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Abstract

We define the notion of universal lift of a projective complex based
on non-commutative parameter algebras, and prove its existence and
uniqueness. We investigate the properties of parameter algebras for uni-
versal lifts.
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1. Introduction

In this paper, k always denotes a field and R is an arbitrary associative
k-algebra. When we say an R-module, we always mean a left R-module unless
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otherwise stated.
From the view point of representation theory, the final goal of the theory

of R-modules should be to construct the moduli consisting of the isomorphism
classes of R-modules, by which we mean a geometric realization of the set of
isomorphism classes. Generally speaking, it is however impossible to describe all
the isomorphism classes of R-modules, even if we restrict ourselves to consider
indecomposable ones. One should say that the construction of moduli for R-
modules is hopeless.

But there is a way to observe the moduli from the local view point. Fixing
an R-module M , and assuming there is a modulus containing M as a rational
closed point, we can ask how it looks in the neighbourhood of the point, which
is nothing but to consider the universal deformation of M . In such a context,
the existence of formal local moduli is known ([2], [3], [6]).

To explain this, let Ck be the category of commutative artinian local k-
algebras with residue field k and k-algebra homomorphisms. We consider the
covariant functor

FM : Ck → (Sets),

which maps A ∈ Ck to the set of infinitesimal deformations of M along A, i.e.

FM (A) =

{
(R,A)-bimodules X that are flat over A

and X ⊗L
A k ∼= M as left R-modules

}
/ ∼=,

where ∼= means (R,A)-bimodule isomorphism. Under these circumstances the
following theorem is known to hold.

Theorem 1.1 (Schlessinger’s Theorem 1968). Suppose Ext1R(M,M) is
of finite dimension as a k-vector space. Then the functor FM is pro-
representable. More precisely, there exist a commutative noetherian complete
local k-alegbra Q with residue field k and an (R,Q)-bimodule U that is flat over
Q such that there is an isomorphism

Homk-alg(Q, ) ∼= FM

as functors on Ck. The isomorphism is given in such a way that each f ∈
Homk-alg(Q,A) is mapped to [U⊗Q fA] ∈ FM (A) for A ∈ Ck, where fA denotes
the right A-module A regarded as a left Q-module through f .

In such a circumstance, we call U the universal family of deformations of
M , and call Q (resp. Spec Q) the commutative parameter algebra (resp. the
parameter space) of U .

One of the easiest examples is the deformation of Jordan canonical forms.

Example 1.1. Consider an n×n matrix which is of an irreducible Jor-
dan canonical form: ⎛⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
: : : : :
: : : : 1
0 0 0 · · · 0

⎞⎟⎟⎟⎟⎠
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Setting R = k[x], we know that this is equivalent to consider the indecompos-
able R-module M = k[x]/(xn). In this case, we can take Q = k[[t0, . . . , tn−1]]
as the commutative parameter algebra, and U = Q[x]/(xn+tn−1x

n−1+· · ·+t0)
as the universal family of deformations of M . If we consider this in a matrix
form, we obtain a so-called Sylvester family of matrices.⎛⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
: : : : :
: : : : 1
−t0 −t1 −t2 · · · −tn−1

⎞⎟⎟⎟⎟⎠
Under the setting of Theorem 1.1, since the bimodule U is flat as a right

Q-module, the functor U ⊗L
Q − : D(Q)→ D(R) between derived categories is

defined. Remark that U ⊗L
Q k = M . Thus the functor induces a map between

Yoneda algebras.

ρ· : Ext·Q(k, k)→ Ext·R(M,M).

Of most interest is the mapping

ρ2 : Ext2Q(k, k)→ Ext2R(M,M),

which is often called the obstruction map. Our motivation of this paper starts
with the observation that ρ2 does not work well as a comparison map between
cohomology modules. We show this by the above example. In fact, we see in
Example 1.1 that

Ext2Q(k, k) = 〈Koszul relations of degree 2 in the variables ti’s〉∗

↓ ρ2

Ext2R(M, M) = (0).

Compared with that Ext2R(M,M) = (0), the k-vector space Ext2Q(k, k) has
dimension n(n − 1)/2. This is one of the examples that shows that ρ2 does
not work well as a comparison map of cohomology modules. Here we should
notice that the Koszul relations of degree 2 are derived from the commutativity
relations of the variables t0, . . . , tn−1.

Thinking this phenomenon over, we get the idea that the parameters
t0, . . . , tn−1 should be regarded as non-commutative variables. Now we pro-
pose the following idea.

Idea 1. Parameter algebras should be non-commutative.

If we simply generalize the arguments in the commutative setting, we
will have difficulty in showing the flatness of the universal family of defor-
mations over the non-commutative parameter algebra. The reason for this is
that the local criterion of flatness does not necessarily hold for modules over
non-commutative rings. Therefore, to avoid the argument about flatness, we
also propose the following idea.
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Idea 2. We should consider the deformation of chain complexes instead
of modules.

The deformation of chain complexes is nothing but the lifting of complexes,
which we mainly discuss in this paper. In such a way, we necessarily come to
think of “the universal lifts of chain complexes over non-commutative parameter
algebras”.

Just to explain about the lifting of chain complexes, let us introduce several
notation concerning chain complexes. When we say F = (F, d) is a chain
complex (or simply a complex) of R-modules, we mean that F = ⊕i∈ZFi is
a graded R-module and d : F → F [−1] is a graded homomorphism satisfying
d2 = 0. A projective complex F = (F, d) is just a complex where the underlying
graded module F is a projectiveR-module. If F = (F, d) is a projective complex,
then we define Exti

R(F,F) to be the set of homotopy equivalence classes of chain
homomorphisms on F of degree −i.

We introduce the category Ak, whose objects are artinian local k-algebras
with residue field k with k-algebra homomorphisms as morphisms. (Note that
an object of Ak is not necessarily a commutative ring, but it is a finite dimen-
sional k-algebra.) Now let A ∈ Ak and let F = (F, d) be a projective complex
of R-modules. Then, (F ⊗k A,Δ) is said to be a lift of F to A if it is a chain
complex of R⊗k A

op-modules, and satisfies the equality Δ⊗A k = d.
The aim of this paper is to construct the universal lift of a given projective

complex F = (F, d) which dominates all the lifts of F to all non-commutative
artinian k-algebras in Ak, and to investigate the properties of its parameter
algebra.

We should note that such a universal lift is no longer defined on an ar-
tinian algebra, but defined on a ‘pro-artinian’ local k-algebra. We call such
a pro-artinian algebra a complete local k-algebra by an abuse of the termi-
nology for commutative rings. The non-commutative formal power series ring
k〈〈t1, . . . , tr〉〉 with non-commutative variables t1, . . . , tr is an example of com-
plete local k-algebra. This is actually complete and separated in the (t1, . . . , tr)-
adic topology. And a complete local k-algebra is defined to be a residue ring of
the non-commutative formal power series ring by a closed ideal. (See Definition
2.1 and Proposition 2.1.) In particular all artinian algebras in Ak are complete
local k-algebras. But the difficulty here is that complete local k-algebras are
not necessarily noetherian rings.

We can extend the notion of lifting to the lifting to complete local k-
algebras. In fact, (F ⊗̂kA,ΔA) is said to be a lift of F to a complete local
k-algebra A if it is a chain complex of R⊗̂kA

op-modules and the equality
ΔA ⊗A k = d holds. (See Section 2.3 for the complete tensor product ⊗̂.)

To give a precise definition of universal lifts, let F = (F, d) be a projective
complex of R-modules which we fix. Then we define a covariant functor F :
Ak → (Sets) by setting as F(A) the set of chain-isomorphism classes of lifts
of F to A for any A ∈ Ak. If we have a complete local k-algebra P and a
lift L = (F ⊗̂kP,ΔP ) of F to P , then we can define a natural transformation
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φL : Homk-alg(P,−) → F of functors by setting φL(f) = (F ⊗k A,ΔP ⊗P fA)
for A ∈ Ak and f ∈ Homk-alg(P,A), where fA denotes the right A-module A
regarded as a left P -module through f .

A chain complex L = (F ⊗̂kP,ΔP ) is said to be a universal lift of F, if
φL is an isomorphism of functors. In this case, we say that P is a parameter
algebra.

The first main result of this paper is about the existence and the unique-
ness of universal lifts, which we summarize as follows. (See Theorem 3.1 and
Theorem 3.2.)

Theorem 1.2. Let F = (F, d) be a projective complex of R-modules.
We assume that it satisfies r = dimk Ext1R(F,F) < ∞. Then the following
statements hold true.

(1) There exists a universal lift L0 = (F ⊗̂kP0,Δ0) of F.
(2) A parameter algebra P0 is unique up to k-algebra isomorphisms.
(3) Fixing a parameter algebra P0, a universal lift L0 is unique up to chain

isomorphisms of complexes of R⊗̂kP
op
0 -modules.

(4) The parameter algebra has a description P0
∼= T/I, where T =

k〈〈t1, . . . , tr〉〉 is a non-commutative formal power series ring of r variables
and I is a closed ideal which is contained in the square of the unique maximal
ideal of T .

We shall give a proof of this theorem in Section 3, where we need sev-
eral new ideas to do so, because complete local k-algebras are not necessarily
noetherian. We should remark that every complete local k-algebra can be a pa-
rameter algebra. In fact, for any complete local k-algebra P with maximal ideal
mP , P itself is the parameter algebra for the universal lift of a free resolution
of the left P -module k = P/mP . (See Theorem 3.3).

This theorem is essentially used in the proofs in Section 4, where we
investigate the properties of parameter algebras by considering the compari-
son of cohomology modules. As one of the main results there, we can give
a certain structure theorem for parameter algebras. In fact, assuming that
r = dimk Ext1R(F,F) < ∞ and � = dimk Ext2R(F,F) < ∞ for a projective
complex F of R-modules, we have a description of the parameter algebra
P0 as P0

∼= k〈〈t1, . . . tr〉〉/(f1, . . . , f�). (See Theorem 4.3.) In particular, if
dimk Ext2R(F,F) = 0, then the parameter algebra equals a non-commutative
formal power series ring.

Let P0 be the parameter algebra of the universal lifts of F which is described
as P0 = T/I0, where T is a non-commutative formal power series ring and I0
is a closed ideal of T with I0 ⊆ m2

T . Then we prove in Theorem 4.5 that there
is an isomorphism of k-vector spaces

Ext1R(F,F)2 ∼= Homk(I0/I0 ∩m3
T , k),

where the left hand side means the k-subspace of Ext2R(F,F) generated by all
the products of two elements in Ext1R(F,F). This isomorphism shows that
I0 ⊆ m3

T if and only if Ext1R(F,F)2 = 0. (See Corollary 4.2.)
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We can also regard such all observations as results of comparison of co-
homology modules. For this, we assume that F = (F, d) is a right bounded
projective complex of R-modules, and let L0 = (F ⊗̂kP0,Δ0) be the universal
lift of F. For any integer n, we have a projective complex of R⊗k (P0/m

n
P0

)op-
modules;

L(n)
0 = (F ⊗k P0/m

n
P0
, Δ0 ⊗P0 P0/m

n
P0

),

which is a lift of F to P0/m
n
P0

. Therefore we have a morphism of Yoneda
algebras as before;

Ext·P0/mn
P0

(k, k)→ Ext·R(F,F).

Taking the direct limit, we finally get the k-algebra homomorphism

ρ· : lim−→Ext·P0/mn
P0

(k, k)→ Ext·R(F,F).

Our main problem is to see how the mapping ρi behaves for i ≥ 0. One can
easily observe that ρ0 : lim−→HomP0/mn

P0
(k, k) = k → EndR(F) is a natural em-

bedding and hence it is always an injection. Furthermore, by our construction
of L0 in Theorem 1.2, we see that ρ1 : lim−→Ext1P0/mn

P0
(k, k) = (mP0/m

2
P0

)∗ →
Ext1R(F,F) is a bijection.

One of the main theorems of this paper is Theorem 4.6, in which we prove
that ρ2 : lim−→Ext2P0/mn

P0
(k, k) → Ext2R(F,F) is always an injection. This

actually realizes Idea 1. We should notice that this holds because we had
extended the notion of parameter algebras to non-commutative rings.

2. Non-commutative complete local algebras

2.1. Definitions and properties
Throughout this paper, k always denotes a field. Let A be an associative

k-algebra. By an ideal of A we always mean a two-sided ideal. When S is a
subset of A, we denote by (S) the minimum ideal of A that contains S.

Definition 2.1. Let A be an associative local k-algebra with Jacobson
radical mA. We say that A is a complete local k-algebra if the following three
conditions are satisfied.

(a) The natural inclusion k ⊂ A induces an isomorphism k ∼= A/mA.
(b) The k-vector space mA/m

2
A is of finite dimension.

(c) A is complete and separated in the mA-adic topology, i.e. the natural
projections A→ A/mn

A (n ∈ N) induce an isomorphism A ∼= lim←−A/m
n
A.

For a complete local k-algebra A, we always denote by mA the Jacobson
radical of A, and we regard A as a topological ring with mA-adic topology.

Note that any artinian local k-algebra A with A/mA
∼= k is a complete

local k-algebra in our sense.
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Example 2.1. Let S = k〈t1, t2, . . . , tr〉 be a free k-algebra over vari-
ables t1, t2, . . . , tr, and let J = (t1, t2, . . . , tr). We denote by T the J-adic
completion of S, i.e.

T = lim←−S/J
n,

and we call T the non-commutative formal power series ring, which is
denoted by k〈〈t1, t2, . . . , tr〉〉. Clearly from the definition, T is a complete local
k-algebra with maximal ideal mT = (t1, t2, . . . , tr).

Note that each element of T has a unique expression as a formal infi-
nite sum

∑
λ cλmλ, where cλ ∈ k and the mλ’s are distinct monomials on

t1, t2, . . . , tr.

Remark 1. Let f : A→ B be a k-algebra homomorphism of complete
local k-algebras. Then it is easy to see that f is a local homomorphism, i.e.
f(mA) ⊆ mB. In particular, f is a continuous map.

Definition 2.2. Let A be a complete local k-algebra and let I be an
ideal (resp. a left or right ideal). Then we denote the closure of I by I, i.e.
I =

⋂∞
n=0 (I + mn

A). It is easy to see that I is also an ideal (resp. a left or
right ideal). We say that I is a closed ideal (resp. a closed left or right ideal)
if I = I.

Remark 2. If A is a commutative complete local k-algebra, then it
is well-known that A is noetherian and every ideal of A is closed (cf. [1]).
But, in general, a non-commutative complete local k-algebra is not necessarily
noetherian, and an ideal may not be closed.

For example, let T = k〈〈x, y〉〉 and let I = (x). Since any element of I is
a finite sum of elements of the form axb with a, b ∈ T , one can easily see that∑∞

n=1 y
nxyn belongs to I, but not to I.

Remark 3. If I is a closed ideal of a complete local k-algebra. Then,
I is complete and separated in the relative topology on I, i.e.

I = lim←− I/I ∩mn
A.

Lemma 2.1. Let A be a complete local k-algebra and let I be an ideal
of A. Then, A/I is a complete local k-algebra if and only if I is a closed ideal.

Proof. Note that the residue ring A/I is complete (but may not be sepa-
rated) in mA-adic topology. If I is a closed ideal, then A/I is separated, hence
A/I is a complete local k-algebra. Conversely, if A/I is a complete local k-
algebra, then the natural projection f : A→ A/I is continuous and {0} ⊆ A/I
is closed. Therefore I = f−1({0}) is closed.

Lemma 2.2. Let f : A→ B be a k-algebra homomorphism of complete
local k-algebras. Suppose that the induced mapping f : mA/m

2
A → mB/m

2
B is

surjective. Then f is a surjective homomorphism.
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Proof. It is easy to see by induction on n that the induced mappings
f : mn

A/m
n+1
A → mn

B/m
n+1
B are surjective for all n ≥ 1. Then, for a given b ∈ B,

we can find ai ∈ mi
A (0 ≤ i ≤ n) such that f(a0 + a1 + · · · + an) − b ∈ mn+1

B

for n ≥ 0. Thus, putting a =
∑∞

n=0 an, we have a ∈ A and f(a) = b, since f is
continuous.

Proposition 2.1. Let A be a complete local k-algebra. Then, there are
a non-commutative formal power series ring T = k〈〈t1, t2, . . . , tr〉〉 and a k-
algebra homomorphism f : T → A such that the induced mapping f : mT /m

2
T →

mA/m
2
A is bijective.

In particular, A can be described as A ∼= T/I, where I is a closed ideal of
T and I ⊆ m2

T .

Proof. Take x1, x2, . . . , xr ∈ mA\m2
A which give rise to a basis of the

k-vector space mA/m
2
A. Now define a k-algebra homomorphism f : T =

k〈〈t1, t2, . . . , tr〉〉 → A by f(ti) = xi (1 ≤ i ≤ r). Then it is obvious that
f satisfies the desired conditions.

Definition 2.3. We denote by Âk the category of complete local k-
algebras and k-algebra homomorphisms. We also denote by Ak the category
of artinian local k-algebras A with A/mA

∼= k and k-algebra homomorphisms.
Obviously, Ak is a full subcategory of Âk.

Remark 4. Let A be a complete local k-algebra. Then A/mn
A ∈ Ak for

any n ≥ 1 and by definition A = lim←−A/m
n
A. Conversely, let

· · · −−−−→ An+1
fn+1−−−−→ An

fn−−−−→ An−1 −−−−→ · · ·
f2−−−−→ A1

be a projective system in Ak such that each fn induces an isomorphism
mAn

/m2
An

∼= mAn−1/m
2
An−1

. Then we have that lim←−An ∈ Âk.
In fact, we see from Lemma 2.1 that each An is isomorphic to T/In for

any n ≥ 1, where I1 ⊇ I2 ⊇ · · · ⊇ In ⊇ In+1 ⊇ · · · are closed ideals of the non-
commutative formal power series ring T . Then we have lim←−An

∼= T/
⋂∞

n=1 In
and

⋂∞
n=1 In is a closed ideal of T . Thus the claim follows from Lemma 2.1.

We remark here on the closedness of certain ideals in the non-commutative
formal power series ring. First we note the following lemma.

Lemma 2.3. Let I be a left ideal of T = k〈〈t1, t2, . . . , tr〉〉, and suppose
that I is finitely generated as a left ideal. Then I is a free module as a left
T -module.

Proof. We note that I/mT I is a finite dimensional k-vector space. Hence
we can take a finite number of elements f1, . . . , fn ∈ I which yield a base of
the k-vector space I/mT I. First we claim that I is generated by f1, . . . , fn as
a left ideal.

