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SPIN-QUANTIZATION COMMUTES WITH REDUCTION

Paul-Emile Paradan

In this paper, we prove that the “quantization commutes with reduc-
tion” phenomenon of Guillemin and Sternberg [12] applies in the
context of the metaplectic correction.
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1. Introduction

Let K be a compact connected Lie group with Lie algebra k. An Hamiltonian
K-manifold (M, ω, Φ) is Spin-prequantized if M carries an equivariant Spinc

structure P with determinant line bundle being a Kostant–Souriau line
bundle over (M, 2ω, 2Φ). Let DP be the Spinc Dirac operator attached to
P , where M is oriented by its symplectic form. The Spin quantization of
(M, ω, Φ) corresponds to the equivariant index of the elliptic operator DP ,
and is denoted

QK
spin(M) ∈ R(K).

Let ̂A(M)(X) be the equivariant Â-genus class: it is an equivariant ana-
lytic function from a neighborhood of 0 ∈ k with value in the algebra of
differential forms on M . The Atiyah–Segal–Singer index theorem [6, Theo-
rem 8.2] tell us that

(1.1) QK
spin(M)(eX) :=

(

i
2π

)dim M
2

∫

M
ei(ω+〈Φ,X〉)

̂A(M)(X)

for X ∈ k small enough. It shows in particular that QK
spin(M) ∈ R(K) does

not depend of the choice of the Spin-prequantum data.
This notion of Spin-quantization is closely related to the notion of meta-

plectic correction. Suppose that (M, ω, Φ) carries a Kostant–Souriau line
bundle Lω, and that the bundle of half-forms κ

1/2
J associated to an invari-

ant almost complex structure J is well defined. In this case, (M, ω, Φ) is
Spin-prequantized by the Spinc-structure defined by J and twisted by the
line bundle Lω ⊗ κ

1/2
J . The crucial point here is that the corresponding

Spin-quantization of (M, ω, Φ) does not depend of the choice of the almost
complex structure. Note that the existence of the bundle of half-form κ

1/2
J

is equivalent to the existence of a Spin structure on M [16].
The purpose of this paper is to compute geometrically the multiplic-

ities of QK
spin(M) ∈ R(K) in a way similar to the famous “quan-

tization commutes with reduction” phenomenon of Guillemin–Sternberg
[12,14,18,19,21,24,27–29]. This question was first addressed in the work
of Cannas–Karshon–Tolman [9] and Vergne [28] in the case of a circle action.
The non-abelian group action case was first studied by Jeffrey-Kirwan [14]
and by the author [22], but both papers made fairly strong assumptions:
in [14] they suppose that 0 ∈ k∗ has a big enough neighborhood of regular
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values of the moment map, and in [22] one asks that the infinitesimal stabi-
lizers of the K-action are abelian. In this paper, we obtain a “quantization
commutes with reduction” theorem, which holds in the general case. Note
that C. Teleman also obtained some results [26, Proposition 3.10] in the
algebraic setting.

The striking difference with the standard Guillemin–Sternberg pheno-
menon is the rho shift that we explain now. Let T be a maximal torus of
K with Lie algebra t ⊂ k. Let t∗+ ⊂ t∗ be the closed Weyl chamber. We will
look at t∗+ as a disjoint union of its open faces, the maximal one being its
interior (t∗+)o. Let ρ ∈ (t∗+)o be the half sum of the positive roots. At each
open face τ of t∗+, we associate the term ρτ , which is the half sum of the
positive roots which are orthogonal to τ . We note that ρ − ρτ ∈ τ is equal
to the orthogonal projection of ρ on τ .

For any ξ ∈ t∗+ and any face τ containing ξ in its closure, we consider the
shifted symplectic reduction

M τ
ξ := Φ−1(ξ + ρ − ρτ )/Kτ

where Kτ is the common stabilizer of points in τ . Note that ξ + ρ − ρτ ∈ τ
when ξ ∈ τ .

We are particularly interested to the smallest face σ of the Weyl chamber
so that the Kirwan polytope Δ(M) := Φ(M)∩ t∗+ is contained in the closure
of σ. It is not hard to see that the Spin-prequantum data on (M, ω, Φ)
descents to the shifted symplectic reduction Mσ

μ when μ is a dominant weight
belonging to σ. Then Qspin(Mσ

μ ) ∈ Z is naturally defined when μ + ρ − ρσ

is a regular value of the moment map. In general, the number Qspin(Mσ
μ ) is

defined by shift-desingularization (see Section 2.4).
By definition Qspin(Mσ

μ ) vanishes when μ + ρ − ρσ /∈ Δ(M), but in fact
we can strengthen this vanishing property: Qspin(Mσ

μ ) = 0 if μ+ρ−ρσ does
not belong to the relative interior of the Kirwan polytope Δ(M).

Recall that the irreducible representations V K
μ of K are parametrized by

their highest weight μ ∈ ̂K ⊂ t∗+.
The main result of this paper is the following:

Theorem 1.1. Let (M, ω, Φ) be a compact Spin-prequantized Hamiltonian
K-manifold. Let σ be the smallest face of the Weyl chamber so that Δ(M) ⊂
σ. We have

QK
spin(M) =

∑

μ∈ ̂K∩σ

Qspin(Mσ
μ )V K

μ .

Let us give some ideas about the proof. The representation V K
μ is equal

to the Spin-quantization of the coadjoint orbit Oμ := K · (μ + ρ). Then the



392 P.-E. PARADAN

shifting trick tells us that the multiplicity mμ of V K
μ in QK

spin(M) is equal to

[QK
spin(M) ⊗ (V K

μ )∗
]K

=
[QK

spin(M ×Oμ)
]K

,

where Oμ is the coadjoint orbit with the opposite symplectic structure. As we

did in [21,22], we study the expression
[

QK
spin(M ×Oμ)

]K
by localizing the

Riemann–Roch character on the critical points of the square of the moment
map

Φμ : M ×Oμ → k∗.

