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TOPOLOGICAL RECURSION RELATIONS IN
NON-EQUIVARIANT CYLINDRICAL CONTACT

HOMOLOGY

Oliver Fabert and Paolo Rossi

It was pointed out by Eliashberg in his ICM 2006 plenary talk that
the integrable systems of rational Gromov–Witten theory very natu-
rally appear in the rich algebraic formalism of symplectic field theory
(SFT). Carefully generalizing the definition of gravitational descen-
dants from Gromov–Witten theory to SFT, one can assign to every con-
tact manifold a Hamiltonian system with symmetries on SFT homol-
ogy and the question of its integrability arises. While we have shown
how the well-known string, dilaton and divisor equations translate from
Gromov–Witten theory to SFT, the next step is to show how genus-zero
topological recursion translates to SFT. Compatible with the example
of SFT of closed geodesics, it turns out that the corresponding localiza-
tion theorem requires a non-equivariant version of SFT, which is gener-
ated by parameterized instead of unparameterized closed Reeb orbits.
Since this non-equivariant version is so far only defined for cylindri-
cal contact homology, we restrict ourselves to this special case. As an
important result we show that, as in rational Gromov–Witten theory,
all descendant invariants can be computed from primary invariants, i.e.,
without descendants.

Contents

1. Introduction 406
2. SFT with gravitational descendants 408

2.1. SFT 408
2.2. Gravitational descendants 411
2.3. Quantum Hamiltonian systems with symmetries 413
2.4. Cylindrical contact homology 416

3. Topological recursion in non-equivariant
cylindrical homology 419

405



406 O. FABERT AND P. ROSSI

3.1. Motivation from Floer homology 419
3.2. Non-equivariant cylindrical homology 423
3.3. Topological recursion in non-equivariant

cylindrical homology 426
3.4. Proof of the main theorem 428

4. Applications 439
4.1. Topological recursion in cylindrical homology 439
4.2. Action of quantum cohomology on

non-equivariant cylindrical homology 442
4.3. Example: cylindrical homology in the Floer case 445

References 447

1. Introduction

Symplectic field theory (SFT), introduced by Hofer et al. in 2000 [EGH], is
a very large project and can be viewed as a topological quantum field the-
ory approach to Gromov–Witten theory. Besides providing a unified view
on established pseudoholomorphic curve theories such as symplectic Floer
homology, contact homology and Gromov–Witten theory, it leads to numer-
ous new applications and opens new routes yet to be explored.
Although SFT leads to algebraic invariants with very rich algebraic struc-

tures, it was pointed out by Eliashberg in his ICM 2006 plenary talk [E]
that the integrable systems of rational Gromov–Witten theory very natu-
rally appear in rational SFT by using the link between the rational SFT of
prequantization spaces in the Morse–Bott version and the rational Gromov–
Witten potential of the underlying symplectic manifold; see the recent
papers [R1, R2] by the second author. Indeed, after introducing gravita-
tional descendants as in Gromov–Witten theory, it is precisely the rich alge-
braic formalism of SFT with its Weyl and Poisson structures that provides
a natural link between SFT and (quantum) integrable systems.
On the other hand, carefully defining a generalization of gravitational

descendants and adding them to the picture, the first author has shown
in [F2] that one can assign to every contact manifold an infinite sequence
of commuting Hamiltonian systems on SFT homology and the question of
their integrability arises. For this, it is important to fully understand the
algebraic structure of gravitational descendants in SFT.
While it is well known that in Gromov–Witten theory the topological

meaning of gravitational descendants leads to new differential equations for
the Gromov–Witten potential, in this paper we want to proceed with our
project of understanding how these rich algebraic structures carry over from
Gromov–Witten theory to SFT. While we have already shown in [FR] how
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the well-known string, dilaton and divisor equations translate from Gromov–
Witten theory to SFT, as a next step we want to show how classical genus-
zero topological recursion generalizes to SFT.
Although this is a first concrete step in the study of integrability of the

Hamiltonian systems of SFT, notice that topological recursion relations in
the forms we study here might not be enough to answer the question of
integrability: the Hamiltonian systems arising from SFT are, a priori, much
more general than those associated with Gromov–Witten invariants, involv-
ing in particular more than just local functionals (see [R2]), and topological
recursion relations, even together with string, dilaton and divisor equations,
might not yet restrictive enough to grant complete control over the alge-
bra of commuting Hamiltonians. They seem however to give an affirmative
answer to the fundamental question of the reconstructability of the gravita-
tional descendants from the primary invariants (i.e., without descendants)
in genus 0.
From the computation of the SFT of a Reeb orbit with descendants in [F2]

it can be seen that the genus-zero topological recursion requires a non-
equivariant version of SFT, which is generated by parameterized instead of
unparameterized Reeb orbits. The definition of this non-equivariant version
of SFT is currently a very active field of research and related to the work
of Bourgeois and Oancea in [BO], where a Gysin-type spectral sequence
relating linearized contact homology (a slight generalization of cylindrical
contact homology depending on a symplectic filling) and symplectic homol-
ogy of this filling is established by viewing the one as the (non-)equivariant
version of the other.
Since the topological recursion relation is already interesting in the case of

cylindrical contact homology and the non-equivariant version of it is already
understood, in this first paper on topological recursion we restrict ourselves
to cylindrical contact homology, i.e., study the algebraic structure of gravi-
tational descendants only for this special case.
This paper is organized as follows: While in section two we review the most

important definitions and results about SFT with gravitational descendants
and its relation with integrable systems in [F2,FR], in section three we first
show, as a motivation for our main result, how the topological recursion
relations in Gromov–Witten theory carry over to symplectic Floer theory.
Since this example suggests that the localization theorem for gravitational
descendants needs a non-equivariant version of cylindrical contact homology
which, similar to symplectic Floer homology, is generated by parameterized
instead of unparameterized closed Reeb orbits, we then recall the definition
of non-equivariant cylindrical homology from [BO] and prove the topological
recursion relations in the non-equivariant situation. Finally, in section four
we discuss two important applications of our main result. First we show
how the topological recursion formulas carry over from the non-equivariant
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to the equivariant situation and use this result to show that, as in rational
Gromov–Witten theory, all descendant invariants can be computed from
primary invariants, that is, without descendants. After this we show that our
results can be further used to define an action of the (quantum) cohomology
on non-equivariant cylindrical homology similar to the corresponding action
on symplectic Floer homology defined in [PSS]. At the end we show that in
the Floer case of SFT we just get back the topological recursion relations
in Floer homology and that the action of quantum cohomology on non-
equivariant homology splits and agrees with the action on Floer homology
as defined in [PSS].

2. SFT with gravitational descendants

2.1. SFT. SFT is a very large project, initiated by Eliashberg et al. in their
paper [EGH], designed to describe in a unified way the theory of pseudo-
holomorphic curves in symplectic and contact topology. Besides providing
a unified view on well-known theories like symplectic Floer homology and
Gromov–Witten theory, it shows how to assign algebraic invariants to closed
manifolds with a stable Hamiltonian structure.
Following [BEHWZ] a Hamiltonian structure on a closed (2m − 1)-

dimensional manifold V is a closed two-form ω on V , which is maximally
non-degenerate in the sense that kerω = {v ∈ TV : ω(v, ·) = 0} is a one-
dimensional distribution. The Hamiltonian structure is required to be stable
in the sense that there exists a one-form λ on V such that kerω ⊂ ker dλ
and λ(v) �= 0 for all v ∈ kerω − {0}. Any stable Hamiltonian structure
(ω, λ) defines a symplectic hyperplane distribution (ξ = kerλ, ωξ), where ωξ

is the restriction of ω, and a vector field R on V by requiring R ∈ kerω
and λ(R) = 1, which is called the Reeb vector field of the stable Hamilton-
ian structure. Examples for closed manifolds V with a stable Hamiltonian
structure (ω, λ) are contact manifolds, symplectic mapping tori and princi-
pal circle bundles over symplectic manifolds [BEHWZ]:
First observe that when λ is a contact form on V , it is easy to check

that (ω := dλ, λ) is a stable Hamiltonian structure and the symplectic
hyperplane distribution agrees with the contact structure. For the other
two cases, let (M,ωM ) be a symplectic manifold. Then every principal circle
bundle S1 → V → M and every symplectic mapping torus M → V → S1,
i.e., V = Mφ = R×M/{(t, p) ∼ (t+ 1, φ(p))} for φ ∈ Symp(M,ω) also car-
ries a stable Hamiltonian structure. For the circle bundle the Hamiltonian
structure is given by the pullback π∗ω under the bundle projection and we
can choose as one-form λ any S1-connection form. On the other hand, the
stable Hamiltonian structure on the mapping torus V = Mφ is given by
lifting the symplectic form to ω ∈ Ω2(Mφ) via the natural flat connection
TV = TS1⊕TM and setting λ = dt for the natural S1-coordinate t on Mφ.
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While in the mapping torus case ξ is always integrable, in the circle bundle
case the hyperplane distribution ξ may be integrable or non-integrable, even
contact.
SFT assigns algebraic invariants to closed manifolds V with a sta-

ble Hamiltonian structure. The invariants are defined by counting J-
holomorphic curves in R×V with finite energy, where the underlying closed
Riemann surfaces are explicitly allowed to have punctures, i.e., single points
are removed. The almost complex structure J on the cylindrical manifold
R×V is required to be cylindrical in the sense that it is R-independent, links
the two natural vector fields on R×V , namely the Reeb vector field R and
the R-direction ∂s, by J∂s = R, and turns the symplectic hyperplane dis-
tribution on V into a complex subbundle of TV , ξ = TV ∩ JTV . It follows
that a cylindrical almost complex structure J on R×V is determined by its
restriction Jξ to ξ ⊂ TV , which is required to be ωξ-compatible in the sense
that ωξ(·, Jξ·) defines a metric on ξ. Note that such almost complex struc-
tures J are called compatible with the stable Hamiltonian structure and that
the set of these almost complex structures is non-empty and contractible.
Let us recall the definition of moduli spaces of holomorphic curves studied

in rational SFT in the general setup. Let Γ+,Γ− be two ordered sets of closed
orbits γ of the Reeb vector field R on V , i.e., γ : R → V , γ(t + T ) = γ(t),
γ̇ = R, where T > 0 denotes the period of γ. Here we assume that the
stable Hamiltonian structure is Morse in the sense that all closed orbits
of the Reeb vector field are non-degenerate in the sense of [BEHWZ]; in
particular, the set of closed Reeb orbits is discrete. Then the (parameterized)
moduli spaceM0

r,A(Γ
+,Γ−) consists of tuples (u, (z±k ), (zi)), where (z

±
k ), (zi)

are three disjoint ordered sets of points on CP
1, which are called positive and

negative punctures, and additional marked points, respectively. The map u :
Ṡ → R×V starting from the punctured Riemann surface Ṡ = CP

1−{(z±k )}
is required to satisfy the Cauchy–Riemann equation

∂̄Ju = du+ J(u) · du · i = 0

with the complex structure i on CP
1. Assuming we have chosen cylindrical

coordinates ψ±k : R
±×S1 → Ṡ around each puncture z±k in the sense that

ψ±k (±∞, t) = z±k , the map u is additionally required to show for all k =
1, . . . , n± the asymptotic behaviour

lim
s→±∞(u ◦ ψ

±
k )(s, t+ t0) = (±∞, γ±k (T±k t))

with some t0 ∈ S1 and the orbits γ±k ∈ Γ±, where T±k > 0 denotes period of
γ±k . In order to assign an absolute homology class A to a holomorphic curve
u : Ṡ → R×V we have to employ spanning surfaces uγ connecting a given
closed Reeb orbit γ in V to a linear combination of circles cs representing a



410 O. FABERT AND P. ROSSI

basis of H1(V ),

∂uγ = γ −
∑

s

ns · cs

in order to define
A = [uΓ+ ] + [u(Ṡ)]− [uΓ− ],

where [uΓ± ] =
∑s±

n=1[uγ±n ] viewed as singular chains.
Observe that the group Aut(CP

1) of Moebius transformations acts on
elements inM0 =M0

r,A(Γ
+,Γ−) in an obvious way,

ϕ.(u, (z±k ), (zi)) = (u ◦ ϕ−1, (ϕ(z±k )), (ϕ(zi))), ϕ ∈ Aut(CP
1),

and we obtain the moduli space M = Mr,A(Γ+,Γ−) studied in SFT by
dividing out this action and the natural R-action on the target mani-
fold (R×V, J). Furthermore it was shown in [BEHWZ] that this mod-
uli space can be compactified to a moduli space M = Mr,A(Γ+,Γ−)
by adding moduli space of multi-floor curves with nodes. In particular,
the moduli space has codimension-one boundary given by (fibre) products
M1×M2 =Mr1,A1(Γ

+
1 ,Γ

−
1 )×Mr2,A2(Γ

+
2 ,Γ

−
2 ) of lower-dimensional moduli

spaces.
Let us now briefly introduce the algebraic formalism of rational SFT as

described in [EGH]:
Let us fix a trivialization of the symplectic bundle (ξ, ω|ξ) over each curve

Ci. This induces a trivialization a hoomotopically unique trivialization of
the same bundle over each periodic Reeb orbit γ via the spanning surface
uγ . Let us use this trivialization to define the Conley–Zehnder index of the
Reeb orbit (the Maslov index of the path in Sp(2m − 2,R) given by the
linearized Reeb flow along γ). Recall that a multiply covered Reeb orbit γk

is called bad if CZ(γk) �= CZ(γ) mod 2, where CZ(γ) denotes the Conley–
Zehnder index of γ. Calling a Reeb orbit γ good if it is not bad, we assign
to every good Reeb orbit γ two formal graded variables pγ , qγ with grading

|pγ | = m− 3− CZ(γ), |qγ | = m− 3 + CZ(γ)

when dimV = 2m− 1.
Assuming we have chosen a basis A0, . . . , AM of H2(V ), we assign to

every Ai a formal variable zi with grading |zi| = −2c1(Ai). In order to
include higher-dimensional moduli spaces we further assume that a string
of closed (homogeneous) differential forms Θ = (θ1, . . . , θN ) on V is chosen
and assign to every θα ∈ Ω∗(V ) a formal variables tα with grading

|tα| = 2− deg θα.