To show this, let x be any element of I. Since I = T{f1, . . . , fn} + mT I,
there are elements a01, . . . , a0n ∈ T such that x −

∑n
i=1 a0ifi ∈ mT I. Then,
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apply the same argument to this element, we can find a11, . . . , a1n ∈ mT such
that x−

∑n
i=1 a0ifi −

∑n
i=1 a1ifi ∈ m2

T I. Inductively, one can show that there
are a�1, . . . , a�n ∈ m�

T with x −
∑n

i=1(a0i + a1i + · · · + a�i)fi ∈ m�+1
T I for any

� ≥ 1. Now put αi =
∑∞

�=0 a�i which are well-defined elements in T , and we
have x =

∑n
i=1 αifi. Thus the set {f1, . . . , fn} generates I as a left ideal.

Now we prove that {f1, . . . , fn} is a free basis of I as a left T -module. To
show this, let

∑n
i=1 aifi = 0, where ai ∈ T (1 ≤ i ≤ n). We have to show

ai = 0 for each i.
For this, we only have to prove, by induction on � ≥ 1, that ai (1 ≤ i ≤ n)

belong to m�
T for all ai ∈ T (1 ≤ i ≤ n) which satisfy the equality

∑n
i=1 aifi = 0.

Since {f1, . . . , fn} is a k-base of I/mT I , it is trivial that ai ∈ mT (1 ≤
i ≤ n). Hence the claim holds for � = 1. Now assume ai ∈ m�

T (1 ≤ i ≤ n) for
� ≥ 1. Then we may write ai =

∑r
j=1 tjbji for some bji ∈ m�−1

T . Thus we have

r∑
j=1

tj

(
n∑

i=1

bjifi

)
= 0,

in T . Since an element of T has a unique expression as a formal infinite sum of
monomials with coefficients in k, it follows that

∑n
i=1 bjifi = 0 for any j. Then,

by the induction hypothesis, we have bji ∈ m�
T , and hence ai =

∑r
j=1 tjbji ∈

m�+1
T as desired.

The following lemma is known as Nagata’s theorem for commutative formal
power series ring, which is easily generalized to non-commutative ones.

Lemma 2.4. Let T = k〈〈t1, t2, . . . , tr〉〉 be a non-commutative formal
power series ring. Suppose a descending sequence a1 ⊃ a2 ⊃ a3 ⊃ · · · of left
ideals of T satisfies the equality

⋂∞
i=1 ai = (0). Then the linear topology on T

defined by {ai | i = 1, 2, . . .} is stronger than the mT -adic topology.

Proof. The proof given in [5, (30.1)] is valid for non-commutative case.

Proposition 2.2. Let I be a left ideal of a complete local k-algebra A.
If one of the following conditions holds, then I is a closed left ideal in A.

(a) A is a non-commutative formal power series ring T = k〈〈t1, t2, . . . , tr〉〉
and I is finitely generated as a left ideal.

(b) I is of finite length as a left A-module, i.e. dimkI <∞.

Proof. (a) By Lemma 2.3 we may write I = T{f1, . . . , fn} = Tf1 ⊕ · · · ⊕
Tfn. We prove the lemma by induction on n. If n = 0, then it is trivially true.

Suppose n > 0 and set J = T{f2, . . . , fn}. (We understand J = (0) if
n = 1.) Note that we have a direct decomposition I = Tf1 ⊕ J as a left
T -module. Now we set

a� = {c ∈ T | cf1 + g ∈ m�
T for some g ∈ J},
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for each � > 0. Note that a� is a left ideal, a� ⊇ a�+1 and m�
T ⊆ a� for all �.

First of all, we claim that the following equality holds.

(∗)
∞⋂

�=1

a� = (0)

In fact, for any element c ∈
⋂∞

�=1 a�, there is an element g� ∈ J with cf1 + g� ∈
m�

T for each �. Since g�−g�+1 ∈ m�
T , we see that {g�} forms a Cauchy sequence

in the mT - adic topology. Therefore we see that cf1 + lim�→∞ g� = 0. Since J
is a closed ideal by the induction hypothesis, we have lim�→∞ g� ∈ J , and thus
we have cf1 ∈ J . Then the direct decomposition I = Tf1 ⊕ J forces cf1 = 0,
hence c = 0. This proves the equality (∗). Note from Lemma 2.4 that the ideals
a� define the topology equivalent to the mT -adic topology.

Now, to prove that I is closed, take an element x ∈ I. We want to
show x ∈ I. Take a sequence {a� | � = 1, 2, . . .} in I which converges to x
in the mT -adic topology. We may assume that a� − a�+1 ∈ m�

T for each �.
Each a� has a unique description a� =

∑n
i=1 b�,ifi for some b�,i ∈ T . Thus∑n

i=1(b�,i− b�+1,i)fi ∈ m�
T . Therefore b�,1− b�+1,1 ∈ a� for any �. Then, by the

fact we have shown above, we see that {b�,1 | i = 1, 2, . . .} is a Cauchy sequence
in the mT -adic topology. This is true for the sequences {b�,i | � = 1, 2, . . .} for
all i (1 ≤ i ≤ n). Since T is complete in the mT -adic topology, the sequence
{b�,i | � ≥ 1} converges to an element ci ∈ T for each i. Then, x = lim�→∞ a� =∑n

i=1 lim�→∞ b�ifi =
∑n

i=1 cifi ∈ I as desired.

(b) Since
⋂∞

n=1 I ∩ mn
A ⊆

⋂∞
n=1 mn

A = (0), and since dimkI < ∞, there is
an integer n0 such that I ∩ mn

A = (0) for n ≥ n0. Thus I + mn
A = I ⊕ mn

A for
n ≥ n0. Therefore,

I =
∞⋂

n=n0

I + mn
A =

∞⋂
n=n0

I ⊕mn
A = I ⊕

∞⋂
n=n0

mn
A = I.

Corollary 2.1. Let A ∈ Âk and let I be an ideal of A. Suppose one of
the conditions in the previous proposition holds. Then we have A/I ∈ Âk.

The Artin-Rees lemma for non-commutative formal power series ring holds
in the following form.

Corollary 2.2. Let I be a finitely generated left ideal of the non-
commutative formal power series ring T = k〈〈t1, t2, . . . , tr〉〉. Then, the rel-
ative topology on I induced from T is equivalent to the mT -adic topology on I.
That is, for any m ≥ 1, there is an integer � ≥ 1 such that m�

T ∩ I ⊆ mm
T I.

Proof. In the proof of (a) in Proposition 2.2, we have shown that, for a
given m ≥ 1, there is an integer �1 ≥ 1 such that a�1 ⊆ mm

T . This shows that
c1f1 + · · · + cnfn ∈ m�1

T implies c1 ∈ mm
T . This is true for any i (1 ≤ i ≤ n),
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that is, there is an integer �i > 0 such that c1f1 + · · · + cnfn ∈ m�i

T implies
ci ∈ mm

T . Now take � so that � > �i for all i (1 ≤ i ≤ n). Then we have that
c1f1 + · · ·+ cnfn ∈ m�

T implies ci ∈ mm
T for all i. Hence I ∩m�

T ⊆ mmI.

Definition 2.4. Let A be a complete local k-algebra and let S be a
subset of A. Then we say that an ideal I is analytically generated by S if
I = (S).

Proposition 2.3. Let A be a complete local k-algebra and let S be a
subset of a closed ideal I of A. Then, I is analytically generated by S if the
image of S generates I/mAI + ImA as a k-vector space.

Furthermore, if S is a finite subset, then the converse is also true.

Proof. Suppose that the image of S generates I/mAI + ImA, and let n be
an arbitrary natural number. Since mAI + ImA ⊆ mAI + ImA + (mn

A ∩ I) ⊆ I,
the set S generates I/mAI + ImA + (mn

A ∩ I) as a k-vector space, hence

I = (S) + mAI + ImA + (mn
A ∩ I)

= (S) + mA((S) + mAI + ImA) + ((S) + mAI + ImA)mA + (mn
A ∩ I)

= (S) + (m2
AI + mAImA + Im2

A) + (mn
A ∩ I)

· · ·

= (S) +
∑

i+j=s

mi
AIm

j
A + (mn

A ∩ I),

for 1 ≤ s ≤ n. Finally, putting s = n, we have that I = (S) + (mn
A ∩ I). Since

this equality holds for all n ≥ 1, we have I = (S).

To prove the converse, we assume that I is analytically generated by a finite
subset S. Then the equality I =

⋂∞
n=1((S) + mn

A) holds. Since I ⊆ (S) + mn
A,

we have I = (S) + (mn
A ∩ I) for all n ≥ 1. Thus the image of S generates

I/mAI + ImA + (mn
A ∩ I) as a k-vector space, for all n ≥ 1. In particular,

dimk I/mAI + ImA + (mn
A ∩ I) ≤ |S|. Since |S| is finite, there is an integer

n0 > 0 such that I/mAI + ImA +(mn
A ∩ I) = I/mAI + ImA +(mn+1

A ∩ I) for all
n ≥ n0. Thus, we have the equality I/mAI + ImA = I/mAI+ImA +(mn0

A ∩ I),
which is generated by S as a k-vector space.

Corollary 2.3. Let I be a closed ideal in a complete local k-algebra A.
Then, the equality I = mAI + ImA implies I = (0).

Corollary 2.4. Let I be a closed ideal in a complete local k-algebra A.
Then, I is analytically generated by a finite number of elements of I if and only
if dimk

(
I/mAI + ImA

)
<∞.

Corollary 2.5. Let I be a closed ideal in a complete local k-algebra A
that is analytically generated by a finite number of elements. Then, the equality

mAI + ImA = mAI + ImA + (mn
A ∩ I)

holds for any large integer n� 1.
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Proof. See the proof of Proposition 2.3.

It is well-known that the category Ak admits the fiber products.

Lemma 2.5. The category Âk admits the fiber products, that is, any
diagram in Âk

B

g

⏐⏐�
A

f−−−−→ C

can be embedded into a pull-back diagram

Q −−−−→ B⏐⏐� g

⏐⏐�
A

f−−−−→ C.

Proof. For any integer n, we have a diagram in Ak

B/mn
B

gn

⏐⏐�
A/mn

A

fn−−−−→ C/mn
C

,

from which we have a fiber product Qn := A/mn
A×C/mn

C
B/mn

B in the category
Ak. It is clear that {Qn| n ≥ 1} forms a projective system in Ak. Put Q =
lim←− Qn, and we have Q ∈ Âk by Remark 4. It is routine to show that Q is a
fiber product in Âk.

Remark 5. In the setting of Lemma 2.5, the fiber product Q and its
Jacobson radical mQ can be described in the following way :

Q = {(a, b) ∈ A×B | f(a) = g(b)}, mQ = {(a, b) ∈ A×B | f(a) = f(b) ∈ mC}.

We denote the fiber product Q by A×C B.

2.2. Small extensions
Let A be a complete local k-algebra. We say that an element ε �= 0 in A

is a socle element of A if mAε = εmA = 0. Note that an element ε of A is a
socle element if and only if the ideal (ε) is a one-dimensional k-vector space.
Note that if A is an artinian local k-algebra then there exists at least one socle
element.

One should remark from Corollary 2.1 that, if ε is a socle element in a
complete local k-algebra A, then A = A/(ε) is also a complete local k-algebra.

Definition 2.5. A pair (A′, ε) is called a small extension of a complete
local k-algebra A if ε is a socle element of a complete local k-algebra A′ and
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A′/(ε) ∼= A as a k-algebra. To describe the small extension (A′, ε) of A, we
often write it as a short exact sequence

0 −−−−→ k
ε−−−−→ A′ π−−−−→ A −−−−→ 0,

where π is the natural projection.

Lemma 2.6. Let (A′, ε) be a small extension of a complete local k-
algebra A.

(a) If ε �∈ m2
A′ , then there is a k-algebra homomorphism ι : A → A′

that is a right inverse of π : A′ → A. In this case, A′ is isomorphic to
A[x]/(x2,mAx, xmA) as a k-algebra, which we call a trivial small extension
of A.

(b) If ε ∈ m2
A′ , and if A = T/I where I is a closed ideal of T =

k〈〈t1, t2. . . . , tr〉〉 and I ⊆ m2
T , then there is a closed ideal J ⊆ I of T such

that A′ ∼= T/J and the length �T (I/J) = 1. In this case, we say that (A′, ε) is
a nontrivial small extension.

Proof. (a) Suppose ε �∈ m2
A′ . Then, since (ε) ∼= k, we have (ε)∩m2

A′ = (0).
Thus we can take a k-subspace n of mA′ such that m2

A′ ⊆ n and mA′ = (ε)⊕n as
a k-vector space. Noting that n2 = m2

A′ , we see that the k-subspace k⊕ n ⊆ A′

is actually a k-subalgebra and the restriction to k ⊕ n of π : A′ → A yields an
isomorphism k ⊕ n ∼= A.

(b) Suppose ε ∈ m2
A′ . Then we have mA′/m2

A′ ∼= mA/m
2
A. It follows from

Lemma 2.1 that there is a commutative diagram in Âk

T T

f ′
⏐⏐� f

⏐⏐�
A′ −−−−→ A,

where f and f ′ are surjective and I = Ker(f). It is easy to see that J = Ker(f ′)
satisfies the desired conditions.

Definition 2.6. Let A ∈ Âk. For small extensions (A1, ε1) and (A2, ε2)
of A, we say that (A1, ε1) and (A2, ε2) are equivalent, denoted by (A1, ε1) ∼
(A2, ε2), if there is a k- algebra isomorphism f : A1 → A2 with f(ε1) = ε2. We
denote by T (A) the set of equivalence classes of small extensions of A :

T (A) = {(A′, ε) | ε ∈ A′ ∈ Âk, (ε) ∼= k, A′/(ε) ∼= A}/ ∼ .

For a small extension (A′, ε) we denote its equivalence class by [A′, ε].

Note from Lemma 2.6 that trivial small extensions defines a unique element
of T (A).

Lemma 2.7. Let A ∈ Âk. Then T (A) is an abelian group in which the
zero element is the class of a trivial small extension.
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Proof. Let [A1, ε1] and [A2, ε2] be elements in T (A). Then we have the
following commutative diagram by taking the fiber product.

0 0⏐⏐� ⏐⏐�
k k

(0,ε2)

⏐⏐� ε2

⏐⏐�
0 −−−−→ k

(ε1,0)−−−−→ A1 ×A A2 −−−−→ A2 −−−−→ 0∥∥∥ ⏐⏐� ⏐⏐�
0 −−−−→ k

ε1−−−−→ A1 −−−−→ A −−−−→ 0⏐⏐� ⏐⏐�
0 0

Put B = A1 ×A A2/(ε1,−ε2) and it follows from the exact sequence of the
middle row in the diagram that there is an exact sequence

0 −−−−→ k
(ε1,0)−−−−→ B −−−−→ A −−−−→ 0.

Note that, since A1 ×A A2 is a complete local k-algebra by Lemma 2.5 and
(ε1,−ε2) is its socle element, it follows from Corollary 2.1 that B is a complete
local k- algebra. Hence (B, (ε1, 0)) is a small extension of A. Note that (ε1, 0) =
(0, ε2) in B. Now we define the sum by

[A1, ε1] + [A2, ε2] = [B, (ε1, 0)].

Then it is routine to verify that T (A) is an abelian group by this definition of
addition. Actually, the commutativity of sum is given by the isomorphism

A1 ×A A2/(ε1,−ε2) ∼= A2 ×A A1/(ε2,−ε1), (ε1, 0)↔ (ε2, 0).

The associativity is induced by

{A1 ×A A2/(ε1,−ε2)} ×A A3/((ε1, 0),−ε3)
∼= A1 ×A {A2 ×A A3/(ε2,−ε3)}/(ε1,−(ε2, 0)).

Let (A0, ε0) be a trivial small extension of A. Then we can show A1 ×A

A0/(ε1,−ε0) ∼= A1, which implies that [A0, ε0] is the zero element in T (A).
Note that the inverse element is given in the following.

−[A1, ε1] = [A1,−ε1]

In fact, using the following lemma 2.8, one can show the isomorphism

A1 ×A A1/(ε1, ε1) ∼= A1 ×k D/(ε1, 0) ∼= A0.
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Lemma 2.8. Let A ∈ Âk and let D = k[ε0]/(ε20), which we call the ring
of dual numbers over k. Then we have the following isomorphism of complete
local k-algebras for any (A1, ε1) ∈ T (A).

A1 ×A A1
∼= A1 ×k D

Proof. Define f : A1×kD → A1×AA1 by f((a1, a1+cε0)) = (a1, a1+cε1),
where a1 ∈ A1 and c ∈ k, and a1 ∈ k = A1/mA1 is the natural image of a1 ∈ A1.
Then it is easy to see that f is an isomorphism of k-algebras.

Let [A1, ε1] ∈ T (A) for A ∈ Âk. We define the scalar product by an
element c ∈ k as follows :

c · [A1, ε] =

{
[A1, c

−1ε] (c �= 0)
the class of a trivial small extension (c = 0).

Lemma 2.9. Let A ∈ Âk. Then T (A) is a k-vector space by the above
action of k.

Proof. Let c1, c2 ∈ k and [A1, ε1], [A2, ε2] ∈ T (A). It is obvious from the
definition that (c1c2) · [A1, ε1] = c1(c2 · [A1, ε1]). When c1 �= 0, the identity
c1 · ([A1, ε1] + [A2, ε2]) = c1 · [A1, ε1] + c1 · [A2, ε2] follows from the isomorphism
A1×AA2/(ε1,−ε2) ∼= A1×AA2/(c−1

1 ε1,−c−1
1 ε2). We have to verify the equality

(c1 + c2) · [A1, ε1] = c1 · [A1, ε1]+ c2 · [A1, ε1]. If one of c1, c2 and c1 + c2 is equal
to zero, then it is easy to see the equality holds. We assume that c1 �= 0, c2 �= 0
and c1 + c2 �= 0. In this case, we have from Lemma 2.8 the isomorphism

A1 ×A A1/(c−1
1 ε1, −c−1

2 ε1) ∼= A1 ×k D/(c−1
1 ε1,−(c−1

1 + c−1
2 )ε0) ∼= A1,

and by this isomorphism (c−1
1 ε1, 0) corresponds to (c1 + c2)−1ε1 ∈ A1. Hence,

[A1 ×A A1/(c−1
1 ε1, −c−1

2 ε1), (c−1
1 ε1, 0)] = [A1, (c1 + c2)−1ε1].