Here our treatment differs depending on whether the Kirwan polytope
Δ(M) intersects the interior of the Weyl chambers or not (i.e., σ = t∗+
or not).

When σ = t∗+, we show that the multiplicity mμ is calculated using the
Riemann–Roch character localized near the zero-level set of the moment
map Φμ. This case is (more or less) treated in [22].

The heart of this paper is when we work out the case σ �= t∗+. We have
Φ−1

μ (0) = ∅, but we show how to compute mμ using the Riemann–Roch
character localized near

K · (Nρσ ∩ Φ−1
μ (−ρσ)

)

.

Here Nρσ denotes the submanifold of N = M ×Oμ where the infinitesimal
action of ρσ vanishes.

Notations. Throughout the paper, K will denote a compact connected Lie
group, and k its Lie algebra. We let T be a maximal torus in K, and t be its
Lie algebra. The integral lattice ∧ ⊂ t is defined as the kernel of exp : t → T ,
and the real weight lattice ∧∗ ⊂ t∗ is defined by : ∧∗ := hom(∧, 2πZ). Every
μ ∈ ∧∗ defines a one-dimensional T -representation, denoted Cμ, where t =
exp(X) acts by tμ := ei〈μ,X〉. We fix a positive Weyl chamber t∗+ ⊂ t∗. For
any dominant weight μ ∈ ̂K := ∧∗ ∩ t∗+, we denote by V K

μ the irreducible
representation with highest weight μ. We denote R(K) the representation
ring of K. We denote R−∞(K) := homZ(R(K), Z) its dual. An element
E ∈ R−∞(K) can be represented as an infinite sum E =

∑

μ∈ ̂K
mμV K

μ , with
mμ ∈ Z. The multiplicity m0 of the trivial representation is denoted [E]K . If
H is a closed subgroup of K, we have the induction map IndK

H
: R−∞(H) →

R−∞(K) which is the dual of the restriction morphism R(K) → R(H). We
see that [IndK

H
(E)]K = [E]H .

When K acts on a set X, the stabilizer subgroup of an element x ∈ X is
denoted Kx := {k ∈ K | k · x = x}. The Lie algebra of Kx is denoted kx.
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2. Spin-quantization of compact Hamiltonian K-manifolds

Let M be a compact Hamiltonian K-manifold with symplectic form ω and
moment map Φ : M → k∗ characterized by the relation

(2.1) ι(XM )ω = −d〈Φ, X〉, X ∈ k,

where XM (m) := d
dt |t=0 e−tX ·m is the vector field on M generated by X ∈ k.

In the Kostant–Souriau framework [15, 25], a Hermitian line bundle Lω

with an invariant Hermitian connection ∇ is a prequantum line bundle over
(M, ω, Φ) if

(2.2) L(X) −∇XM
= i〈Φ, X〉 and ∇2 = −iω,

for every X ∈ k. Here L(X) is the infinitesimal action of X ∈ k on the
sections of Lω → M . (Lω,∇) is also called a Kostant–Souriau line bundle.
Remark that conditions (2.2) imply, via the equivariant Bianchi formula,
the relation (2.1).

2.1. Spin-quantization: definitions. Let N be a compact even dimen-
sional Riemannian manifold, and let Cl(N) be its Clifford bundle. A
Spinc structure P on N defines an irreducible Clifford bundle SP → N
[6, Section 3.3]. If P and P ′ are two Spinc structures on N , then we have
SP ′  SP ⊗ LP,P ′ where LP,P ′ is a line bundle on N defined by the relation

(2.3) LP,P ′ := homCl(N)(SP ,SP ′).

If S → N is an irreducible Clifford bundle, then its complex dual S∗ → N
is also an irreducible Clifford bundle.

Definition 2.1. The determinant line bundle of a Spinc structure P on
N is the line bundle det(P ) → N defined by the relation det(P ) :=
homCl(N)(S∗

P ,SP ).

If P and P ′ are two Spinc structures on N , we see that

det(P ′)  homCl(N)(S∗
P ⊗ L

−1
P,P ′ ,SP ⊗ LP,P ′)

 det(P ) ⊗ (LP,P ′)2.

On the other hand, we can twist a Spinc structure P on N by a complex
line bundle L → N : its defines another Spinc structure PL such that SPL

=
SP ⊗ L.

Let us come back to the situation of a K-Hamiltonian manifold (M, ω, Φ).
Let J be any invariant almost complex structure on M , not necessarily
compatible with the symplectic form ω. Let

RR
K

J (M,−)
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be the corresponding Riemann–Roch character [21]. We consider the com-
plex tangent bundle (TM, J) and its complex dual T∗

C
M := homC(TM, C).

We consider the complex line bundle

κJ := det T∗
C
M.

If (M, ω, Φ) is prequantized by Lω, a standard procedure (called the meta-
plectic correction in the geometric quantization literature) is to tensor Lω

by the bundle of half-forms κ
1/2
J [30]. We may consider the equivariant index

(2.4) QK
J (M) := εJRR

K

J (M, Lω ⊗ κ
1/2
J ),

where εJ = ±1 is the quotient of the orientations defined by ω and by J .
In Proposition 2.3 we check that QK

J (M) has a meaning when the tensor
product L̃ = Lω ⊗ κ

1/2
J is well defined (even if neither Lω nor κ

1/2
J exist).

The almost complex structure J defines a Spinc structure PJ on M with
determinant line bundle detPJ = κ−1

J (see [16, 22]). If we twist the Spinc

structure PJ by any complex line bundle L we get a Spinc structure PJ,L

with determinant line bundle

det(PJ,L) = κ−1
J ⊗ L

2.

We make the following basic observation.

Proposition 2.2. Let (M, ω, Φ) be a Hamiltonian K-manifold. The follow-
ing assertions are equivalent:

(a) For any invariant complex structure J there exists a K-equivariant
line bundle L̃ such that κ−1

J ⊗ L̃2 is a prequantum line bundle over
(M, 2ω, 2Φ).

