t1) = ξ(t2)

and ξ(t2) = ξ(t3) and for a triple self-intersection (here we can add ν0 + ν1 to
this sum);

7. remaining cases.

Theorem 3.1. Let ϕ = 3t2 − 2t3. Then Conjectures 2.2 and 2.3 hold
true in the cases 1–6 above for the class of curves where ψ is a real Laurent
polynomial with fixed orders at t = 0 and t =∞.
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Remark 7. If ϕ ∈ C[t] has degree p = 1, the curve is smooth. If p = 3
then an analogue of Theorem 3.1 is elementary. Also the case with ϕ = (t−t0)3

is trivial.

Remark that, by Lemma 3.2, the restriction of reality of ψ(t) can often be
skipped.

In the next section we prove some general bounds for the codimensions.
For the polynomial curves they are of the form ≤ p+ q+R (see Theorem 4.2),
where R is the number of double points of the curve. So for fixed p and q
and large R (note that R can be quadratic in p and q) they are far from being
effective, whereas Theorem 3.1 is very effective (but restricted).

Proof of Theorem 3.1. In the proof we shall use the argument principle
to estimate multiplicity of a zero w0 of certain holomorphic function f by
the increment of arg f along a contour Γ which surrounds w0. This idea was
successfully used by G. Petrov [Pet] in estimating zeroes of Abelian integrals
and its subsequent application to the weakened XVIth Hilbert problem. Also
C. Christopher and S. Lynch [ChLy] used it to solve the case 1 from the above
list (below we repeat their arguments); they applied this bound to the problem
of limit cycles for the Liénard equation (see also Section 5).

Consider the case 1. The polynomial ψ, of degree q �= 0 (mod 3) has the
representation

(3.9) ψ(t) = ψ0(x) + tψ1(x) + t2ψ2(x),

where degψ1 ≤
⌊

q−1
3

⌋
and degψ2 ≤

⌊
q−2
3

⌋
. We consider the function χ12 =

ψ1(x)+(t1 + t2)ψ2(x). It is an algebraic function of x, holomorphic near x = 0.
In fact, χ12 is single valued in the domain

D = C \ {x ≥ 1} .
We estimate the ord0 χ12 by the number of zeroes of χ12 in the domain D.
Like in [Pet] we consider the increment of the argument of χ12(x) as x varies
along the following contour Γ in D: Γ consists of a large circle {|x| = R} (in the
positive anticlockwise direction), of a small circle {|x− 1| = r} (in the opposite
direction) and of two segments of the cut {x ≥ 1} (from x = 1 + r to x = R).

The increment of argχ12 along the small circle tends to zero with r → 0,
when χ12(1) �= 0, and is negative otherwise. The increment of argχ12 along
the large circle is bounded by

(3.10) 2π ·max
(⌊

q − 1
3

⌋
,

⌊
q − 2

3

⌋
+

1
3

)
.

Using the reality of χ12(x) for 0 < x < 1, we find that the values of χ12

at the upper and at the lower ridges of the cut {x ≥ 1} are conjugate one to
another. It implies that the increase of argχ12 along the two straight segments
is bounded by 2π times the number of zeroes of the imaginary part of χ12 plus
1. But

2i Imχ12(x) = (t2 − t3)ψ3(x)
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where t3(x) = t̄2(x) �= t2(x) for x > 1. So the corresponding Δ argχ12 is
bounded by

2π ·
(⌊

q − 2
3

⌋
+ 1
)
.

Summing up the above we get ord0 χ12 ≤ 2k if q = 3k + 1 and ≤ 2k+ 1 if
q = 3k + 2. Therefore ν0 ≤ σ = p+ q − 4− �q/p�, as expected.

Consider the case 2. Recall that ψ has pole at t = 0; we can assume that
its order is even, equal 2s (otherwise there is no degeneration).

Of course, we cannot use the representation (3.9). But we have the identity

t−3 =
3
x
t−1 − 2

x
.

It implies that t−2s = f−2( 1
x )t−2 + f−1( 1

x )t−1 + f0( 1
x ), where deg fi ≤ s − 1

and deg f−2 = s− 1. Representing ψ as (g0(x) + tg1(x) + t2g2(x)) · t−2s, with
deg g0 ≤

⌊
q+2s

3

⌋
, deg g1 ≤

⌊
q+2s−1

3

⌋
, deg g2 ≤

⌊
q+2s−2

3

⌋
, we obtain

ψ = ψ−2(x)t−2 + ψ−1(x)t−1 + ψ0(x), ψi = ψ̃i(x)/xs−1,

where ψ̃i are polynomials with precise bounds for their degrees and ψ̃−2(0) �= 0.
As in the case 1, in order to bound ν0, we estimate the order at x = 0 of

the function

χ̃12(x) = t1t2 · χ12 = (t−1
1 + t−1

2 )ψ−2 + ψ−1.

The further proof runs like in the case 1. In fact, we must more carefully control
the argument of χ12; the cases when ord∞(t−1

1 + t−1
2 )ψ−2 is greater or smaller

than ord∞ ψ−1 should be considered separately.
Of course, to estimate ν1 we use the function χ̃23.

Consider the case 3. If the both points t = 0 and t = 1 are singular then
ψ′ = −6t(t− 1)ψ̃, where

ψ̃ =
dψ

dϕ

is a polynomial when ψ is a polynomial. The Puiseux expansions at t = 0 and
t = 1 of the curve (ϕ, ψ̃) are directly related with the corresponding Puiseux
expansions of the curve (ϕ, ψ). After applying several times this trick we reduce
the problem to the case with one singular point.

But there exists another proof which works also when ψ is a Laurent poly-
nomial. Consider the function η12(z) = (ψ(t1)− ψ(t2))(z2). It is meromorphic
(or holomorphic) near z = 0 and has singularities at z = −1 and z = 1. So it
is meromorphic in the domain

E = C \ ({z ≤ −1} ∪ {z ≥ 1}).
Let Λ be the contour in E consisting of: two large half-circles in {|z| = R} (in
positive direction), two small circles around z = −1 and z = 1 (in negative
direction) and four straight segments along the cuts {z ≤ −1} and {z ≥ 1}.
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Assume that ψ is a polynomial. Let ζ0 (respectively ζ1) be the number
of zeroes of the function ψ(t1)− ψ(t2) (respectively ψ(t2)− ψ(t3)) in the open
half-line {x < 0} (respectively {x > 1}). We have 2ζ0 + 2ν0 + 1 ≤ ΔΛ arg η12
(the increment along Λ).

The increment of arg η12 along {|z| = R} is estimated via degψ and the
increments along the small circles are neglected (or negative). The increment of
arg η12 along each of the two cuts is bounded by 2π times 1 plus the number of
zeroes of the function η23 in the open cut (deprived of the endpoint). Therefore

(3.11) 2ζ0 + 2ν0 + 1 ≤ 2 · (q/3) + 2(ζ1 + 1)

(see (3.10)). The same analysis applied to η23 gives

2ζ1 + 2ν1 + 1 ≤ 2 · (q/3) + 2(ζ0 + 1).

The both inequalities yield ν0 + ν1 ≤ 2 · (q/3) + 1. Since �2q/3 + 1� = σ + 1,
we must estimate more carefully the increment of the argument along the cuts
(like in the end of the case 2); for example, if q = 3k + 1 then the inequality
(3.11) is replaced with 2ζ0 + 2ν0 + 1 ≤ 2(k + 1/3) + 2(ζ1 + 1/3).