Lemma 2.10. Let A1, A2 ∈ Âk and let f : A1 → A2 be a k-algebra ho-
momorphism. Then f induces a k-linear map f∗ : T (A2)→ T (A1). Therefore,
T is a contravariant functor from Âk to the category of k-vector spaces.

Proof. For a given [A′
2, ε

′
2] ∈ T (A2), take a fiber product

0 −−−−→ k
ε′1−−−−→ A′

1 −−−−→ A1 −−−−→ 0∥∥∥ ⏐⏐� f

⏐⏐�
0 −−−−→ k

ε′2−−−−→ A′
2 −−−−→ A2 −−−−→ 0,

and we get a small extension (A′
1, ε

′
1) of A1. Now define f∗([A′

2, ε
′
2]) = [A′

1, ε
′
1].

It is not difficult to verify that f∗ is a k-linear mapping.
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Definition 2.7. Let I be a closed ideal of T = k〈〈t1, t2, . . . , tr〉〉. We
always regard I as a topological T -bimodule by the relative topology induced
from T . Therefore, the set {I ∩mn

T | n = 1, 2, . . .} gives the fundamental open
neighbourhoods of 0 in I. We also consider the unique simple T -bimodule k
with discrete topology. We set

Homcon(I, k) = {f : I → k | f is a continuous T -bimodule homomorphism}.

Note that f ∈ HomT -bimod(I, k) belongs to Homcon(I, k) if and only if f(I ∩
mn

T ) = 0 for a large integer n. It is clear that Homcon(I, k) is naturally a
k-vector space.

Since f(mT I + ImT ) = 0 for f ∈ Homcon(I, k), such an f induces the
continuous map f : I/mT I + ImT → k. Hence,

Homcon(I, k) ∼= {f : I/mT I + ImT → k | f is a continuous k-linear map}.

Note, however, that the induced topology on I/mT I + ImT may not be discrete.
Let A ∈ Âk, which we describe as A = T/I where T is a non-commutative

formal power series ring and I ⊆ m2
T . Under such a circumstance, we define

the mapping

τ : Homcon(I, k)→ T (A),

as follows: For f ∈ Homcon(I, k), if f = 0, define τ (f) to be the class of a
trivial small extension. If f �= 0, then If := Ker(f) = f−1(0) is a closed ideal
of T and hence Af := T/If is a complete local k-algebra and we can take a
unique element εf ∈ I/If ⊆ Af with f(εf ) = 1. Since I = If + (εf ), (Af , εf )
is a small extension of A. We define τ (f) = [Af , εf ].

Proposition 2.4. The mapping τ : Homcon(I, k) → T (A) is an iso-
morphism of k-vector spaces.

Proof. First we show that τ is a k-linear mapping. To show that τ (cf) =
c · τ (f) for c ∈ k and f ∈ Homcon(I, k), we may assume that c �= 0. Then it
is trivial that If = Icf , hence Af = Acf and εcf = c−1εf . Thus it follows that
τ (cf) = c · τ (f).

To show τ (f + g) = τ (f) + τ (g) for f, g ∈ Homcon(I, k), we assume that
f �= 0, g �= 0 and f + g �= 0. (Otherwise, the equality is proved easily.) Suppose
f and g are linearly dependent over k, hence f = cg for some c ( �= 0,−1) ∈ k.
In this case, we have If = Ig = If+g. Since (f + g)(εg) = c + 1, we see
εf+g = (c + 1)−1εg. Therefore, τ (f + g) = [Af+g, εf+g] = [Ag, (c + 1)−1εg] =
(c+ 1) · [Ag, εg] = c · [Ag, εg] + [Ag, εg] = c · τ (g) + τ (g) = τ (f) + τ (g).

Now suppose f and g are linearly independent over k. In this case If �= Ig,
and hence If + Ig = I. It then follows from the obvious exact sequence

0 −−−−→ T/If ∩ Ig
φ−−−−→ Af ×Ag −−−−→ A −−−−→ 0

that we can take ef , eg ∈ I whose images in T/If ∩ Ig are mapped respectively
to (εf , 0), (0, εg) by φ. Note that If ∩ Ig ⊂ If+g. And note also that f(ef ) =
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1, f(eg) = 0, g(ef ) = 0 and g(eg) = 1, hence (f + g)(ef − eg) = 0 and
(f + g)(ef ) = 1. It is then easy to see that If+g = (If ∩ Ig) + (ef − eg).
Since Af ×A Ag

∼= T/If ∩ Ig, we have from the definition that τ (f) + τ (g) =
[Af , εf ] + [Ag, εg] = [T/If+g, ef ] = τ (f + g).

Now we have proved that τ is k-linear. Assume f �= 0. Then, since
εf ∈ I/If and I ⊆ m2

T , we have εf ∈ m2
Af

. This implies τ (f) �= 0 by Lemma
2.6. Thus τ is injective. The surjectivity of τ is obvious from the definition of
τ and T (A).

2.3. Complete tensor products
In this section, let R be an associative algebra over a field k.

Definition 2.8. For a complete local k-algebra A ∈ Âk, we define the
complete tensor product R ⊗̂k A as follows :

R ⊗̂k A = lim←−R ⊗k A/m
n
A.

Note that R ⊗̂k A is an associative k-algebra, since each mapping R ⊗k

A/mn+1
A → R⊗kA/m

n
A is a k-algebra homomorphism for n ≥ 1. Also note that,

if A ∈ Ak, then R ⊗̂k A = R⊗k A is an ordinary tensor product of k-algebras.

Remark 6. In general, R ⊗k A is a subalgebra of R ⊗̂k A. However,
they are distinct in general.

For example, let R = k[x] and T = k〈〈t〉〉 = k[[t]] (with one variable).
Then, we have R ⊗k T = k[[t]] [x] ⊂ R ⊗̂k T = k[x] [[t]], which are actually
distinct.

Definition 2.9. Let M be a left R-module and let X be a right (resp.
left) A-module, where A ∈ Âk. Then note that, for each n ≥ 1, M ⊗k X/Xmn

A

(resp. M⊗kX/m
n
AX) is a left R⊗k(A/mn

A)op-module (resp. a left R⊗k(A/mn
A)-

module), i.e. a left module over R and a right (resp. left) module over A/mn
A.

We define the complete tensor product by

M ⊗̂k X = lim←−M ⊗k X/Xmn
A (resp. M ⊗̂k X = lim←−M ⊗k X/m

n
AX),

which is a left R ⊗̂k A
op-module (resp. a left R ⊗̂k A-module) by the reason

above.

We always consider M ⊗k X and M ⊗̂k X with mA-adic topology. In
general, there is a natural mappingM⊗kA→M ⊗̂k A, which is the completion
map in mA-adic topology.

Remark 7. (a) If M is of finite dimension as a k-vector space with a
k-basis {e1, . . . , e�}, then we have

M ⊗̂k A = lim←−

(
�⊕

i=1

eik ⊗k A/m
n
A

)
=

n⊕
i=1

ei

(
lim←−A/m

n
A

)
=

n⊕
i=1

eiA
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for any A ∈ Âk. ThusM ⊗̂k A is a free module as a right A-module if dimkM <
∞.

(b) Suppose M is of infinite dimension as a k-vector space with basis
{eλ | λ ∈ Λ}. In this case, we have

M ⊗̂k A = lim←−

[⊕
λ

eλ(A/mn
A)

]
.

Therefore, an element of M ⊗̂k A is described to be a formal sum
∑

λ eλxλ (xλ

∈ A) as an element of
∏

λ eλA. Note that
∑

λ eλxλ ∈
∏

λ eλA belongs to
M ⊗̂k A if and only if

�{λ ∈ Λ | xλ �∈ mn
A} <∞

for all n ≥ 1.

Lemma 2.11. Let A ∈ Âk.
(a) Let X be a right A-module, and let

0 −−−−→ L −−−−→ M −−−−→ N −−−−→ 0

be a short exact sequence of left R-modules. Then the complete tensor product
by X induces the exact sequence of left R ⊗̂k A

op-modules

0 −−−−→ L ⊗̂k X −−−−→ M ⊗̂k X −−−−→ N ⊗̂k X −−−−→ 0.

(b) Let M be a left R-module, and let

0 −−−−→ X −−−−→ Y −−−−→ Z −−−−→ 0,

be a short exact sequence of left A-modules. Then we have an exact sequence
of left R ⊗̂k A-modules

0−−−−→ lim←− (M ⊗k (X/X ∩mn
AY ))−−−−→M ⊗̂k Y −−−−→M ⊗̂k Z −−−−→ 0.

In particular, if the relative topology on X induced from the mA-adic topology on
Y is equivalent to the mA-adic topology on X, then we have an exact sequence
of R ⊗̂k A-modules

0 −−−−→ M ⊗̂k X −−−−→ M ⊗̂k Y −−−−→ M ⊗̂k Z −−−−→ 0.

Proof. The proof is similar to the commutative complete case in [1], [4]
or [5].

Let M be a left R-module and let X be a left A-module where A ∈ Âk.
Then, from the definition of complete tensor products, we see that there is a
natural mapping

γM,X : (M ⊗̂k A)⊗A X →M ⊗̂k X.

In fact, γM,X is induced from the natural mappings

(M ⊗̂k A)⊗A X → (M ⊗k A/m
n
A)⊗A X = M ⊗k X/m

n
AX.
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Lemma 2.12. Under the circumstances above, suppose that the left A-
module X is finitely generated. Then, γM,X : (M ⊗̂k A)⊗A X →M ⊗̂k X is
surjective for any left R-module M .

Proof. By the assumption, there is a surjective homomorphism of left A-
modules f : F = ⊕�

i=1Aei → X, where F is a free left A-module of finite rank
�. Remark that γM,F is an isomorphism. Naturally we have a commutative
diagram

(M ⊗̂k A)⊗A F
1⊗f−−−−→ (M ⊗̂k A)⊗A X

γM,F

⏐⏐� γM,X

⏐⏐�
M ⊗̂k F

1b⊗f−−−−→ M ⊗̂k X.

Since the horizontal mappings in the diagram are surjective (see Lemma 2.11),
and since γM,F is an isomorphism, we see that γM,X is surjective.

Proposition 2.5. Let T = k〈〈t1, t2, . . . , tr〉〉 be a non-commutative for-
mal power series ring, and let M be an arbitrary left R-module. Then M ⊗̂k T
is flat as a right T -module.

Proof. To prove the flatness, it is enough to show the following.
(*) For any finitely generated left ideal a, the mapping 1⊗ j : (M ⊗̂k T )⊗T a
→ (M ⊗̂k T )⊗T T induced from the inclusion j : a→ T is injective.

Note that there is a commutative diagram

(M ⊗̂k T )⊗T a
1⊗j−−−−→ (M ⊗̂k T )⊗T T

γM,a

⏐⏐� γM,T

⏐⏐�
M ⊗̂k a

1b⊗j−−−−→ M ⊗̂k T,

where we should note that γM,a is an isomorphism, since a is a free module of
finite rank by Lemma 2.3. Thus, to prove the proposition, it is sufficient to
show that 1⊗̂j : M ⊗̂k a → M ⊗̂k T is injective. By virtue of Lemma 2.11,
we only have to show that the relative topology on a from T is equal to the
mA-adic topology. But this has been proved in Corollary 2.2.

Proposition 2.6. Let A ∈ Âk, and let M be an arbitrary left R-module.
Suppose A is of the form A = T/I where T = k〈〈t1, t2, . . . , tr〉〉 is a non-
commutative formal power series ring and I is an ideal of T that is finitely
generated as a left ideal. Then M ⊗̂k A is flat as a right A-module.

Proof. From the short exact sequence of left T -modules

0 −−−−→ I −−−−→ T −−−−→ A −−−−→ 0,

we have the commutative diagram

(M b⊗k T ) ⊗T I −−−−−→ (M b⊗k T ) ⊗T T −−−−−→ (M b⊗k T ) ⊗T A−−−−−→ 0,

γM,I

??y γM,T

??y γM,A

??y

0−−−−−→ M b⊗k I −−−−−→ M b⊗k T −−−−−→ M b⊗k A −−−−−→ 0,
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where the both rows are exact sequences by Corollary 2.2 and Lemma 2.11. We
already know that γM,I and γM,T are isomorphisms, since I is a free module of
finite rank by Lemma 2.3. It follows that γM,A : (M ⊗̂k T ) ⊗T A → M ⊗̂k A
is bijective, which is actually an isomorphism of left R ⊗̂k A

op-modules. Since
(M ⊗̂k T )⊗T A is flat as a right A-module by Proposition 2.5, we can conclude
that M ⊗̂k A is also flat over A.

Note, in general, M ⊗̂k A is not flat as a right A-module.

Example 2.2. Let T = k〈〈x, y〉〉 be the non-commutative formal power
series ring of two variables and let us consider the closed ideals in T ,

I = (xynx | n = 0, 1, 2, . . .) ⊆ J = (x).

Note that an element of I (resp. J) is a formal infinite sum
∑

λ cλmλ with
cλ ∈ k and with monomials mλ involving x at least twice (resp. once).

Consider the mapping ϕ : T/J → T/I defined by right multiplication by
x, i.e. ϕ(a mod J) = ax mod I. Note that ϕ is a well-defined homomorphism
of left T -modules, and it is injective.

Now let A be the residue ring T/I and consider ϕ to be an injective ho-
momorphism of left A-modules. Let M =

⊕∞
i=1 eik be a k-vector space of

countably infinite dimension. Then we can show that the mapping

(M ⊗̂k A)⊗ ϕ : (M ⊗̂k A)⊗A T/J −→ (M ⊗̂k A)⊗A T/I = M ⊗̂k A

is not injective. In fact, an element z =
∑∞

i=1 ei ⊗ yixyi ∈M ⊗̂k A is mapped
to ϕ(z) =

∑∞
i=1 ei ⊗ yixyix by ϕ, which is zero in M ⊗̂k A. However, z never

belongs to (M ⊗̂k A)J , because any element of (M ⊗̂k A)J is a finite sum of
the form

∑
i ziji (zi ∈M ⊗̂k A, ji ∈ J) and z is never of this form.

We can conclude from this observation that M ⊗̂k A is not flat as a right
A-module.

3. Universal lifts of chain complexes

3.1. Lifts to artinian local algebras
In this section k is a field and R is an associative k-algebra.
By a graded left R-module F , we just mean a direct sum F =

⊕
i∈Z

Fi

where each Fi is a left R-module. If F is a graded left R-module and if j is an
integer, then the shifted graded left R-module F [j] is defined to be F [j]i = Fi+j

for any i ∈ Z. A graded homomorphism f : F → G of graded left R-module is
an R-homomorphism with f(Fi) ⊆ Gi for any i ∈ Z. If f : F → G is a graded
homomorphism, we denote by fi the restriction of f on Fi for each i. We refer
to a graded homomorphism F → G[j] as a graded homomorphism of degree j.

By a chain complex of left R-modules or simply a complex over R, we
mean a pair F = (F, d) where F is a graded left R-module and d is a graded
homomorphism of degree −1 such that d2 = 0. A complex F = (F, d) over R is
described as

· · · −−−−→ Fi+1
di+1−−−−→ Fi

di−−−−→ Fi−1 −−−−→ · · · .
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We say that a complex F = (F, d) is a projective complex over R if the under-
lying graded left R-module F is projective.

Let F = (F, d) and G = (G, d′) be chain complexes over R. A chain
homomorphism f : F→ G of degree j is a graded homomorphism f : F → G[j]
satisfying f ·d+(−1)j+1d′ ·f = 0. A chain isomorphism f : F→ G of complexes
is a chain homomorphism of degree 0 that is bijective. If there is a chain
isomorphism between F and G, then we say that they are isomorphic as chain
complexes over R and we denote it by F ∼= G.

Now let F and G be projective complexes over R, and let f, g : F → G
be chain homomorphisms of degree j. We say that f and g are homotopically
equivalent, denoted by f ∼ g, if there is a graded homomorphism h : F → G[j+
1] such that f = g+(h ·d+(−1)jd′ ·h). We denote the set of all the homotopy
equivalence classes of chain homomorphisms of degree j by Ext−j

R (F,G), which
is clearly equipped with structure of k-vector space.

For graded homomorphisms f : F → F [j] and g : F → F [�], we define a
graded homomorphism [f, g] : F → F [j + �] by

[f, g] = f · g + (−1)j+�g · f.

Note that f : F → F [j] is a chain homomorphism if and only if [d, f ] = 0. Also
note that f ∼ 0 if and only if there is a graded homomorphism g : F → F [j+1]
with f = [d, g].

Let ϕ : R → S be a k-algebra homomorphism and let F = (F, d) be a
projective complex over R. In this case, we denote by Sϕ (resp. ϕS) the left
(resp. right) S-module S with right (resp. left) R-module structure through ϕ.
Then the chain complex Sϕ⊗R F (resp. F⊗R ϕS) of projective left (resp. right)
S-modules is defined to be (Sϕ ⊗R F, Sϕ ⊗R d) (resp. (F ⊗R ϕS, d⊗R ϕS)).

Recall that we denote by Ak the category of artinian local k-algebras A
with A/mA

∼= k and k-algebra homomorphisms. If F is a graded projective
(resp. free) left R-module and if A ∈ Ak, then F ⊗k A is a graded projective
(resp. free) left R ⊗k A

op-module.

Definition 3.1. Let F = (F, d) be a projective complex over R and let
A ∈ Ak. We say that a projective complex (F ⊗k A,Δ) over R ⊗k A

op is a
lifting chain complex of F to A (or simply a lift of F to A) if it satisfies
the equality (F ⊗k A,Δ)⊗A k = F.

To be more general, let ϕ : A → B be a morphism in Ak. A projective
complex (F ⊗kA,ΔA) over R⊗kA

op is said to be a lift of a projective complex
(F ⊗kB,ΔB) over R⊗kB

op if it satisfies the equality (F ⊗kA,ΔA)⊗A (ϕB) =
(F ⊗k B,ΔB). And a projective complex (F ⊗k B,ΔB) over R ⊗k B

op is said
to be liftable to A if there is a lift of (F ⊗k B,ΔB) to A.

The aim of this section is to construct a universal one among those lifts
of a given projective complex F = (F, d) over R. For this, in the rest of this
paper, F = (F, d) always denotes a fixed projective complex over R.

Lemma 3.1. Let A ∈ Ak. Then, since A is of finite dimension as a
k-vector space, we may take a k-basis {1}∪ {x1, . . . , xr}∪ {yj | 1 ≤ j ≤ s} of A
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so that {x1 . . . , xr} yields a k-basis of mA/m
2
A and {yj | 1 ≤ j ≤ s} is a k-basis

of m2
A.
(a) For any graded homomorphism Δ : F⊗kA→ F⊗kA[n] of left R⊗kA

op-
modules, there uniquely exist graded homomorphisms f, gi, hj : F → F [n] (1 ≤
i ≤ r, 1 ≤ j ≤ s) of left R-modules such that

Δ = f ⊗ 1 +
r∑

i=1

gi ⊗ xi +
s∑

j=1

hj ⊗ yj .