(b) There exist an invariant complex structure J and a K-equivariant
line bundle L̃ such that κ−1

J ⊗ L̃2 is a prequantum line bundle over
(M, 2ω, 2Φ).

(c) There exists an equivariant Spinc structure P such that its determi-
nant line bundle det(P ) is a prequantum line bundle over (M, 2ω, 2Φ).

When the previous assertions holds, we says that (M, ω, Φ) is Spin-
prequantized, either by the Spinc-structure P , or by the data (J, L̃).

Proposition 2.3. Let (M, ω, Φ) be a Spin-prequantized Hamiltonian K-
manifold. The equivariant index QK

J (M) := εJRR
K

J (M, L̃) does not depend
of the choice of the Spin-prequantum data (J, L̃). In fact QK

J (M) coincides
with the equivariant index of the Spinc Dirac operator DP attached to the
Spinc-structure P .

Definition 2.4. Let (M, ω, Φ) be a Spin-prequantized Hamiltonian K-
manifold. The Spin-quantization of (M, ω, Φ) is defined as the equivariant
index QK

J (M), and is denoted

QK
spin(M) ∈ R(K).
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Proof of Propositions 2.2 and 2.3. We have obviously a) =⇒ b), and we get
b) =⇒ c) by taking the Spinc structure PJ,L̃. Let us prove c) =⇒ a).

Let P be a Spinc-structure on M such that its determinant line bundle
det(P ) is a prequantum line bundle over (M, 2ω). Let SP be the correspond-
ing bundle of spinors. Let PJ and SJ be respectively the associated Spinc-
structure and the bundle of spinors on M associated to an invariant almost
complex structure J on M . Since SP ,SJ are irreducible clifford modules,
we have

(2.5) SP  SJ ⊗ L̃,

where L̃ is the line bundle defined by L̃ := homCl(M)(SJ ,SP ). From (2.5)
we get that the line bundle

det(P )  det(PJ) ⊗ L̃2

 κ−1
J ⊗ L̃2

is a prequantum line bundle over (M, 2ω, 2Φ).
Let P be the Spinc structure attached to a data (J, L̃). The symplec-

tic orientation on M defines a decomposition on the bundle of spinors,
SP = S+

P ⊕S−
P , and the corresponding Spinc Dirac operator DP maps Γ(S+

P )
to Γ(S−

P ).
On the other hand, the almost complex structure on M gives the decom-

position ∧T∗M ⊗ C = ⊕i,j ∧i,j T∗M of the bundle of differential form. The
corresponding bundle of spinors is SJ := ∧0,• T∗M and the complex orien-
tation induces the splitting SJ = S+

J ⊕ S−
J with S+

J := ∧0,evenT∗M . The
Dolbeault Dirac operator ∂L̃ + ∂

∗
L̃ maps Γ(S±

J ⊗ L̃) to Γ(S∓
J ⊗ L̃), and the

Riemann–Roch character RRK
J (M, L̃) is defined as the equivariant index of

the elliptic operator

∂L̃ + ∂
∗
L̃ : Γ(S+

J ⊗ L̃) −→ Γ(S−
J ⊗ L̃).

If εJ = ±1 is the quotient of the orientations defined by ω and by J , one
has that

S±
P = S±εJ

J ⊗ L̃.

Hence QK
J (M) = εJRRK

J (M, L̃) is defined as the equivariant index of the
Dolbeault Dirac operator ∂L̃ + ∂

∗
L̃ viewed as an elliptic operator D+

L̃
from

Γ(S+
P ) to Γ(S−

P ).
Finally, we know that IndexK(DP ) = IndexK(D+

L̃
) since the first-order

elliptic operators DP and D+
L̃

have the same principal symbol [10]. �

In the remaining part of this paper, we find convenient to work with the
following



396 P.-E. PARADAN

Definition 2.5. A Hamiltonian K-manifold (M, ω, Φ) is Spin-prequantized
by L̃ if there exists an invariant almost complex structure J compatible with
ω such that L̃2 ⊗ κ−1

J is a Kostant–Souriau line bundle over (M, 2ω, 2Φ).

We remark that εJ = 1 when J is compatible with ω. Moreover, the
Riemann–Roch character RRK

J (M,−) does not depend [21] on the choice of
the compatible invariant almost complex structure J : we denote it simply
by RRK(M,−).

Finally, when a Hamiltonian manifold (M, ω, Φ) is Spin-prequantized by
the line bundle L̃, its Spin-quantization is defined by

QK
spin(M) := RRK(M, L̃).

2.2. Functorial properties. We summarize the functorial properties of
Qspin in the next

Proposition 2.6. • If (M, ω, Φ) is a Spin-prequantized Hamiltonian
K-manifold, and H is a closed subgroup of K then the restriction of
QK

spin(M) to H is equal to QH
spin(M).

• If (Mj , ωj , Φj) are Spin-prequantized Hamiltonian Kj-manifold, for
j = 1, 2, then M1 ×M2 is a Spin-prequantized Hamiltonian K1 ×K2-
manifold and

QK1×K2
spin (M1 × M2) = QK1

spin(M1) ⊗QK2
spin(M2)

in R(K1 × K2)  R(K1) ⊗ R(K2).
• If (M, ωM , ΦM ) and (N, ωN , ΦN ) are Spin-prequantized Hamilton-

ian K-manifold, then M × N is a Spin-prequantized Hamiltonian
K-manifold and

QK
spin(M × N) = QK

spin(M) · QK
spin(N),

where · denotes the product in R(K).
• A Spin-prequantization on (M, ω, Φ) induces a Spin-prequantization

on M := (M,−ω,−Φ). The Spin-quantization of M corresponds to
the dual of the Spin-quantization of M :

QK
spin(M) =

[QK
spin(M)

]∗
.