In the case of Laurent polynomial ψ we have to replace 2ν0 + 1 with
2ν0 + 1− 2s, where 2s = − ord0 ψ.

Consider the case 4. Recall that the tangency codimension νtan of the self-
intersection ξ(t1(x∗)) = ξ(t2(x∗)) equals the order at x∗ of the function χ12(x).
Recall that x∗ �= 0, 1. If x∗ �∈ {x > 1} then we estimate ordx∗ χ12 like in the case
1. Moreover, the same proof allows to estimate the sum ordx∗ χ12 + ord0 χ12.
If x∗ > 1 then we modify the contour Γ from the case 1 by adding two small
half-circles in {|x− x∗| = r} in the opposite direction. The increment of the
argument of χ12 along these half-circles equals − ordx∗ χ12.

Note that when x∗ is not real we cannot use Lemma 3.1 to guarantee that
ψ(t) has real coefficients; here the assumption of reality of ψ in Theorem 3.1 is
essential.

Consider the case 5. Of course, we use the function χ13. It is singular at
x = 0 and x = 1. So the domain D should be replaced with

D′ = C \ ({x ≤ 0} ∪ {x ≥ 1})
and the contour Γ should be suitably modified.

Consider the case 6. Assume that ξ(t1(x∗)) = ξ(t2(x∗)) and ξ(t2(x∗∗)) =
ξ(t3(x∗∗)). If x∗ �= x∗∗ then we have two double points of the curve C, oth-
erwise we have a triple self-intersection. We estimate ordz∗ η12 + ord−z∗ η12 +
ordz∗∗ η23 + ord−z∗∗ η23, z2

∗ = x∗, z2
∗∗ = x∗∗, like in the case 3.

Of course the same arguments allow to estimate ν0 + ν1 +
∑
νtan 12 +∑

νtan 23, where we sum over self-intersections ξ(t1) = ξ(t2) and ξ(t2) = ξ(t3).

Remark 8. This method does not allow to get a good estimate for the
sum of νtan for the simultaneous self-intersections ξ(t1) = ξ(t2), ξ(t1) = ξ(t3)
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and maybe ξ(t2)− ξ(t3). Note that for a generic such curve the sum of zeroes
of all the functions ψ(ti) − ψ(tj) is about the total number of double points,
i.e. ∼ q in the polynomial case.

It seems that there exists a whole class of problems, like 1–6 above, which
can be solved using the argument principle. Below we present one such gener-
alization.

Theorem 3.2. Let ϕ = 12
∫ t

0
τ (1 − τ )2 dτ and ψ be a polynomial of

degree q �= 0 (mod 4). Then ν0 ≤ q − �q/4�.
Proof. The function ϕ has two critical points t = 0 and t = 1 (of multi-

plicity 3) with the corresponding critical values x = 0 and x = 1. The equation
ϕ(t) = x has four solutions t1(x), . . . , t4(x), where t1(x) < 0 < t2(x) < 1 for
0 < x < 1. t1(x) and t2(x) collapse to t = 0 as x→ 0 and t2(x), t3(x) and t4(x)
collapse to t = 1 as x→ 1.

By Lemma 3.1 we can assume that the polynomial ψ is real. We write
ψ = ψ0(x) + tψ1(x) + t2ψ2(x) + t3ψ3(x). We have ν0 = ord0 χ12 = ψ1 + (t1 +
t2)ψ2 + (t21 + t1t2 + t22)ψ3.

As in the case 1 of the previous proof we reduce the problem to calculation
of the number of zeroes of the function Imχ12(x) at he cut {x > 1}. From
the monodromy properties of the algebraic branches tj(x) near x = 1 we find
2 Imχ12 = (t2 − t4) (ψ2 + (t1 + t2 + t4)ψ3) (here t3 > 1 and t2, t4 = t̄2 are
nonreal).

The function θ(z) = (ψ2 + (t1 + t2 + t4)ψ3) |x=1+z2 is holomorphic near
z = 0, but it may have singularities at z = −1 and z = e±πi/3. At each of
the latter points two branches t1 and tj collapse. It follows that only the point
z = −1 is singular for θ and we can repeat the argument principle argument to
estimate the number of zeroes of θ.

4. Resolution of singularities, splice diagrams and the BMY in-
equality

4.1. Dual graphs
Let (C, 0) be a (singular) germ of a curve at (C2, 0). Let

π : (V,D)→ (U,C),

U ⊂ (C2, 0), be the minimal resolution of the singularity at 0. Here D =
C̃ + E, where C̃ = π′(C) is the strict transform of C and E = E1 + . . . + Eu

is the exceptional divisor (with smooth components Ei � CP1 and normal
intersections). We associate with this resolution two weighted graphs ΓE , ΓE,C ,
called dual graphs.

The graph ΓE has u vertices corresponding to the divisors Ei and the
weight wi of a vertex Ei is the self-intersection index Ei · Ei = E2

i . The edges
[Ei, Ej ] correspond to the intersection points Ei ∩ Ej . It is clear that ΓE is
a tree graph. The valence vi of a vertex Ei equals to the number of edges
attached to Ei.
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The graph ΓE,C arises from ΓE by attaching to a vertex El an edge with
arrowhead vertex whenever a component C̃j of the curve C̃ intersects the divisor
El. The arrowhead vertices are labeled by Cj and the valences of vertices Ei

in ΓE,C are denoted by v̄i. Therefore v̄i − vi is the number of components of
C̃ intersecting Ei. The vertices with v̄i ≥ 3 are called branching vertices and
those with v̄i = 1 are called the ends.

Introduce the vector space

Vect(E) = QE1 ⊕ . . .⊕QEu

The dual graph ΓE encodes the intersection matrix A with entries Ei · Ej . It
is known that the discriminant

d(ΓE) := det(−A)

of ΓE equals 1. Since the quadratic form on Vect(E) defined by the matrix A
is non-degenerate, we can define three elements of Vect(E) :

• the canonical divisor KE , via the adjunction formula (KE +Ej) ·Ej =
−2,

• a representation of CE as a combination
∑
ajEj such that

∑
ajEj ·

Ek = CE · Ek, k = 1, . . . , u, and
• DE := CE +

∑
Ej = CE + E.

Proposition 4.1. The rough M-number of the singularity (C, 0), de-
fined in Section 2, equals

(4.1) M = KE · (KE +DE).

Remark 9. Orevkov in [Or] introduced the rough M-number as (KE +
DE)2 + μ, where μ is the Milnor number. As we shall see, this number agrees
with KE(KE +DE) in the case of cuspidal singularity. But already in the case

of simple double point with the dual graph C1 ←− E◦ −→ C2, E2 = −1, we find
that K = E, CE = −2E and μ = 1. Thus (KE +DE)2 + μ = 1, while M = 0.
Of course, the simple double point singularity has zero codimension.

Let us introduce also another invariant that was extensively used by [OZ1],
[OZ2] and [Or]

Definition 4.1. With the notation as above, let KE +DE = PE +NE

be the Zariski–Fujita decomposition of KE + DE (see [Fuj], [Or]). Here PE is
the numerically effective part and NE , the negative part of KE + DE . The
quantity

ηE = −N2
E ≥ 0

is called the excess of a singular point. The M–number (without a bar) is
defined to be ME = ME + ηE .
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We note also the following formulas equivalent to (4.1):

M = (KE +DE)2 + μ+ 1− CE · E,
M = (KE +DE)2 + 1 + CE ·KE .