(b) Let (F ⊗k A,Δ) be a lift of F = (F, d) to A. Then Δ has a description
as in (a), where f = d and each gi : F → F [−1] (1 ≤ i ≤ r) is a chain
homomorphism.

Proof. (a) For any z ∈ F�, we can uniquely write Δ(z) = z0⊗1+
∑r

i=1 zi⊗
xi +

∑s
j=1wj ⊗ yj for some z0, zi, wj ∈ F�+n (1 ≤ i ≤ r, 1 ≤ j ≤ s). Then,

define f, gi, hj : F → F [n] by f(z) = z0, gi(z) = zi and hj(z) = wj and it is
easy to see that they are graded homomorphisms of left R-modules. Note that

Δ(z ⊗ a) = f(z)⊗ a+
r∑

i=1

gi(z)⊗ xia+
s∑

j=1

hj(z)⊗ yja,

for any z ⊗ a ∈ F ⊗k A.
(b) Since d = Δ ⊗A k = Δ ⊗A A/mA, we have f = d. Similarly, we have

Δ⊗AA/m
2
A = d⊗ 1 +

∑r
i=1 gi⊗xi as a graded homomorphism F ⊗k A/m

2
A →

F ⊗k A/m
2
A[−1]. Since (Δ ⊗A A/m2

A)2 = 0 and since (d ⊗ 1)2 = 0, it follows
that

∑r
i=1 dgi⊗xi +gid⊗xi =

∑r
i=1[d, gi]⊗xi = 0 as a graded homomorphism

on F ⊗k A/m
2
A. Hence we have [d, gi] = 0 for all i.

Corollary 3.1. Let A ∈ Ak and suppose m2
A = 0. Then, for any lift

(F ⊗k A,Δ) of F = (F, d) to A, the differentiation Δ is given by

Δ = d⊗ 1 +
r∑

i=1

gi ⊗ xi,

where {x1, . . . , xr} is a k-basis of mA and each gi : F → F [−1] is a chain
homomorphism (1 ≤ i ≤ r).

Lemma 3.2. Let ϕ : A → B be a surjective morphism in Ak and let
(F ⊗k B,Δ) be a lifting chain complex of F = (F, d) to B.

(a) Any graded homomorphism α : F ⊗k B → F ⊗k B of graded R⊗k B
op-

modules is liftable to a graded homomorphism F ⊗k A → F ⊗k A of graded
R ⊗k A

op-modules. That is, there is a graded homomorphism β : F ⊗k A →
F ⊗k A with β ⊗A ϕB = α.

(b) If α is an isomorphism in (a), then β is also an isomorphism.

Proof. (a) Since F ⊗k A is a left projective R ⊗k A
op-module, and since

1 ⊗ ϕ : F ⊗k A → F ⊗k B is a surjective homomorphism, one can find a left
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R ⊗k A
op-homomorphism β which makes the following diagram commutative.

F ⊗k A
β−−−−→ F ⊗k A

1⊗ϕ

⏐⏐� 1⊗ϕ

⏐⏐�
F ⊗k B

α−−−−→ F ⊗k B

(b) To prove that β is an isomorphism, we may assume that ϕ : A→ B is
a small extension, because any surjective morphism in Ak is a composition of
a finite sequence of small extensions. So we may have a short exact sequence

0 −−−−→ k
ε−−−−→ A −−−−→ B −−−−→ 0.

Hence, we have a commutative diagram of left R⊗k A
op-modules

0 −−−−→ F
ε−−−−→ F ⊗k A −−−−→ F ⊗k B −−−−→ 0

α⊗k

⏐⏐� β

⏐⏐� α

⏐⏐�
0 −−−−→ F

ε−−−−→ F ⊗k A −−−−→ F ⊗k B −−−−→ 0.

Since α is an isomorphism, it is clear that so is β.

Corollary 3.2. Let ϕ : A→ B be a surjective morphism in Ak as in the
lemma. Suppose we have two chain complexes (F ⊗k B,Δ1) and (F ⊗k B,Δ2)
which are lifts of F to B and are isomorphic to each other as chain complexes
over R ⊗k B

op. If (F ⊗k B,Δ1) is liftable to A, then so is (F ⊗k B,Δ2).

Proof. By the assumption, there is a graded isomorphism α : F ⊗k B →
F ⊗k B such that Δ2 = αΔ1α

−1. Let (F ⊗k A,Δ′
1) be a lift of (F ⊗k B,Δ1) to

A. By Lemma 3.2, α is lifted to an isomorphism β : F ⊗k A→ F ⊗k A. Then
it is easy to see that (F ⊗k A, βΔ′

1β
−1) is a lift of (F ⊗k B,Δ2) to A.

Lemma 3.3. Let (A′, ε) be a small extension of A ∈ Ak, and let
(F ⊗k A,Δ) be a lift of F to A. Suppose that chain complexes (F ⊗k A

′,Δ1)
and (F ⊗k A

′,Δ2) are lifts of (F ⊗k A,Δ) to A′.
(a) Then there is a chain homomorphism h : F → F [−1] such that Δ2 =

Δ1 + h⊗ ε.
(b) The following two conditions are equivalent.

(1) The equivalence class [h] ∈ Ext1R(F,F) is zero.
(2) There is an isomorphism ϕ : (F ⊗k A

′,Δ1) → (F ⊗k A
′,Δ2) of

chain complexes over R ⊗k A
′op such that ϕ ⊗A′ A is the identity

mapping on F ⊗k A.

Proof.
(a) We can take a k-basis of mA′ containing ε as a member. Then, both Δ1

and Δ2 have the descriptions as in Lemma 3.1. Since Δ1⊗A′A = Δ = Δ2⊗A′A,
the difference Δ2 − Δ1 has a description h ⊗ ε. We have to show that h is a
chain map. Since Δ2

1 = Δ2
2 = 0 and ε2 = 0, we have

0 = Δ2
2 = (Δ1 + h⊗ ε)2 = Δ1 · (h⊗ ε) + (h⊗ ε) ·Δ1.
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Note that Δ1 · (1⊗ ε) = d⊗ ε = (1⊗ ε) ·Δ1, since Δ1 has a description

Δ1 = d⊗ 1 +
∑

i

gi ⊗ xi +
∑

j

hj ⊗ yj ,

as in Lemma 3.1 and εxi = xiε = 0 so on. Therefore, we have (dh+hd)⊗ε = 0,
hence [d, h] = 0.

(b) [(1)⇒ (2)]: If [h] = 0, then there is a graded homomorphism g : F → F
of degree 0 such that h = [d, g]. Define a mapping ϕ : F ⊗k A

′ → F ⊗k A
′ by

ϕ = 1 ⊗ 1 + g ⊗ ε, which maps x ⊗ a ∈ F ⊗k A
′ to x ⊗ a + g(x) ⊗ εa. Then

it is easy to see that ϕ is an automorphism of a graded left R⊗k A
′op-module,

and the inverse is given by ϕ−1 = 1 ⊗ 1 − g ⊗ ε. Then, we have the following
equalities.

ϕ−1Δ1ϕ = (1⊗ 1− g ⊗ ε)Δ1(1⊗ 1 + g ⊗ ε)
= Δ1 + Δ1(g ⊗ ε)− (g ⊗ ε)Δ1

= Δ1 + (dg ⊗ ε− gd⊗ ε)
= Δ1 + [d, g]⊗ ε = Δ2

Therefore, ϕ satisfies the conditions in (2).
[(2) ⇒ (1)]: By Lemma 3.1, we have a description ϕ = 1 ⊗ 1 + g ⊗ ε and

ϕ−1 = 1 ⊗ 1 − g ⊗ ε for some graded homomorphism g : F → F of degree 0.
Hence, by the same computation as above, we have

Δ2 = ϕ−1Δ1ϕ = Δ1 + [d, g]⊗ ε.

Therefore, h = [d, g] ∼ 0.

Proposition 3.1. Let

B −−−−→ A1⏐⏐� a1

⏐⏐�
A2

a2−−−−→ A

be a diagram of a fiber product in Ak with a2 being a surjective map.
(a) Let ϕ1 : F⊗kA1 → F⊗kA1[j] and ϕ2 : F⊗kA2 → F⊗kA2[j] be graded

homomorphisms of degree j such that ϕ⊗A1 A = ϕ2⊗A2 A(= ϕ). Then there is
a graded homomorphism Φ : F ⊗B → F ⊗k B[j] of degree j with Φ⊗B Ai = ϕi

for i = 1, 2.
(b) Let (F ⊗k A1,Δ1) and (F ⊗k A2,Δ2) be lifts of a chain complex

(F ⊗k A,Δ). Then there is a chain complex (F ⊗k B,ΔB) which is a lift
of both of (F ⊗k A1,Δ1) and (F ⊗k A2,Δ2).

(c) Let (F⊗kA1,Δ1) and (F⊗kA2,Δ2) be chain complexes such that there
is an isomorphism

(F ⊗k A1,Δ1)⊗A1 A
∼= (F ⊗k A2,Δ2)⊗A2 A

of chain comlexes over R⊗k A
op. Then there is a chain complex (F ⊗k B,ΔB)

which satisfies (F ⊗k B,ΔB)⊗B Ai
∼= (F ⊗k Ai,Δi) for i = 1, 2.
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Proof. (a) Since there is commutative diagram with exact rows

0−−−−−→ F ⊗k B −−−−−→ (F ⊗k A1) × (F ⊗k A2) −−−−−→ F ⊗k A −−−−−→ k

ϕ1×ϕ2

??y ϕ

??y

0−−−−−→F ⊗k B[j]−−−−−→ (F ⊗k A1)[j] × (F ⊗k A2)[j]−−−−−→F ⊗k A[j]−−−−−→ k,

it induces a mapping Φ : F ⊗k B → F ⊗k B[j].
(b) Just apply (a) to Δ1 and Δ2, and we get a graded homomorphism

ΔB : F ⊗k B → F ⊗k B[−1]. It is clear that Δ2
B = 0.

(c) By definition of isomorphisms of chain complexes, there is a graded
isomorphism α : F ⊗k A → F ⊗k A of graded R ⊗k A

op-modules, such that
Δ1 ⊗A1 A = α · (Δ2 ⊗A2 A) · α−1. Since a2 is surjective, there is a graded
isomorphism β : F ⊗k A2 → F ⊗k A2 which lifts α, by Lemma 3.2. Put
Δ′

2 = β · Δ2 · β−1 and apply (b) to the chain complexes (F ⊗k A1,Δ1) and
(F ⊗k A2,Δ′

2), and we obtain a chain complex (F ⊗k B,ΔB) which is a lift of
the both of them.

3.2. Construction of maximal lifts
As in the previous section, let R be an associative algebra over a field k

and let F = (F, d) be a projective complex over R. In the rest of the paper we
always assume that

(3.1) r = dimk Ext1R(F,F) <∞.

Under this assumption, we take chain homomorphism t∗i : F → F [−1] (1 ≤
i ≤ r) whose equivalence classes {[t∗1], . . . , [t∗r ]} is a k-basis of Ext1R(F,F). We
take variables t1, . . . , tr corresponding to this basis, and consider the non-
commutative formal power series ring T = k〈〈t1, t2, . . . , tr〉〉. Now define δ :
F ⊗k T/m

2
T → F ⊗k T/m

2
T by

(3.2) δ = d⊗ 1 +
r∑

i=1

t∗i ⊗ ti.

It follows from Corollary 3.1 that (F ⊗k T/m
2
T , δ) is a lift of F to T/m2

T .

Definition 3.2. Let I be a closed ideal of T . We define the complete
tensor product of a graded projective left R-module with T/I as follows:

F ⊗̂k T/I :=
⊕

i∈Z
(Fi ⊗̂k T/I).

Now let I be a closed ideal of T and let (F ⊗̂k T/I, Δ) be a chain complex.
If I ′ ⊇ I be another closed ideal of T , then there is a natural projection T/I →
T/I ′, which induces, by Lemma 2.11, a surjective homomorphism

F ⊗̂k T/I → F ⊗̂k T/I
′.

Thus we have a surjective homomorphism of left R ⊗̂k (T/I)op-modules

π : (F ⊗̂k T/I)⊗T/I T/I
′ → F ⊗̂k T/I

′.
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Note that π may not be an isomorphism.
For each n ≥ 1, Δ induces a graded homomorphism Δn : F ⊗k (T/I +

mn
T )→ F ⊗k (T/I + mn

T )[−1] and it holds that Δ = lim←−Δn. Since I ⊆ I ′, each
Δn induces a graded homomorphism Δ′

n : F ⊗k T/(I ′ + mn
T ) → F ⊗k (T/I ′ +

mn
T )[−1], and we obtain a graded homomorphism Δ′ = lim←−Δ′

n : F ⊗̂k T/I
′ →

F ⊗̂k T/I
′[−1]. By an abuse of notation, we denote this mapping Δ′ by Δ⊗T/I

T/I ′.

Definition 3.3. Let I1 ⊆ I2 ⊆ m2
T be closed ideals of T . A chain

complex (F ⊗̂k T/I1,Δ1) is called a lift of a chain complex (F ⊗̂k T/I2,Δ2) if
Δ2 = Δ1 ⊗T/I1 T/I2.

Definition 3.4. Let T/I ∈ Âk where T = k〈〈t1, t2, . . . , tr〉〉 is a non-
commutative formal power series ring and I ⊆ m2

T . And let (F ⊗̂k T/I,Δ) be
any chain complex which is a lift of F. Now we consider the following set of
lifting chain complexes of (F ⊗̂k T/I, Δ):

I(I,Δ) ={(T/I ′, Δ′) | I ′ is a closed ideal of T with I ′ ⊆ I and

(F ⊗̂k T/I
′, Δ′) is a lifting chain complex of (F ⊗̂k T/I, Δ)}

We define an order relation on the set I(I,Δ) as follows:

(T/I1, Δ1) > (T/I2, Δ2)⇐⇒ I1 ⊆ I2 and Δ1 ⊗T/I1 T/I2 = Δ2

Lemma 3.4. The ordered set I(I,Δ) is an inductively ordered set. In
particular, there exists a maximal element in I(I,Δ).

Definition 3.5. If (T/I0, Δ0) is a maximal element in I(I,Δ) as in the
lemma, then we say that the chain complex (F ⊗̂k (T/I0),Δ0) is a maximal
lift of (F ⊗̂k T/I, Δ).

Proof. Let {(T/Iλ,Δλ) | λ ∈ Λ} be a totally ordered subset of I(I,Δ).
Note that J =

⋂
λ∈Λ Iλ is a closed ideal of T and that lim←−T/Iλ = T/J .

Hence (F ⊗̂k T/J,ΔJ ) = lim←−λ
(F ⊗̂k T/Iλ,Δλ) is a lifting chain complex of

(F ⊗̂k T/I,Δ). Therefore, (T/J,ΔJ ) ∈ I(I,Δ) and (T/J,ΔJ) > (T/Iλ,Δλ)
for any λ ∈ Λ. Thus I(I,Δ) is an inductively ordered set. The existence of
maximal element of I(I,Δ) follows from Zorn’s lemma.

We should remark the following

Lemma 3.5. If (T/I1, Δ1) is not a maximal element in I(I,Δ), then
there is a nontrivial small extension T/I2 of T/I1 such that (T/I2,Δ2) ∈
I(I,Δ) is strictly bigger than (T/I1, Δ1), for some Δ2.

Proof. Take a strictly bigger element (T/I ′1, Δ′
1) > (T/I1, Δ1) in I(I,Δ).

Since I ′1 � I1 are closed ideals, there is an integer n with I ′1 + (mn
T ∩ I) �= I1.

In fact, if not, we will have I1 ⊆ I ′1 +mn
T for any n, because the right hand side
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is the closed ideal containing I ′1 + (mn
T ∩ I). Then we shall have I1 ⊆ I ′1 = I ′1,

a contradiction.
Now, since A = T/I ′1 + (mn

T ∩ I) is a complete local k-algebra and since
the image J1 of I1 in A is an ideal of A of finite length, we can find a closed
ideal J2 of A contained in J1 with length(J1/J2) = 1. See Proposition 2.2.
Taking the inverse image of J2 in T , we have a closed ideal I2 of T contained
in I1 and length(I1/I2) = 1. Finally set Δ2 = Δ′

1⊗T/I′
1
T/I2, and we easily see

that (T/I2,Δ2) meets the requirements.

The following is an easy consequence of Lemma 3.2.

Lemma 3.6. Let ϕ : A → B be a surjective morphism in Âk where
Ker(ϕ) is of finite length, and let (F ⊗̂k B,Δ) be a lifting chain complex of F.

(a) Any graded homomorphism α : F ⊗̂k B → F ⊗̂k B is liftable to a
graded homomorphism F ⊗̂k A → F ⊗̂k A. That is, there is a graded homo-
morphism β : F ⊗̂k A→ F ⊗̂k B with β ⊗A ϕB = α.

(b) If α is an isomorphism in (a), then β is also an isomorphism.

Proof. (a) By induction on the length of Ker(ϕ), we may assume that
A → B is a small extension. In this case, it is easily seen that the following
diagram is a pull-back diagram of right A-modules for any integer n which
satisfies Ker(ϕ) ∩mn

A = (0).

A/mn+1
A

ϕn+1−−−−→ B/mn+1
B⏐⏐� ⏐⏐�

A/mn
A

ϕn−−−−→ B/mn
B ,

where ϕn is the induced mapping by ϕ and the vertical arrows are natural
projections. Thus the diagram

F ⊗k A/m
n+1
A

1⊗ϕn+1−−−−−→ F ⊗k B/m
n+1
B

pn

⏐⏐� qn

⏐⏐�
F ⊗k A/m

n
A

1⊗ϕn−−−−→ F ⊗k B/m
n
B ,

is a pull-back diagram of R ⊗̂k A
op-modules. Denote by αn the mapping

α ⊗k B/m
n
B : F ⊗k B/m

n
B → F ⊗k B/m

n
B . If we have an R ⊗k A/m

n
A-

homomorphism βn : F ⊗k A/m
n
A → F ⊗k A/m

n
A with (1 ⊗ ϕn) · βn · pn =

qn · αn+1 · (1 ⊗ ϕn+1), then it follows that there uniquely exists βn+1 : F ⊗k

A/mn+1
A → F ⊗k A/m

n+1
A such that (1⊗ ϕn+1) · βn+1 = αn+1 · (1⊗ ϕn+1) and

pn · βn+1 = βn · pn. Therefore, by induction, we have such βn for all n ≥ 1.
Then, setting β = lim←− βn, we see that β is a lift of the mapping α.