Proof. The first three points are direct consequences of the functorial prop-
erties of the index map. Let us prove the last point. One see that if (L̃, J) is
a Spin-prequantum data for M then (L̃−1,−J) is a Spin-prequantum data
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for M . Then we have for X ∈ k small enough

QK
spin(M)(eX) =

(

i
2π

)dim M
2

∫

M
ei(−ω−〈Φ,X〉)

̂A(M)(X)

=
(

i
2π

)dim M
2

∫

M
ei(ω+〈Φ,X〉) ̂A(M)(X) [1]

= QK
spin(M)(eX). [2]

The relation [1] is due to the fact that the differential form ̂A(M)(X) has
real coefficients, and that the quotient of the symplectic orientations on M

and M is (−1)
dim M

2 . Since X → QK
spin(M)(eX) are analytic functions, the

identity [2] shows that QK
spin(M)(k) = QK

spin(M)(k) for any k ∈ K. In other
words the (virtual) representation QK

spin(M) corresponds to the dual of the
(virtual) representation QK

spin(M). �

2.3. Spin-quantization of coadjoint orbits. Let μ ∈ ̂K be a dominant
weight. Let us denote Kμ its stabilizer subgroup and kμ its Lie algebra. Let us
recall why the Lie algebra morphism iμ : kμ → iR integrates in a character χμ

of Kμ. The group Kμ, which is connected, decomposes as Kμ = [Kμ, Kμ]Zμ

where Zμ is the connected component of the center of Kμ. For the maximal
torus T , we have T = TμZμ with Tμ = T ∩ [Kμ, Kμ] = exp(t ∩ [kμ, kμ]). We
note that iμ : t → iR integrates in a character χT

μ of T which is trivial on Tμ

since 〈μ, [kμ, kμ]〉 = 0. Hence, we can define the character χμ as being trivial
on [Kμ, Kμ], and equal to χT

μ on Zμ.
We denote by Cμ the one-dimensional representation of Kμ associated to

the character χμ. Let σ be a face of the Weyl chamber such that μ ∈ σ:
hence the stabilizer subgroup Kμ contains Kσ. We still denote by Cμ the
induced one-dimensional representation of the group Kσ.

Let ρ be half the sum of the positive roots, and let ρσ be half the sum of
the positive roots, which are orthogonal to σ. Note that ρ − ρσ belongs to
σ, hence μ + ρ − ρσ belongs also to σ for any μ ∈ σ. The coadjoint orbit

Oσ
μ := K · (μ + ρ − ρσ)  K/Kσ

is Spin-prequantized by the compatible complex structure and the line bun-
dle L̃ = K ×Kσ Cμ. We have

QK
spin(Oσ

μ) = RRK(K/Kσ, K ×Kσ Cμ)

= V K
μ

thanks to the Borel–Weil theorem. We know also that QK
spin

(Oσ
μ

)

=
(

V K
μ

)∗,
where Oσ

μ be the coadjoint orbit Oσ
μ with the opposite symplectic form (see

Proposition 2.6).
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We have seen that the same irreducible representations V K
μ can be realized

as the Spin-quantization of the coadjoint orbits Oσ
μ where σ is a face of the

Weyl chamber containing μ in its closure.

2.4. Spin-prequantization commutes with reduction. We consider
first the case of a Hamiltonian H-manifold (N, ω, Φ), not necessarily com-
pact, which is Spin-prequantized by L̃. We suppose that 0 is a regular value
of Φ. Let N0 := Φ−1(0)/H be the orbifold reduced space with its canonical
symplectic structure ω0.

Lemma 2.7. The orbifold line bundle L̃0 := (L̃|Φ−1(0))/H Spin-prequantizes
(N0, ω0).

Proof. The fiber Z = Φ−1(0) is a smooth H-invariant submanifold of N .
Let π : Z → Z/H = N0 be the projection. Recall that the symplectic
structure ω0 on N0 is defined by the relation π∗(ω0) = ω|Z . Let L2ω the
Kostant–Souriau line bundle on (N, 2ω, 2Φ) such that

(2.6) L̃2 = L2ω ⊗ κJ .

Here J is a compatible invariant almost complex structure on N . We have
TN |Z = TZ ⊕ J(hZ) where hZ ⊂ TZ is the trivial bundle given by the
infinitesimal action of H. Since TZ  π∗(TN0) ⊕ hZ we get

TN |Z  π∗(TN0) ⊕ hZ ⊕ J(hZ).

Hence J induces a compatible almost complex structure J0 on (N0, ω0), such
that (κJ |Z)/H = κJ0 .

The line bundle L2ω0 = (L2ω|Z)/H is a prequantum line bundle on
(N0, ω0). Finally, if we restrict (2.6) to Z, we get

L̃2
0 = L2ω0 ⊗ κJ0 .

after taking the quotient by H. We have proved that (J0, L̃0) Spin-
prequantizes (N0, ω0). �

For the rest of this section we consider a compact Hamiltonian K-manifold
(M, ω, Φ), that we suppose Spin-prequantized by the line bundle L̃.

Let τ be a face of the Weyl chamber, and let Kτ be the common stabi-
lizer of points in τ . Following Guillemin–Sternberg [13], we introduce the
following Kτ -invariant open subset of k∗τ :

Uτ = Kτ · {ξ ∈ t∗+|Kξ ⊂ Kτ} = Kτ ·
⋃

τ⊂σ

σ.

By construction, Uτ is a slice for the coadjoint action: this mean that the
map K × Uτ , (k, ξ) �→ k · ξ factors through an inclusion K ×Kτ Uτ ↪→ k∗.

The symplectic cross-section theorem [13] asserts that the pre-image Yτ =
Φ−1(Uτ ) is a symplectic submanifold : we denote ωτ the restriction of ω to
Yτ . The action of Kτ on (Yτ , ωτ ) is Hamiltonian, where the restriction of Φ
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to Yτ is a moment map. Since ρ − ρτ is a Kτ -invariant element, we can use
the translated moment map Φτ : Yτ → k∗τ defined by

Φτ = Φ|Yτ − (ρ − ρτ ).