They follow from the (arithmetic) genus formula 0 = pa(E) = 1
2E(KE +E) + 1

and from the following expression for the Milnor number

Lemma 4.1 ([Or]). We have μ = 1− CE(KE +DE).

We recall that for an algebraic curve C on an algebraic surface S its
arithmetic genus pa(C) := 1

2χ(OC) + 1 = 1
2 (h0(OC) − h1(OC)) + 1 equals

1
2C(KS + C) + 1. If C̃ is the normalization of C then pa(C) = pa(C̃) +

∑
δP ,

where δP is the number of double points at the singular point P ∈ C. In par-
ticular, if C is a connected union of m rational curves with r simple double
points as the only singularities then pa(C) = 1 − m + r = 1 − e(ΓC), where
e(ΓC) is the Euler characteristic of the dual graph of C. All this can be found
in [Har].

Let us pass to the proof of Proposition 4.1. The following lemma is Propo-
sition 4.1 from [OZ1] and is proved by induction with respect to the number of
blowing-ups.

Lemma 4.2 ([OZ1]). We have

(KE + E)2 + 2 =
u∑

i=1

(−bii)(vi − 2)

where bii are the diagonal elements of the matrix B = A−1 = (bij)i,j=1,...,n and
vi are the valences of vertices in ΓE.

It is easy to get the following

Lemma 4.3. If a component C̃j of C̃ intersects a divisor El, l = l(j),
then C̃2

j = bll.

Corollary 4.1. We have

KE(KE +DE) =
u∑

i=1

(−bii)(v̄i − 2)−
k∑

j=1

μ(Cj) = W (ΓE,C)−
k∑

j=1

μ(Cj),

where

(4.2) W (ΓE,C) =
∑

Ei:branching

(−bii)(v̄i − 2)−
∑

Ei:end

(−bii).

Proof. By Lemma 4.1 we can write μ(Cj) = −C̃j(KE + C̃j), where C̃j

are represented as combination of Ei’s. Therefore

KE(KE + E +
∑

C̃j) = (KE + E)2 − E(KE + E) +
∑

C̃j(KE + C̃j)−
−
∑

C̃2 = (KE + E)2 + 2−
∑

C̃2 −
∑

μ(Cj).
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But by Lemmas 4.2 and 4.3 we have(
(KE + E)2 + 2

)
−
∑

C̃2
j =

∑
(−bii)(vi − 2) +

∑
(−bii)(v̄i − vi).

From this the corollary follows.

Now our task is to calculate the entries bii.

Lemma 4.4. We have

bij = −d(Γij),

where d(Γij) is the discriminant of the subgraph Γij of ΓE obtained by deleting
the shortest path between the vertices Ei and Ej Ei and Ej being deleted. In
particular,

bii = −
∏

d(Γm),

where Γm are the connected components of ΓE − Ei.

Proof. Recall that the discriminant is the determinant of the minus inter-
section matrix. Therefore bij = ± det(−A′)ij/ det(−A) = ± det(−A′)ij where
A′

ij is obtained from A by deleting the i−th row and j−th column. Some
additional analysis gives the formula from the lemma.

4.2. Eisenbud–Neumann splice diagrams
The latter lemma justifies introduction of so-called splice diagram Δ de-

fined as follows:
• one replaces each linear chain in ΓE,C by an edge;
• one assigns to each end of an edge at a branching vertex in Δ a weight,

equal to the discriminant of the corresponding branch of ΓE,C at this vertex.

Example 4.1 ([EiNe]). For a cuspidal singularity C : y = xm1/n1(1 +
. . .+xm2/n1n2(1 + . . .+xmr/n1...nr (1 + . . .) . . .)) the splice diagram is presented
at the below figure with

(4.3) a1 = m1, aj = aj−1njnj−1 +mj =
j−1∑
i=1

(mini)(ni+1 . . . nj−1)2 +mj .

• ⊕1

•

a1

n1
⊕a2

n2

•

1 . . . ⊕ar

nr

1 �

•
Using the splice diagrams we can express the quantities (−bii) in Lemma

4.4 for the branching vertices:

(4.4) −bii = πi :=
∏

(weights of edges incident to Ei) .

Therefore it remains to calculate the quantities (−bii) for the boundary
vertices in ΓE,C . To this aim we use the following lemma whose proof is in
[OZ1, Lemmas 4.1, 4.2, 4.3, Corollaries 4.4, 4.5].
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Lemma 4.5 ([OZ1]). Let L be a linear extremal chain (twig) of a graph
Γ with vertices E1, . . . , Em such that Em is the end of Γ and E1 is connected
with Γ−L by an edge [E0, E1], where E0 is a branching vertex of Γ . . .

E0◦ − E1◦
− . . .− Em◦ . Then we have

d(Γ− L− E0) = d(Γ− Em)d(L)− d(L− Em).

Therefore, for Γ = ΓE with d(ΓE) = 1, we get
(4.5)

−bmm = d(Γ− Em) =
d(Γ− L− E0)

d(L)
+
d(L− Em)

d(L)
=
⌊
d(Γ− L− E0)

d(L)

⌋
+ 1.

(Note that 0 < d(L − Em)/d(L) < 1 and from this the latter identity
follows.)

Let em denote the weight of the end at E0 of the edge in the splice diagram
Δ corresponding to the twig L. Then we get d(Γ−L−E0) = π0/em, d(L) = em

(see Lemma 4.4) and hence

(4.6) −bmm = σm :=
⌊
π0/e

2
m

⌋
+ 1.

Thus (4.2) can be rewritten in the following form

(4.7) W (ΓE,C) =
∑

Ei:branching

(v̄i − 2)πi −
∑

Ei:end

σi.

Proof of Proposition 4.1. We use induction with respect to the number k
of components Cj of C. The case of irreducible curve C = C1 was considered
in [OZ1] and [Or].

Let now C = C1 + . . . + Ck has k > 1 branches. Assume that Ck

has the maximal order of tangency with Ck−1 (among all Ci’s). Let νtan =
νtan(Ck, Ck−1). By Definition 2.5 it suffices to prove the recursive formula

M(C) = M(C ′) +M(Ck) + νtan + 2,

where C ′ = C1 + . . .+Ck−1. Let Γ, Γ′, Γk denote the dual graphs of C, C ′ and
Ck respectively. The recursive formula for M is equivalent to

(4.8) W (Γ)−W (Γ′)−W (Γk) = νtan + 2.

Consider the splice diagram of the curve Ck−1 +Ck. It is of one of the two
types presented at the below figures (with a1 > n1). In the first case the first
difference between the Puiseux expansions of the two curves occurs in the term
xm̃1/n1...nr , with different and nonzero coefficients. In the second case the term
xm̃1/n1...nr is present in the expansion of Ck−1 but is absent in the expansion
of Ck.
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Δ0 ⊕ar

nr

1
1

����
����

•

Δk−1

Δk

Δ0 ⊕ar

nr

1
����
����

Δk−1

Δk

The splice diagram Δ of C1 + . . . Ck is obtained from the splice diagram of
Ck−1 + Ck by replacing some boundary edges by trees. Similarly, the diagram
Δ′ of C1 + . . .+ Ck−1 is obtained from the diagram for Ck−1 + Ck.