With this let P be the Poisson algebra of formal power series in the variables
pγ and ti with coefficients which are polynomials in the variables qγ and
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Laurent series in zn with Poisson bracket given by

{f, g} =
∑

γ

κγ

(
∂f

∂pγ

∂g

∂qγ
− (−1)|f ||g| ∂g

∂pγ

∂f

∂qγ

)
.

As in Gromov–Witten theory we want to organize all moduli spaces
Mr,A(Γ+,Γ−) into a generating function h ∈ P, called Hamiltonian. In order
to include also higher-dimensional moduli spaces, in [EGH] the authors fol-
low the approach in Gromov–Witten theory to integrate the chosen differ-
ential forms θα over the moduli spaces after pulling them back under the
evaluation map from target manifold V . The Hamiltonian h is then defined
by

h =
∑

Γ+,Γ−,I

1
r!n+!n−!κΓ+κΓ−

∫
Mr,A(Γ+,Γ−)/ R

ev∗1 θα1∧. . .∧ev∗r θαr t
IpΓ

+
qΓ
−
zA

with tI = tα1 . . . tαr , pΓ
+
= pγ+

1
. . . pγ+

n+
, qΓ

−
= qγ−1

. . . qγ−
n−
, zA = zd0

0 · . . . ·
zdM
M for A = d0A0 + · · ·+ dMAM and κΓ± = κγ±1

· . . . · κγ±
s±
.

2.2. Gravitational descendants. After introducing SFT in the sense of
[EGH], we now recall the definition of gravitational descendants in SFT
in [F2], which we will use to enrich the SFT Hamiltonian. In the same way
as the above Hamiltonian h explicitly depends on the chosen contact form,
the cylindrical almost complex structure, the differential forms and abstract
polyfold perturbations making all moduli spaces regular, it will turn out that
the enriched Hamiltonian further depends on the additional auxiliary choices
we have to make to define gravitational descendants. In the next subsection
we will show how to construct algebraic invariants, which just depend on
the contact structure and the cohomology classes of the differential forms
and are independent of the other auxiliary choices.
In complete analogy to Gromov–Witten theory we can introduce r tau-

tological line bundles L1, . . . ,Lr over each moduli space Mr,A(Γ+,Γ−).
The fibre of Li over a punctured curve is again given by the cotangent
line to the underlying, possibly unstable nodal Riemann surface (with-
out ghost components) at the i.th marked point. Note that it can still
be formally defined as the pull-back of the vertical cotangent line bun-
dle of πi : Mr+1,A(Γ+,Γ−) → Mr,A(Γ+,Γ−) under the canonical section
σi :Mr,A(Γ+,Γ−) →Mr+1,A(Γ+,Γ−) mapping to the ith marked point in
the fibre.
Recall that in Gromov–Witten theory the gravitational descendants were

defined by integrating powers of the first Chern class of the tautological
line bundle over the moduli space, which by Poincare duality corresponds
to counting common zeroes of sections in this bundle. On the other hand,
in SFT, more generally every holomorphic curves theory where curves with
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punctures and/or boundary are considered, we are faced with the problem
that the moduli spaces generically have codimension-one boundary, so that
the count of zeroes of sections in general depends on the chosen sections in
the boundary. It follows that the integration of the first Chern class of the
tautological line bundle over a single moduli space has to be replaced by
a construction involving all moduli space at once, which we will recall now
from [F2].
Following the compactness statement in [BEHWZ], the codimension-one

boundary of a moduli spaceM =Mr,A(Γ+,Γ−) of SFT holomorphic curves
consists of curves with two levels (in the sense of [BEHWZ]). More precisely,
each component of the boundary has the form of a (fibred) productM1 ×
M2 =Mr1,A1(Γ

+
1 ,Γ

−
1 )×Mr2,A2(Γ

+
2 ,Γ

−
2 ) of moduli spaces of strictly lower

dimension, where the marked points distribute on the two levels. Consider a
boundary component where the ith marked point sits, say, on the first level
M1: it directly follows from the definition of the tautological line bundle Li

at the ith marked point overM that, over such boundary component,

Li |M1×M2
= π∗1 Li,1

where Li,1 denotes the tautological line bundle over the moduli space M1

and π1 :M1×M2 →M1 is the projection onto the first factor. With this we
can now give the definition of coherent collections of sections in tautological
line bundles from [F2].

Definition 2.1. Assume that we have chosen sections si in the tautological
line bundles Li over all moduli spaces M of J-holomorphic curves of SFT.
Then these collections of sections (si) are called coherent if for every section
si of Li over a moduli spaceM the following holds: over each codimension-
one boundary component M1 ×M2 of M, the section si agrees with the
pull-back π∗1si,1 (π∗2si,2) of the chosen section si,1 (si,2) of the tautological
line bundle Li,1 over M1 (Li,2 over M2), assuming that the ith marked
point sits on the first (second) level.

Since in the end we will again be interested in the zero sets of these sec-
tions, we will assume that all occurring sections are sufficiently generic, in
particular, transversal to the zero section. Furthermore, we want to assume
that all the chosen sections are indeed invariant under the obvious sym-
metries like reordering of punctures and marked points. In order to meet
both requirements, it follows that actually need to employ multi-sections
(in the sense of branched manifolds). On the other hand, it is clear that one
can always find coherent collections of (transversal) sections (s) by using
induction on the dimension of the underlying moduli space.
For every tuple (j1, . . . , jr) of natural numbers we choose ji coherent

collections of sections (si,k) of Li. Then we define for every moduli space
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M =Mr,A(Γ+,Γ−),

M(j1,...,jr) = s−11,1(0) ∩ · · · ∩ s−11,j1(0) ∩ · · · ∩ s−1r,1(0) ∩ · · · ∩ s−1r,jr
(0) ⊂M.

Note that by choosing all sections sufficiently generic, we can assume
M(j1,...,jr) = M(j1,...,jr)

r,A (Γ+,Γ−) is a branched-labelled submanifold of the
moduli spaceMr,A(Γ+,Γ−). Note that by definition

M(j1,...,jr) =M(j1,0,...,0) ∩ · · · ∩M(0,...,0,jr)
,

and it follows from the coherency condition that the codimension-one bound-
ary of M(0,...,0,j,0,...,0) is given by the products M(0,...,0,j,0,...,0)

1 × M2 or
M1 ×M(0,...,0,j,0,...,0)

2 (depending on the ith marked points sitting on the
first or second level).
With this we can define the descendant Hamiltonian of SFT, which we

will continue denoting by h, while the Hamiltonian defined in [EGH] will
from now on be called primary. In order to keep track of the descendants
we will assign to every chosen differential form θα now a sequence of formal
variables tα,j with grading

|tα,j | = 2(1− j)− deg θα.

Then the descendant Hamiltonian h ∈ P of (rational) SFT is defined by

h =
∑

Γ+,Γ−,I

1
r!n+!n−!κΓ+κΓ−

×
∫
M(j1,...,jr)

r,A (Γ+,Γ−)/ R

ev∗1 θα1 ∧ . . . ∧ ev∗r θαr t
IpΓ

+
qΓ
−
zA,

where pΓ
+
= pγ+

1
. . . pγ+

n+
, qΓ

−
= qγ−1

. . . qγ−
n−
, tI = tα1,j1 · · · tαr,jr , zA =

zd0
0 · · · zdM

M for A = d0A0 + · · ·+ dMAM and κΓ± = κγ±1
· · ·κγ±

s±
.

2.3. Quantum Hamiltonian systems with symmetries. In [F2] it is
shown that, after introducing gravitational descendants, SFT assigns to
every contact manifold not only a Poisson algebra, the well-known ratio-
nal SFT homology, but also a Hamiltonian system in it with an infinite
number of symmetries.

Theorem 2.2. Differentiating the rational Hamiltonian h ∈ P with respect
to the formal variables tα,p defines a sequence of classical Hamiltonians

hα,p =
∂ h
∂tα,p

∈ H∗(P, {h, ·})
in the rational SFT homology algebra with differential d = {h, ·} : P → P,
which commute with respect to the bracket on H∗(P, {h, ·}),

{hα,p,hβ,q} = 0, (α, p), (β, q) ∈ {1, . . . , N} × N .
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Note that everything is an immediate consequence of the master equation
{h,h} = 0, which can be proven in the same way as in the case without
descendants using the results in [F2]. While the boundary equation d◦d = 0,
d = {h, ·} is well-known to follow directly from the identity {h,h} = 0, the
fact that every hα,p, (α, p) ∈ {1, . . . , N} × N defines an element in the
homology H∗(P, {h, ·}) follows from the identity

{h,hα,p} = 0,

which can be shown by differentiating the master equation with respect to
the tα,p-variable and using the graded Leibniz rule,

∂

∂tα,p
{f, g} =

{
∂f

∂tα,p
, g

}
+ (−1)|tα,p||f |

{
f,

∂g

∂tα,p

}
.

On the other hand, in order to see that any two hα,p, hβ,q commute after
passing to homology it suffices to see that by differentiating twice (and using
that all summands in h have odd degree) we get the identity

{hα,p,hβ,q}+ (−1)|tα,p|
{
h,

∂2 h
∂tα,p∂tβ,q

}
= 0.

We now turn to the question of independence of these nice algebraic
structures from the choices like contact form, cylindrical almost complex
structure, abstract polyfold perturbations and, of course, the choice of the
coherent collection of sections. This is the content of the following theorem
proven in [F2].

Theorem 2.3. For different choices of contact form λ±, cylindrical almost
complex structure J±, abstract polyfold perturbations and sequences of coher-
ent collections of sections (s±j ) the resulting systems of commuting functions
h−α,p on H∗(P−, d−) and h+α,p on H∗(P+, d+) are isomorphic, i.e., there
exists an isomorphism of the Poisson algebras H∗(P−, d−) and H∗(P+, d+)
which maps h−α,p ∈ H∗(P−, d−) to h+α,p ∈ H∗(P+, d+).

This theorem is an extension of the theorem in [EGH], which states that
for different choices of auxiliary data the Poisson algebras H∗(P−, d−) and
H∗(P+, d+) with d± = {h±, ·} are isomorphic. For the extension in [F2]
the first author introduced the notion of a collection of sections (sj) in
the tautological line bundles over all moduli spaces of holomorphic curves
in the cylindrical cobordism interpolating between the auxiliary structures
which are coherently connecting the two coherent collections of sections (s±j ).
On the other hand, assuming that the contact form, the cylindrical almost
complex structure and also the abstract polyfold sections are fixed to have
well-defined moduli spaces, the isomorphism of the homology algebras is the
identity and hence the theorem states the sequence of commuting Hamilto-
nians is indeed independent of the chosen sequences of coherent collections
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of sections after passing to homology,

h1,−i,j = h1,+i,j ∈ H∗(P, {h, ·}).

We want to point out the fact that the Poisson SFT homology algebra can
be thought of as the space of functions on some abstract infinite-dimensional
Poisson space. Indeed the kernel ker({h, ·}) can be seen as the algebra of
functions on the space O of orbits of the Hamiltonian R-action given by
h, that is, the flow lines of the Hamiltonian vector field Xh associated to
h. Even in a finite dimensional setting the space O can be very wild. Any-
how the image im({h, ·}) is an ideal of such algebra and hence identifies a
sub-space of O given by all of those orbits o ∈ O at which, for any f ∈ P,
{h, f}|o = 0. But such orbits are simply the constant ones, where Xh van-
ishes. Hence the Poisson SFT-homology algebra H∗(P, {h, ·}) can regarded
as the algebra of functions on X−1h (0), seen as a subspace of the space O
of orbits of h, endowed with a Poisson structure by singular, stationary
reduction.
While it is well-known that in Gromov–Witten theory the topological

meaning of gravitational descendants leads to new differential equations for
the Gromov–Witten potential, it is natural to ask how these rich algebraic
structures carry over from Gromov–Witten theory to SFT. As a first step,
the authors have shown in the paper [FR] how the well-known string, dilaton
and divisor equations generalize from Gromov–Witten theory to SFT. Here
the main problem is to deal with the fact that the SFT Hamiltonian indeed
depends on auxiliary data like the chosen differential forms θi and coherent
collections of sections (sj) used to define gravitational descendants. As cus-
tomary in Gromov–Witten theory we will assume that the chosen string of
differential forms on V contains a two-form θ2. It turns out that we obtain
the same equations as in Gromov–Witten theory (up to contributions of con-
stant curves), but these however only hold after passing to SFT homology.