Lemma 2.8. The symplectic slice (Yτ , ωτ , Φτ ) is Spin-prequantized by the
line bundle L̃τ := L̃|Yτ .

Proof. We consider the open subset K ×Kτ Yτ of M and the projection
π : K ×Kτ Yτ → K/Kτ . We can suppose that the Spin-prequantum data,
when restricted to K×Kτ Yτ , is given by (J, L̃) where J is a compatible almost
complex structure on K ×Kτ Yτ defined as the “sum” of the compatible
almost complex structures Jo and Jτ : Jo on K/Kτ and Jτ on Yτ . Hence on
K ×Kτ Yτ we have

κJ = K ×Kτ (κJτ ) ⊗ π−1(κJo)

with κJo = K ×Kτ C−2(ρ−ρτ ). We see then that the restriction of the K-
equivariant line bundle κJ to the symplectic slice Yτ is equal to the Kτ -
equivariant line bundle κJτ ⊗ C−2(ρ−ρτ ).

When we restrict the identity L2ω = L̃2 ⊗ κ−1
J to Yτ we get

(2.7) L2ω|Yτ = (L̃|Yτ )2 ⊗ κ−1
Jτ

⊗ C2(ρ−ρτ ).

We consider the following line bundle on Yτ :

L2ωτ := L2ω|Yτ ⊗ C−2(ρ−ρτ ).

The relation (2.7) is then L2ωτ = (L̃|Yτ )2 ⊗ κ−1
Jτ

. Since L2ωτ is a Kτ -
equivariant prequantum bundle over (Yτ , 2ωτ , 2Φτ ), we conclude that (Yτ , ωτ ,

Φτ ) is Spin-prequantized by the data (Jτ , L̃|Yτ ). �
Let us consider the case where τ = σ is the smallest face of the Weyl

chamber so that moment polyhedron Δ(M) := Φ(M) ∩ t∗+ is contained in
the closure of σ.

Then the symplectic slice Yσ is equal to Φ−1(σ), and the action of the
subgroup [Kσ, Kσ] is trivial on it [17]. Let Zσ be the identity component of
the center of Kσ. The map Φσ : Yσ → k∗σ takes values in z∗σ = Rσ ⊂ t∗ and
corresponds to the moment map relative to the action of Zσ on (Yσ, ωσ). We
know after Lemma 2.8 that (Yσ, ωσ, Φσ) is Spin-prequantized by L̃σ := L̃|Yσ .

For each dominants weights μ which belongs to the closure of σ, we
consider the symplectic reduction

Mσ
μ = Φ−1(Oσ

μ)/K

= Φ−1
σ (μ)/Zσ.

For the rest of this section we fix a dominant weight μ ∈ σ such that
μ + ρ − ρσ ∈ Δ(M), and we explain how one defines the Spin-quantization
of the (possibly singular) reduced spaces Mσ

μ .
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Let
−→
Δ ⊂ z∗σ be the rational vector subspace generated by {a − b |a, b ∈

Δ(M)}. Let zΔσ ⊂ zσ be the subspace orthogonal to
−→
Δ, and let ZΔ

σ ⊂ Zσ be
the corresponding subtorus.

Lemma 2.9. The torus ZΔ
σ acts trivially on Yσ and on the line bundle

L̃σ ⊗ C−μ.

Proof. By definition of zΔσ , 0 = d〈Φσ, X〉 = −ι(XYσ)ωσ on Yσ for any X ∈
zΔσ . Hence the torus ZΔ

σ acts trivially on Yσ. Let L2ωσ be the Kostant–Souriau
line bundle over (Yσ, 2ωσ, 2Φσ) so that L̃2

σ = L2ωσ ⊗ κJσ (see Lemma 2.8).
We have on the section of L2ωσ the following equality of linear operators:

L(X) −∇XM
= i〈2Φσ, X〉, ∀X ∈ zσ.

If one takes X ∈ zΔσ , the function y ∈ Yσ �→ 〈Φσ(y), X〉 is constant equal to
〈μ, X〉. Finally

L(X) − 2i〈μ, X〉 = 0, ∀X ∈ zΔσ

as an operator on the section of L2ωσ . In other words, the torus ZΔ
σ acts

trivially on L2ωσ ⊗C−2μ = (L̃σ⊗C−μ)2⊗κ−1
Jσ

. Since ZΔ
σ acts trivially on κJσ ,

we conclude finally that ZΔ
σ acts trivially on the line bundle L̃σ ⊗ C−μ. �

Let Z ′
σ ⊂ ZΔ

σ be another subtorus such that Zσ = ZΔ
σ × Z ′

σ: the dual of
its Lie algebra z′σ is identified with

−→
Δ ⊂ z∗σ. We look now at (Yσ, ωσ) as a

Hamiltonian Z ′
σ-manifold with moment map

Φ′
σ := Φσ − μ = Φ|Yσ − (μ + ρ − ρσ).

The Z ′
σ-equivariant line bundle L̃′

σ := L̃σ ⊗ C−μ Spin-prequantizes the
Hamiltonian Z ′

σ-manifold (Yσ, ωσ, Φ′
σ).

If 0 ∈ −→
Δ is a regular value of Φ′

σ, we know after Lemma 2.7 that the
orbifold reduced space (Mσ

μ , ωσ
μ) is Spin-prequantized by the line bundle

L̃σ
μ :=

(

L̃|Φ−1
σ (μ) ⊗ C−μ

)

/Z ′
σ,

and its Spin-quantization Qspin(Mσ
μ ) is defined like in Definition 2.4. In the

general case where 0 ∈ −→
Δ is not necessarily a regular value of Φ′

σ we proceed
by shift desingularization. For ε ∈ −→

Δ small enough and generic we consider
the orbifold reduced space

Mσ
μ+ε := (Φ′

σ)−1(ε)/Z ′
σ = Φ−1

σ (μ + ε)/Z ′
σ

and its orbifold line bundle

L̃σ
μ+ε :=

(

L̃|Φ−1
σ (μ+ε) ⊗ C−μ

)

/Z ′
σ.