Now it is not difficult to see that the left-hand side of (4.8) equals

σr+1 + . . .+ σ2r+1 − π1 − . . .− πr =

=
(

1 +
⌊
n1

a1

⌋)
+
(

1 +
⌊
a1

n1

⌋)
+ . . .+

(
1 +

⌊
ar

nr

⌋)
− a1n1 − . . . ar−1nr−1,

where the vertices with indices r + 1, . . . , 2r + 1 are the bold vertices in the
diagram from Example 4.1. Using the recursive formulas (4.3) for aj we find
that this expression equals

∑⌊mj

nj

⌋
+ r + 2 = νtan + 2 (see Lemma 2.3).

We end up this subsection by providing a way to compute ηi in terms of
the Eisenbud–Neumann diagram.

Proposition 4.2 ([OZ2]). The quantity ηE = −N2
E (see Definition 4.1)

equals

(4.9) ηE =
∑

Ei:end

gm,

where gm = σm − π0/e
2
m = {π0/e

2
m} and {a} = minn>a,n∈Z(n− a) denotes the

upper fractional part.

Corollary 4.2 ([OZ1], [OZ2]). If the number of branches of the singu-
lar point is equal to one then ηE > 1

2 . Moreover, if the multiplicity of the
singular point is 2 then ηE ≥ 5

6 .

Proof. If (n,m) is the first characteristic pair of the singularity then by
Proposition 4.2 and formula (4.3)

ηE ≥
{ n
m

}
+
{m
n

}
.

From this the first part follows (see [OZ1]). If n = 2, m = 2k + 1 then
ηE = 2k−1

2k+1 + 1
2 ≥ 5

6 .

4.3. Relative minimality of resolution.
The sum of M numbers of a given curve C ⊂ CP 2 can be bounded using

the following deep result, which is known as the BMY inequality.
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Theorem 4.1 ([Miyo], [KNS]). Assume that V0 is an open algebraic
surface and D its normal crossing completion, such that V = V0 ∪D is projec-
tive and the pair (V0, D) is relatively minimal. Let K = KV be the canonical
divisor.

(a) If κ̄(V0) ≥ 0 then

(4.10) (KV +D)2 ≤ 3χ(V0).

(b) If κ̄(V0) = 2 and K +D = P +N is the Zariski–Fujita decomposition
[Fuj] then

(4.11) P 2 ≤ 3χ(V0).

Here χ is the topological Euler characteristic, κ̄(V0) is the logarithmic
Kodaira dimension of V0: κ̄(V0) = lim sup 1

log n log h0(V, n(KV + D)). Let us
recall the notion of the relative minimality of the pair (V,D). Assume that
κ̄(V0) ≥ 0.

Definition 4.2. The pair (V,D) is relatively minimal if D is minimal,
i.e. it does not contain a (−1)–curve G with branching index v(G) ≤ 2, and
the negative part of KV + D (in the sense of Zariski–Fujita decomposition) is
supported on D.

In the case where V0 is the complement of an irreducible curve C ⊂ CP 2

Wakabayashi [Wak] computed that κ̄(V0) ≥ 0 if, for example, C is rational
with at least two singular points. If C has at least three cusps, or at least two
singular points and one of them has more than one branch, then κ̄ = 2. In our
method we shall use mostly part (b) of the theorem.

Our setting is the following. Let C0 be a degree d curve in CP 2. Let
x1, . . . , xk be its singular points at finite distance. Take C = C0 + L∞, where
L∞ is the line at infinity. Denote y1, . . . , yl the singular points of C lying in
L∞. In all statements below we assume that κ̄(CP 2 \ C) is either ≥ 0, or is
equal to 2; this condition is relatively easy to check.

Let us resolve the singularities of C. We obtain a resolution map X
π−→

CP 2. Let D be the reduced inverse image of C. We want to apply Theorem 4.1
to the space X \D.

The problem is that this space may be not relatively minimal. In the
sequel we deal with this problem. First we cite a variant of Lemma 6.20 from
[Fuj].

Lemma 4.6. Suppose that D is connected and there does not exist a
(−1)–curve F in X satisfying one of the following conditions :

(a) F is contained in D and the branching index of F , v(F ) = F (D−F ) ≤
2 (non-minimality of D);

(b) F is not contained in D and F ·D ≤ 1.
Then the pair (X,D) is relatively minimal.

Before discussing when curves satisfying the conditions (a) or (b) of the
above Lemma may in fact occur, let us see how such appearance affects the
BMY estimates (4.10). Firstly we shall deal with curves of type (a).
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Lemma 4.7. Assume we are given a reduced divisor D0 on a surface
X0, and let K0 = KX0 be the canonical divisor. Let us blow up a point x0 ∈ X0,
ξ : X1 → X0, and let D1 = ξ∗(D0)red be the reduced inverse image. Moreover
let K1 be the canonical divisor on X1. If multx0 D0 = m > 0 then

(4.12) (K1 +D1)2 = (K0 +D0)2 − (m− 2)2.

Proof. Let E be the exceptional divisor. Then K1 = ξ∗(K0) + E and
D1 = ξ∗D0 − (m − 1)E (because we take the the reduced inverse image). So
K1 + D1 = ξ∗(K0 + D0) − (m − 2)E. But ξ∗(A) · E = 0 for any divisor A
on X0. In fact, by the projection formula ξ∗(ξ∗A · E) = ξ∗(E) · A = 0 in the
Chow group A0(X0). Hence (K1 +D1)2 = (K0 +D0)2 + (−(m− 2)E)2, where
E2 = −1. The lemma is proved.

Corollary 4.3. Let V be a surface and D ⊂ V a reduced normal cross-
ing divisor. Suppose that, in order to obtain relatively minimal model, we have
to contract l1 (−1)–curves contained in D with branch index 2 and l2 (−1)–
curves in D with branch index 1. Let Y be the resulting space and D′ the image
of D. Then on V one has

(4.13) (K +D)2 = (KY +D′)2 − l2.

Now let us discuss how large the numbers l1 and l2 appearing in Lemma 4.3
may be. In fact, we shall mostly be interested in the number l2, since it affects
the codimension bounds.

Let D contain a (−1)–curve G with branching index at most 2. From the
definition of the desingularisation process, we conclude that G cannot be an
exceptional curve of the map π. Hence, G is either π′(C0), or π′(L∞) (the strict
transform). But the first possibility can occur only in few cases. Namely we
have

Lemma 4.8. If C0 satisfies at least one of the following :
(i) the geometrical genus pg(C0) > 0, so C0 is not rational ;
(ii) C0 has two branches at infinity and at least one singular point at finite

distance;
(iii) C0 has one place at infinity and at least two cusps or one multiple

branched point at finite distance;
(iv) C0 has three branches at infinity.

Then π′(C0) is not a (−1)–curve with branching index at most 2.

Proof. Condition (i) says that π′(C0) is not rational so it cannot be a
(−1)–curve. Conditions (ii)—(iv) imply that π′(C0) has branching index at
least three.

Therefore π′(C0) can violate the relative minimality condition in few cases.
The only interesting case is when C0 is an annulus that has no singular points
at finite distance.
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On the other hand, L = π′(L∞) becomes a (−1) curve rather often. Sup-
pose that this is indeed the case. Let A1 be a component of D such that
L · A1 = 1. In order to obtain a relatively minimal model we have to contract
L. But then A1 may become a (−1) curve as well (if A2

1 = −2 at the begin-
ning). If v(L) = 2 then contracting L does not change (K + D)2. A more
interesting situation occurs when L is a (−1) curve that is the end of a chain
of (−2) curves. Below we study this case more carefully.