Theorem 2.4. For any choice of differential forms and coherent sections
the following string, dilaton and divisor equations hold after passing to SFT-
homology

∂

∂t0,0
h =

∫
V
t ∧ t+

∑
k

tα,k+1 ∂

∂tα,k
h ∈ H∗(P, {h, ·}),

∂

∂t0,1
h = DEuler h ∈ H∗(P, {h, ·}),(

∂

∂t2,0
− z0 ∂

∂z0

)
h =

∫
V
t ∧ t ∧ θ2 +

∑
k

tα,k+1cβ2α
∂ h
∂tβ,k

∈ H∗(P, {h, ·}),
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with the first-order differential operator

DEuler := 2−
∑

γ

pγ
∂

∂pγ
−

∑
γ

qγ
∂

∂qγ
−

∑
α,p

tα,p ∂

∂tα,p
.

As computed example we review the SFT of a closed Reeb orbit discussed
in [F2]. For this recall that in [F2] the first author has shown that every alge-
braic invariant of SFT has a natural analog defined by counting only orbit
curves. In particular, in the same way as we define sequences of descendant
Hamiltonians h1i,j by counting general curves in the symplectization of a
contact manifold, we can define sequences of descendant Hamiltonians h1γ,i,j

by just counting branched covers of the orbit cylinder over γ with signs (and
weights), where the preservation of the contact area under splitting and glu-
ing of curves proves that for every theorem from above we have a version
for γ.
Let P0

γ be the graded Poisson subalgebra of the Poisson algebra P0

obtained from the Poisson algebra P by setting all t-variables to zero, which
is generated only by those p- and q-variables pn = pγn , qn = qγn corre-
sponding to Reeb orbits which are multiple covers of the fixed orbit γ. In his
paper [F2] the first author computed the corresponding Poisson-commuting
sequence in the special case where the contact manifold is the unit cotan-
gent bundle S∗Q of a (m-dimensional) Riemannian manifold Q, so that
every closed Reeb orbit γ on V = S∗Q corresponds to a closed geodesic γ̄
on Q (and the string of differential forms just contains a one-form which
integrates to one over the closed Reeb orbit).

Theorem 2.5. The system of Poisson-commuting functions h1γ,j, j ∈ N on
P0

γ is isomorphic to a system of Poisson-commuting functions g1γ̄,j, j ∈ N

on P0
γ̄ = P0

γ, where for every j ∈ N the descendant Hamiltonian g1γ̄,j given
by

g1γ̄,j =
∑

ε(�n)
qn1 · . . . · qnj+2

(j + 2)!

where the sum runs over all ordered monomials qn1 · . . . ·qnj+2 with n1+ · · ·+
nj+2 = 0 and which are of degree 2(m+j−3). Further ε(�n) ∈ {−1, 0,+1}
is fixed by a choice of coherent orientations in SFT and is zero if and only
if one of the orbits γn1 , . . . , γnj+2 is bad in the sense of [BEHWZ].

2.4. Cylindrical contact homology. While the punctured curves in SFT
may have arbitrary genus and arbitrary numbers of positive and negative
punctures, it is shown in [EGH] that there exist algebraic invariants count-
ing only special types of curves. While in rational SFT one counts punctured
curves with genus zero, contact homology is defined by further restricting
to punctured spheres with only one positive puncture. Further restricting to
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spheres with both just one negative and one positive puncture, i.e., cylinders,
the resulting algebraic invariant is called cylindrical contact homology.
Note however that contact homology and cylindrical contact homology

are not always defined. In order to prove the well-definedness of (cylindrical)
contact homology it however suffices to show that there are no punctured
holomorphic curves where all punctures are negative (or all punctures are
positive). To be more precise, for the well-definedness of cylindrical contact
homology it actually suffices to assume that there are no holomorphic planes
and that there are either no holomorphic cylinders with two positive or no
holomorphic cylinders with two negative ends.
While the existence of holomorphic curves without positive punctures can

be excluded for all contact manifolds using the maximum principle, which
shows that contact homology is well-defined for all contact manifolds, it can
be seen from homological reasons that for mapping tori Mφ there cannot
exist holomorphic curves in R×Mφ carrying just one type of punctures,
which shows that in this case both contact homology and cylindrical contact
homology are defined.
Similarly to what happens in Floer homology, the chain space for cylindri-

cal homology C is defined be the vector space generated by the formal vari-
ables qγ with coefficients which are formal power series in the tα,j-variables
and Laurent series in the zn-variables. Counting only holomorphic cylinders
defines a differential ∂ : C∗ → C∗ by

∂qγ+ = κγ+

∑
γ−

∂2 h
∂pγ+∂qγ−

|p=q=0 · qγ−

with

∂2 h
∂pγ+∂qγ−

|p=q=0 =
∑ 1

r!κγ+κγ−

∫
M(j1,...,jr)

r,A (γ+,γ−)
ev∗1 θα1∧. . .∧ev∗r θαr t

IzA.

It follows from the master equation {h,h} = 0 of rational SFT that ∂ ◦
∂ = 0 when there do not exist any holomorphic planes, so that one can
define the cylindrical homology of the closed stable Hamiltonian manifold
as the homology of the chain complex (C, ∂). The sequence of commuting
Hamiltonians hα,p in rational SFT gets now replaced by linear maps

∂α,p =
∂

∂tα,p
◦ ∂ : C∗ → C∗, ∂α,pqγ+ = κγ+

∑
γ−

∂3 h
∂tα,p∂pγ+∂qγ−

|p=q=0 · qγ− ,

which by the same arguments descend to maps on homology, ∂α,p :
H∗(C, ∂) → H∗(C, ∂), and commute on homology, [∂α,p, ∂β,q]− = 0, with
respect to the graded commutator [f, g]− = f ◦ g − (−1)deg(f) deg(g)g ◦ f .
While we have already shown how the well-known string, dilaton and

divisor equations translate from Gromov–Witten theory to SFT, in this
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paper we want to proceed with our project of understanding how the rich
algebraic structures from Gromov–Witten theory carry over to SFT. As the
next step we want to show how classical genus-zero topological recursion
generalizes to SFT. As we will outline in a forthcoming paper, it follows from
the computation of the SFT of a Reeb orbit with descendants outlined above
that the genus-zero topological recursion requires a non-equivariant version
of SFT, which is generated by parameterized instead of unparameterized
Reeb orbits.
The definition of this non-equivariant version of SFT is currently a very

active field of research and related to the work of Bourgeois and Oancea
in [BO], where a Gysin-type spectral sequence relating linearized contact
homology (a slight generalization of cylindrical contact homology depending
on a symplectic filling) and symplectic homology of this filling is established
by viewing the one as the (non-)equivariant version of the other. On the
other hand, since the topological recursion relations are already interesting
in the case of cylindrical contact homology and the non-equivariant version
of it is already understood, in this paper we will study the algebraic structure
of gravitational descendants just for this special case first.

Remarks on transversality We end this section with a short discussion
of the analytical foundations. As in [BO] and other papers on SFT, the
algebraic results we prove rely on the fact that all appearing moduli spaces
of holomorphic curves are (weighted branched) manifolds with corners of
dimension equal to the Fredholm index of the Cauchy–Riemann operator.
On the other hand, it is well-known that the required transversality result
for the Cauchy–Riemann operator does not hold even for generic choices of
almost complex structures due to the appearance of multiply covered curves.
While this problem is already present in Gromov–Witten theory and Floer

homology, the polyfold approach of Hofer et al. [HWZ] seems to be the
approach that solves all the challenges in the most satisfactory way, see
also the first author’s survey [F3]. Since, in contrast to relative SFT and
other papers about SFT using Morse–Bott techniques, we only need to add
the classical transversality result for sections in the finite-dimensional tau-
tological line bundles, our results are indeed rigorous when Hofer and his
collaborators have completed their work.
Apart from the fact that we follow other papers in the field and state our

results as theorems for the general case, we remark that there are special
but interesting cases where transversality is already established. For this
observe that in the case when the stable Hamiltonian manifold is a sym-
plectic mapping torus, the cylindrical contact homology just splits into the
direct sum of the Floer homologies of powers of the underlying symplecto-
morphisms; see [F1]. It follows that one can directly apply the transversality
result for symplectic Floer homology, where we again just will assume that
the closed symplectic manifold is monotone in order to deal with bubbling of
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holomorphic spheres. Since we must allow the almost complex structure to
depend on the circle coordinate on the holomorphic cylinder, note that the
translation back to the SFT-picture leads to multi-valued cylindrical almost
complex structures when the period of the asymptotic orbits is greater
than one.

3. Topological recursion in non-equivariant cylindrical homology

3.1. Motivation from Floer homology. It is well known that there is a
very close relation between Gromov–Witten theory and symplectic Floer
theory. As a motivation for the topological recursion relations in (non-
equivariant) cylindrical homology, which we will prove in the next section, we
sketch in this subsection how the topological recursion relations in Gromov–
Witten theory carry over to symplectic Floer homology using a Morse–Bott
correspondence.
Assuming we have chosen a basis A0, . . . , AN of H2(X) and a string of

closed (homogeneous) differential forms Θ = (θ1, . . . , θN ) on X, to which
we assign graded formal variable zi and tα,j with grading |zi| = −2c1(Ai),
|tα,j | = 2 − 2j − deg θα, recall that the rational descendant potential of
Gromov–Witten theory f is defined as

f =
∑

I

1
r!

∫
M(j1,...,jr)

r,A (X)
ev∗1 θα1 ∧ · · · ∧ ev∗r θαr t

IzA,

where tI = tα1,j1 · · · tαr,jr and zA = zd0
0 ·zdM

M for A = d0A0+· · ·+dMAM . Here

M(j1,...,jr)
r,A (X) ⊂Mr,A(X) denotes the corresponding zero divisor inside the

moduli space of closed J-holomorphic curves u : (S2, i) → (X, J), which is
Poincaré dual to the product of psi-classes ψj1

1 ∧ · · · ∧ ψjr
r .

Topological recursion relations are differential equations for the descen-
dant potential f which are proven using the geometric meaning of gravi-
tational descendants, as for the string, dilaton and divisor equations. Fix
1 ≤ i ≤ r and choose 1 ≤ j, k ≤ r such that i, j, k are pairwise different.
While the string, dilaton and divisor equations are proven (see also [FR])
by studying the behaviour of the tautological line bundle under the nat-
ural map Mr(X) → Mr−1(X), the topological recursion relations follow
by studying the behaviour of the tautological line bundle under the natural
mapMr(X)→M3 = {point}, where the map and all marked points except
i, j, k are forgotten. Now it is a standard result in Gromov–Witten theory
that one can construct a special non-generic section in the tautological line
bundle Li,r overMr(X) such that the zero divisorM(0,...,0,1,0,...,0)

r (X) agrees

with the divisor Mi,(j,k)
r (X) of holomorphic spheres with one node, where

the i.th marked point lies on one component and the jth and the kth fixed
marked points lie on the other component.
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Translating the above localization result for descendants into a differential
equation for the descendant potential f we get that he descendant poten-
tial f of rational Gromov–Witten theory satisfies the topological recursion
relations. Note that this above localization result for descendants is not
symmetric with respect to permutation of marked points. Instead of writing
down these relations in their usual form, we want to emphasize that the
above localization result also leads to the following averaged version of the
usual topological recursion relations,

N(N − 1)
∂ f
∂tα,i

=
∂2 f

∂tα,i−1∂tμ,0
ημνN(N − 1)

∂ f
∂tν,0

,

where N :=
∑

β,jt
β,j ∂

∂tβ,j is the differential operator which counts the num-
ber of marked points.
Recall that the goal of this section is to translate the above topological

recursion relations from Gromov–Witten theory to symplectic Floer theory.
In order to do so, we recall in this subsection the well-known relation between
Gromov–Witten theory and symplectic Floer theory.
First recall that the Floer cohomology HF ∗ = HF ∗(H) of a time-

dependent Hamiltonian H : S1 × X → R is defined as the homology of
the chain complex (CF ∗, ∂), where CF ∗ is the vector space freely gener-
ated by the formal variables qγ assigned to all one-periodic orbits of H with
coefficients which are Laurent series in the variables zn. On the other hand,
the differential ∂ : CF ∗ → CF ∗ is given by counting elements in the mod-
uli spaces M(γ+, γ−) of cylinders u : R×S1 → X satisfying the perturbed
Cauchy–Riemann equation ∂̄J,H(u) = ∂su+ Jt(u)(∂tu−XH

t (u)) = 0 with a
one-periodic family of almost complex structures Jt and where XH

t denotes
the symplectic gradient of Ht, and which converge to the one-periodic orbits
γ± as s → ±∞, u(s, ·) → γ±. In the same way as the group of Moebius
transforms acts on the solution space of Gromov–Witten theory and the
moduli space is defined only after dividing out this obvious symmetries, R

acts on the above space of Floer cylinders by translations in the domain,
so that the moduli space is again defined after dividing out this natural
action. On the other hand, since the Hamiltonian and the almost complex
structure depends on the S1-coordinate, it will become important that we
do not divide out the action of the circle.
In order to prove the Arnold conjecture about the number of one-periodic

orbits of H one shows that the Floer cohomology groups are isomorphic to
the quantum cohomology groupsQH∗(X) of the underlying symplectic man-
ifold. One way to prove the above isomorphism is by studying the behaviour
of the moduli spaces of Floer cylinders as the Hamiltonian H converges
to zero. In the limit H = 0 the removable singularity theorem for (unper-
turbed) holomorphic curves that in the limit the moduli spaces of Floer
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trajectories M(γ+, γ−) are replaced by the moduli spaces of holomorphic
spheresM0,2(X) with two marked points from Gromov–Witten theory. On
the other hand, note that there is a natural product structure on quantum
cohomology, the so-called quantum cup product, given by counting holomor-
phic spheres with three marked points. In [PSS] it was already shown that
one can define the corresponding action of QH∗(X) on the Floer cohomology
groups HF ∗(H) by counting Floer cylinders u : R×S1 → X, ∂̄J,H(u) = 0
with an additional marked point with fixed position (0, 0) ∈ R×S1, as in
the description of the moduli spaces of the quantum product.
Note that on the quantum cohomology side we can either assume that also

the third marked point is fixed or it varies and we divide out the symmetry
group R×S1 of the two-punctured sphere afterwards. On the other hand,
since in the Floer case we now only divide by R and not by R×S1 on the
domain, it follows that in the second case with varying position the third
marked point must still be constrained to lie on some ray R×{t0} ⊂ R×S1,
where without loss of generality we can assume that t0 = 0. Keeping the
picture of points with varying positions of marked points as in Gromov–
Witten theory and SFT we hence have the following

Proposition 3.1. With respect to the above Morse–Bott correspondence,
counting holomorphic spheres with three or more marked points in Gromov–
Witten theory corresponds on the Floer side to counting Floer cylinders with
additional marked points, where only the first marked point is constrained to
R×{0} ⊂ R×S1.
Before we use the above translation scheme from Gromov–Witten theory

to symplectic Floer theory to transfer the topological recursion relations
from Gromov–Witten theory to symplectic Floer theory, we first enrich the
Floer complex using descendants as we did for cylindrical contact homology,

∂(qγ+) =
∑ 1

r!