The following crucial fact is proved in Section 3.4.
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Theorem 2.10. The Riemann–Roch number RR(Mσ
μ+ε, L̃σ

μ+ε) ∈ Z does not

depend of the choice of a generic and small enough ε ∈ −→
Δ.

Thanks to the last Theorem we can define the quantization Qspin(Mσ
μ ) ∈ Z

of the (possibly singular) reduced space Mσ
μ for μ ∈ ̂K ∩ σ.

Definition 2.11. Let μ ∈ ̂K ∩ σ.
• If μ + ρ − ρσ ∈ Δ(M), the integer Qspin(Mσ

μ ) ∈ Z is defined as the

Riemann–Roch character RR(Mσ
μ+ε, L̃σ

μ+ε) for ε ∈ −→
Δ generic and

small enough.
• If μ + ρ − ρσ /∈ Δ(M), we set Qspin(Mσ

μ ) = 0

Remark 2.12. If μ+ ρ− ρσ does not belongs to the relative interior of
Δ(M), we can choose ε so that μ + ρ − ρσ + ε /∈ Δ(M). Then the
reduced space Mσ

μ+ε is empty and the corresponding Riemann–Roch char-
acter RR(Mσ

μ+ε, L̃σ
μ+ε) vanishes. Hence Qspin(Mσ

μ ) = 0.

3. Spin-quantization commutes with reduction

Let (M, ω, Φ) be a compact Hamiltonian K-manifold which is Spin pre-
quantized. We are looking to a geometric interpretation of the multiplicity,
denoted mμ, of the representation V K

μ into QK
spin(M).

The main result of this paper is the following.

Theorem 3.1. Let σ be the smallest face of the Weyl chamber so that
Φ(M) ∩ t∗+ ⊂ σ. For μ ∈ ̂K, we have

mμ =

{

0 if μ /∈ σ;
Qspin(Mσ

μ ) if μ ∈ σ.

In this section, we introduce the main tools needed for the proof of
Theorem 3.1.

In Section 3.1, we recall the notion of transversally elliptic symbols.
In Section 3.2, we recall the Witten’s way of localization the Riemann–

Roch character [21]. We recall in Proposition 3.8, the criterium observed
in [22] for the vanishing of the invariant part of the localized Riemann–
Roch character.

In Section 3.3, we recall an induction formula proved in [21, 22] for the
localized Riemann–Roch character.

In Section 3.4, we prove Theorem 3.1 when K is a torus1. We give by the
same way a proof of Theorem 2.10 which is essential to the definition of the
Spin-quantization of the (possibly singular) reduced spaces Mσ

μ .

1This situation was already handled in [22].



402 P.-E. PARADAN

3.1. Elliptic and transversally elliptic symbols. Here we give the basic
definitions from the theory of transversally elliptic symbols (or operators)
defined by Atiyah–Singer in [1]. For an axiomatic treatment of the index
morphism see Berline–Vergne [7, 8] and Paradan–Vergne [23]. For a short
introduction see [21].

Let X be a compact K-manifold. Let p : TX → X be the projec-
tion, and let (−,−)X be a K-invariant Riemannian metric. If E0, E1 are
K-equivariant complex vector bundles over X , a K-equivariant morphism
h ∈ Γ(TX , hom(p∗E0, p∗E1)) is called a symbol on X . The subset of all
(x, v) ∈ TX where2 h(x, v) : E0

x → E1
x is not invertible is called the charac-

teristic set of h, and is denoted by Char(h).
In the following, the “product” of a symbol h by a complex vector bundle

F → X , is the symbol
h ⊗ F

defined by h⊗F (x, v) = h(x, v)⊗ IdFx from E0
x ⊗Fx to E1

x ⊗Fx. Note that
Char(h ⊗ F ) = Char(h).

Let TKX be the following subset of TX :

TKX = {(x, v) ∈ TX , (v, XX (x))X = 0, for all X ∈ k} .

A symbol h is elliptic if h is invertible outside a compact subset of TX (i.e.,
Char(h) is compact), and is K-transversally elliptic if the restriction of h to
TKX is invertible outside a compact subset of TKX (i.e., Char(h) ∩ TKX
is compact). An elliptic symbol h defines an element in the equivariant K-
theory of TX with compact support, which is denoted by KK(TX ), and the
index of h is a virtual finite-dimensional representation of K, that we denote
IndexK

X (h) ∈ R(K) [2–5].
Let

R−∞
tc (K) ⊂ R−∞(K)

be the R(K)-submodule formed by all the infinite sum
∑

μ∈ ̂K
mμV K

μ where

the map μ ∈ ̂K �→ mμ ∈ Z has at most a polynomial growth. The R(K)-
module R−∞

tc (K) is the Grothendieck group associated to the trace class
virtual K-representations: we can associate to any V ∈ R−∞

tc (K), its trace
k → Tr(k, V ) which is a generalized function on K invariant by conjugation.
Then the trace defines a morphism of R(K)-module

(3.1) R−∞
tc (K) ↪→ C−∞(K)Ad

where C−∞(K)Ad is the space of generalized function on K, which are invari-
ant by conjugation.

A K-transversally elliptic symbol h defines an element of KK(TKX ), and
the index of h is defined as a trace class virtual representation of K, that
we still denote IndexK

X (h) ∈ R−∞
tc (K).

2The map h(x, v) will be also denote h|x(v)
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Remark that any elliptic symbol of TX is K-transversally elliptic, hence
we have a restriction map KK(TX ) → KK(TKX ), and a commutative
diagram

(3.2) KK(TX ) ��

IndexK
X

��

KK(TKX )

IndexK
X

��
R(K) �� R−∞

tc (K) .