Lemma 4.9. Assume that C0 has one branch at infinity. Let t be a
local parameter on C0 near the point C0 ∩ L∞, so that C0 is parametrised by
x(t) ∼ tp, y(t) ∼ tq with t → ∞ and p < q. Then π′(L∞) is a (−1)–curve if
and only if q ≥ 2p. Moreover, π′(L∞) is the end of a chain of l (−2)–curves if
and only if q ≥ (2 + l)p.

Proof. In local coordinates around infinity we have u = x/y = sq−p + . . . ,
v = 1/y = sq+. . . . After the first blow-up we have u2 = sq−p+. . . , v2 = sp+. . .
and the strict transform of the line at infinity is given by v2 = 0. Now, if
q − p < p then after next blow–up the line at infinity will not be separated
from C0. Hence altogether points on L∞ are blown–up at least thrice. So
π′(L∞)2 ≤ −2. This proves the first part of the lemma.

Let p1 = p/ gcd(q, p) and q1 = q/ gcd(q, p). Then the Eisenbud–Neumann
diagram near infinity has the form

(4.14)
� ⊕

1

•

q1−p1

q1

. . .

Here the dots denote an uninteresting for a moment part of the diagram.
The arrowhead is at the place where π′(L∞) is attached.

The procedure described in [EiNe] allows to reconstruct the dual graph of
a given singularity. In this particular case the corresponding part of the dual
graph has the following form

(4.15) •
π′(L∞)

•
E1

•
E2

. . . •
Ek

•
E0

. . .

...

E0 is a branching vertex of the diagram. The self–intersection indices
E2

i = −ei are related to q and q − p by the formula

(4.16)
q

q − p = 2− 1

e1 −
1

e2 − · · · − 1
ek
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The first 2 comes from the assumption that π′(L∞) is a (−1)–curve. By
induction and monotonicity of the function x→ 2− 1

x we obtain the following

Lemma 4.10. e1 = · · · = el = 2, l ≤ k, if and only if q1

q1−p1 ≤ l+2
l+1 .

Therefore the condition q
q−p ≤ l+2

l+1 means that q ≥ (l+ 2)p. Lemma 4.9 is
proved.

The case of one branch is done. If C0 intersects L∞ at more than one
point then π′(L∞) will have the branching index at least 2. So suppose C0

has r branches B1, . . . , Br at one point at infinity. Bi is locally parametrised
by xi(t) ∼ tpi , yi(t) ∼ tqi , with t → ∞. We may assume that pi < qi (this
means that C0 ∩ L∞ = [z1 : z2 : z3] = [0 : 1 : 0] ⊂ CP

2 for x = z1/z3 and
y = z2/z3). If for some i pi < 0 then the branch Bi is not tangent to the line
at infinity. It will be separated from L∞ after the first blowing–up, so it does
not influence the lenght of the (−2)–chain. Moreover if for some i we have
qi < 2pi then Bi will not be separated from L∞ after two blowing–ups. So
L∞ will eventually have the self–intersection at most −2. Assume therefore
that for i ≥ r0 + 1 we have pi < 0 and for i ≤ r0 we have qi ≥ 2pi > 0.
Without loss of generality we may suppose that q1/p1 ≤ q2/p2 ≤ · · · ≤ qr0/pr0 .
Then the Eisenbud–Neumann diagram of the singularity has the form similar
to (4.14) with q1 = q1/ gcd(q1, p1) and p1 = p1/ gcd(q1, p1): it is exactly as in
(4.14) if q1/p1 < q2/p2. If we have the equalities then the first branching vertex
might have higher valency, but the reasoning remains unchanged. Application
of Lemma 4.9 yields then the following

Corollary 4.4. The number of successively contracted (−1)–curves is
equal to

(4.17) min
pi>0

⌊
qi
pi

⌋
− 1.

Now we shall deal with curves of case (b) of Lemma 4.6.

Lemma 4.11. Let F �⊂ D be a smooth rational curve such that F ·D ≤
1. Then π(F ) is isomorphic to a line.

Proof. Obviously F · D = 1. Then π(F ) is a rational curve, possibly
singular, of positive degree. Thus it intersects the line at infinity L∞. Therefore
F · π∗(L∞) > 0, so F intersects D at the preimage of L∞. It follows that π(F )
is a rational curve with one place at infinity, smooth at finite distance. The
lemma follows from the Abyankhar–Moh–Suzuki theorem.

Assume now that there are mutually disjoint (−1)–curves F1, . . . , Fn such
that Fi · D = 1. Assume also that D does not contain any (−1)–curve with
branching index less or equal to 2 (as in point (a)). Let D1 = D+F1 + · · ·+Fn.
Obviously we have

(4.18) (K +D1)2 = (K +D)2 − n, χ(X \D1) = χ(X \D)− n.
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But now D1 is not minimal. We have to contract curves F1, . . . , Fn, as in point
(a). Let ξ : X → Y be the contraction map. Let D2 = ξ(D1). Then by
Corollary 4.3 we obtain

(4.19) (KY +D2)2 = (K +D1)2 + n = (K +D)2.

But χ(Y \ D2) = χ(X \ D) − n. Therefore the BMY inequality gives the
following bound

(K +D)2 ≤ 3χ(X \D)− 3n.

We see that the appearance of curves satisfying point (a) of Lemma 4.6
alone leads to an improved bound for (K +D)2. The presence of curves satis-
fying (b) of this lemma improves the estimates, too. It remains to show that if
(V,D) contains curves of both types (a) and (b) then the BMY estimates are
improved. In fact, theoretically it might happen that π′(L∞) is a (−1)–curve
attached to the chain of (−2)–curves A1, . . . , Am, but some of above Fi’s inter-
sects Aj or π′(L∞). Then we cannot contract both Aj and Fi. The following
lemma shows that such Fi cannot exists.

Lemma 4.12. Let π′(L∞) be a (−1) curve attached to the chain of m
(−2)–curves A1, . . . , Am as in Lemma 4.9 (m may be zero as well). Let F be a
rational curve not contained in D such that F ·D = 1 and F · (π′(L∞) +A1 +
· · ·+Am) = 1. Then F 2 > 0.

Proof. Let G denote π(F ). By assumption C0 intersects L∞ at one point,
possibly with many branches. If F · π′(L∞) = 1 then G does not intersect the
closure of C0. This contradicts the Bezout theorem. Therefore F must intersect
Ar for some r ≤ m.

Let, locally near the point at infinity, G be given by u = sa + . . . , w =
sb + . . . , b > a where dots denote terms of higher order and the line at infinity
is given by w = 0. We shall argue that a = r, b = r + 1.

The first time we blow up the point C0∩L∞ we use the map π0 : (u1, w1)→
(u,w) = (u1, u1w1). Here the exceptional divisor is given by A0 = {u1 = 0}.
Then come precisely m blow–ups of the form πk−1 : (uk, wk)→ (uk−1, wk−1) =
(ukwk, wk). The exceptional divisor of πk−1 is {wk = 0} and this is precisely
Ak−1 (by abuse of notation, we denote the exceptional divisor of πk−1 with the
strict transform under all the remaining blow–ups by the same symbol).

The strict transform of G under the map ξk = πk−1 ◦ · · · ◦π1 ◦π0 is easy to
see to be given by uk = sa−k(b−a) + . . . , wk = sb−a + . . . , provided k(b− a) ≤
a. Suppose that F intersects Ar. It follows that the strict transform ξ′r(G)
intersects Ar away from the divisor A0 and Ar−1. Therefore ur = const+O(s),
so a − r(b − a) = 0. Moreover, as the intersection index F · Ar = 1, we infer
that b− a = 1, otherwise ξ′r(G) is tangent to Ar. Therefore a = r, b = r+ 1 as
claimed.