∫
M(j1,...,jr)

r,A (γ+,γ−)
ev∗1 θα1 ∧ · · · ∧ ev∗r θαr t

Iqγ−z
A,

whereM(j1,...,jr)
r,A (γ+, γ−) ⊂Mr(γ+, γ−) now denotes the corresponding zero

divisors inside the moduli space of Floer trajectories with r marked points.
We again define ∂(α,i) := ∂

∂tα,i ◦ ∂. As we have seen in the last subsection we
further need to include cylinders with one constrained (to R×{0}) marked
point. In order to distinguish these new linear maps from the linear maps
∂α,p obtained by counting holomorphic cylinders with one unconstrained
marked point, we denote them by ∂α̌,p : CF ∗ → CF ∗. In the same as
for ∂α,p it can be shown that ∂α̌,p descends to a linear map on homology,
and commutes on homology, [∂α̌,p, ∂β̌,q]− = 0, with respect to the graded
commutator [f, g]− = f ◦ g − (−1)deg(f) deg(g)g ◦ f
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With this we can formulate our proposition about topological recursion
in symplectic Floer theory as follows. In contrast to Gromov–Witten theory,
we now obtain three different equations, depending on whether we remem-
ber both punctures, one puncture and one additional marked point or two
marked points. On the other hand, inside their class we want to treat the
additional marked point in a symmetric way as in the above averaged ver-
sion of topological recursion relations in Gromov–Witten theory. Note that
this is needed for coherence as we will show in the proof of the corresponding
relations for non-equivariant cylindrical contact homology.

Proposition 3.2. With respect to the above Morse–Bott correspondence,
the topological recursion relations from Gromov–Witten theory have the fol-
lowing translation to symplectic Floer theory: for three different non-generic
special choices of coherent sections we have

(2,0):

∂(α̌,i) =
∂2 f

∂tα,i−1∂tμ
ημν∂ν̌

(1,1):

N ∂(α̌,i) =
∂2 f

∂tα,i−1∂tμ
ημνN ∂ν̌ +

1
2
[∂(α̌,i−1), Ň∂]+

(0,2):

(N − 1)N∂(α̌,i) =
∂2 f

∂tα,i−1∂tμ
ημν(N − 1)N∂ν̌ + [∂(α̌,i−1), (N − 1)Ň∂]+

where N :=
∑

β,j t
β,j ∂

∂tβ,j , Ň∂ :=
∑

β,j t
β,j∂β̌,j and [f, g]+ = f ◦ g +

(−1)deg(f)deg(g)g ◦ f denotes a graded anti-commutator with respect to the
operator composition. Notice that, since the two entries in the bracket
are having even degree, in the above formulas the anti-commutator always
corresponds to a sum.

Proof. In order to translate the localization result of Gromov–Witten theory
to symplectic Floer theory, we first replace the holomorphic sphere with
three or more marked points by a Floer cylinder with one marked point
constrained to R×{0} and possibly other unconstrained additional marked
points, where we assume that the constrained marked point agrees with
the ith marked point carrying the descendant. In order to obtain the three
different equations we have to decide whether the jth and kth marked point
agree with the positive or negative puncture or some other additional marked
point and then use the localization theorem from the first subsection, which
states that the zero divisor localizes on nodal spheres with two smooth
components, where the ith marked point lies on one component and the jth
and the kth marked point lie on the other component.
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In order to obtain equation (2,0) we remember both punctures (j =
+, k = −). While for each holomorphic curve in the corresponding divi-
sor Mi,(+,−)

r (γ+, γ−) ⊂ Mr(γ+, γ−) the component with the jth and the
kth marked point is a Floer cylinder, the other component with the ith
marked point is a sphere, since both components are still connected by a
node (and not a puncture) by the compactness theorem in Floer theory.
On the other hand, in order to obtain equation (1,1), we remember one of

the two punctures, j = + (or j = −) and another marked point. While for
each holomorphic curve in Mi,(+,k)

r (γ+, γ−) ⊂ Mr(γ+, γ−) the component
carrying the jth and the kth marked point still needs to be a Floer cylinder
and not a holomorphic sphere as the jth marked point is a puncture, the
other component carrying the ith marked point can either be a holomorphic
sphere or Floer cylinder, depending on whether both components are con-
nected by a node or a puncture. Note that in the second case this connecting
puncture is necessarily the negative puncture for the Floer cylinder with the
ith marked point and the positive puncture for the Floer cylinder with the
kth marked point. On the other hand, both Floer cylinder carry a special
marked point, namely the ith or the kth marked point, respectively, which
by the above Morse–Bott correspondence are constrained to R×{0}.
Finally, in order to establish equation (0,2), we remember none of the two

punctures. Since only Floer cylinders and holomorphic spheres appear in the
compactification, it follows that for the above equation we must just sum
over all choices for both components being either a cylinder or a sphere and
again use the above Morse–Bott correspondence. �

Note that in order to make the above proof precise, one needs to rigorously
establish an isomorphism between Gromov–Witten theory and symplectic
Floer theory beyond the isomorphism between quantum cohomology and
Floer cohomology groups together with the action of the quantum cohomol-
ogy on them proven in [PSS] involving the full ‘infinity structures’. On the
other hand, while we expect that the Morse–Bott picture from above should
lead to such an isomorphism in an obvious way, we are satisfied with the
level of rigor, since it should just serve as a motivation for our topological
recursion result in non-equivariant cylindrical contact homology. Note that
our rigorous proof for that case will in turn directly lead to a rigorous proof
of this proposition.

3.2. Non-equivariant cylindrical homology. Motivated by the topolog-
ical recursion result in symplectic Floer homology discussed in the last sub-
section, we want to prove the corresponding topological recursion result
for cylindrical contact homology. Since, in contrast to Floer homology, the
closed orbits in cylindrical contact homology are not parameterized by S1,
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it turns out that we need to work with a non-S1-equivariant version of cylin-
drical contact homology, where we follow the ideas in Bourgeois–Oancea’s
paper [BO]. Note that in the contact case our results indeed immediately
generalize from cylindrical contact homology to linearized contact homology
which depends on a symplectic filling and is defined for any fillable contact
manifold, e.g., since it is still isomorphic to the positive symplectic homology
which only counts true cylinders.
Here the key observation is that a closed (unparameterized) Reeb orbit γ

defines a S1-family Sγ of parametrized Reeb orbits. In particular, the set of
parameterized orbits is no longer discrete but is a disjoint union of circles.
Following [BO] we introduce Morse–Bott moduli spaces M0

r,A(Sγ+ , Sγ−)
of parameterized holomorphic cylinders with r additional marked points
(u, (zi)), where u : R×S1 → R×V satisfies ∂̄J(u) = 0, [u] = A ∈ H2(V ) and
u(s, ·) → γ′ ∈ Sγ± as s → ±∞. As in Floer homology and in contrast to
the equivariant case, we now do not divide by the S1-action on the domain
R×S1, but only divide out the action of R in the domain and in the target to
obtain the moduli spaceMr,A(Sγ+ , Sγ−). Furthermore this moduli space can
again be compactified as in Floer homology to obtain the compact moduli
spaceMr,A(Sγ+ , Sγ−) by adding multi-floor curves.
Since in the definition of the moduli space of parameterized cylin-

ders M0
r,A(γ

+, γ−) in equivariant cylindrical homology we did not fix a
parametrization of the asymptotic Reeb orbits, it follows immediately that
M0

r,A(γ
+, γ−) agrees with M0

r,A(Sγ+ , Sγ−) (note that for the sake of sim-
plicity we want to ignore the combinatorial factors for coherent orientations
here). On the other hand, since in the definition ofMr,A(γ+, γ−) we divided
out the S1-action on the cylinder while forMr,A(Sγ+ , Sγ−) we did not, we
get thatMr,A(Sγ+ , Sγ−) is a trivial circle bundle overMr,A(γ+, γ−). Since
cylinders inMr,A(Sγ+ , Sγ−) approach Reeb orbits with a fixed parametriza-
tion, observe that we have additional evaluation maps

ev± :Mr,A(Sγ+ , Sγ−)→ Sγ±
∼= γ± ∼= S1,

which also extend to the compactified moduli space.
Assigning to every closed Reeb orbit γ two new formal variables q̂γ , q̌γ , we

can write a general element in Ω∗(Sγ) as qγ = q̂γ+ ·dφ+ q̌γ+ ·1. With this the
chain space for non-equivariant cylindrical contact homologyHCnon-S1

∗ (V ) is
the vector space generated by the formal variables q̂γ and q̌γ with coefficients
which are formal power series in the tα,j-variables and Laurent series in the
zn-variables. Note that the chain space naturally splits,

Cnon-S1

∗ = Ĉ∗ ⊕ Č∗,
where Ĉ∗, Č∗ are generated by the formal variables q̂γ , q̌γ , respectively.
Following [BO] the Morse–Bott differential ∂ : Ĉ∗ ⊕ Č∗ → Ĉ∗ ⊕ Č∗ for
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non-equivariant cylindrical homology is then given by

∂q̂γ+ =
∑ 1

r!

∫
M(j1,...,jr)

r,A (Sγ+ ,Sγ− )
ev∗1 θα1 ∧ · · · ∧ ev∗r θαr ∧ ev∗+ 1

∧ ev∗− qγ− tIzA,

∂q̌γ+ =
∑ 1

r!

∫
M(j1,...,jr)

r,A (Sγ+ ,Sγ− )
ev∗1 θα1 ∧ · · · ∧ ev∗r θαr ∧ ev∗+ dφ

∧ ev∗− qγ− tIzA,

and we define as in Floer homology,

∂(α,i) :=
∂

∂tα,i
◦ ∂ : Ĉ∗ ⊕ Č∗ → Ĉ∗ ⊕ Č∗.

Note that, as in Floer homology, the multiplicity of the orbit does not enter
appear as a combinatorial factor, but enters after identifying the Morse–Bott
moduli space M(Sγ+ , Sγ−) with the SFT moduli space M(γ+, γ−) (where
we ignored signs for simplicity).
Furthermore as for Floer homology we further need to include cylinders

with one constrained (to R×{0}) marked point. For this observe that as
in Floer homology we can also enrich the evaluation map for an additional
marked points by not only remembering their image in the target manifold
but also their S1-coordinate on the cylinder,

(ev, π) :Mr,A(Sγ+ , Sγ−)→ V r × (S1)r.

On the other hand, instead of integrating the pull-back form π∗r+1dθ,
dθ ∈ Ω1(S1) over the moduli space Mr+1,A(Sγ+ , Sγ−), we can equivalently
consider the moduli space Mr,1,A(Sγ+ , Sγ−) ⊂ Mr+1,A(Sγ+ , Sγ−) of holo-
morphic cylinders with r + 1 additional marked points, where the r + 1-st
additional marked point is constrained to lie on the ray R×{0} ⊂ R×S1.
With this we again define new linear maps ∂α̌,p : Ĉ∗⊕ Č∗ → Ĉ∗⊕ Č∗, where

∂α̌,pq
∗
γ+

=
1
r!

∫
M(j1,...,jr,p)

r,1,A (Sγ+ ,Sγ− )
ev∗1 θα1 ∧ · · · ∧ ev∗r θαr

∧ ev∗r+1 θα ∧ ev∗+ θ∗+ ∧ ev∗− qγ− tIzA.