(b) In the proof above, if α is an isomorphism, then each βn is also an
isomorphism by Lemma 3.2, hence so is β.
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Lemma 3.7. Let (F ⊗̂k T/I0, Δ0) be a maximal lift of
(F ⊗̂k T/I, Δ). Then, any chain complex (F ⊗̂k T/I0, Δ1) which is isomor-
phic to (F ⊗̂k T/I0, Δ0) as a complex over R ⊗̂k (T/I0)op is also a maximal
lift of (F ⊗̂k T/I, Δ).

Proof. There is a graded isomorphism α : F ⊗̂k T/I0 → F ⊗̂k T/I0 with
Δ1 = αΔ0α

−1. If (F ⊗̂k T/I0, Δ1) is not a maximal lift, then by Lemma
3.5 there is a nontrivial small extension T/I2 of T/I0 such that (T/I2,Δ2) >
(T/I0,Δ1) in I(I,Δ). We can lift the isomorphism α to β : F ⊗̂k T/I2 →
F ⊗̂k T/I2 by Lemma 3.6. Then it is easy to see that (T/I2, β−1Δ2β) >
(T/I0,Δ0) in I(I,Δ), and it contradicts to the assumption.

Lemma 3.8. Let T = k〈〈t1, t2, . . . , tr〉〉 be a non-commutative formal
power series ring.

(a) For any given fi ∈ m2
T (1 ≤ i ≤ r), we define a k-algebra homomor-

phism ϕ : T → T by ϕ(ti) = ti + fi (1 ≤ i ≤ r). Then, ϕ is an automorphism
of T such that it induces the identity mapping on T/m2

T .
(b) Any k-algebra automorphism of T which induces the identity on T/m2

T

is given as in (a).
(c) Let I1 ⊆ I2 ⊆ m2

T be closed ideals of T and let ψ : T/I1 → T/I2 be any
k-algebra homomorphism that induces the identity on T/m2

T . Then there is a
k-algebra automorphism ϕ : T → T with ϕ(I1) ⊆ I2 and the induced mapping
ϕ : T/I1 → T/I2 equals ψ.

Proof. (a) It is obvious that ϕ induces the identity on mT /m
2
T . Hence it

follows from Lemma 2.2 that ϕ : T → T is a surjective k-algebra homomor-
phism. In particular, every induced mapping ϕn : T/mn

T → T/mn
T is surjective

as well. Comparing the lengths we conclude that each ϕn is bijective. Hence
ϕ = lim←−n

ϕn is an automorphism.
(b) Trivial.
(c) By the assumption, we can choose fi ∈ m2

T (1 ≤ i ≤ r) so that ψ(ti
(mod I1)) = ti + fi (mod I2) (1 ≤ i ≤ r). Now define an automorphism
ϕ : T → T by ϕ(ti) = ti + fi (1 ≤ i ≤ r), and it is easy to see that ϕ satisfies
the desired condition.

Now, as in the beginning of this section, we consider the lifting chain
complex (F ⊗k T/m

2
T , δ) with δ = d ⊗ 1 +

∑r
i=1 t

∗
i ⊗ ti as in Equation (3.2),

where t∗i : F → F [−1] (1 ≤ i ≤ r) are chain homomorphisms whose equivalence
classes [t∗1], . . . , [t∗r ] form a k-basis of Ext1R(F,F).

Theorem 3.1. A maximal lift of (F ⊗k T/m
2
T , δ) is unique up to k-

algebra automorphisms and chain isomorphisms. I.e., if we have two max-
imal elements (T/I0,Δ0) and (T/I1,Δ1) in I(m2

T , δ), then there exists a k-
algebra automorphism ϕ : T → T such that ϕ induces a k-algebra isomor-
phism ϕ : T/I0 → T/I1 and (F ⊗̂k (T/I0),Δ0) ⊗T/I0 ϕ(T/I1) is isomorphic
to (F ⊗̂k (T/I1),Δ1) as a complex over R ⊗̂k (T/I1)op.
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Proof. (1) First of all we note from Remark 4 that there is an infinite
descending sequence of ideals of T ; L0 = m2

T ⊃ L1 ⊃ L2 ⊃ L3 ⊃ · · · ⊃ I1
such that length(Ln/Ln+1) = 1 for all n ≥ 1 and T/I1 = lim←−T/Ln. Note that
each T/Ln+1 → T/Ln is a small extension in Ak. Note also that F ⊗̂k T/I1 =
lim←−F ⊗k T/Ln.

(2) By induction on n, we shall construct a k-algebra homomorphism

ϕn : T/I0 → T/Ln,

and an automorphism of a graded R⊗k (T/Ln)op-module

αn : F ⊗k (T/Ln)→ F ⊗k (T/Ln),

which satisfy the following four conditions.
(0) ϕ0 : T/I0 → T/L0 = T/m2

T is a natural projection and α0 = 1.
(i) The following diagram is commutative:

T/I0⏐⏐� �
���

ϕn−1ϕn

T/Ln −−−−→ T/Ln−1,

where the horizontal map is a natural projection.
(ii)

αn ⊗T/Ln
(T/Ln−1) = αn−1

(iii)

Δ0 ⊗T/I0 ϕn
(T/Ln) = αn ·

(
Δ1 ⊗T/I1 (T/Ln)

)
· α−1

n

(3) Suppose we obtain such ϕn and αn for n ≥ 0 satisfying the above
conditions. Then, by (i) and (ii), we have a k-algebra homomorphism

ϕ = lim←−ϕn : T/I0 → T/I1

and an automorphism of graded R ⊗̂k (T/I1)op-modules

α = lim←−αn : F ⊗̂k T/I1 → F ⊗̂k T/I1.

And it follows from (iii) that

(∗) Δ0 ⊗T/I0 ϕ(T/I1) = α ·Δ1 · α−1.

Therefore we have the isomorphism

(F ⊗̂k (T/I0), Δ0)⊗T/I0 ϕ(T/I1) ∼= (F ⊗̂k (T/I1), Δ1),

as a chain complex of left R ⊗̂k (T/I1)op-modules.
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Now we prove that ϕ is an isomorphism. Since ϕ induces the iden-
tity mapping on T/m2

T by the condition (0), we can apply Lemma 3.8 to
get a k-algebra automorphism ϕ : T → T with ϕ(I0) ⊆ I1 and ϕ induces
ϕ : T/I0 → T/I1. Here suppose ϕ(I0) � I1. Then we would have from (∗) that
(F ⊗̂k (T/I1), αΔ1α

−1) were liftable to (F ⊗̂k (T/I0), Δ0)⊗T/I0 ϕ(T/ϕ(I0)).
This is a contradiction, because (F ⊗̂k (T/I1), αΔ1α

−1) is a maximal lift by
Lemma 3.7. Thus we have shown ϕ(I0) = I1 and hence ϕ : T/I0 → T/I1 is an
isomorphism.

In such a way, we have verified that the theorem is proved once we have
ϕn and αn for n ≥ 0 satisfying the conditions in (2).

(4) Now we shall construct ϕn and αn by induction on n. To do this,
assume we already have ϕn and αn satisfying the conditions in (2) for an
integer n ≥ 0.

We take an element ε ∈ Ln which gives a socle element of T/Ln+1 so that
Ln = Ln+1 + (ε), and hence we have a small extension

0 −−−−→ k
ε−−−−→ T/Ln+1 −−−−→ T/Ln −−−−→ 0.

By Lemma 3.8 there is a k-algebra automorphism ϕn : T → T such that
ϕn(I0) ⊆ Ln and ϕn is induced from ϕn.

(5) Under the circumstances as in (4), we claim that

ϕn(I0) ⊆ Ln+1.

On the contrary, assume that ϕn(I0) �⊆ Ln+1. Then, since ϕn(I0) ⊆ Ln,
we have Ln = Ln+1 + ϕn(I0). Therefore, there is a fiber product diagram

T/Ln+1 ∩ ϕn(I0) −−−−→ T/ϕn(I0)⏐⏐� ⏐⏐�
T/Ln+1 −−−−→ T/Ln.

Now let βn+1 be any lift of αn to T/Ln+1, i.e.

F ⊗k T/Ln+1
βn+1−−−−→ F ⊗k T/Ln+1⏐⏐� ⏐⏐�

F ⊗k T/Ln
αn−−−−→ F ⊗k T/Ln,

where βn+1 is also an isomorphism of graded left R⊗k (T/Ln+1)op-modules by
Lemma 3.2. Then, the chain complexes

(F ⊗k (T/Ln+1), βn+1 ·
(
Δ1 ⊗T/I1 (T/Ln+1)

)
· β−1

n+1)

and

(∗∗) (F ⊗̂k T/ϕn(I0), Δ0 ⊗T/I0 ϕn
(T/ϕn(I0))
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are lifts of (F⊗k(T/Ln), αn ·
(
Δ1 ⊗T/I1 (T/Ln)

)
·α−1

n ) to T/Ln+1 and T/ϕn(I0)
respectively. And by Lemma 3.1, they are liftable to T/Ln+1 ∩ ϕn(I0). Note
that (F ⊗̂k (T/I0), Δ0), as well as the chain complex (∗∗), is a maximal lift of
(F, d). Hence it never be liftable to a nontrivial extension ring. Thus it follows
that Ln+1 ∩ ϕn(I0) = ϕn(I0), therefore ϕn(I0) ⊆ Ln+1 as claimed above.

(6) By the claim (5), the k-algebra automorphism ϕn induces a map ϕn :
T/I0 → T/Ln+1. Then, the chain complexes

(F ⊗k (T/Ln+1), βn+1 ·
(
Δ1 ⊗T/I1 (T/Ln+1)

)
· β−1

n+1)

and

(F ⊗k (T/Ln+1), Δ0 ⊗T/I0 ϕn
(T/Ln+1))

are lifts of (F ⊗k (T/Ln), αn ·
(
Δ1 ⊗T/I1 (T/Ln)

)
·α−1

n ). Therefore, by Lemma
3.3, there is a chain homomorphism h : F → F [−1] with

(∗∗∗) βn+1 ·
(
Δ1 ⊗T/I1 (T/Ln+1)

)
· β−1

n+1 = Δ0 ⊗T/I0 ϕn
(T/Ln+1) + h⊗ ε.

Since the classes of t∗1, . . . , t
∗
r form a k-basis of Ext1R(F,F), we may describe h

as

h =
r∑

i=1

cit
∗
i + [d,H],

for some ci ∈ k and a graded homomorphism H : F → F of degree 0. Now we
define a k-algebra automorphism

ϕn+1 : T → T by ϕn+1(ti) = ϕn(ti) + ciε

for 1 ≤ i ≤ r. Then ϕn+1 is well-defined, because ε ∈ Ln ⊆ m2
T . Note

that, for 1 ≤ i, j ≤ r, we have ϕn+1(titj) = ϕn(titj) + ci(εϕn(tj) + ϕn(ti)ε) +
cicjε

2 ≡ ϕn(titj) (mod Ln+1). Thus, we see ϕn+1(x) ≡ ϕn(x) (mod Ln+1) for
all x ∈ m2

T . Therefore by the claim (5) and by the fact that I0 ⊆ m2
T , we

have ϕn+1(I0) ⊆ Ln+1, hence ϕn+1 induces the k-algebra map ϕn+1 : T/I0 →
T/Ln+1 and the diagram

T/I0⏐⏐� �
���

ϕnϕn+1

T/Ln+1 −−−−→ T/Ln,

is commutative.
By the definition of ϕn+1, it follows that

Δ0 ⊗T/I0 ϕn+1(T/Ln+1) = Δ0 ⊗T/I0 ϕn
(T/Ln+1) +

r∑
i=1

t∗i ⊗ ciε,

thus we see from (∗∗∗) that

βn+1 ·
(
Δ1 ⊗T/I1 (T/Ln)

)
· β−1

n+1 = Δ0 ⊗T/I0 ϕn+1(T/Ln+1) + [d,H].
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Now define, as in the proof of Lemma 3.3, an automorpshim αn+1 by

αn+1 = (1−H ⊗ ε) · βn+1.

Then we have that

αn+1 ·
(
Δ1 ⊗T/I1 (T/Ln)

)
· α−1

n+1 = Δ0 ⊗T/I0 ϕn+1(T/Ln+1),

and also

αn+1 ⊗T/Ln+1 T/Ln = βn+1 ⊗T/Ln+1 T/Ln = αn.

Therefore, we have obtained ϕn+1 and αn+1 satisfing the conditions (i), (ii)
and (iii), and the proof is completed by induction.

3.3. Universal lifts
As in the previous section, let F = (F, d) be a projective complex over R

that satisfies the fundamental assumption

r = dimk Ext1R(F,F) <∞.

We define a functor F : Ak → (Sets) as follows: For any A ∈ Ak, we set

F(A) = {(F ⊗k A, Δ) | it is a lifting chain complex of F to A}/ ∼=,

where ∼= denotes the isomorphism as chain complexes over R ⊗k A
op. If f :

A→ B is a morphism in Ak, then we define a mapping F(f) : F(A)→ F(B)
by

F(f)((F ⊗k A, Δ)) = (F ⊗k A, Δ)⊗A fB.

Note that F is a covariant functor.

Definition 3.6. Let P ∈ Âk and let L = (F ⊗̂k P,Δ) be a lifting chain
complex of F to P .

(a) We define a morphism between functors on Ak ;

φL : Homk-alg(P, )→ F ,

by

φL(f) = (F ⊗̂k P, Δ)⊗P fA

for f ∈ Homk-alg(P,A) with A ∈ Ak.
(b) We say that the chain complex L is a universal lift of F if the mor-

phism φL is an isomorphism. Thus, in this case, the functor F on the category
Ak is pro-representable by P ∈ Âk. If L = (F ⊗̂k P,Δ) is a universal lift of F,
then P is called a parameter algebra of the universal lift of F.

Lemma 3.9. If there is a universal lift of F, then any parameter alge-
bras of any universal lifts are isomorphic each other as k-algebras.
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Proof. In fact, if P1 and P2 are such parameter algebras, then we have
an isomorphism Homk-alg(P1, ) ∼= Homk-alg(P2, ) as functors on Ak. Then,
it is easy to see that there are isomorphisms P1/m

n
P1
∼= P2/m

n
P2

as k-algebras
for any n ≥ 1, which are compatible with the projections P1/m

n+1
P1
→ P1/m

n
P1

and P2/m
n+1
P2
→ P2/m

n
P2

. Hence P1
∼= P2.

Theorem 3.2. The following two conditions are equivalent for a lifting
chain complex L0 = (F ⊗̂k P0,Δ0) of F where P0 = T/I0 ∈ Âk with I0 ⊆ m2

T .
(a) L0 is a universal lift of F = (F, d).
(b) L0 is a maximal lift of (F ⊗k T/m

2
T , δ).

In particular, there always exists a universal lift of F, and it is unique up to
k-algebra automorphisms and chain isomorphisms.

Proof.
[(b) ⇒ (a)] : Let L0 be a maximal lift of (F ⊗k T/m

2
T , δ). To simplify the

notation we write φL0 as φ. We would like to prove that

φ(A) : Homk-alg(P0, A)→ F(A)

is a bijection for any A ∈ Ak. We prove this by induction on the length of A.
If length(A) = 1, then A = k and φ(k) is clealy bijective.

[The surjectivity of φ(A)]: Take a socle element ε ∈ A, and we have a small
extension

0 −−−−→ k
ε−−−−→ A

π−−−−→ A −−−−→ 0
where A = A/(ε). By the induction hypothesis, φ(A) is bijective.

Homk-alg(P0, A)
φ(A)−−−−→ F(A)

π∗

⏐⏐� F(π)

⏐⏐�
Homk-alg(P0, A)

φ(A)−−−−→ F(A)

To prove the surjectivity of φ(A), let (F ⊗k A,Δ) be any element of F(A).
Since φ(A) is surjective, there is g ∈ Homk-alg(P0, A) such that

(F ⊗k A,Δ)⊗A πA ∼= (F ⊗̂k P0,Δ0)⊗P0 gA.

Hence, it follows from Lemma 3.2 that there is an isomorphism of graded mod-
ules α : F ⊗k A→ F ⊗k A such that

(F ⊗k A,αΔα−1)⊗A πA = (F ⊗̂k P0,Δ0)⊗P0 gA.

Now taking the fiber product

P −−−−→ P0⏐⏐� g

⏐⏐�
A

π−−−−→ A,
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we see from the above equality that the complex (F ⊗̂k P0,Δ0) ⊗P0 gA is
liftable to A, and it follows from Proposition 3.1 that the chain complex
(F ⊗̂k P0,Δ0) is liftable to P . If the extension P → P0 is nontrivial, then
it contradicts to that (F ⊗̂k P0,Δ0) is a maximal lift. Hence P → P0 is a
trivial small extension, and P → P0 has a right inverse in Âk. In particular,
the k-algebra map g : P0 → A can be lifted to the k-algebra map f : P0 → A,
i.e. π · f = g. Then, note that both (F ⊗kA,Δ0⊗P0 fA) and (F ⊗kA,αΔα−1)
are lifts of (F ⊗k A,Δ0 ⊗P0 gA). Hence, by Lemma 3.3, we have

Δ0 ⊗P0 fA = αΔα−1 + h⊗ ε

for some chain homomorphism h : F → F [−1] of degree −1. Then we may
write

[h] =
r∑

i=1

ci[t∗i ] (ci ∈ k),

as an element of Ext1R(F,F). Now define a k-algebra map ϕ̃ : T → A by

ϕ̃(ti) = f(ti)− ciε (1 ≤ i ≤ r).

It can be easily verified that ϕ̃(titj) = f(titj) for any i, j. Since I0 ⊆ m2
T , we

have ϕ̃(I0) = f(I0) = 0, thus ϕ̃ induces the k-algebra map ϕ : P0 → A and
ϕ|m2

P0
= f |m2

P0
. Then, by the choice of ϕ, we see that

Δ0 ⊗P0 ϕA = Δ0 ⊗P0 fA−
r∑

i=1

cit
∗
i ⊗ ε = αΔα−1 + (h−

r∑
i=1

cit
∗
i )⊗ ε.

Thus it follows from Lemma 3.3(b) that

(F ⊗̂k P0,Δ0)⊗P0 ϕA ∼= (F ⊗k A,αΔα−1) ∼= (F ⊗k A,Δ).

This proves the surjectivity of φ(A).