Now the self–intersection index of G is equal to (r+1)2. G has multiplicity
r at the center of π0, so π′

0(G) has the self–intersection index (r+1)2−r2. Then
π′

0(G) has multiplicity 1 at the center of π1, and ξ′1(G) has the multiplicity 1
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at the center of π2 and so on. Therefore ξ′r(G)2 = (r + 1) − r2 − r = r + 1.
As all subsequent blow ups constituting π have centers away from ξ′r(G), the
self–intersection index does not change. Thus F 2 = r + 1 > 0.

Remark 10. The arguments with degrees and explicit writing of blow-
ing–ups described above could be used to give a more down-to-earth proof of
Lemma 4.9.

So now let us consider D1 = D+ F1 + · · ·+ Fn, where Fi are (−1)–curves
not contained in D and Fi · D = 1, but D is not necessarily minimal. We
have to contract n (−1)–curves Fi and, possibly, the chain of m + 1 curves
starting from π′(L∞). Note that if D contains a (−1)–curve L′

∞ with a chain
of m (−2)–curves then the same holds for D1 by virtue of Lemma 4.12, since
no Fi intersect this chain. Let ξ : X → Y be the contraction map such that
D2 = ξ(D1). Then the BMY inequality for (Y,D2) yields

(KY +D2)2 −N2
Y ≤ 3χ(Y \D2).

which gives

(K +D2)2 −N2
Y ≤ 3χ(X \D)− 3n− (m+ 1).

4.4. Application of BMY inequality
Theorem 4.2. Assume that C0 is a rational curve with one place at

infinity (and x(t) = tp + . . . , y(t) = tq + . . . , p < q) and with precisely R
self–intersection at finite distance (more precisely, with arithmetic genus equal
to R).

If κ̄(C2 \ C0) = 2 then

(4.20a)
∑

M i + extν∞ ≤ p+ q − 2−
⌊
q

p

⌋
−
∑

i

ηi +R.

If κ̄(C2 \ C0) = 0 then

(4.20b)
∑

M i + extν∞ ≤ p+ q − 2−
⌊
q

p

⌋
+R.

Proof. Let x1, . . . , xl be singular points of C0 and x∞ be the point at in-
finity. Let each point x1, . . . , xk have more than one branch and xk+1, . . . , xl be
cuspidal. Let π : X → CP 2 be the resolution of singularities. By Ei1, . . . , Eiki

,
i ∈ {1, 2, . . . , l,∞} we will denote the exceptional divisors lying over the point
xi and Vi is the subspace of PicX ⊗Q spanned by Ei1, . . . , Eiki

. Let π′(H) be
the strict transform of the generic line on CP 2, which, by abuse of notation,
we will denote also by H. Denote by V0 the subspace of PicX ⊗Q spanned by
Q · [H].

The splitting PicX ⊗ Q =
⊕l

i=1 Vi ⊕ V0 ⊕ V∞ is orthogonal with respect
to the intersection form.
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Let us now contract all possible (−1)–curves and let ξ : X → Y be the
contraction. We obtain a divisor D′ ⊂ Y , D′ = ξ∗(D). By construction ξ is an
isomorphism on preimages π−1{xk+1, . . . , xl}. So it preserves the spaces Vi for
i = k + 1, . . . , l. Let Ni be the negative part of the divisor KY +D′ projected
on Vi. Then, by definition, −N2

i = ηi is the excess of the singular point xi.
Moreover, −N2 ≥∑l

i=k+1 ηi. By Theorem 4.1 we get

(4.21)

(KY +D′)2 ≤ 3χ(C \ C0) if κ̄(C \ C0) ≥ 0,

(KY +D′)2 ≤ 3χ(C \ C0)−
l∑

i=k+1

ηi if κ̄(C \ C0) = 2.

(In the presence of (−1)–curves Fi of type (b) we could improve the bound;
nevertheless we do not have a satisfactory criterion for the existence of such
curves.) Let us assume that κ̄(C \ C0) = 2, the other case being treated
identically. By Corollary 4.3 and Lemma 4.9 we obtain from (4.21)

(4.22) (K +D)2 ≤ 3χ(C \ C0)−
l∑

i=k+1

ηi + 1−
⌊
q

p

⌋
.

Now we will examine the left hand side of (4.22).
Firstly observe that (K + D)2 = K(K + D) + D(K + D) = K(K +

D) + 2pa(D) − 2, where pa is the arithmetic genus. Moreover K(K + D) =∑l
i=0Ki(Ki + Di) + K∞(K∞ + D∞), where Ks and Ds are projections of K

and D onto the space Vs. Then K0 = −3H and D0 = (q + 1)H. Moreover,
for i �= ∞ the number Ki(Ki + Di) = M i is the rough M number of the
i−th singular point (by Proposition 4.1). Only K∞(K∞ +D∞) remains to be
computed.

Lemma 4.13. We have

K∞(K∞ +D∞) = q + (q − p)− 2 + extν∞.

Proof. We can prove this lemma in two ways. Either we compute K(K+
D) by method described in Corollary 4.1 or we use the fact that K∞(K∞+D∞)
is the codimension of a two–branched singularity at infinity.

First method. The two–branched singularity has the splice diagram at in-
finity Γ0 as in (4.14). The singularity of C0 at this point has the diagram
Γ1

(4.23) • ⊕
1

•

q1−p1

q1

. . .

which differs from Γ0 only by the end vertex standing in place of the arrowhead.
Here q1 = q/ gcd(p, q), p1 = p/ gcd(q, p). Then, by (4.7)

W (Γ0) = W (Γ1) +
⌊

q1

q1 − p1

⌋
+ 1.
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As the Milnor number of the smooth branch is zero, we get

M1 = M0 +
⌊

q1

q1 − p1

⌋
+ 1,

where M1 is the M number of the singularity C0 ∩ L∞, and M0 of C0. But,
by (2.11),

M0 = q − 1−
⌊

q

q − p
⌋

+ (q − p− 2) + extν∞.

Therefore M1 = q + (q − p) + extν∞ − 2.
If p|q these computations have to be suitably altered, but the final formula

remains unchanged.
Second method. Here we will use the inductive formula (2.9) for extν(C0 +

L∞). The tangency codimension of the two branches is
⌊

q
q−p

⌋
. So, using Remark

2 we get M1 = M0 +
⌊

q
q−p

⌋
+ 1.

Using Lemma 4.13 we get

(4.24) (K +D)2 = 2pa(D)− 2 +
k∑

i=1

M i + (6− 3q) + 2q − p+ extν∞ − 2.

By assumption, pa(C) = R. Therefore we have pa(D) = R since the arithmetic
genus is a birational invariant (see [GrHa]). Hence, χ(C0) = 1−R, so 3χ(C2 \
C0) = 3R. Using (4.22) and (4.24) yields then the required result.

The proof of Theorem 4.2 is now complete.

Theorem 4.2 can be extended to arbitrary cases, when the topology of
underlying curve C0 is fixed as well as the behaviour of branches at infinity.
The only difficulty is Lemma 4.13 that must be generalised to the case when
more branches meet at infinity.