In the same way as for ∂α,p it can be shown that ∂α̌,p descends to a linear
map on non-equivariant cylindrical homology.
The significance of the moduli space Mr,1,A(Sγ+ , Sγ−) and hence of the

linear map ∂α̌,p for our desired localization result for descendants is as fol-
lows: While the moduli space Mr+1,A(Sγ+ , Sγ−) is a trivial circle bundle
over the usual SFT moduli space Mr+1,A(γ+, γ−), the submoduli space
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Mr,1,A(Sγ+ , Sγ−) ⊂ Mr+1,A(Sγ+ , Sγ−) can be identified with the equivari-
ant moduli spaceMr+1,A(γ+, γ−) by determining the missing S1-coordinate
by the requirement that the r + 1st marked point has to be constrained to
R×{0} ⊂ R×S1. On the other hand, as a subset of the non-equivariant
moduli space Mr+1,A(Sγ+ , Sγ−), the moduli space Mr,1,A(Sγ+ , Sγ−) still
has the two evaluation maps ev± : Mr,1,A(Sγ+ , Sγ−) → Sγ±

∼= S1, which
we will use to determine a codimension-two locus in the codimension-one
boundary of the moduli spaceMr,1,A(Sγ+ , Sγ−) ∼=Mr+1,A(γ+, γ−).

3.3. Topological recursion in non-equivariant cylindrical homol-
ogy. With the reasonable assumption in mind that the topological recursion
relations in Floer homology also hold true in (positive) symplectic homol-
ogy and hence also carry over to non-equivariant cylindrical contact homol-
ogy, we now formulate our main theorem. Since we assumed that there
are no holomorphic planes in R×V and hence the usual Gromov com-
pactness result holds we define the Gromov–Witten potential f of a sta-
ble Hamiltonian manifold as the part of the rational SFT Hamiltonian h
of V counting holomorphic spheres without punctures, f = h |p=0=q. Note
that in the contact case this agrees with the Gromov–Witten potential of
a point due to the maximum principle and is determined by the Gromov–
Witten potential of the symplectic fibre in the case when the stable Hamil-
tonian manifold is a symplectic mapping torus as every holomorphic map
CP

1 → R×Mφ → R×S1 ∼= C
∗ is constant by Liouville’s theorem.

Theorem 3.3. For three different non-generic special choices of coher-
ent sections the following three topological recursion relations hold in non-
equivariant cylindrical contact homology
(2,0):

∂(α̌,i) =
∂2 f

∂tα,i−1∂tμ
ημν∂ν̌

(1,1):

N ∂(α̌,i) =
∂2 f

∂tα,i−1∂tμ
ημνN ∂ν̌ +

1
2
[∂(α̌,i−1), Ň∂]+

(0,2):

(N − 1)N∂(α̌,i) =
∂2 f

∂tα,i−1∂tμ
ημν(N − 1)N∂ν̌ + [∂(α̌,i−1), (N − 1)Ň∂]+

where N :=
∑
β,j

tβ,j ∂

∂tβ,j
, Ň∂ :=

∑
β,j

tβ,j∂β̌,j and [f, g]+ = f ◦ g +

(−1)deg(f)deg(g)g ◦ f denotes a graded anti-commutator with respect to the
operator composition. Note that, since the the two entries in the bracket
are having even degree, in the above formulas the anti-commutator always
corresponds to a sum.
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Indeed we claim that the three topological recursion relations only hold for
three special coherent collections of sections and do not hold true for general
choices. In particular, in general there does not exist a choice of coherent sec-
tions such that all three equations hold true simultaneously. Nevertheless we
will show in Subsection 3.2 how we can generalize (and reprove) a well-known
result from [PSS] by comparing two of the above topological recursion rela-
tions ((2,0) and (1,1)). Note that it is already known from [PSS] that the
corresponding identity does not hold on the chain level, and we instead
resolve the above invariance problem by proving an identity on homology.
On the other hand, for the first equation we can solve the invariance problem
directly.

Remark 3.4. Note that the first topological relation actually descends to
homology, i.e., it holds for ∂(α̌,i) and ∂ν̌ viewed as linear maps on non-
equivariant cylindrical homology HCnon-S1

∗ (V ). In particular, while on the
chain level all topological recursion relations only hold true for (three dif-
ferent) special choices of coherent sections, after passing to homology the
first relation (2,0) holds for all coherent sections, i.e., is true for all auxiliary
choices.

As in [FR], we furthermore need to make the following comment on the
genericity of our choices.
While in the above theorem we make use of special choices of coherent

collections of sections as in our proof in [FR] of the SFT analogues of the
string, dilaton and divisor equations, recall that, for the definition of gravi-
tational descendants in [F2], we need to choose sections in the tautological
bundles over all moduli spaces which are generic in the sense that they are
transversal to zero section, so that, in particular, all zero divisors are smooth.
On the other hand, as we will see below, all our special choices of coherent
collections of sections used in the proof are automatically non-generic, since,
after the limit procedure described below, their zero sets localize on nodal
curves and, in particular, are not smooth. In order to see that we can still
use our special non-generic choices for computations, we have to use the
fact that, by making small perturbations, the special non-generic choice of
coherent collections of sections can be approximated arbitrarily closely (in
the C1-sense) by generic coherent collections of sections. While for two dif-
ferent coherent collections of sections the linear map in general depends on
these choices, since for a given homotopy (coherent collection of sections
coherently connecting the two different choices in the sense of [F2]) zeroes
may run out of the codimension-one boundaries of the moduli spaces, we can
further make use of the fact that the latter can be prevented from happening
as long as the perturbation is small enough, as described in the following
picture (we refer to [FR] for further details).
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Figure 1. The picture represents the trivial cobordism
between a moduli space and itself (vertical black lines) and
the corresponding cobordism for the zeros of coherent sec-
tions (green lines). The number of zeroes (black dots) in
each copy of the moduli space may change during a homotopy
(from left to right) as zeroes may run out of the codimension-
one-boundary (dashed lines above and below). This, however,
can be excluded as long as the homotopy is chosen sufficiently
small (like the one between the middle and the right vertical
lines).

3.4. Proof of the main theorem. In this section we establish the psi-class
localization result needed to prove Theorem 3.3, but also Proposition 3.2. In
fact we will consider a more general situation, i.e., tautological bundles and
coherent collections of sections in the general moduli space of SFT holomor-
phic curves. This will apply to non-equivariant cylindrical contact homology
by the identification between the moduli space relevant for defining the dif-
ferential ∂(α̌,i) and the moduli space of SFT curves with one positive and
one negative puncture, and one special marked point constrained on a geo-
desic connecting the positive and negative puncture (besides carrying the
ith descendant of θα ∈ H∗(V )). We will show how coherent sections of tau-
tological bundles on the moduli space of SFT-curves can be chosen such
that their zero locus localizes on nodal configurations and boundary strata
(multi-level curves). In the case of curves with one positive and one nega-
tive punctures, the presence of a marked point constrained to the geodesic
described above will be used to identify explicitly such zero locus inside the
boundary.
The localization will be the analogue, in presence of coherence conditions,

of the usual result in Gromov–Witten theory describing the divisor ψi,r =
c1(Li,r) on M0,r,A(X) as the locus of nodal curves where the ith marked
point lies on a different component with respect to a pair of other reference
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marked points. We will divide the discussion in three parts, corresponding
to the three kind of topological recursion relations (2, 0), (1, 1) and (0, 2).
For the moment we stay general and consider the full SFT moduli space

of curves with any number of punctures and marked points in a general
manifold with stable Hamiltonian structure. In particular we will describe
a special class of coherent collections of sections si,r for the tautological
bundles Li,r on the moduli spacesM0,r,A(Γ+,Γ−). We will then consider a
sequence inside such class converging to a (no longer coherent) collection of
sections whose zeros will completely be contained in the boundary strata
(both nodal and multi-floor curves) ofM0,r,A(Γ+,Γ−).
In [FR] we already explained how to choose a (non-generic) coherent

collection of sections si,r in such a way that, considering the projection
πr : Mr,A(Γ+,Γ−) → Mg,r−1,A(Γ+,Γ−) consisting in forgetting the r-th
marked point, the following comparison formula holds for their zero sets:

(3.1) s−1i,r (0) = π−1r (s−1i,r−1(0)) +Dconst
i,r ,

The sum in the right hand side means union with the submanifold Dconst
i,r of

nodal curves with a constant sphere bubble carrying the ith and rth marked
points, transversally intersecting π−1r (s−1i,r−1(0)).
We wish to stress the fact that such choice is possible because any codi-

mension 1 boundary of the moduli space Mr,A(Γ+,Γ−) decomposes into a
product of moduli spaces where the factor containing the ith marked point
carries the same well defined projection map πr. This is because codimension
1 boundary strata are always formed by non-constant maps, which remain
stable after forgetting a marked point.
In fact coherence also requires that our choice of coherent collection of sec-

tions is symmetric with respect to permutations of the marked points (other
than the ith, carrying the descendant). We can reiterate this procedure until
we forget all the marked points but the i-th, getting easily

(3.2) s−1i,r (0) = (π∗1 ◦ . . . ◦ π̂∗i ◦ . . . ◦ π∗r si,1)−1(0) +
∑

I�J={1,...,r}
{i}�I⊆{1,...,r}

Dconst
(I|J)

where Dconst
(I|J) is the submanifold of nodal curves with a constant sphere

bubble carrying the marked points labelled by indices in I. Such choice of
coherent sections is indeed symmetric with respect to permutation of the
marked points.
However, forgetting all of the marked points is not what we want to do

in general, so we may take another approach, that does not specify whether
the points we are forgetting are marked points or punctures. Forgetting
punctures only makes sense after forgetting the map too.
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Indeed, consider the projection σ : Mr,A(Γ+,Γ−) → Mg,r+|Γ+|+|Γ−| to
the Deligne–Mumford moduli space of stable curves consisting in forget-
ting the holomorphic map and asymptotic markers, consequently stabilizing
the curve, and considering punctures just as marked points. For simplicity,
denote n = r + |Γ+| + |Γ−|. The tautological bundle Li,r on Mr,A(Γ+,Γ−)
coincides, by definition, with the pull-back along σ of the tautological bundle
Li,n onMg,n away from the boundary stratum Di ⊂Mr,A(Γ+,Γ−) of nodal
curves with a (possibly non-constant) bubble carrying the i-th marked point
alone and the boundary stratum D′i ⊂ Mr,A(Γ+,Γ−) of multi-level curves
with a level consisting in a holomorphic disk bounded by a Reeb orbit and
carrying the i-th marked point.
At this point we are going to make the following assumption, which will

hold throughout the paper.
Assumption: In V ×R there is no holomorphic disk bounded by a Reeb

orbit. This implies, in particular, D′i = ∅.
We choose now a coherent collection of sections s̃i,n on the Deligne–

Mumford moduli space of stable curvesMg,n. The definition of such coher-
ent collection is the same as for the space of maps, but this time we impose
coherence on each real-codimension 2 divisor of nodal curves (as opposed to
the case of maps, where we only imposed coherence at codimension 1 bound-
ary strata). Such a coherent collection pulls back to a coherent collection of
sections onMr,A(Γ+,Γ−) away from the already considered boundary stra-
tum Di (the only one still present after the above assumption), where we
use the bundle map induced by a local coordinate on the underlying curve
to identify the bundles Li,r and σ∗ Li,n on Mr,A(Γ+,Γ−) \ Di. Such map
is a bundle isomorphism on Mr,A(Γ+,Γ−) \ Di and becomes singular on
Di: the image of σ∗s̃i,n under this map extends to the wholeMr,A(Γ+,Γ−)
assuming the value zero on Di. The zero appearing this way along Di has
degree 1 by construction. This way we get a coherent collection of sections
on the fullMr,A(Γ+,Γ−).
Once more, such construction is possible because any codimension 1

boundary of the moduli space Mr,A(Γ+,Γ−) decomposes into a product
of moduli spaces where the factor containing the i-th marked point car-
ries the same well defined projection map σ. This is because codimension 1
boundary strata are always formed by multi-level curves, each level carrying
at least two punctures (by the above assumption) and the ith marked point,
hence remaining stable after forgetting the map.
We then get, onMr,A(Γ+,Γ−),

(3.3) s−1i,r (0) = (σ∗ s̃i,n)−1(0) +Di.

This construction of a coherent collection of sections for Mr,A(Γ+,Γ−)
moves the problem of explicitly describing their zero locus to the more
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tractable space of curves Mg,n. Note first of all that, since Mg,n has no
(codimension 1) boundary, any generic choice (coherent or not) of sections
for the tautological bundles will give rise to a zero loci with the same homol-
ogy class. However, when we pull-back such section via σ, we want to remem-
ber more than just the homology class of its zero (as required by coherence),
so we need to make some specific choice.
Let us now restrict ourselves to genus 0. In Gromov–Witten theory, where

there is no need for coherence conditions, we are used to select two marked
points besides the one carrying the psi-class and successively forget all the
other ones until we drop onM0,3 = pt, where the tautological bundle Li,3 is
trivial. This approach is not possible in our SFT context where we require
coherence onMg,n. Indeed, if we select two punctures labelled by j and k,
we automatically lose the required symmetry with respect to permutation
of the marked points. To overcome this problem we need to use coherent
collections of multi-sections (whose image is a branched manifold) in order
to average over all the possible choices of a pair of punctures. In fact, we
will only deal with multi-sections that are averages of ordinary sections of
the tautological bundles, i.e., whose image is the union of images of ordinary
sections each of them carrying a (rational) weight whose sum is one.
Let us choose an averaged (over all the possible ways of choosing two

marked points out of n) multi-section for Li,n on M0,n such that its zero
locus has the (averaged) for

(3.4) s−1i,n(0) =
(n− 3)!
(n− 1)!