[The injectivity of φ(A)]: Let ϕ1, ϕ2 be k-algebra homomorphisms P0 → A
with (F ⊗̂k P0,Δ0) ⊗P0 ϕ1A

∼= (F ⊗̂k P0,Δ0) ⊗P0 ϕ2A. We want to show
ϕ1 = ϕ2. Take a socle element ε ∈ A and we consider the small extension

0 −−−−→ k
ε−−−−→ A

π−−−−→ A −−−−→ 0.

Then, by the induction hypothesis, we have π · ϕ1 = π · ϕ2. Now consider the
mapping ψ = ϕ1 − ϕ2 : P0 → A, and we see that the image of ψ is contained
in kε. Note that ψ(1) = 0 and that ψ(xy) = ϕ1(x)ψ(y) − ψ(x)ϕ2(y) = 0 if
x, y ∈ mP0 , since mP0ε = εmP0 = 0. Therefore ψ(m2

P0
) = 0, and we have

ϕ1|m2
P0

= ϕ2|m2
P0

. Since ϕ1 = ϕ2 + ψ, it follows

Δ0 ⊗P0 ϕ1A = Δ0 ⊗P0 ϕ2A+
r∑

i=1

t∗i ⊗ ψ(ti).
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Denoting ψ(ti) = ciε with ci ∈ k for 1 ≤ i ≤ r, we have the equality

Δ0 ⊗P0 ϕ1A = Δ0 ⊗P0 ϕ2A+
r∑

i=1

cit
∗
i ⊗ ε.

Then it follows from Lemma 3.3(b) that
∑r

i=1 ci[t
∗
i ] = 0 as an element of

Ext1R(F,F). Since {[t∗1], . . . , [t∗r ]} is a k-basis of Ext1R(F,F), we have ci = 0 for
all i, hence ψ = 0.

[(a)⇒ (b)] : Suppose that L0 = (F ⊗̂k P0,Δ0) is a universal lift of F. Take
any maximal lift (F ⊗̂k T/I1,Δ1) of (F ⊗k T/m

2
T , δ), and since it is a universal

lift by the implication (b) ⇒ (a), Lemma 3.9 forces P0 to be isomorphic to
T/I1. Thus we may assume that P0 = T/I1. Lemma 3.4 implies that we can
take a maximal element (I2,Δ2) in I(I1,Δ0), which is in fact a maximal lift of
(F ⊗k T/m

2
T , δ). Then, again by the implication (b) ⇒ (a), (F ⊗̂k T/I2,Δ2)

is also a universal lift of F, and hence T/I2 is isomorphic to T/I1 by Lemma
3.9. Since I2 ⊆ I1, the following lemma forces I2 = I1. This implies that
(F ⊗̂k P0,Δ0) = (F ⊗̂k T/I2,Δ2), which is a maximal lift as desired.

Lemma 3.10. Let T be a non-commutative formal power series ring,
and let I2 ⊆ I1 be closed ideals of T . Suppose T/I1 is isomorphic to T/I2 as a
k-algebra. Then I1 = I2.

Proof. The isomorphism T/I1 ∼= T/I2 induces isomorphisms T/I1+mn
T
∼=

T/I2 + mn
T for any integer n. Since I2 + mn

T ⊆ I1 + mn
T , comparing the lengths,

we have the equality I2 + mn
T = I1 + mn

T for each n. Thus I2 =
⋂

n I2 + mn
T =⋂

n I1 + mn
T = I1.

3.4. Every complete local algebra is a parameter algebra
Lemma 3.11. Let A′ → A be a surjective morphism in Ak. Suppose

the following two conditions hold.
(a) L = (F ⊗k A,Δ) is a left R ⊗k A

op-free resolution of a left R⊗k A
op-

module M , and L is a lift of a free complex F = (F, d) over R.
(b) There is a left R ⊗k A

′-module M ′ such that M ′ is flat as a right
A′-module and M ′ ⊗A′ A ∼= M as left R⊗k A

op-modules.
Then there is a lifting chain complex L′ = (F ⊗k A

′,Δ′) of L that is a left
R ⊗k A

′op-free resolution of M ′.

Proof. We may write A = A′/I ′ where I ′ is an ideal of A′. Take a set of
generators {xλ| λ ∈ Λ} of M as a left R ⊗k A

op-module. Since M ∼= M ′/M ′I ′

as R⊗kA
′op-modules, we can take a subset {x′λ| λ ∈ Λ} of M ′ that is an inverse

image of {xλ}. Then the equality M ′ = R{x′λ}A′ + M ′I ′ holds. Since I ′ is a
nilpotent ideal, we have M ′ = R{x′λ}A′.

By this argument we can show that every surjective homomorphism F0⊗k

A→M of left R⊗k A
op- modules can be lifted to a surjective homomorphism

F0 ⊗k A
′ → M ′ of left R ⊗k A

′op-modules. Now take the kernels of these
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surjective maps and we have exact sequences

0 −−−−→ M1 −−−−→ F0 ⊗k A −−−−→ M −−−−→ 0,

0 −−−−→ M ′
1 −−−−→ F0 ⊗k A

′ −−−−→ M ′ −−−−→ 0.

Notice that M ′
1 is flat as a right A′-module, since F0 ⊗k A

′ and M ′ are flat.
Thus the isomorphism M ′ ⊗A′ A ∼= M implies M ′

1 ⊗A′ A ∼= M1. Then by the
same manner as above, the surjective homomorphism F1⊗k A→M1 is liftable
to a surjective homomorphism F1 ⊗k A

′ → M ′
1. In such a way, by induction,

we can construct a chain complex with the underlying graded module F ⊗k A
′,

which is a lift of (F ⊗k A,Δ).

Theorem 3.3. Let R be a complete local k-algebra, i.e. R ∈ Âk, and let
F = (F, d) be a left R-free resolution of the residue field k = R/mR. Then there
is a universal lift of F that is an acyclic complex of the form (F ⊗̂k R,Δ) with
the homology H0(F ⊗̂k R,Δ) = R. In particular, R is the parameter algebra
of the universal lift of F.

Proof. Note that the obvious exact sequence 0 → mR → R → k → 0
implies

Ext1R(F,F) = Ext1R(k, k) ∼= Homk(mR/m
2
R, k).

Thus if we denote R = T/I where T = k〈〈t1, t2, . . . , tr〉〉 and I ⊆ m2
T , we can

take the dual bais {t∗1, . . . , t∗r} as a basis of Ext1R(F,F). Set δ = d⊗1+
∑r

i=1 t
∗
i ⊗

ti, and we see that (F ⊗k T/m
2
T , δ) is a lift of F as in the beginning of Section

3.2. By the exact sequence of chain complexes

0−−−−→ (F ⊗k mT /m
2
T , d⊗ 1)−−−−→ (F ⊗k T/m

2
T , δ)−−−−→ (F, d)−−−−→ 0,

and by the acyclicity of (F, d), we easily see that (F ⊗k T/m
2
T , δ) is acyclic as

well, and H0(F ⊗k T/m
2
T , δ) ∼= T/m2

T = R/m2
R as an R ⊗k (R/m2

R)op-module.
Starting from Δ2 = δ, and using Lemma 3.11, we can inductively construct

a sequence of chain complexes (F ⊗k R/m
n
R, Δn) for n ≥ 2 satisfying the

equalities (F ⊗k R/m
n+1
R , Δn+1) ⊗R/mn+1

R
R/mn

R = (F ⊗k R/m
n
R, Δn) and

H0(F ⊗k R/m
n
R, Δn) = R/mn

R. Now let Δ = lim←−Δn, and we have a lifting
chain complex (F ⊗̂k R, Δ) of (F ⊗k T/m

2
T , δ).

First, we claim that (F ⊗̂k R, Δ) is acyclic and H0(F ⊗̂k R, Δ) ∼= R as
an R ⊗̂k R

op-module. For this, let Ωi
n be the kernel of Δn,i : Fi ⊗k R/m

n
R →

Fi−1 ⊗k R/m
n
R for any n, i ≥ 0 where we understand that Ω0

n = R/mn
R. By the

proof of Lemma 3.11, we have a commutative diagram with exact rows

0 −−−−→ Ωi
n+1 −−−−→ Fi ⊗k R/m

n+1
R −−−−→ Ωi−1

n+1 −−−−→ 0⏐⏐� ⏐⏐� ⏐⏐�
0 −−−−→ Ωi

n −−−−→ Fi ⊗k R/m
n
R −−−−→ Ωi−1

n −−−−→ 0,

where the vertical arrows are surjective. This implies the exact sequence

0 −−−−→ lim←−Ωi
n −−−−→ Fi ⊗̂k R −−−−→ lim←−Ωi−1

n −−−−→ 0,
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and hence the complex (F ⊗̂k R, Δ) is acyclic and H0(F ⊗̂k R, Δ) =
lim←−R/m

n
R = R as desired.

Now we prove that (F ⊗̂k R, Δ) is a maximal lift of (F ⊗k R/m
2
R, δ).

Suppose that it is not a maximal lift. Then there will be a nontrivial small
extension

0 −−−−→ k
ε−−−−→ R′ p−−−−→ R −−−−→ 0,

of R so that the complex (F ⊗̂k R, Δ) is liftable to a chain complex
(F ⊗̂k R

′, Δ′). The exact sequence

0 −−−−→ (F, d) 1⊗ε−−−−→ (F ⊗̂k R
′, Δ′) −−−−→ (F ⊗̂k R, Δ) −−−−→ 0

forces (F ⊗̂k R
′, Δ′) to be acyclic as well, and taking the homologies we have

an exact sequence

0 −−−−→ k
ε−−−−→ H ′

0
π−−−−→ R −−−−→ 0,

whereH ′
0 = H0(F ⊗̂k R

′,Δ′) and π is a homomorphism of R ⊗̂k R
′op-modules.

Take an element x0 ∈ H ′
0 with π(x0) = 1, and obviously we have H ′

0 = x0R
′ +

H ′
0ε. Since ε2 = 0, it follows that H ′

0 = x0R
′.

We claim that H ′
0 is a free module as a right R′-module. To prove this,

assume x0a
′ = 0 for a′ ∈ R′, and we want to show a′ = 0. Suppose a′ �= 0.

Since 0 = π(x0a
′) = 1R · a′ = p(a′), we see a′ ∈ εk, hence a′ = εc for some

c �= 0 ∈ k. Then we have x0ε = 0, and the right R′-module H ′
0 = x0R

′ is in
fact a right R-module. Hence 0 → k → H ′

0 → R → 0 is an exact sequence of
right R-modules. Therefore the sequence splits and H ′

0
∼= k ⊕ R as a right R-

(hence R′-)module. This contradicts that H ′
0 is generated by a single element

as a right R′-module.
Now we have shown H ′

0 is a free right R′-module. Since H ′
0 is a left R-

module as well, for any a ∈ R, we find a unique element a′ ∈ R′ with a · x0 =
x0 ·a′. Now define a map f : R→ R′ by f(a) = a′. Since (ab)x0 = a(x0f(b)) =
(ax0)f(b) = x0(f(a)f(b)), we can see that f is a k-algebra homomorphism.
Since we have an equality a = π(ax0) = π(x0f(a)) = 1R · f(a) = p(f(a))
for any a ∈ R, we see p · f = 1. This contradicts that (R′, ε) is a nontrivial
extension, and the proof is completed.

Remark 8. If R is left noetherian, then we can take as each Fi a finitely
generated left R-free module, and Fi ⊗̂k R is a left R ⊗̂k R

op-free module. In
this case the acyclic complex (F ⊗̂k R,Δ) in the theorem is a free resolution
of R as a left R ⊗̂k R

op-module. However, in general, notice that (F ⊗̂k R,Δ)
may not be a free complex of left R ⊗̂k R

op- modules.

3.5. Deformation of modules
Let R be a k-algebra as before. In this section, we consider the case where

the complex F = (F, d) is a free resolution of a left R-module M . Of course, in
this setting, we have the equality Ext1R(M,M) = Ext1R(F,F) and it is assumed
to be of finite dimension as before.
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For any A ∈ Ak, a left R⊗kA
op-moduleX is said to be a flat deformation

of M along A if X is a flat module as a right A-module, and there is an
isomorphism X ⊗A k ∼= M as left R- modules. And two flat deformations
X and Y of M along A are said to be isomorphic if they are isomorphic as
R ⊗k A

op-modules. We consider the following two functors Ak → (Sets):

F(A) = the set of isomorphism classes of lifting chain complexes of F,

FM (A) = the set of isomorphism classes of flat deformations of M.

Theorem 3.4. We have an isomorphism F ∼= FM as functors on Ak.
In particular, the functor FM is pro-representable as is F , i.e. there is an iso-
morphism FM

∼= Homk-alg(P0, ) of functors on Ak, where P0 is the parameter
algebra of the universal lift of F.

Proof. Let A ∈ Ak and let (F ⊗kA,Δ) be a lift of F to A. Notice that, by
induction on the length of A, one can easily prove that (F⊗kA,Δ) is acyclic, as
F is acyclic. Therefore it gives a left R⊗kA

op-free resolution of H0(F ⊗kA,Δ).
Since (F⊗kA,Δ)⊗Ak = F is acyclic, we have TorAop

i (H0(F⊗kA,Δ), k) = 0 for
i > 0. Since A is an artinian local algebra, this implies thatH0(F⊗kA,Δ) is flat
as a right A- module. We should note that H0(F ⊗kA,Δ)⊗A k = H0(F) = M .
Hence H0(F ⊗k A,Δ) is a flat deformation of M along A. Thus we obtain a
well-defined mapping H0 : F(A)→ FM (A) by taking the 0-th homology. It is
trivial that the map is injective, and Lemma 3.11 implies it is surjective.

4. Properties of parameter algebras

4.1. Obstruction maps
As before F = (F, d) is a projective complex over a k-algebra R. Let

P ∈ Âk and let L = (F ⊗̂k P, Δ) be a lift of F to P , which we fix in this
section. We aim at constructing the obstruction map

αL : T (P )→ Ext2R(F,F),

which will enable us to compare the cohomology modules between P and R.

4.1. [To define αL]:
Now, suppose we are given a class of small extension [P ′, ε] ∈ T (P ).

Lemma 3.6 forces Δ : F ⊗̂k P → F ⊗̂k P [−1] to be lifted to Δ′ : F ⊗̂k P
′ →

F ⊗̂k P
′[−1]. Note that Δ′ is just a lift as a graded homomorphism, and it

may not holds that Δ′2 = 0. Recall from Lemma 2.11 that we then have a
commutative diagram of graded left R ⊗̂k P

′op-modules with exact rows

0 −−−−→ F
1⊗ε−−−−→ F ⊗̂k P

′ 1⊗π−−−−→ F ⊗̂k P −−−−→ 0

d

⏐⏐� Δ′
⏐⏐� Δ

⏐⏐�
0 −−−−→ F [−1] 1⊗ε−−−−→ F ⊗̂k P

′[−1] 1⊗π−−−−→ F ⊗̂k P [−1] −−−−→ 0.
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Since d2 = 0 and Δ2 = 0, we have the following commutative diagram.

0 −−−−→ F
1⊗ε−−−−→ F ⊗̂k P

′ 1⊗π−−−−→ F ⊗̂k P −−−−→ 0

0

⏐⏐� Δ′2
⏐⏐� 0

⏐⏐�
0 −−−−→ F [−2] 1⊗ε−−−−→ F ⊗̂k P

′[−2] 1⊗π−−−−→ F ⊗̂k P [−2] −−−−→ 0

By chasing the diagram, we see that there is a graded left R-module homomor-
phism σ : F → F [−2] with Δ′2 = σ ⊗ ε, i.e. Δ′2(

∑
x ⊗ a) =

∑
σ(x) ⊗ εa for

any formal infinite sum
∑
x⊗ a ∈ F ⊗̂k P

′.
First we claim that

(i) σ : F → F [−2] is a chain map.

In fact, it holds that

σ · d⊗ ε = (σ ⊗ ε)Δ′ = Δ′3 = Δ′(σ ⊗ ε) = d · σ ⊗ ε,

hence it follows that [d, σ] = d · σ− σ · d = 0. Thus the graded homomorphism
σ is a chain map of degree −2, therefore it defines an element [σ] ∈ Ext2R(F,F).

Next we claim that

(ii) the class [σ] does not depend on a choice of a lifting map Δ′.

In fact, if Δ′ and Δ′′ are two lifting maps of Δ, then we have a commutative
diagram

0 −−−−→ F
1⊗ε−−−−→ F ⊗̂k P

′ 1⊗π−−−−→ F ⊗̂k P −−−−→ 0

0

⏐⏐� Δ′−Δ′′
⏐⏐� 0

⏐⏐�
0 −−−−→ F [−1] 1⊗ε−−−−→ F ⊗̂k P

′[−1] 1⊗π−−−−→ F ⊗̂k P [−1] −−−−→ 0,

from which we can see the existence of graded homomorphism τ : F → F [−1]
with Δ′ −Δ′′ = τ ⊗ ε. Then, we have an equality

Δ′2 = (Δ′′ + τ ⊗ ε)2 = Δ′′2 + (dτ + τd)⊗ ε,

hence, setting Δ′2 = σ′ ⊗ ε and Δ′′2 = σ′′ ⊗ ε, we have σ′ − σ′′ = dτ + τd, i.e.
[σ′] = [σ′′].

Now we can define a mapping

αL : T (P )→ Ext2R(F,F)

by sending [P ′, ε] to the class [σ].
By (i) and (ii) above, αL is a well-defined mapping. Furthermore, we can

show the following.