Lemma 4.14. Let C has n branches C1, . . . , Cn at one point at infinity
with local parametrisation xi(t) ∼ tpi , yi(t) ∼ tqi as t → ∞ with 0 < pi < qi
and m branches Cn+1, . . . , Cn+m with parametrisation xj(t) ∼ t−rj , yj(t) ∼ tsj

with −rj < 0 < sj. Then we have

K∞(K∞ +D∞) =
n∑

i=1

(2qi − pi − 1) +
m∑

j=1

(2sj − rj − 1)−

− max
j=n+1,...,n+m

⌊
sj + |rj | − 1

sj

⌋
− 1 + extνinf ,

(4.25)

where extνinf is the subtle codimension at infinity (like in Definition 2.9).

Proof. In local coordinates around infinity v = 1/y, u = x/y and with
τ = t−1 we have

ui(τ ) ∼ τ qi−pi vi(τ ) ∼ τ qi for 1 ≤ i ≤ n
uj(τ ) ∼ τ sj+rj vj(τ ) ∼ τ sj for n+ 1 ≤ j ≤ n+m.



564 Maciej Borodzik and Henryk Żo�la̧dek

The line at infinity can be parametrised by

u0(τ ) = τ v0(τ ) ≡ 0.

The lemma is proved by induction on n and m. Assume firstly that m = 0.
For n = 1 this is exactly Lemma 4.13. Suppose the lemma is proved for n− 1.
By (2.9)

extν(L∞, C1, . . . , Cn) = extν(L∞, C1, . . . , Cn−1) + extν(Cn) + νtan + 2,

where νtan is the tangency codimension of Cn and L∞ + C1 + · · · + Cn−1.
But extν(Cn) = ν′(Cn) + 2qn − pn − 3 − ⌊ qn

qn−pn

⌋
. On the other hand, νtan =

ν′tan +
⌊

qn

qn−pn

⌋
. In fact,

⌊
qn

qn−pn

⌋
is the number of common initial inessential

terms of the Puiseux expansion of (un, vn) and (u0, v0). Then the formula in
Definition 2.8 provides the induction step.

Increasing m is very similar. Let us order the branches in such a way
that (sn+1 + rn+1)/sn+1 ≤ · · · ≤ (sn+m + rn+m)/sn+m. Then the tangency
codimension νtan of the (n+m)−th branch Cn+m to L∞ +C1 + · · ·+Cn+m is
equal to

νtan =
⌊
sn+m−1 + rn+m−1

sn+m−1

⌋
+ ν′tan,

for
⌊sn+m−1+rn+m−1

sn+m−1

⌋
is the number of common initial inessential terms of the

Puiseux expansions of (un+m, vn+m) and (un+m−1, vn+m−1). No branch Cm+1,
. . . , Cn+m−2 can have more common initial inessential terms because of the
choice of ordering of branches (we note by the way that νtan(L∞, Cn+m) =
νtan(Ck, Cn+m) = 0 for k ≤ n). The induction step in now routine.

Remark 11. If C has intersects the line at infinity at k places then
K∞(K∞ +D∞) is the sum of contribution from single singular points (we can
split further the space V∞ into pairwise orthogonal pieces, corresponding to
different singular points of C). Each contribution is given by (4.25) each place
at infinity. For example suppose C has k places at infinity, each having one
branch Ci. Let these branches be described locally by xi ∼ tpi , yi ∼ tqi for
t→∞ with pi < qi and the line at infinity being given by yi = 0. Then

K∞(K∞ +D∞) =
k∑

i=1

(2qi − pi − 2 +Ri) + extνinf ,

where Ri =
⌊qi+|pi|−1

qi

⌋
if pi < 0 and Ri = 0 otherwise.

Lemma 4.14 can be applied to bound the sum of codimensions for annuli.

Theorem 4.3. Let C0 be an annulus as in Subsection 2.6 and pa(C0 +
L∞) = R + 1 (the notation comes from the fact, that if C0 has no self–
intersection at finite distance then pa = 1). Let K = max(

⌊
q
p

⌋
, 0) if r < 0
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and K = min(
⌊

q
p

⌋
,
⌊

s
r

⌋
) if p, r > 0. Let also K1 = max(

⌊
p−q−1

p

⌋
, 0), K2 =

max(
⌊

s−r−1
s

⌋
, 0). Then the sum of codimension is bounded by the following

formula

(4.26a)
∑

M i + extνinf ≤ p+ q + r + s+R + 1−K +K1 +K2.

Moreover, if κ(C \C0) = 2 then we can substract
∑
ηi from the right hand side

obtaining

(4.26b)
∑

M i + extνinf ≤ p+ q + r + s+R+ 1−K +K1 +K2 −
∑

ηj .

So for the types
(
+
+

)
and

(−+
+−
)
we get

(4.27a)
∑

M i + extνinf ≤ p+ q + r + s+R+ 1−K.

For type
(−
+

)
(4.27b)

∑
M i + extνinf ≤ p− |r|+ q + s+R + 2−K +

⌊|r| − 1
s

⌋
.

For type
(−
−
)

(4.27c)
∑

M i + extνinf ≤ p− |r| − |q|+ s+R+ 3 +
⌊|r| − 1

s

⌋
+
⌊|q| − 1

p

⌋
.

Proof. As the proof in all cases is very similar, we will focus on the case
of type

(
+
+

)
and prove (4.27a). By Lemma 4.9, if K ≥ 2 then π′(L∞) becomes a

(−1)–curve attached to a chain of (K−2) curves with self–intersection −2. By
the BMY inequality we have (K +D)2 ≤ 4 + 3R−K. As D(K +D) = 2pa− 2
we infer that K(K+D) = 4+R−K. But K(K+D) = K0(K0 +D0)+

∑
M i +

K∞(K∞ +D∞) and K0(K0 +D0) = 6− 3(q + s).
By Lemma 4.14, K∞(K∞ +D∞) = ν′inf + (2q − p) + (2s− r)− 3. Hence∑

M i + ν′inf ≤ p+ q + r + s+ 1−K,

and the proof in this case is completed.

Proposition 4.3. Let C0 be either a parametric line or an annulus. If
κ̄(C \ C0) = 2 and at least one branch of C0 at infinity is not smooth then the
inequality (4.20a) or (4.26b) is sharp.

Proof. If a branch of C0 at infinity is not smooth then the resolution of
C0 ∪ L∞ contains a (−1) curve E′ with branching index at least 3. If, as in
Lemma 4.9, we start contracting the (−1)–curves then we will never contract
E′. In fact, we would have to reduce its branching index by blowing down some
adjacent curve, but then E′ will have self–intersection zero; so it is definitely
not contracted. Hence on Y (notation from the proof of Theorem 4.2) D′ has
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some components that lie in the image ξ∗V∞. As the dual graph of D′ is a tree,
it follows that D′ has a component E0 in ξ∗V∞ such that v(E0) = 1. Then
(KY + D′)E0 = −1, so E0 ∈ suppN by the construction of the Zariski–Fujita
decomposition [Fuj]. Therefore N −∑Ni > 0, so −N2 >

∑
ηi. Hence already

in (4.21) the inequality is sharp.

Remark 12. If there are no singular points at finite distance the both
sides of inequalities (4.20a) or (4.26b) are integers. Therefore, having a sharp
inequality improves bound for the sum of codimensions already by 1. Readers
of [BZ1] or [BZ2] may appreciate, how important this “1” can be.