∑
2≤k≤n−2

I�J={1,...,n}
i∈I,|J |=k

k!
(k − 2)!

D(I|J)

This formula is just the average (in the sense of branched manifolds)
of the usual formula in Gromov–Witten theory expressing the psi-class on
M0,n in terms of nodal divisors. The interest of such averaged (holomorphic,
non-generic) multi-section is that it can be perturbed to a (smooth, generic)
multi-section that is also coherent (this is in fact a statement about all of the
sections si,j together, for 3 ≤ j ≤ n). The zero locus of such multi-section
will form a (branched) codimension 2 locus in the tubular neighbourhood
of the unperturbed zero locus s−1i,j (0), transversally intersecting such locus.
For notational and visualization simplicity we will analyse in detail such
perturbation in the case of M0,5 in the example below, the general case
being just an easy extension of the same construction. Once such coherent
collection of sections s̃i,j is constructed we consider a sequence of sections s̃

(k)
i,j

with s̃0i,j = s̃i,j and converging back to the old non-generic si,j as k → ∞.
This limit construction determines a codimension 2 locus in the moduli
spaceM0,r(Γ+,Γ−) completely contained in the boundary strata formed by
nodal and multilevel curves, corresponding to the first summand in the right
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hand side of equation (3.3). The explicit form of the boundary components
involved by such locus is described by formula (3.4), where the divisor D(I|J)
refers to the source nodal Riemann surfaces for the multilevel curves in the
target V × R.

Example 3.5. This example, and the understanding of the general phenom-
enon it describes, emerged in a discussion with Dimitri Zvonkine. Consider
the moduli space M0,5, whose boundary divisors, formed by nodal curves,
we denote Dij , 1 ≤ i < j ≤ 5, where Dij is the space of nodal curves with a
bubble carrying the ith and jth points alone. The intersection structure of
such divisors is represented by the following picture.

When two different nodal divisors intersect, they do it with intersection
index +1. The self-intersection index of any of them is, on the other hand,
−1. Each of the Dij being a copy of P

1 (representing a copy of the moduli
spaceM0,4 appearing at the boundary ofM0,5), this means that the normal
bundle NDij of such Dij has Chern class c1(NDij ) = −1; hence the tubular
neighbourhood of Dij is a copy of C̃

2, i.e., C
2 blown up at 0, Dij itself

being the exceptional divisor. An intersecting Dkl can then be seen as a line
through the origin of C̃

2.
Consider now the tautological line bundle L1,5 on M0,5. Using formula

(3.4), the corresponding averaged psi-class, i.e., the (dual to the) zero locus
of a averaged multi-section of L1,5, has the form

s−11,5(0) =
1
2
(D12+D13+D14+D15)+

1
6
(D23+D24+D25+D34+D35+D45)
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We now want to perturb such multi-section s to a coherent multi-section s̃
by a small perturbation int he neighbourhood of the nodal divisors. In fact
it will be sufficient to describe how the zero locus is perturbed.
First notice that, once the line bundle L1,5 is chosen, the nodal divisorsDij

are split into two different sets, namely the ones for which i = 1 and the ones
with i �= 1 (appearing in the first and second summand in the above averaged
formula). The perturbation will be symmetric with respect to permutations
inside these two subsets separately. Looking at the picture above for visual
help, let us start by perturbing 1

6D34 away from itself in such a way that it
still intersects D34 at D34∩D15 with index −1

6 , at D34∩D25 with index +1
6

and at D34∩D12 with index −1
6 (notice that the total self-intersection index

is −1
6 , as it should for 1

6D34). Such perturbation is constructed starting
from a section of the normal bundle to 1

6D34 with a zero at D34 ∩ D15

of index −1
6 (recall that, in general, the normal bundle to Di,r insideM0,r

agrees with π∗r Li,r−1 and, hence, the zeros of its sections are always localized
at nodal divisors) and adding an extra zero of degree 0 (non-transversal)
which spawns two zeros with opposite indices to be placed at D34∩D25 and
D34 ∩ D12 (using the fact that D34 ∩ D25 and D34 ∩ D12 are homologous
inside D34 and more in general, for the case beyondM0,5, the fact that two
singular fibres of the forgetful map πr are homologous inside M0,r). The
analogous choice is to be made for each of the divisors Di,j with i �= 1.
Then we perturb 1

2D15 away from itself in such a way that it still intersects
D15 at D15 ∩D34, D15 ∩D24 and D15 ∩D23 always with intersection index
−1
6 (summing to a total self-intersection index of −1

2 , as it should be for
1
2D15). This is in fact a multi-section of the normal bundle to 1

2D15 formed
by superimposing three sections of weight 1

6 each, having a zero (of index
−1
6) at D15∩D34, D15∩D24 and D15∩D23 respectively (we are always using

the fact that the normal bundle to Di,r insideM0,r agrees with π∗r Li,r−1).
Notice that such perturbation of 1

2D15 still intersects D34 in a punctured
neighbourhood of D34 ∩D15 with total intersection index 2

6 and once more
precisely at D34 ∩D15 with intersection index 1

6 . The analogous choice is to
be made for all of the divisors D1j . See the left side of next picture for some
intuition.
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At the pointD34∩D15 we will combine the two perturbed divisors to anni-
hilate their intersection there (their intersection indices being −1

6 and +
1
6).

This gives rise to a hyperbolic (and smooth, as we want to get generic sec-
tions) behaviour of the zero locus that will now avoid D15 completely (right
side of the above picture). In a tubular neighbourhood of D34 the situa-
tion is described by the following picture, representing such neighbourhood
as C̃

2.

The circle at the origin is the exceptional divisor D34 and points on it
are identified along diameters. Note that, in the second picture, we see the
hyperbolic behaviour and the fact that the green zero locus does avoid D15.
We are now ready to prove that such averaged perturbed section is coher-

ent with the corresponding section on M0,4, whose zero locus, using once
more formula (3.4), will be

s−11,4(0) =
1
3
(D12 +D13 +D14).

Indeed, the perturbed zero locus does not intersect at all D1k, coherently
with the fact that L1,5 pulls back to the trivial bundle at such divisors,
while at each of the Dij with i �= 1 the situation is the same as for D34:
two of the three branches of the multi-section of ND15 , each with weight

1
6 ,

intersect it close to D34 ∩D15 (total index 2
6), and similarly for ND12 , while,

close to D34 ∩D25, both the perturbation of 16D34 and the perturbation to
1
6D25 intersect D34 (total index 2

6). This is coherent with the above averaged
formula for s−11,4(0).
With the very same approach (only the combinatorics being more com-

plicated) we can trat the general case of M0,n, constructing the analogous
perturbation to the averaged formula (3.4) for the psi-class on the Deligne–
Mumford space of curves.



TOPOLOGICAL RECURSION IN CYLINDRICAL HOMOLOGY 435

The same perturbation procedure of the above example can be applied
to the general case of M0,n. In particular one can proceed by induc-
tion, assuming that a coherent perturbation of the averaged multi-section
corresponding to formula (3.4) exists for the moduli spaces M0,k with
k ≤ n and proving that the perturbation can be coherently extended (as
in the above example) to M0,n+1. In order to do so, let us assume that
the point carrying the descendant is the first marked point and consider
the n possible forgetful maps πj : M0,n+1 → M0,n, j = 2, . . . , n + 1
which preserve the first marked point. Our perturbed averaged section
s̃1,n+1 on M0,n+1 is constructed by starting with the superimposition of
the n possible comparison lemmas (3.1), each with weight 1

n , whose zero
locus is

s̄−11,n+1(0) =
n+1∑
j=2

1
n
(π−1j (s̃−11,n(0)) +D1,j)

and then perturbing the divisors of zeros D1,j away from themselves (using
as in the example above the fact that the normal bundle to D1,j inside
M0,n+1 agrees with π∗j L1,n to compensate any self-intersection of D1,j with
an intersection of D1,j with π−1j (s̃−11,n(0))) to obtain s̃1,n+1.
Checking coherence onM0,n+1 of such perturbed section s̃1,n+1 is a some-

what involved combinatorial matter: one needs, in particular, to notice that
the intersection of s̃−11,n+1(0) with each irreducible component of the bound-
ary divisor D(I|J) ⊂M0,n+1, 1 ∈ I (with D(I,J) �M0,|I| ×M0,|J | and pro-
jections p1 and p2 on the two factors) gets a contribution of

|J |
n p

−1
1 (s−11,|I|(0))

from the comparison lemma relative to forgetting each point in j ∈ J

and a contribution of |I|−1n p−11 (s−11,|I|(0)) from from the comparison lemma
relative to forgetting each point in j ∈ I with j �= 1. This sums up to
|I|+|J |−1

n p−11 (s−11,|I|(0)) = p−11 (s−11,|I|(0)) as desired.
In order to prove Theorem 3.3 we will make three different choices of

special coherent collections of sections on the space of maps. Indeed, for
equation (2, 0), the idea is not remembering any marked point, but only
averaging with respect to the possible choices of two punctures. In this
case we can choose an averaged coherent collection of multi-sections on the
Deligne–Mumford moduli space of curves with |Γ+|+ |Γ−|+1 marked points
(using the perturbation technique of Example 3.5, where we are keeping all
the punctures and the ith marked point, carrying the psi-class), and then use
equations (3.3) and (3.2) to go to the space of maps M0,r,A(Γ+,Γ−). This
coherent collection is evidently symmetric, with respect to permutations of
marked points and punctures separately. Its zero locus, in the moduli space
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M0,r,A(Γ+,Γ−), has the form

P (P − 1)
2

s−1
i,r,Γ+,Γ−(0) =

∑
i∈I, I�J={1,...,r}

Γ+
1 �Γ+

2 =Γ
+

Γ−1 �Γ−2 =Γ−
P2=|Γ+

2 |+|Γ−2 |

P2(P2 − 1)
2

D(I,Γ+
1 ,Γ−1 |J,Γ+

2 ,Γ−2 )

where P = |Γ+|+ |Γ−| and D(I,Γ+
1 ,Γ−1 |J,Γ+

2 ,Γ−2 )
refers to a codimension 2 locus

in the tubular neighbourhood of two-components curves joint at a node or
puncture (hence nodal or two-level) where marked points and punctures
split on each component as indicated by the subscript. The combinatorial
factor on the left-hand side accounts for the possible ways of choosing two
punctures to be remembered out of P , while the one on the right-hand
side accounts for the number of ways a term of the form D(I,Γ+

1 ,Γ−1 |J,Γ+
2 ,Γ−2 )

appears in the described averaging construction.
As a second possible choice we will start from an averaged coherent col-

lection of multi-sections on the Deligne–Mumford moduli space of curves
with |Γ+| + |Γ−| + 2 marked points (like in Example 3.5 where, again, we
keep all the punctures, the ith marked point carrying the psi-class, but also
another marked point). There are exactly r − 1 different forgetful projec-
tions from the spaceM0,r,A(Γ+,Γ−) to suchM0,|Γ+|+|Γ−|+2, corresponding
to the numbering of the extra remembered marked point (excluding the ith,
which is also always remembered). In order to obtain a coherent collection
on M0,r,A(Γ+,Γ−) which is also symmetric with respect to permutations
of the marked points we need to use the pull-back construction of equa-
tions (3.3) and (3.1) (the last one reiterated r − 2 times), but also average
among the r − 1 different projections. After some easy combinatorics, its
zero locus has the form

(r − 1)
P (P + 1)

2
s−1
i,r,Γ+,Γ−(0) =

∑
i∈I, I�J={1,...,r}
|I|=r1, |J |=r2

Γ+
1 �Γ+

2 =Γ
+

Γ−1 �Γ−2 =Γ−
P2=|Γ+

2 |+|Γ−2 |

[
r2
P2(P2 + 1)

2
+ (r1 − 1)

P2(P2 − 1)
2

]
D(I,Γ+

1 ,Γ−1 |J,Γ+
2 ,Γ−2 )

Finally, as a last choice, we start from the moduli space of curves with
|Γ+| + |Γ−| + 3 marked points, so that we are keeping, after forgetting the
map, two extra marked points (besides the ith). This time there will be
exactly (r−1)(r−2)

2 forgetful maps from M0,r,A(Γ+,Γ−) to M0,|Γ+|+|Γ−|+3,
corresponding to the numbering of the two extra remembered marked points.
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The pull-back construction of equations (3.3) and (3.1) (the last one reiter-
ated r− 3 times) needs then to be averaged among these possible choices in
order to be symmetric with respect to permutations of marked points. This
time the averaging combinatorics gives
(r − 1)(r − 2)

2
(P + 2)(P + 1)

2
s−1
i,r,Γ+,Γ−(0)

=
∑

i∈I, I�J={1,...,r}
|I|=r1, |J |=r2

Γ+
1 �Γ+

2 =Γ
+

Γ−1 �Γ−2 =Γ−
P2=|Γ+

2 |+|Γ−2 |

[
r2(r2 − 1)

2
(P2 + 2)(P2 + 1)

2
+ r2(r1 − 1)

P2(P2 + 1)
2

+
(r1 − 1)(r1 − 2)

2
P2(P2 − 1)

2

]
D(I,Γ+

1 ,Γ−1 |J,Γ+
2 ,Γ−2 )

.