Lemma 4.1. The mapping αL : T (P )→ Ext2R(F,F) is k-linear.
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Proof. To prove the equality

αL(c1[P1, ε1] + c2[P2, ε2]) = c1αL([P1, ε1]) + c2αL([P2, ε2])

for ci ∈ k and [Pi, εi] ∈ T (P ) (i = 1, 2), let us consider the pull-back diagram

F ⊗̂k (P1 ×P P2) −−−−→ F ⊗̂k P1⏐⏐� ⏐⏐�
F ⊗̂k P2 −−−−→ F ⊗̂k P,

and take lifting graded homomorphisms Δi : F ⊗̂k Pi → F ⊗̂k Pi[−1] of Δ for
i = 1, 2. We may assume that ci �= 0 for i = 1, 2. Since there is a commutative
diagram with exact rows by Lemma 2.11 ;

0→ F ⊗̂k (P1 ×P P2) −→ (F ⊗̂k P1)⊕ (F ⊗̂k P2) −→ F ⊗̂k P → 0

(Δ1,Δ2)

⏐⏐� Δ

⏐⏐�
0→ F ⊗̂k (P1 ×P P2)[−1]−→F ⊗̂k P1[−1]⊕ F ⊗̂k P2[−1]−→F ⊗̂k P [−1]→ 0,

there is a naturally induced mapping Δ̃ : F ⊗̂k (P1 ×P P2) → F ⊗̂k (P1 ×P

P2)[−1] which is a lifting map of both of Δ1 and Δ2. Let us take a chain
homomorphism σi of F so that Δ2

i = σi ⊗ εi for i = 1, 2. Then it can be
seen that Δ̃2 = σ1 ⊗ (ε1, 0) + σ2 ⊗ (0, ε2). Recalling the definition of the
sum [Q, ε] = c1[P1, ε1] + c2[P2, ε2], we have Q = P1 ×P P2/(c−1

1 ε1,−c−1
2 ε2)

and ε is the class of (c−1
1 ε1, 0). Thus, setting Δ′ = Δ̃ ⊗P1×P P2 Q, we have

the mapping Δ′ : F ⊗̂k Q → F ⊗̂k Q[−1] which is a lifting map of Δ to
Q, and we easily see that Δ′2 = (c1σ1 + c2σ2) ⊗ ε. Consequently, we have
αL([Q, ε]) = c1[σ1] + c2[σ2] = c1αL([P1, ε1]) + c2αL([P2, ε2]).

Lemma 4.2. Let f : P1 → P2 be a k-algebra map in Âk, and let
L2 = (F ⊗̂k P2,Δ2) be a lift of F to P2. Suppose there exists a lift L1 =
(F ⊗̂k P1,Δ1) of L2 to P1, i.e. L1⊗P1 fP2 = L2. Then there is a commutative
diagram

T (P2) �
f∗

T (P1)
�

���
αL2

�
���

αL1

Ext2R(F,F).

Proof. Set [P ′
1, ε1] = f∗([P ′

2, ε2]) for [P ′
2, ε2] ∈ T (P2). From the definition,

there is a pull-back diagram

0 −−−−→ k
ε1−−−−→ P ′

1 −−−−→ P1 −−−−→ 0∥∥∥ f ′
⏐⏐� f

⏐⏐�
0 −−−−→ k

ε2−−−−→ P ′
2 −−−−→ P2 −−−−→ 0.
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Let Δ′
1 be any lift of Δ1 onto F ⊗̂k P

′
1. Then Δ′

2 := Δ′
1 ⊗P ′

1 f ′P ′
2 is a lift of

Δ2 = Δ1⊗P1 fP2 onto F ⊗̂k P
′
2. Now write Δ′2

1 = σ⊗ε1 so that αL1([P
′
1, ε1]) =

[σ]. Then, we have Δ′2
2 = Δ′2

1 ⊗P ′
1 f ′P ′

2 = σ⊗ ε2, hence αL2([P
′
2, ε]) = [σ]. This

shows that αL2 = αL1 · f∗.

Theorem 4.2. Let L0 = (F ⊗̂k P0,Δ0) be the universal lift of F =
(F, d) with parameter algebra P0. Then, the k-linear mapping

αL0 : T (P0)→ Ext2R(F,F)

is an injection.

Proof. Let [P1, ε1] ∈ T (P0) be a nontrivial small extension. We only
have to show αL0([P1, ε1]) �= 0. Suppose αL0([P1, ε1]) = 0. Then, for any
lifting map Δ1 : F ⊗̂k P1 → F ⊗̂k P1[−1] of Δ0 to P1, we have Δ2

1 = σ ⊗
ε1, where σ = [d, h] for some graded homomorphism h : F → F [−1]. Now
putting Δ′

1 = Δ1 − h ⊗ ε1, one can see that Δ′
1
2 = Δ2

1 − [d, h] ⊗ ε1 = 0.
Therefore, (F ⊗̂k P1,Δ′

1) is a lifting chain complex of (F ⊗̂k P0,Δ0). This is a
contradiction, because (F ⊗̂k P0,Δ0) is a maximal lift. See Theorem 3.2.

Corollary 4.1. Suppose Ext2R(F,F) = 0. Then the parameter algebra
P0 of the universal lift of F is isomorphic to the non-commutative formal power
series ring k〈〈t1, t2, . . . , tr〉〉.

Proof. Under the assumption, we have T (P0) = 0 by Theorem 4.2. There-
fore if we describe P0 = T/I0 where T is a formal power series ring and I ⊆ m2

T

is a closed ideal, then Proposition 2.4 forces Homcon(I, k) = 0. Thus we only
have to show the following lemma.

Lemma 4.3. Let I be a closed ideal of a non-commutative formal power
series ring T . If Homcon(I, k) = 0, then I = 0.

Proof. Suppose I �= 0. Then, by Corollary 2.3, we have I �= mT I + ImT .
Therefore, I �= mT I + ImT +(mn

T ∩ I) for a large integer n. Since Homcon(I, k)
contains every k-linear map I/mT I+ImT +(mn

T ∩I)→ k, we have Homcon(I, k)
�= 0.

This corollary can be generalized to the following theorem.

Theorem 4.3. Let P0 = T/I0 be the parameter algebra of the universal
lift of F = (F, d), where T is a non-commutative formal power series ring and
I0 ⊆ m2

T is a closed ideal. Suppose � = dimkExt2R(F,F) is finite. Then, the
ideal I0 is analytically generated by at most � elements.

Proof. Combining Theorems 2.4 and 4.2, we have an injective k-linear
map Homcon(I0, k) → Ext2R(F,F). In particular, Homcon(I0, k) is a k-vector
space of finite dimension. Since we have the equality Homcon(I0, k) =

⋃∞
n=1

Homk(I0/mT I0 + I0mT +(mn
T ∩ I), k) by definition, there is an integer n0 such
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that Homcon(I0, k) = Homk(I0/mT I0 + I0mT + (mn
T ∩ I), k) for n ≥ n0. Hence

we have the equalities

mT I0 + I0mT + (mn
T ∩ I) = mT I0 + I0mT + (mn+1

T ∩ I) = · · · = mT I0 + I0mT .

Thus it follows that Homcon(I0, k) = Homk(I0/mT I0 + I0mT , k). Since this
is of dimension at most �, we have dimk(I0/mT I0 + I0mT ) ≤ �. Therefore, by
virtue of Proposition 2.3, I0 is analytically generated by at most � elements.

4.2. Universal lifts based on commutative algebras
Remark 9. Let T = k〈〈t1, t2, . . . , tr〉〉 be a non-commutative formal

power series ring. We denote by C the commutator ideal which is a two-sided
ideal generated by the commutators titj − tjti (1 ≤ i < j ≤ r), i.e.

C = ({titj − tjti | 1 ≤ i < j ≤ r}) .

Note that C is not a closed ideal if r ≥ 2. It is however easy to see that T/C
is isomorphic to the commutative formal power series ring k[[t1, . . . , tr]].

Remark 10. Let I be an ideal of T that contains C. Then, I is a closed
ideal and there are a finite number of elements f1, . . . , f� ∈ I with the equality
I = (f1, . . . , f�) + C.

In fact, it is well known that any ideal of T/C = k[[t1, . . . , tr]] is closed.
Since the natural projection π : T → T/C is continuous, I = π−1(I/C) is
closed as well. Since T/C is noetherian, we can find finite elements f1, . . . , f�

which generate the ideal I/C. Then we have the equality I = (f1, . . . , f�) +C.

Recall from Section 3.3 that F : Ak → (Sets) is a covariant functor such
that F(A) is the set of isomorphism classes of lifting chain complexes of F to A,
for any A ∈ Ak. We consider here the restriction of F to commutative artinian
algebras. For this end, we denote by Ck the category of commutative artinian
local k-algebras A with A/mA

∼= k and k-algebra homomorphisms. Note that
Ck is a full subcategory of Ak.

Theorem 4.4. Let L0 = (F ⊗̂k P0,Δ0) be the universal lift of F with
parameter algebra P0 = T/I0 where T is a non-commutative formal power series
ring and I ⊆ m2

T . We set Q0 = T/I0 + C which is a commutative noetherian
complete local k-algebra. Then, the restricted functor F|Ck

: Ck → (Sets) is
pro-represented by Q0, i.e. there is an isomorphism F|Ck

∼= Homk-alg(Q0, )
as functors on Ck.

Proof. Note that if A ∈ Ck, then Homk-alg(P0, A) = Homk-alg(Q0, A).
The theorem follows from this observation.

Definition 4.1. We call Q0 in the theorem a commutative parame-
ter algebra of the universal lift of F. And we call L0⊗P0 Q0 the universal
lift of F based on commutative parameter algebra.



Universal lifts of chain complexes 835

Remark 11. If F is a projective resolution of a left R-module M , then
the universal lift of F based on commutative parameter algebra is nothing but
the universal deformation of M whose existence is mentioned in Theorem 1.1.
(See also Proposition 3.4.)

The commutative parameter algebra Q0 is of the form k[[t1, . . . , tr]]/a
where a = I0 + C/C ⊆ T/C = k[[t1, . . . , tr]].

Proposition 4.1. Let Q0 = k[[t1, . . . , tr]]/a be a commutative parame-
ter algebra of the universal lift of F. Then, the minimal number of generators
of a is at most dimkExt2R(F,F).

Proof. It suffices to argue when � = Ext2R(F,F) is finite. Then, by Theo-
rem 4.3, there are f1, . . . , f� ∈ I0 satisfying the equality I0 = (f1, . . . , f�). Thus,
by virtue of Remark 10, we have the equalities

I0 + C = I0 + C = C + (f1, . . . , f�) = C + (f1, . . . , f�).

Therefore a = I0 + C/C is generated by the images of f1, . . . , f� in T/C =
k[[t1, . . . , tr]].

4.3. Yoneda products
Let F = (F, d) be a projective complex over R with r = dimkExt1R(F,F)

being finite as before. Then, as in the beginning of Section 3.2, we may consider
the lifting chain complex L = (F ⊗̂k T/m

2
T , δ) with δ = d ⊗ 1 +

∑r
i=1 t

∗
i ⊗ ti,

where T = k〈〈t1, t2, . . . , tr〉〉 is a non-commutative formal power series ring and
t∗1, . . . , t

∗
r are chain homomorphisms which form a k-basis of Ext1R(F,F). Since

L is a lift of F, we have the k-linear map

αL : T (T/m2
T )→ Ext2R(F,F).

by 4.1. See also Lemma 4.1.
Note that Ext·R(F,F) =

⊕∞
i=−∞ Exti

R(F,F) is an algebra, called Yoneda
algebra, whose multiplication is given by Yoneda product. In fact, if f : F →
F [−i] and g : F → F [−j] are chain homomorphisms of degree −i and −j
respectively, then the composite f ·g : F → F [−i−j] is a chain homomorphism
of degree −i−j, and the product in Ext·R(F,F) is given by [f ][g] = [f ·g]. In the
following lemma, Ext1R(F,F)2 denotes the k-subspace of Ext2R(F,F) generated
by all the products of two elements in Ext1R(F,F).

Lemma 4.4. Under the circumstances above, the image of αL is exactly
Ext1R(F,F)2, i.e., αL(T (T/m2

T )) = Ext1R(F,F)2.

Proof. Recall from Proposition 2.4 that there is an isomorphism of k-
vector spaces τ : Homk(m2

T /m
3
T , k) = Homcon(m2

T , k) → T (T/m2
T ). Suppose

τ (f) = [T/I, ε] for f �= 0 ∈ Homk(m2
T /m

3
T , k). Then, by definition of τ , we

have f(ε) = 1 and I is the kernel of the composition mapping m2
T → m2

T /m
3
T

with f : m2
T /m

3
T → k. Note, in this case, that T/I has {1, t1, . . . , tr, ε} as a
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k-basis, where ti denotes the image of ti in T/I. Also note that if we denotes
f(titj) = cij ∈ k, then f is completely determined by these cij ’s.

We can take the following map Δ as a lifting graded homomorphism of δ
on F ⊗k T/I.

Δ = d⊗ 1 +
r∑

i=1

t∗i ⊗ ti + 0⊗ ε.

Then, we have Δ2 =
∑r

i,j=1 t
∗
i t

∗
j ⊗ titj . Since titj = f(titj)ε = cijε, it fol-

lows that Δ2 =
∑r

i,j=1 cijt
∗
i t

∗
j ⊗ ε. Therefore, from the definition of αL, we

see αL([T/I, ε]) =
∑r

i,j=1 cij [t
∗
i ][t

∗
j ], which is in fact an element of Ext1R(F,F)2.

Since we can take any elements of k as cij , the image of αL is exactly
Ext1R(F,F)2.

Theorem 4.5. Let L0 = (F ⊗̂k P0,Δ0) be the universal lift of F with
the parameter algebra P0 = T/I0, where T = k〈〈t1, t2, . . . , tr〉〉 is a non-
commutative formal power series ring and I0 ⊆ m2

T . Then the image of the
injective map αL0 : T (P0)→ Ext2R(F,F) contains Ext1R(F,F)2. And there is an
isomorphism of k-vector spaces

Ext1R(F,F)2 ∼= Homk(I0/I0 ∩m3
T , k).

Proof. Let L be the lifting chain complex (F ⊗k T/m
2
T , δ) of F, where

δ = d ⊗ 1 +
∑r

i=1 t
∗
i ⊗ ti as above. And let L0 = (F ⊗̂k T/I0,Δ0) be the

universal lift of F. We denote by q the natural injection I0 → m2
T and by p the

projection T/I0 → T/m2
T .

Combining all the results in 2.4, 4.2 and 4.4, we have the following com-
mutative diagram.

(4.1)

Homcon(m2
T , k)

τ−−−−→∼=
T (T/m2

T ) αL−−−−→ Ext1R(F,F)2

q∗
⏐⏐� p∗

⏐⏐� ι

⏐⏐�
Homcon(I0, k)

τ−−−−→∼=
T (T/I0)

αL0−−−−→ Ext2R(F,F),

where ι is a natural injection. Note from Theorem 4.2 and Lemma 4.4 that αL0

is injective, and αL is surjective. Therefore αL0(T (P0)) contains Ext1R(F,F)2

and we have an isomorphism of k-vector spaces

q∗(Homcon(m2
T , k)) ∼= Ext1R(F,F)2.

Note that Homcon(m2
T , k) = Homk(m2

T /m
3
T , k). Hence we may describe as

follows:

Ker(q∗) = {f ∈ Homk(m2
T /m

3
T , k) | f(I0 + m3

T /m
3
T ) = 0}

= Homk(m2
T /I0 + m3

T , k).

Thus, from the obvious exact sequence

0 −−−−→ I0/I0 ∩m3
T −−−−→ m2

T /m
3
T −−−−→ m2

T /I0 + m3
T −−−−→ 0,
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we finally have

Ext1R(F,F)2 ∼= q∗(Homcon(m2
T , k))

∼= Homk(m2
T /m

3
T , k)/Homk(m2

T /I0 + m3
T , k)

∼= Homk(I0/I0 ∩m3
T , k).

Note in the theorem that I0/I0∩m3
T is a finite dimensional k-vector space,

since it is a subspace of m2
T /m

3
T . As a direct consequence of the theorem we

have the following corollary.

Corollary 4.2. Let P0 = T/I0 be the parameter algebra of the universal
lift of F, where T = k〈〈t1, t2, . . . , tr〉〉 is a non-commutative formal power series
ring and I0 ⊆ m2

T . Then, I0 ⊆ m3
T if and only if Ext1R(F,F)2 = 0.

Proposition 4.2. Let L0 = (F ⊗̂k P0,Δ0) be the universal lift of F
with the parameter algebra P0 = T/I0, where T = k〈〈t1, t2, . . . , tr〉〉 is a non-
commutative formal power series ring and I0 ⊆ m2

T . Then the following two
conditions are equivalent.

(a) The image of the mapping αL0 : T (P0) → Ext2R(F,F) is exactly
Ext1R(F,F)2.

(b) There exist elements f1, . . . , f� ∈ I0 which analytically generate the
ideal I0 such that they give rise to linearly independent elements in m2

T /m
3
T .

Proof. By the commutative diagram (4.1) in the proof of Theorem 4.5,
we see that the condition (a) is equivalent to that the k-linear mapping q∗ :
Homcon(m2

T , k) → Homcon(I0, k) is surjective, where q : I0 → m2
T is a natural

injection.
To prove the implication (a) ⇒ (b), suppose q∗ is surjective. Since

Homcon(m2
T , k) = Homk(mT /m

2
T , k) is a finite dimensional k-vector space, so is

Homcon(I0, k) =
⋃
n≥1

Homk(I0/mT I0 + I0mT + (I0 ∩mn
T ), k).

Hence there is an integer n0 ≥ 1 such that

mT I0 + I0mT +(I0∩mn0
T ) = mT I0 + I0mT +(I0∩mn0+1

T ) = · · · = mT I0 + I0mT .

Therefore q∗ induces a surjective mapping Homk(m2
T /m

3
T , k) →

Homk(I0/mT I0 + I0mT , k), hence the natural mapping I0/mT I0 + I0mT →
m2

T /m
3
T is injective. Now let us take the elements f1, . . . , fr ∈ I0 whose images

in I0/mT I0 + I0mT form a k-basis. Then, the images of f1, . . . , fr in m2
T /m

3
T are

linearly independent and it follows from Proposition 2.3 that I0 is analytically
generated by f1, . . . , fr.

To prove (b) ⇒ (a), suppose we have elements f1, . . . , f� ∈ I0 such that
they give rise to linearly independent elements in m2

T /m
3
T and I0 = (f1, . . . , fr).
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By Proposition 2.3 we may assume that the images of f1, . . . , fr in
I0/mT I0 + I0mT form a k-basis. Note that I0 ∩ m3

T is a closed ideal of T
containing mT I0 + I0mT , hence we have an inclusion relation mT I0 + I0mT ⊆
I0 ∩m3

T ⊆ m3
T . Therefore we obtain the natural map

I0/mT I0 + I0mT
g−→ I0/I0 ∩m3

T ⊆ m2
T /m

3
T .

Since g maps the k-basis of I0/mT I0 + I0mT to a set of linearly independent
elements in m2

T /m
3
T , we have the injectivity of g. In particular, the equality

mT I0 + I0mT = I0 ∩m3
T holds. Hence it follows that

mT I0 + I0mT + (I0 ∩mn
T ) = I0 ∩m3

T ,

for all n ≥ 3. Thus we have the equality Homcon(I0, k) = Homk(I0/I0∩m3
T , k).

Therefore the map q∗ : Homcon(m2
T , k) → Homcon(I0, k) is the same as the k-

dual of the natural injection I0/I0 ∩ m3
T ⊆ m2

T /m
3
T . The surjectivity of q∗ is

now obvious.