Using the excision property, one can easily show that the index map
IndexK

U : KK(TKU) → R−∞
tc (K) is still defined when U is a K-invariant

relatively compact open subset of a K-manifold (see [21, Section 3.1]).
Suppose that M is a K-manifold equipped with an invariant almost com-

plex structure J . Let us recall the definition of the Riemann–Roch character
RRK

J (M,−).
The complex vector bundle (T∗M)0,1 is K-equivariantly identified with

the tangent bundle TM equipped with the complex structure J . We work
with the Hermitian structure on (TM, J) defined by : (v, w) := Ω(v, Jw) −
iΩ(v, w) for v, w ∈ TM . The symbol

Thom(M, J) ∈ Γ
(

TM, hom(p∗(∧even
C

TM), p∗(∧odd
C

TM))
)

at (m, v) ∈ TM is equal to the Clifford map

(3.3) cm(v) : ∧even
C TmM −→ ∧odd

C TmM,

where cm(v).w = v ∧ w − ι(v)w for w ∈ ∧•
C
TmM . Here ι(v) : ∧•

C
TmM →

∧•−1
C

TmM denotes the contraction map. Since cm(v)2 = −‖v‖2Id, the map
cm(v) is invertible for all v �= 0. Hence the characteristic set of Thom(M, J)
corresponds to the 0-section of TM .

Let E be a K-equivariant complex vector bundle over M . It is a classical
fact that the principal symbol of the Dolbeault–Dirac operator

√
2(∂E +∂

∗
E)

is equal to the following elliptic symbol3

cE := Thom(M, J) ⊗ E,

see [6, Prop. 3.67]. Since M is compact, the symbol cE is elliptic and then
defines an element of the equivariant K-group of TM .

Definition 3.2. The Riemann–Roch character RRK
J (M, E) ∈ R(K) is

defined equivalently

• as the topological index of cE ∈ KK(TM), or
• as the analytical index of the Dolbeault–Dirac operator

√
2(∂E +∂

∗
E).

3Here we use an identification T∗M � TM given by an invariant Riemannian metric.
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3.2. Localization of the Riemann–Roch character. Let (M, ω, Φ) a
compact Hamiltonian K-manifold Spin-prequantized by (L̃, J) where J is a
compatible almost complex structure on M . The Riemann–Roch character
attached to J is just denoted RRK(M,−).

By definition the Spin-quantization of (M, ω, Φ) is

QK
spin(M) := RRK(M, L̃) ∈ R(K).

We recall the Witten’s deformation of the Riemann–Roch character [21,
22]. We use in all this paper an isomorphism k∗  k defined by a K-invariant
scalar product on k∗. In order to simplify the notation, we use the same
symbol for ξ ∈ k∗ and its corresponding element in k.

The moment map Φ is seen as en equivariant map from M to k. We define
the Kirwan vector field on M :

(3.4) κm = (Φ(m))M (m), m ∈ M.

Definition 3.3. The symbol cL̃ = Thom(M, J) ⊗ L̃ pushed by the vector
field κ is the symbol cκ

L̃
defined by the relation

cκ
L̃
|m(v) = Thom(M, J) ⊗ L̃|m(v − κm)

for any (m, v) ∈ TM .

Note that cκ
L̃
|m(v) is invertible except if v = κm. If furthermore v belongs

to the subset TKM of tangent vectors orthogonal to the K-orbits, then
v = 0 and κm = 0. Indeed κm is tangent to K · m while v is orthogonal. So
we note that (m, v) ∈ Char(cκ

L̃
) ∩ TKM if and only if v = 0 and κm = 0.

Since κ is the Hamiltonian vector field of the function −1
2 ‖Φ‖2, the set of

zeros of κ coincides with the set Cr(‖Φ‖2) of critical points of ‖Φ‖2. Finally
we have

Char(cκ
L̃
) ∩ TKM  Cr(‖Φ‖2)

=
⋃

β∈B
K ·

(

Mβ ∩ Φ−1(β)
)

︸ ︷︷ ︸

Cβ

,

where B is the subset of the Weyl chamber defined by the relation β ∈ B ⇐⇒
Mβ ∩ Φ−1(β) �= ∅. Recall the well-known fact.

Lemma 3.4. The set B is finite.

Proof. Let ΦT : M → t∗ be the Hamiltonian action of a maximal torus of
K. We have similarly Cr(‖ΦT ‖2) = ∪β∈BT

Mβ ∩ Φ−1
T (β), with BT ⊂ t∗. We

see that B ⊂ BT , hence it is sufficient to prove that BT is finite. Let us
consider the collection B′ of polytopes of t∗ which arise as the image by ΦT

of a connected component of the fixed point set MH , where H is a subtorus
of T . It is easy to see that B′ is finite, and we checks in [20, Section 6.1]
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that any β ∈ BT is equal to the orthogonal projection of 0 ∈ t∗ to the affine
space generated by some Δ ∈ B′. Hence �BT ≤ �B′ is finite. �

We are interested to the restriction cκ
L̃
|U of the elliptic symbol on an

invariant open subset U ⊂ M . Note that the set Char(cκ
L̃
|U ) ∩ TKU 

Cr(‖Φ‖2) ∩ U is compact when

(3.5) ∂U ∩ Cr(‖Φ‖2) = ∅.
When (3.5) holds we denote

(3.6) QK
Φ (U) := IndexK

U (cκ
L̃
|U ) ∈ R−∞

tc (K)

the equivariant index of the transversally elliptic symbol cκ
L̃
|U .

For any β ∈ B, we consider a relatively compact open invariant neighbor-
hood Uβ of Cβ such that Cr(‖Φ‖2) ∩ Uβ = Cβ .

Definition 3.5. We denote

QK
β (M) ∈ R−∞

tc (K)

the index of the transversally elliptic symbol cκ
L̃
|Uβ

.