Such three different choices of multi-sections can also be superimposed
(always in the sense of branched manifolds and multi-sections) to form fur-
ther multi-sections which are, of course, still coherent. In particular, by
taking respectively the first one, 32 times the second one minus

1
2(r− 1) the

first one, and 3
2 times the third one minus 3

2(r − 2) times the second one
plus the (r − 1)(r − 2) times the first one, we get multi-sections whose zero
loci have the form

P (P − 1)
2

s−1
i,r,Γ+,Γ−(0) =

∑ P2(P2 − 1)
2

D(I,Γ+
1 ,Γ−1 |J,Γ+

2 ,Γ−2 )
,

(r − 1)P s−1
i,r,Γ+,Γ−(0) =

∑
r2P2 D(I,Γ+

1 ,Γ−1 |J,Γ+
2 ,Γ−2 )

,

(r − 1)(r − 2)
2

s−1
i,r,Γ+,Γ−(0) =

∑ r2(r2 − 1)
2

D(I,Γ+
1 ,Γ−1 |J,Γ+

2 ,Γ−2 )
.

(3.5)

To complete the proof of Theorem 3.3 we just need to notice that the
limit procedure taking the perturbed sections s̃i,n of Li,n back to their
original non-generic limit si,n corresponds, via equation (3.3) for the loci
D(I,Γ+

1 ,Γ−1 |J,Γ+
2 ,Γ−2 )

appearing above to select, in the space of maps relevant
for cylindrical non-equivariant contact homology, either nodal configurations
(and this is obvious), or two-level ones (i.e., where the two smooth compo-
nents are connected by a puncture instead of a node). Since the two-level
curves are of codimension one and not two in the space of maps (indeed this
extra dimension remembers the information on the angular coordinate used
for the gluing at the connecting puncture), we need to correct this error
by fixing the decoration, i.e., the identification of the tangent planes at the
connecting puncture, a priori as follows.
Since each of the two cylinders connected by the puncture carries one

(or two in the case of (0,2)) of the remembered additional marked points,
the position of these additional marked points can be used to fix unique
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S1-coordinates and hence asymptotic markers on each of the two cylinders,
which in turn defines a natural decoration by simply requiring that the two
asymptotic markers are identified. Note that this turns the additional mark-
ers used for fixing the S1-coordinates automatically into additional marked
points constrained to R×{0}. The following picture illustrate such phenom-
enon for the case relevant to equation (1, 1): the red puncture and marked
point are those we are remembering, the black marked point is the one car-
rying the psi-class, whose power is specified by the index (i or i − 1), the
dashed line represents R×{0} and the green arrow indicates the matching
condition between the two dashed lines (notice that, for simplicity, we are
not explicitly drawing any other marked point, which would correspond to
having N = 1). This is a pictorial representation of each term in equation
(1,1) once we divide each side by 2. The (0, 2) case is completely similar,
only involving averaging between the two possible choices of marked point
to be constrained to R×{0}.

We are only left with translating the three above equations (3.5) for
the zero loci back into our generating functions language for the potential
(recall the definition of the non equivariant cylindrical homology differen-
tial). There, considering that the number of punctures is always 2 in cylin-
drical contact homology, we see that, for each of the three formulae (3.5),
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the averaging combinatorial coefficients are absorbed in the right way to give
rise to each of the three equations in the statement of Theorem 3.3. In partic-
ular, we put P = 2, P2 = 0, 2 for nodal configurations (recall the absence of
holomorphic planes), P2 = 1 for two-level configurations (this in particular
kills the two-level term in equation (2, 0), since the corresponding first equa-
tion in (3.5) contains the factor P2 − 1). Moreover we use the operators N
to account for the number of marked points on the appropriate component
when the limit of D(I,Γ+

1 ,Γ−1 |J,Γ+
2 ,Γ−2 )

, on the right hand side of formulae (3.5),

corresponds to a nodal map, while we use Ň to further constrain one of the
marked points to R×{0} when the limit of D(I,Γ+

1 ,Γ−1 |J,Γ+
2 ,Γ−2 )

corresponds
to a two-level map, as described above.

4. Applications

In this final section we want to apply the topological recursion result for non-
equivariant cylindrical homology to (equivariant) cylindrical homology. As
an important result we show that, as in rational Gromov–Witten theory, all
descendant invariants can be computed from primary invariants, i.e., those
without descendants. Furthermore we will prove that the topological recur-
sion relations imply that one can define an action of the quantum cohomol-
ogy ring QH∗(V ) of the target manifold (defined using the Gromov–Witten
potential f of V introduced above) on the non-equivariant cylindrical homol-
ogy HCnon-S1

∗ (V ) by counting holomorphic cylinders with one constrained
marked point.

4.1. Topological recursion in cylindrical homology. Since the chain
space for non-equivariant cylindrical homology splits, Cnon-S1

∗ = Ĉ∗ ⊕ Č∗,
it follows that the linear maps on the chain space, obtained by differenti-
ating the differential of non-equivariant cylindrical homology with respect
to tα,p- or ťα,p-variables, can be restricted to linear maps between Ĉ∗ and
Č∗, respectively. On the other hand, since each of the spaces Ĉ∗ and Č∗ is
just a copy of the chain space for (equivariant) cylindrical homology, with
degree shifted by one for the second space, Ĉ∗ = C∗, Č∗ = C∗[1] = C∗+1, we
can translate the linear maps from non-equivariant cylindrical homology to
(equivariant) cylindrical homology as follows.
While the restricted linear maps ∂(α,p) : Ĉ∗ → Ĉ∗ and ∂(α,p) : Č∗ →

Č∗ indeed agree with the linear maps ∂(α,p) : C∗ → C∗ from cylindrical
homology as defined in subsection 2.6, note that one can now introduce new
linear maps ∂(α̌,p) : C∗ → C∗ on cylindrical homology by requiring that they
agree with the linear maps ∂(α̌,p) : Ĉ∗ → Ĉ∗ (and hence ∂(α̌,p) : Č∗ → Č∗)
from non-equivariant cylindrical homology.
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On the other hand, although the topological recursion relations we proved
for the non-equivariant case are useful to compute the linear maps ∂(α̌,p) on
HCnon-S1

∗ , the goal of topological recursion in cylindrical contact homology
(as in rational SFT) is to compute the linear maps ∂(α,p) : HC∗ → HC∗.
In order to apply our results of the non-equivariant case to the equivariant
case, we make use of the fact that (apart from the mentioned equivalence
with ∂(α,p) : Ĉ∗ → Ĉ∗ and ∂(α,p) : Č∗ → Č∗) the linear map ∂(α,p) : C∗ → C∗
also agrees with the restricted linear map ∂(α̌,p) : Ĉ∗ → Č∗.
In order to see this, observe that, while in the case of ∂(α,p) : Ĉ∗ → Ĉ∗

(or ∂(α,p) : Č∗ → Č∗) the free S1-coordinate on the cylinder is fixed by the
critical point on the negative (or positive) closed Reeb orbit, in the case
of ∂α̌,p : Ĉ∗ → Č∗ the free S1-coordinate on the cylinder is fixed by the
additional marked point (and thereby turning it into a constrained marked
point).
With this we can prove the following corollary about topological recursion

in (equivariant) cylindrical homology.

Corollary 4.1. For three different non-generic special choices of coherent
sections the following three topological recursion relations hold in (equivari-
ant) cylindrical contact homology
(2,0):

∂(α,i) =
∂2 f

∂tα,i−1∂tμ
ημν∂ν

(1,1):

N ∂(α,i) =
∂2 f

∂tα,i−1∂tμ
ημνN ∂ν +

1
2
[∂(α,i−1), Ň ∂]+ +

1
2
[∂(α̌,i−1), N ∂]+

(0,2):

(N − 1)N∂(α,i) =
∂2 f

∂tα,i−1∂tμ
ημν(N − 1)N∂ν + [∂(α,i−1), (N − 1)Ň∂]+

+ [∂(α̌,i−1), (N − 1)N∂]+.

Proof. While the relation (2,0) is immediately follows by identifying the
linear map ∂(α,p) : C∗ → C∗ with the restricted linear map ∂(α̌,p) : Ĉ∗ → Č∗,
for the relations (1,1) and (0,2) it suffices to observe that

(∂(α̌,i−1) ◦ Ň∂ : Ĉ∗ → Č∗) = (∂(α̌,i−1) : Ĉ∗ → Č∗) ◦ (Ň∂ : Ĉ∗ → Ĉ∗)

+ (∂(α̌,i−1) : Č∗ → Č∗) ◦ (Ň∂ : Ĉ∗ → Č∗)

= (∂(α,i−1) : C∗ → C∗) ◦ (Ň∂ : C∗ → C∗)
+ (∂(α̌,i−1) : C∗ → C∗) ◦ (N∂ : C∗ → C∗).

�
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While it follows that the second and the third topological recursion rela-
tion involve the linear maps ∂α̌,p : C∗ → C∗ defined using non-equivariant
contact homology and hence leave the frame of standard (equivariant) cylin-
drical homology, it is notable that the first topological recursion relation
(2,0) indeed has the following important consequence.

Corollary 4.2. All linear maps ∂(α,p) : HC∗(V ) → HC∗(V ) on cylindri-
cal homology involving gravitational descendants can be computed from the
linear maps ∂α : HC∗(V ) → HC∗(V ) with no gravitational descendants
and the primary rational Gromov–Witten potential of the underlying stable
Hamiltonian manifold, i.e., again involving no gravitational descendants.

Proof. For the proof it suffices to observe that after applying the topolog-
ical recursion relation (2,0) the marked point with the descendant sits on
the attached sphere, so that the linear maps with descendants can indeed
be computed from the linear maps without descendants and the rational
Gromov–Witten potential of the target manifold with gravitational descen-
dants. Together with the standard result of rational Gromov–Witten the-
ory (generalized in the obvious way from symplectic manifolds to stable
Hamiltonian manifolds without holomorphic planes) that the full descendant
potential can be computed from the primary potential involving no descen-
dants using the above mentioned topological recursion relations together
with the divisor (to add more marked points on non-constant spheres),
string and dilaton (for the case of constant spheres) equations, it follows the
remarkable result that also in cylindrical homology the descendant invari-
ants are determined by the primary invariants, that is, if we additionally
include the primary Gromov–Witten potential. �

Remark 4.3. Note that the first topological relation actually descends to
homology, i.e., it holds for ∂(α,i) and ∂ν viewed as linear maps on cylindri-
cal homology HC∗(V ). In particular, while on the chain level all topologi-
cal recursion relations only hold true for (three different) special choices of
coherent sections, after passing to homology the first relation (2,0) holds for
all coherent sections.

As we already remarked, it follows from the maximum principle that
the Gromov–Witten potential of a contact manifold simply agrees with the
Gromov–Witten potential of a point. Since in this case it follows from dimen-
sional reasons that after setting all t-variables to zero we have

∂2 f
∂tα,i−1∂tμ

|t=0 = 0, i > 0,

we have the following important vanishing result for contact manifolds.
For the rest of this subsection as well as the next one we will restrict

ourselves to the case where all formal t-variables are set to zero.
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Following the notation in [F2,FR] let us denote by HC0∗ (V ) = H(C0∗ , ∂0)
the cylindrical homology without additional marked points and hence with-
out t-variables, which is obtained from the big cylindrical homology com-
plex HC∗(V ) = H(C∗, ∂) by setting all t-variables to zero. In the same way,
let us introduce the corresponding linear map ∂1(α,p) : HC

0∗ (V ) → HC0∗ (V )
obtained again by setting t = 0 and which now counts holomorphic cylinders
with just one additional marked point (and descendants).

Corollary 4.4. In the case when V is a contact manifold, after setting
all t-variables to zero, the corresponding descendant linear maps ∂1(α,p) :
HC0∗ (V )→ HC0∗ (V ), p > 0 are zero.

While this result shows that counting holomorphic cylinders with one
additional marked point and gravitational descendants is not very interest-
ing in the case of contact manifolds, it is clear from our ongoing work on
topological recursion in full rational SFT that the arguments used above
do not apply to the sequence of commuting Hamiltonians h1(α,p) of rational
SFT, which in the Floer case lead to the integrable hierarchies of Gromov–
Witten theory. More precisely, we expect that the corresponding recursive
procedure involves primary invariants belonging to a non-equivariant version
of rational SFT.

4.2. Action of quantum cohomology on non-equivariant cylindrical
homology. As we already mentioned in Subsection 2.1, in [PSS] Piunikhin–
Salamon–Schwarz defined an action of the quantum cohomology ring of
the underlying symplectic manifold on the Floer (co)homology groups by
counting Floer cylinders with one additional marked point constrained to
R×{0} ⊂ R×S1. Note that for this the authors also needed to show that
the concatenation of two maps on Floer cohomology corresponds to the ring
multiplication in quantum cohomology.
While in [PSS] this result was proven by establishing appropriate com-

pactness and gluing theorems for all appearing moduli spaces, in this final
subsection we want to show how our topological recursion relation (1,1)
together with the relation (2,0) can be used to define a corresponding action
of the quantum cohomology (defined using the Gromov–Witten potential
introduced above) on the non-equivariant cylindrical contact homology of a
stable Hamiltonian manifold after setting all t-variables to zero.
In the same way as for closed symplectic manifolds we define the quan-

tum cohomology QH∗(V ) of the stable Hamiltonian manifold V as the vec-
tor space freely generated by formal variables tα = tα,0, with coefficients
which are Laurent series in the zn-variables. Note that, as vector spaces,
the only difference to the usual cohomology groups H∗(V ) again lies in the
different choice of coefficients. On the other hand, while for general stable
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Hamiltonian manifolds the quantum product defined using the Gromov–
Witten three-point invariants is different from the usual product structure
of H∗(V ), note that for contact manifolds we have QH∗(V ) = H∗(V ) (with
the appropriate choice of coefficients) as in this case the Gromov–Witten
potential of V agrees with that of a point. Recalling that the linear maps
∂1α̌ = ∂1(α̌,0) actually descend to maps on non-equivariant cylindrical homol-

ogy HC0,non-S1

∗ (V ), we prove the following

Corollary 4.5. The map

QH∗(V )⊗HC0,non-S1

∗ (V )→ HC0,non-S1

∗ (V ), (tα, q̂γ) �→ ∂1α̌(q̂γ),

(tα, q̌γ) �→ ∂1α̌(q̌γ),

defines an action of the quantum cohomology ring QH∗(V ) on the non-
equivariant cylindrical homology HC0,non-S1

∗ (V ) (after setting all t = 0).