Remark 13. In the proof of Theorems 4.2 and 4.3 we have been tacitly
assuming that C0 satisfies one of the conditions of Lemma 4.8. This guarantees
that π′(C0) does not become a (−1) curve that must be contracted in order to
obtain a relative minimal model. If we must contract π′(C0) then we cannot
argue that the spaces Vi and V∞ are pairwise orthogonal (see the proof of
Theorem 4.2). Therefore the map ξ may not preserve the space Vi, so −N2

i

may differ from the excess ηi. In particular, nothing is changed if C0 is smooth
at finite distance. Suppose thus that C0 has a singular point at finite distance
and does not satisfy the assumptions of Lemma 4.8. Then C0 is a rational
curve with one place at infinity and one unibranched singular point at finite
distance. All such curves were classified by Zaidenberg and Lin (see [ZaLi]) so
we do not have to worry about them. Note also that as in Theorems 4.2 and
4.3 we do not take into account a possible contribution from the negative part
of K + D coming from singularities at infinity, we may avoid discussing the
case when π′(L∞) becomes a (−1)-curve with branching index 2.

5. Application to the problem of limit cycles

Consider the Liénard vector field

(5.1) ẋ = y − F (x), ẏ = −G′(x),

where F and G are polynomials of degree m + 1 and n + 1 respectively. It is
related with the second order Liénard equation ẋ + f(x)ẋ + g(x) = 0 via the
formulas f(x) = F ′(x), g(x) = G′(x). The principal problem concerning the
system (5.1) is to find a maximal number H(m,n) of its limit cycles (a special
case of the Hilbert’s 16th problem). We study a weaker problem, we ask about
the number of small limit cycles.

We assume that the origin x = y = 0 is a singular point of the center or
focus type. Therefore

(5.2) F (x) = a1x+ . . .+ am+1x
m+1, G(x) = b2x

2 + . . .+ bn+1x
n+1,

where a2
1 < 8b2. We can also assume that b2 = 1. When we introduce the local

analytic variable u =
√
G(x) = x+ . . . then the system (5.1) becomes orbitally

equivalent to

(5.3) u̇ = y − Φ(u), ẏ = −2u, Φ = c1u+ c2u
2 + . . . .



Complex algebraic curves III 567

Here the series X = c1Y
1/2 + c2Y + c3Y

3/2 + . . . is the Puiseux expansion at
the point X = Y = 0 of the curve

(5.4) C : X = F (x), Y = G(x).

It is well known, see [Che], that the system (5.1) (equivalently, (5.3)) has
center at the origin if and only if c1 = c3 = . . . = 0, i.e. Φ(u) = Φ̃(u2) is an
even function. From the algebraic point of view this means that the curve (5.4)
is multiply covered.

The coefficients c1, c3, c5, . . . are the essential Puiseux quantities of the
singularity X = Y = 0 of the curve C. They are related with the Poincaré–
Lyapunov quantities g1, g3, . . ., which appear in the Taylor expansion of the
Poincaré return map

(5.5) r → P (r) = r + g1r(1 + . . .) + g3r
3(1 + . . .) + . . . , r → 0+,

from the section {(x, y) = (r, 0) : r ≥ 0)} to itself. Namely, gj are proportional
to cj with coefficients depending only on j. We refer the reader to [ChLy] for
details.

Since the fixed points of the map (5.5) correspond to the limit cycles of
the Liénard vector field, the essential Puiseux quantities of the curve C become
responsible for the small amplitude limit cycles of the system (5.1).

The quantities cj and gj depend on the coefficients ak and bl in the polyno-
mials F and G (see (5.2)). In fact, they are polynomials in a = (a1, . . . , am+1)
and b = (b3, . . . , bn+1), e.g. for b2 = 1. So the expansion (5.5) varies with
varying (a, b). This variation results in bifurcation of fixed points of the map
P (r) from the point r = 0 (the generalized Hopf bifurcation). For instance,
when g2ν+1 �= 0 and the coefficients g1, g3, . . . , g2ν−1 vary independently then
they can be chosen such that either

0 < g1 � −g3 � g5 � . . .± g2ν+1, or
0 < −g1 � g3 � −g5 � . . .∓ g2ν+1.

Thus one finds exactly ν limit cycles of small amplitude.
Since gj(a, b) are real polynomials, one cannot ensure free choice of signs,

like above (although the functions gj may be independent).
C. Christopher and S. Lynch in [ChLy] introduced the following quantities:
Ĥ(m,n)— the maximal number of limit cycles which can bifurcate from

the origin;
H∗(m,n)— the maximal cyclicity of the focus at x = y = 0, i.e.

max {ν : c1 = c3 = . . . = c2ν−1 = 0 = c2ν+1} ;
ĤC(m,n)— the maximal number of limit cycles bifurcating from the

origin in the complex sense, i.e. 1
2×maximal number of zeroes ri �= 0 of the

function P (r)− r for r ∈ (C, 0) (counted with multiplicities);
H∗

C
(m,n)— the maximal cyclicity of x = y = 0 in the complex sense,

i.e. the codimension ν0 of the cuspidal singularity of C at X = Y = 0.
In the definitions of ĤC(m,n) and H∗

C
(m,n) one assumes complex coefficients

ai, bj and considers the complex foliation defined by (1.1) in (C2, (0, 0)).
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We have the following simple relations

Ĥ(m,n) ≤ H∗(m,n) ≤ H∗
C(m,n) = ĤC(m,n).

Christopher and Lynch stated several conjectures concerning the above
quantities.

Conjecture 5.1 ([ChLy]).
1. ĤC(m,n) = ĤC(n,m) = m+ n− 2− ⌊m+1

n+1

⌋
for 2 ≤ n ≤ m;

2. Ĥ(m,n) = Ĥ(n,m);
3. H∗(m,n) = H∗(n,m).

Remark 14. Note that when 1 ≤ n ≤ m and we denote p = n+ 1 and
q = m + 1 then m + n − 2 − ⌊m+1

n+1

⌋
= σ = p+ q − 4 − ⌊qp⌋ is the dimension of

the space Curv/Eq.

When n = 2 (or m = 2 and c1 = 0) the problem is trivial: we have
Ĥ(m, 1) = H∗(m, 1) = H∗

C
(m, 1) =

⌊
m+1

2

⌋
.

In [BZ3] we proved that

(5.6) H∗
C ≤ δmax − 1

for m,n ≥ 2, where

δmax = δmax(m,n) =
1
2

(mn− gcd(m+ 1, n+ 1) + 1)

is the maximal number of double points of a curve of the form (5.4). In the
proof we used the fact that the Milnor number μ0 of the singularity X = Y = 0
equals 2 · H∗

C
, on the one hand, and the number of double points hidden in

the singularity, on the other hand. Moreover, by the Zaidenberg–Lin theorem
[ZaLi], the case when all the double points become hidden in the singular-
ity, corresponds to a quasi-homogeneous curve (after reduction) which implies
either m = 1 or n = 1.

Here we have the following improvement of the bound (5.6).

Theorem 5.1. If 2 ≤ m < n then

H∗
C ≤

1
4
mn+

1
2

(
m+ n+ 1−

⌊
n+ 1
m+ 1

⌋)
− 1

4
(gcd(m+ 1, n+ 1)− 1).

Proof. By Theorem 4.2 we have ν0 = M0 ≤ (n+ 1) + (m+ 1) +R− 1−⌊
n+1
m+1

⌋
, where R is the number of double points. On the other hand, ν0 +R ≤

δmax, i.e. R ≤ 1
2 (mn− gcd(m+ 1, n+ 1) + 1)− ν0. These two inequalities give

the bound from the thesis of the theorem.
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