4.4. Comparison of cohomology
As in the previous sections, F = (F, d) denotes a projective complex over

R, where R is an associative k-algebra. We assume that r = dimkExt1R(F,F) is
finite as before. Adding to this assumption, we assume in the rest of the paper
that the complex F is right bounded, i.e. there is an integer s such that Fi = 0
for i < s.

We also denotes by L0 = (F ⊗̂k P0,Δ0) the universal lift of F with the
parameter algebra P0. Note that L0 may not be projective as a right P0-module.
They are even non-flat as seen in Example 2.2.

For any integer n ≥ 1, we set

L(n)
0 = (F ⊗k P0/m

n
P0
, Δ(n)) = L⊗P0 P0/m

n
P0
.

In fact, each L(n)
0 is a right bounded complex of projective left R⊗k (P0/m

n
P0

)op-
modules, in particular, it is a free right P0/m

n
P0

-module.
For any associative k-algebra R, we denote by D+(R) the derived cate-

gory consisting of right bounded complexes over R. Then, tensoring the chain
complex L(n)

0 yields the functor ρn between the derived categories:

ρn : D+(P0/m
n
P0

)→ D+(R),

which is defined by ρn(X) = L(n)
0 ⊗P0/mn

P0
X. This is well-defined, since L(n)

0

is a right bounded complex of projective left R⊗k (P0/m
n
P0

)op-modules.
Note that the natural projection P0/m

n+1
P0
→ P0/m

n
P0

induces a natural
functor D+(P0/m

n
P0

)→ D+(P0/m
n+1
P0

). And it is easy to see the diagram

(4.2)

D+(P0/m
n
P0

)
ρn−−−−→ D+(R)⏐⏐�

�
���

ρn+1

D+(P0/m
n+1
P0

)
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is commutative.
Note that L(n)

0 ⊗P0/mn
P0
k = F, hence we have ρn(k) = F for each n ≥ 1. It

follows that the functor ρn induces the map

ρi
n : Exti

P0/mn
P0

(k, k)→ Exti
R(F,F)

for all integers i. Then the commutative diagram (4.2) forces the commutativity
of the following diagram.

(4.3)

Exti
P0/mn

P0
(k, k)

ρi
n−−−−→ Exti

R(F,F)⏐⏐�
�

���
ρi

n+1

Exti
P0/mn+1

P0

(k, k)

Definition 4.2. From the commutative diagram (4.3), we can define
the inductive limit ρi

∞ = lim−→n
ρi

n for each i ;

ρi
∞ : lim−→

n

Exti
P0/mn

P0
(k, k)→ Exti

R(F,F).

The aim of this section is to show that ρi
∞ is an injective map for i = 0, 1, 2.

Note that lim−→n
Ext·P0/mn

P0
(k, k) =

⊕
i≥0 lim−→n

Exti
P0/mn

P0
(k, k), as well as

Ext·R(F,F), has a structure of algebra by Yoneda product, and

ρ·∞ : lim−→
n

Ext·P0/mn
P0

(k, k)→ Ext·R(F,F)

is an algebra map.
First, consider the case i = 0. Since Ext0P0/mn

P0
(k, k) = k and ρ0

n : k →
Ext0R(F,F) is a natural injection for any n ≥ 1, we easily see the following
lemma holds.

Lemma 4.5. The mapping ρ0
∞ : k → Ext0R(F,F) is a natural injection.

To argue for the case i = 1, we should notice that Ext1P0/mn
P0

(k, k) ∼=
Homk(mP0/m

2
P0
, k) for all n ≥ 2 and the natural maps Ext1P0/mn

P0
(k, k) →

Ext1
P0/mn+1

P0

(k, k) coincide with the identity map on Homk(mP0/m
2
P0
, k). Hence

we have

ρ1
∞ : Homk(mP0/m

2
P0
, k)→ Ext1R(F,F).

We can prove this is actually an isomorphism.

Lemma 4.6. The mapping ρ1
∞ : Homk(mP0/m

2
P0
, k) → Ext1R(F,F) is

an isomorphism.
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Proof. By the observation above, we only have to prove that ρ1
2 :

Homk(mP0/m
2
P0
, k)→ Ext1R(F,F) is an isomorphism. Let us denote P0 = T/I0

where T = k〈〈t1, t2, . . . , tr〉〉 and I0 ⊆ m2
T . Recall that Ext1R(F,F) has a k-basis

{[t∗1], [t∗2], . . . , [t∗r ]}. And, by definition, we have L(2)
0 = (F ⊗k T/m

2
T , δ) with

δ = d⊗1+
∑r

i=1 t
∗
i ⊗ ti, where ti denotes the image of ti in mT /m

2
T . Therefore,

it is easy to see that the mapping ρ1
2 is defined by

ρ1
2(f) =

r∑
i=1

f(ti)[t∗i ],

for f ∈ Homk(mT /m
2
T , k). The lemma follows from this.

Now we proceed to the case i = 2. The goal here is to prove the following
theorem.

Theorem 4.6. There is an isomorphism β : T (P0)→ lim−→Ext2P0/mn
P0

(k, k)
which makes the following diagram commutative.

T (P0)
αL0−−−−→ Ext2R(F,F)

β

⏐⏐�
�

���
ρ2
∞

lim−→n
Ext2P0/mn

P0
(k, k)

In particular, ρ2
∞ is an injective map as is αL0 .

To prove this, let A be an arbitrary artinian local k-algebra in Ak, and let
GA = (G, dA) be a free resolution of the left A-module k = A/mA. Then, by
Theorem 3.3, there is a universal lift of GA of the form GA

0 = (G ⊗k A,ΔA
0 )

whose parameter algebra is A. Since GA
0 is a lift of GA, we have the k-linear

map

αGA
0

: T (A)→ Ext2A(GA,GA) = Ext2A(k, k)

which is defined in 4.1.

Lemma 4.7. Let A ∈ Ak as above. Then the map αGA
0

is an isomor-
phism.

Proof. Since A is a parameter algebra of the universal lift GA
0 of G, The-

orem 4.2 implies that αGA
0

is injective. Thus, to show this is an isomorphism, it
is enough to show that dimkT (A) = dimkExt2A(k, k). Let us describe A = T/I
where T is the non-commutative formal power series ring and I ⊆ m2

T . Note
that the ideal I is open and closed in T , since A is artinian. Therefore, by
Proposition 2.4, we have T (A) ∼= Homcon(I, k) = Homk(I/ImA + mAI, k).
On the other hand, by the following lemma, we know that Ext2A(k, k) ∼=
Homk(I/ImT + mT I, k) ∼= T (A). Hence dimkExt2A(k, k) = dimkT (A).
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Lemma 4.8. Let P = T/I ∈ Âk where T = k〈〈t1, t2, . . . , tr〉〉 is a
non-commutative formal power series ring and I ⊆ m2

T . Then there is an
isomorphism Ext2P (k, k) ∼= Homk(I/ImT + mT I, k) ∼= HomT -bimod(I, k).

Proof. By virtue of Lemma 2.3, there is a minimal free resolution of k as
a left T -module of the form

0 −−−−→ T r −−−−→ T −−−−→ k −−−−→ 0.

Therefore, tensoring P over T , we have an exact sequence of left P -modules

0 −−−−→ TorT
1 (P, k) −−−−→ P r −−−−→ P −−−−→ k −−−−→ 0.

Note that, by the exact sequence of right T -modules 0 → I → T → P →
0, we have TorT

1 (P, k) ∼= I/ImT which is an isomorphism of left P -modules.
Therefore we have Ext2P (k, k) ∼= HomP (I/ImT , k) = Homk(I/ImT + mT I, k).

One can show that the isomorphism αGA
0

does not depend on the choice of
free resolution GA and its lift GA

0 . This follows from the following more general
lemma.

Lemma 4.9. Let F(1) = (F (1), d(1)) and F(2) = (F (2), d(2)) be right
bounded projective complexes over R. For A ∈ Ak, let G(i) = (F (i) ⊗k A,Δ(i))
be a lift of F(i) to A for i = 1, 2. Suppose that there is a quasi-isomorphism
q : G(1) → G(2) of chain complexes over R⊗kA

op. Then, there is a commutative
diagram:

T (A)
α

G(1)−−−−→ Ext2R(F(1),F(1))

α
G(2)

⏐⏐� q∗
⏐⏐�

Ext2R(F(2),F(2))
q∗

−−−−→ Ext2R(F(1),F(2))

Proof. Let [A′, ε] ∈ T (A) and let Δ̃(i) be a lifting homomorphism F (i)⊗k

A′ → F (i) ⊗k A
′[−1] of Δ(i) for i = 1, 2. Then, by the definition of αG(i) , we

have the description (Δ̃(i))2 = h(i) ⊗k ε with h(i) : F (i) → F (i)[−2] being a
chain homomorphism, and the equality αG(i)([A′, ε]) = [h(i)] holds. Now take a
lifting map q′ : F (1) ⊗k A

′ → F (2) ⊗k A
′ of a graded homomorphism q and we

have the commutative diagram:

0 −−−−→ F (1) 1⊗ε−−−−→ F (1) ⊗k A
′ −−−−→ F (1) ⊗k A −−−−→ 0

q⊗Ak

⏐⏐� q′
⏐⏐� q

⏐⏐�
0 −−−−→ F (2) 1⊗ε−−−−→ F (2) ⊗k A

′ −−−−→ F (2) ⊗k A −−−−→ 0

Since Δ(2)q = qΔ(1), we have the following commutative diagram:

0 −−−−→ F (1) 1⊗ε−−−−→ F (1) ⊗k A
′ −−−−→ F (1) ⊗k A −−−−→ 0⏐⏐�0

⏐⏐�eΔ(2)q′−q′
eΔ(1)

⏐⏐�0

0 −−−−→ F (2)[−1] 1⊗ε−−−−→ F (2) ⊗k A
′[−1] −−−−→ F (2) ⊗k A[−1] −−−−→ 0
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Hence there is a graded homomorphism p : F (1) → F (2)[−1] with the equality

Δ̃(2)q′ − q′Δ̃(1) = p⊗ ε.

Multiplying Δ̃(2) (resp. Δ̃(1)) from the left (resp. right), we have equalities

d(2)p⊗ ε = Δ̃(2)(p⊗ ε) = (h(2) ⊗ ε)q′ − Δ̃(2)q′Δ̃(1) = h(2)q ⊗ ε− Δ̃(2)q′Δ̃(1),

and

pd(1) ⊗ ε = (p⊗ ε)Δ̃(1) = Δ̃(2)q′Δ̃(1) − q′(h(1) ⊗ ε) = Δ̃(2)q′Δ̃(1) − qh(1) ⊗ ε.

Consequently, the equality

h(2)q − qh(1) = d(2)p+ pd(1)

holds. It follows that the equality q∗([h(1)]) = [qh(1)] = [h(2)q] = q∗([h(2)])
holds as an elements of Ext2R(F(1),F(2)).

Lemma 4.10. Let A ∈ Ak and let GA = (G, dA) be a free resolution
of the left A-module k = A/mA. We take a universal lift of GA of the form
GA

0 = (G ⊗k A,ΔA
0 ) as above. Furthermore, suppose that there is a lifting

chain complex L = (F ⊗k A,Δ) of F = (F, d). Then we have the following
commutative diagram

T (A) αL−−−−→ Ext2R(F,F)

α
GA
0

⏐⏐�
�

���
ρ2

L

Ext2A(k, k),

where ρ2
L

is the map induced by the functor L⊗A − : D+(A)→ D+(R).

Proof. Consider the tensor product of chain complexes

X := L⊗A GA
0 = ((F ⊗k A)⊗A (G⊗k A), dX),

where dX = Δ⊗ 1 + 1⊗ΔA
0 . Notice from Theorem 3.3 that GA

0 is a complex
of free A⊗k A

op-modules and it is quasi-isomorphic to A as a chain complex of
A ⊗ Aop-modules. Therefore the chain complex X is quasi-isomorphic to L as
a chain complex of R⊗k A

op-modules. By virtue of Lemma 4.9, it is sufficient
to prove the commutativity of the following diagram.

T (A) αX−−−−→ Ext2R(X⊗A k,X⊗A k)

α
GA
0

⏐⏐�
�

���
ρ2

X

Ext2A(k, k)

For this, let [A′, ε] ∈ T (A) and take a lifting map Γ : G⊗k A
′ → G ⊗k A

′[−1]
of ΔA

0 . By definition of αGA
0
, we have Γ2 = h⊗ ε for some h : G→ G[−2] and
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αGA
0
([A′, ε]) = [h]. Therefore ρ2

X
(αGA

0
([A′, ε])) is represented by a chain map

1⊗h on X⊗A k = F⊗A GA. On the other hand, d′X = Δ⊗1+1⊗Γ is a lifting
map of dX , and we have the equality d′X

2 = 1⊗h⊗ε. Hence it follows from the
definition that αX([A′, ε]) = [1⊗ h] as well. Hence we have ρ2

X
· αGA

0
= αX.

Let P ∈ Âk be any complete local k-algebra. Then, induced from the
natural projections pn : P/mn+1

P → P/mn
P and πn : P → P/mn

P for each n ≥ 1,
there are natural mappings p∗n : T (P/mn

P )→ T (P/mn+1
P ) and π∗

n : T (P/mn
P )→

T (P ). See Lemma 2.10. By the functorial property of T , it is clear that the
diagram

T (P/mn
P )

π∗
n−−−−→ T (P )

p∗
n

⏐⏐�
�

���
π∗

n+1

T (P/mn+1
P )

is commutative for each n ≥ 1. Thus it induces the map

γP := lim−→π∗
n : lim−→T (P/mn

P )→ T (P ).

Lemma 4.11. The map γP is an isomorphism for any P ∈ Âk.

Proof. First we show that each π∗
n : T (P/mn

P ) → T (P ) is injective for
n ≥ 2, hence so is γP . For this, let [A, ε] ∈ T (P/mn

P ). Then take a fiber product
and we have the following commutative diagram with exact rows and columns.

0 0⏐⏐� ⏐⏐�
mn

A′ mn
P⏐⏐� ⏐⏐�

0 −−−−→ k
ε′−−−−→ A′ −−−−→ P −−−−→ 0∥∥∥ ⏐⏐� πn

⏐⏐�
0 −−−−→ k

ε−−−−→ A −−−−→ P/mn
P −−−−→ 0⏐⏐� ⏐⏐�

0 0

By definition π∗([A, ε]) = [A′, ε′]. Suppose [A′, ε′] = 0 in T (P ). Then, since the
small extension (A′, ε′) is a trivial one, we have ε′ �∈ m2

A′ by Lemma 2.6. Then
by the diagram above, we see ε �∈ m2

A as well. Hence [A, ε] = 0 in T (P/mn
P )

again by Lemma 2.6.
Now we prove γP : lim−→T (P/mn

P )→ T (P ) is surjective. For this, let [A′, ε′]
be any element of T (P ). Since

⋂∞
n=1 mn

A′ = (0) and since (ε′) is of finite length,
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there is an integer n0 ≥ 1 such that (ε′) ∩ mn
A′ = (0) for n ≥ n0. For such

any n, we set An = A′/mn
A′ and εn = ε′ mod mn

A′ . And it is easy to see that
[An, εn] ∈ T (P/mn

P ) and π∗
n([An, εn]) = [A′, ε′] for n ≥ n0. The surjectivity of

γP follows from this.

Proof of Theorem 4.6.
Let L0 be a universal lift of F with the parameter algebra P0 as in the

setting of the theorem. We denote L(n)
0 = L ⊗P0 P0/m

n
P0

and G(n)
0 = G0 ⊗P0

P0/m
n
P0

, where G0 is the universal lift of a free left P0-module k. Then, from
Lemma 4.10, we have a commutative diagram

T (P0/m
n
P0

)
α

L
(n)
0−−−−→ Ext2R(F,F)

α
G
(n)
0

⏐⏐�
�

���
ρ2

L
(n)
0

Ext2P0/mn
P0

(k, k).

Note from Lemma 4.7 that α
G

(n)
0

is an isomorphism. Now taking the inductive
limit and setting β = lim−→α

G
(n)
0

, we have a commutative diagram by Lemma
4.11 ;

T (P0)
lim−→α

L
(n)
0−−−−−−→ Ext2R(F,F)

β

⏐⏐�
�

���
lim−→ ρ2

L
(n)
0

lim−→Ext2P0/mn
P0

(k, k),

where β is an isomorphism as well. It is easy to see from the definition that
lim−→α

L
(n)
0

= αL0 and lim−→ ρ2

L
(n)
0

= ρ2
∞.

We should note that there is a natural mapping

ν : lim−→
n

Ext2P/mn
P
(k, k)→ Ext2P (k, k).

However, the mapping ν is not an isomorphism in general. In fact, we can show
the following proposition.

Proposition 4.3. Let P = T/I be a complete local k-algebra where T is
a non-commutative formal power series ring and I ⊆ m2

T . Then the natural map
ν is always injective. It is an isomorphism if and only if the ideal mT I + ImT

is closed and dimkI/mT I + ImT is finite.

Proof. By Lemma 4.8, we know that Ext2P (k, k) ∼= HomT -bimod(I, k). On
the other hand, it follows from Theorem 4.6 and Proposition 2.4 that

(4.4) lim−→
n

Ext2P/mn
P
(k, k)

β∼= T (P ) ∼= Homcon(I, k).
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Through these isomorphisms, it can be seen that ν coincides with the natural
map Homcon(I, k)→ HomT -bimod(I, k), which is of course an injection.

Suppose that mT I + ImT is closed with dimkI/mT I + ImT < ∞. Then,
by Corollary 2.5, the inclusion mn

T ∩ I ⊆ mT I + ImT holds for large n � 1.
Therefore we have Homcon(I, k) = HomT -bimod(I, k). See Definition 2.7.

On the contrary, assume Homcon(I, k) = HomT -bimod(I, k). If
dimkI/mT I + ImT =∞, then HomT -bimod(I, k) = Homk(I/mT I + ImT , k) has
uncountable dimension as a k-vector space. On th other hand, by the equality
(4.4), Homcon(I, k) has countable dimension, as it is an inductive limit of fi-
nite dimensional k-vector spaces. By this contradiction, we can conclude that
dimkI/mT I + ImT <∞. Then, since dimkI/mT I + ImT <∞, it follows

Homcon(I, k) = Homk(I/mT I + ImT , k).

Since this equals HomT -bimod(I, k) = Homk(I/mT I + ImT , k), we see the equal-
ity mT I + ImT = mT I + ImT .
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