Proof. It follows from our topological recursion relations (2,0) and (1,1)
for non-equivariant cylindrical contact homology that, after setting all
t-variables to zero, we indeed have the following two non-averaged topo-
logical recursion relations,

∂2(α̌,i),(β,j) =
∂2 f

∂tα,i−1∂tμ
ημν∂2ν̌,(β,j) +

∂3 f
∂tα,i−1∂tβ,j∂tμ

ημν∂1ν̌ ,

∂2(α̌,i),(β,j) =
∂2 f

∂tα,i−1∂tμ
ημν∂2ν̌,(β,j) +

1
2
[∂1(α̌,i−1), ∂

1
(β̌,j)

]+.

While the first equation follows from differentiating the recursion relation
(2,0) with respect to the formal variable tβ,j , the second equation follows
from the recursion relation (1,1) by first setting all t-variables except tβ,j

to zero.
Ignoring invariance problems for the moment, the desired result follows by

comparing both equations. Since the left-hand side and the first summand
on the right-hand side of both equations agree, it follows that

1
2
[∂1(α̌,i−1), ∂

1
(β̌,j)

]+ =
∂3 f

∂tα,i−1∂tβ,j∂tμ
ημν∂1ν̌ .

On the other hand, since [∂1(α̌,i−1), ∂
1
(β̌,j)

]− = 0 on homology, and using
the natural relation between the commutator and its corresponding anti-
commutator, 1

2 [∂
1
(α̌,i−1), ∂

1
(β̌,j)

]+ + 1
2 [∂

1
(α̌,i−1), ∂

1
(β̌,j)

]− = ∂1(α̌,i−1) ◦ ∂1(β̌,j)
,

it follows that after passing to homology we have

∂1(α̌,i−1) ◦ ∂1(β̌,j)
=

∂3 f
∂tα,i−1∂tβ,j∂tμ

ημν∂1ν̌ ,

so that the desired result follows after setting i = 1 and j = 0.
We want emphasize that the above identity in general does not hold on

the chain level, but only holds after passing to homology. Note that this is
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already known from [PSS]. While in their proof a chain homotopy adds an
exact term to the above identity, in our proof this follows from the fact that
the relations (2,0) and (1,1) only hold for two different (special) coherent
collections of sections, i.e., they do not hold true simultaneously on the chain
level. While the above identity should hold after passing to homology, note
that the invariance problem cannot be resolved as for the topological recur-
sion relation (2,0) by simply passing to homology, since the two equations
with which we started involve linear maps counting holomorphic cylinders
with more than one additional marked point.
In order to show that the desired composition rule still holds after passing

to homology, we make use of the fact that we can choose nice coherent
collections of sections interpolating between the two special coherent sections
(in the sense of Subsection 1.3) as follows. Since it follows from the proof of
the main theorem in Subsection 2.4 that our special coherent collections of
sections are indeed pulled back from the moduli space of curves to the moduli
space of maps (we can ignore the bubbles that we added afterwards here),
we do not need to consider arbitrary interpolating coherent sections but
only those which are again pull-backs of coherent sections on the underlying
moduli space of curves. Since in the moduli space of curves (in contrast
to the moduli space of maps) the strata of singular curves (maps) are of
codimension at least two, we can further choose the homotopy such that it
avoids all singular strata, so that all underlying curves in the homotopy are
indeed smooth. Since we excluded holomorphic planes throughout the paper,
it follows that the only singular maps that appear during the interpolation
process are holomorphic maps where a cylinder without additional marked
points splits off. But this implies that the difference between the two different
special coherent collections of sections is indeed exact, so that the above
equation indeed holds after passing to homology. �

While in the same way we can give an alternative proof of the result
of Piunikhin–Salamon–Schwarz by using our topological recursion relations
(1,1) and (2,0) in symplectic Floer theory of Subsection 2.1, in contrast
note that in (equivariant) cylindrical homology, due to the differences in
the topological recursion formulas in this case, neither ∂1α nor ∂1α̌ defines an
action of quantum cohomology on (equivariant) cylindrical homology.
Finally, using the isomorphism of Bourgeois–Oancea in [BO], we show

how the latter result also establishes an action of the cohomology ring on
the symplectic homology, and thereby generalizes the result of [PSS] in the
obvious way from closed manifolds to compact manifolds X with contact
boundary ∂X = V . For the proof we assume that there not only no holo-
morphic planes in (R×)V , but also no holomorphic planes in the filling X.
Furthermore we assume that all t-variables are set to zero without explicitly
mentioning it again.
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Corollary 4.6. Using the isomorphism between non-equivariant cylindrical
homology and positive symplectic homology in [BO], our result defines an
action of the cohomology ring H∗(X) on (full) symplectic homology SH0∗ (X)
(at t = 0).

Proof. Since we assume that there are no holomorphic planes in the fill-
ing X, it further follows from the computation of the differential in sym-
plectic homology by Bourgeois and Oancea in [BO] that the symplectic
homology is given by the direct sum, SH0∗ (X) = SH0,+

∗ (X)⊕HdimX−∗(X).
While the action of H∗(V ) on non-equivariant cylindrical contact homology
HC0,non-S1

∗ (V ) established above defines an action of H∗(X) on SH0,+
∗ (X)

using the isomorphism HC0,non-S1

∗ (V ) ∼= SH0,+
∗ (X) and the natural map

H∗(X)→ H∗(V ) defined by the inclusion V ↪→ X, together with the natu-
ral action of H∗(X) on itself we get the desired result. �

Of course, we expect that this action agrees with the action of H∗(X) on
SH0∗ (X) defined using the action on the Floer homology groups FH0∗ (H)
for admissible Hamiltonians and taking the direct limit, after generalizing
the result in [PSS] from closed symplectic manifolds to compact symplectic
manifolds with contact boundary in the obvious way.

Example 4.7. Using the natural map H∗(Q) → H∗(T ∗Q) given by the
projection, note that in the cotangent bundle case X = T ∗Q this defines
an action of H∗(Q) on SH0∗ (T ∗Q), which by [AS, SW] is isomorphic to
H∗(ΛQ), where ΛQ denotes the loop space of Q. Introducing additional
marked points on the cylinders in the proofs of Abbondandolo–Schwarz and
Salamon–Weber, we expect that it can be shown that this action agrees with
the natural action of H∗(Q) on H∗(ΛQ) given by the cap product and the
base point map ΛQ→ Q.
On the other hand, as mentioned above, in the equivariant setting we do

not expect to find a natural action of H∗(Q) on (equivariant) cylindrical
homology HC0∗ (S∗Q), which by [CL] is isomorphic to the S1-equivariant
singular homology HS1

∗ (ΛQ,Q). But this fits with the well-known fact that
there is no natural action of the cohomology (H∗(Q)→)H∗(ΛQ) on relative
S1-equivariant homology HS1

∗ (ΛQ,Q).

4.3. Example: cylindrical homology in the Floer case. We end this
paper by discussing briefly the important Floer case of SFT, which was
worked out in the paper [F1] of the first author, including the necessary
transversality proof. Here V = S1×M is equipped with a stable Hamiltonian
structure (ωH = ω+ dH ∧ dt, λ = dt) for some time-dependent Hamiltonian
H : S1 ×M → R on a closed symplectic manifold M = (M,ω). It follows
that the Reeb vector field is given by RH = ∂t +XH

t , so that in particular
every one-periodic closed Reeb orbit is a periodic orbit of the time-dependent
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Hamiltonian H. More precisely, it can be shown, see [F1], that the chain
complex of equivariant cylindrical contact homology naturally splits into
subcomplexes generated by Reeb orbits of a fixed integer period and that
the equivariant cylindrical homology generated by Reeb orbits of period one
agrees with the standard symplectic Floer homology for the time-dependent
Hamiltonian H : S1 ×M → R. In order to see that the differentials indeed
agree, one uses that the holomorphic map from the cylinder to R×V splits,
ũ = (h, u) : R×S1 → (R×S1) ×M , where the map h : R×S1 → R×S1
is just the identity (up to automorphisms of the domain). Note that in
the Morse–Bott limit H = 0 one arrives in the trivial circle bundle case
and just gets back the relation between SFT and Gromov–Witten theory
from [EGH].We now show the following important

Proposition 4.8. In the Floer case the topological recursion relations for
equivariant cylindrical homology reproduce the topological recursion relations
for symplectic Floer homology from section three. In particular, by pass-
ing to the Morse–Bott limit H = 0, they reproduce the standard topological
recursion relations of Gromov–Witten theory. Furthermore, the action of the
quantum cohomology on the non-equivariant cylindrical homology splits and
agrees with the action of quantum cohomology on symplectic Floer homology
defined in [PSS].

Proof. In the same way as it follows from the fact that the map h : R×S1 →
R×S1 is just the identity (up to automorphisms of the domain) that the dif-
ferentials ∂ in equivariant cylindrical homology and symplectic Floer homol-
ogy naturally agree, it follows that the linear maps ∂α̌ for α ∈ H∗(M)
introduced in symplectic Floer homology in section three and in equivariant
cylindrical homology (using the corresponding map in non-equivariant cylin-
drical homology) agree. Furthermore it follows from the same result that for
α1 = α ∧ dt ∈ H∗(S1 ×M) we have

∂α1,p = ∂α̌,p : C∗ → C∗, ∂α̌1,p = 0.

Note that the last equation follows from the fact that the S1-symmetry is
divided out twice. Again only working out the second topological recursion
relation, it then indeed follows that

(N∂(α̌,i) : CF∗ → CF∗) = (N∂(α1,i) : C∗ → C∗)

=
∂2 fS1×M

∂tα1,i−1∂tμ
ημν(N∂ν : C∗ → C∗)

+
(
1
2
[∂(α1,i−1), Ň ∂]+ : C∗ → C∗

)

+
(
1
2
[∂(α̌1,i−1), N ∂]+ : C∗ → C∗

)
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=
∂2 fM

∂tα,i−1∂tμ
ημν(N∂ν̌ : CF∗ → CF∗)

+
(
1
2
[∂(α̌,i−1), Ň ∂]+ : CF∗ → CF∗

)
,

where we further use that by similar arguments, namely that every holomor-
phic map CP

1 → R×S1 is constant, the Gromov–Witten potential of the
stable Hamiltonian manifold S1×M is given by the Gromov–Witten poten-
tial of the symplectic manifold M , see also the discussion at the beginning
of Subsection 2.3.
Apart from the fact that this proves the desired statement about the

topological recursion relations, note that the same equation shows that in
this special case the linear map ∂α̌ : C∗ → C∗ indeed leads to an action of
the quantum cohomology of S1×M on the equivariant cylindrical homology,
which agrees with the one defined by [PSS] on symplectic Floer homology.
For the action of quantum cohomology QH∗(S1×M) on the non-equivariant
cylindrical homologyHCnon-S1

∗ (S1×M), observe that the differential of non-
equivariant cylindrical homology is indeed of diagonal form

∂ = diag(∂, ∂) : ĈF ∗ ⊕ ČF ∗ → ĈF ∗ ⊕ ČF ∗
with the Floer homology differential ∂ : CF∗ → CF∗. This follows from the
fact that in this case the only off-diagonal contribution δ : ĈF ∗ → ČF ∗ is
also zero, which as above again follows from the fact that the S1-symmetry
on the cylinder is divided out twice. Furthermore note that by the same
argument the linear map ∂α̌ is also of diagonal form. It follows that the
non-equivariant cylindrical homology is given as a direct sum, HCnon-S1

∗ =
ĤF ∗⊕ ȞF ∗, that the quantum cohomology acts on both factors separately
and agrees with the action defined in [PSS]. �
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Université de Bourgogne

9, avenue Alain Savary - BP 47870

21078 DIJON Cedex

France

E-mail address: issoroloap@gmail.com

Received 12/26/2011, accepted 02/15/2012

The work on this paper began when both authors were members of the Mathematical
Sciences Research Institute (MSRI) in Berkeley, and most of the work was conducted
when the first author was a postdoc at the Max Planck Institute (MPI) for Mathematics
in the Sciences in Germany and the second author was an FSMP postdoc at the Insti-
tut de Mathematiques de Jussieu, Paris VI. They want to acknowledge the Institutes for
their hospitality and their great working environment. They would also like to thank Y.
Eliashberg and D. Zvonkine for useful discussions.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