Everything can be defined if we replace the line bundle L̃ by any equi-
variant complex vector bundle E. We can consider the pushed symbol cκ

E ,
and the localized Riemann–Roch characters

RRK
Φ (U, E) := IndexK

U (cκ
E |U ) and RRK

β (M, E) := IndexK
Uβ

(cκ
E |Uβ

).

A direct application of the excision property [21, Section 4] gives that

(3.7) QK
spin(M) =

∑

β∈B
QK

β (M).

If we work with RRK
Φ (U, E), we have

(3.8) RRK
Φ (U, E) =

∑

β∈B∩Φ(U)

RRK
β (U, E).

The decomposition (3.7) and (3.8) will be used in the next chapters when
one want to compute the multiplicity, denoted [QK

spin(M)]K , of the trivial
representation in QK

spin(M). We have
[QK

spin(M)
]K

=
∑

β∈B

[QK
β (M)

]K
.

and we finish this section by recalling a criterium under which one has
[QK

β (M)]K = 0.
Let β be a non-zero element in k: let Tβ ⊂ K be the torus generated by β.

For m ∈ Mβ , let αm
1 , . . . , αm

p be the real infinitesimal weights for the action
of Tβ on the fibers of TmM (we equip the fibers of TmM/TmMβ with a
Tβ-invariant complex structure).
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Definition 3.6. Let us denote by Trβ|TmM | the following positive number

Trβ |TmM | :=
l

∑

i=1

|〈αm
i , β〉|.

Note that m ∈ Mβ �→ Trβ |TmM | is constant along a connected compo-
nent of Mβ . We see also that the expression Trβ|E| is well defined for any
H-equivariant real vector bundle E → P , when β ∈ h acts trivially on P .

Example 3.7. The map β ∈ k �→ Trβ |k| is invariant under the adjoint
action. When β belongs to the Weyl chamber, one has Trβ |k| = 2(ρ, β).
Note that Trβ |k| ≤ 2‖ρ‖ ‖β‖ for any β ∈ k.

We have proved in [22, Proposition 3.11] the following useful criterium.

Proposition 3.8. Let β �= 0 in B. The multiplicity of the trivial represen-
tation in QK

β (M) is equal to zero if

(3.9) ‖ β ‖2 + 1
2Trβ |TmM | > Trβ |k|, ∀ m ∈ Mβ ∩ Φ−1(β).

Remark 3.9. Note that condition (3.9) is equivalent to

(3.10) ‖ Φ(m) ‖2 + 1
2TrΦ(m)|TmM | > TrΦ(m)|k|, ∀ m ∈ Cβ .

If the critical set Cβ decomposes in a finite disjoint union of closed K-
invariant subset Cβ = ∪jC

j
β , we consider invariant open neighborhood U j

of Cj
β such that U j

β ∩ Cr(‖Φ‖2) = Cj
β , and we define

QK
Cj

β

(M) := IndexK
Uj

β

(cκ|
Uj

β
) ∈ R−∞

tc (K).

Then the generalized character QK
β (M) is equal to the sum

∑

j QK
Cj

β

(M) and

Proposition 3.8 tells us that [QK
Cj

β

(M)]K = 0 if (3.10) holds on Cj
β .

3.3. Induction formulas. Let H be a compact connected Lie group. Let
H · a be a coadjoint orbit. Let (N, ωN , ΦN ) be an Hamiltonian H-manifold
which is not assumed to be compact. But we assume that ΦN is proper near
H · a: the pullback Φ−1

N (C) is compact if C ⊂ h∗ is a small-enough compact
invariant neighborhood of H · a.

Let Ha be the stabilizer of a ∈ h∗, and let Ya be a symplectic slice near
H · a: Ya is a Ha-invariant symplectic manifold of N such that ΦN (Ya) ⊂ h∗a
and such that H ×Ha Ya is diffeomorphic to an invariant open neighborhood
of Φ−1

N (H · a). We will work with the following moment map on Ya:

ΦYa = ΦN |Ya − a.

Let N × H · a be the Hamiltonian H-manifold, with moment map
Φ(n, ξ) = ΦN (n) − ξ. Let

RRH
0 (N × H · a, − )
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be the Riemann–Roch character localized near the compact subset Φ−1(0) ⊂
N × H · a. Let

RRHa
0 (Ya, − )

be the Riemann–Roch character localized near the compact subset Φ−1
Ya

(0) =
Φ−1

N (a) ⊂ Ya.
Let Ind

H

Ha
: R−∞(Ha) → R−∞(H) be the induction map. If E and F

are respectively H-equivariant complex vector bundles on N and H · a, we
denote E � F their product. We have proved in [21, Proposition 7.10] (see
also [22, Proposition 4.13]) the following induction formula.

Proposition 3.10. For any equivariant complex vector bundles E → N and
F → H · a, we have

RRH
0 (N × H · a, E � F ) = Ind

H

Ha

[

RRHa
0 (Ya, E|Ya ⊗ F |{a})

]

.

The last Proposition gives in particular that

(3.11)
[

RRH
0 (N × H · a, E � F )

]H
=

[

RRHa
0 (Ya, E|Ya ⊗ F |{a})

]Ha

.

3.4. The torus case. Let T be a compact torus, and let (M, ω, Φ) be a
compact Hamiltonian T -manifold which is Spin-prequantized by the data
(J, L̃). We suppose that J is compatible with ω. The irreducible representa-
tion of T is parametrized by the lattice ̂T ⊂ t∗: at each μ ∈ ̂T we associate
the one-dimensional representation Cμ.

We write QT
spin(M) =

∑

μ∈ ̂T
mμCμ, and one wants to show that the multi-

plicity mμ is equal to the Spin-quantization of the (possibly singular) reduced
space Mμ := Φ−1(μ)/T .

We fix once for all μ ∈ ̂T . And we apply the Witten deformation procedure
to the Hamiltonian T -manifold (M, ω, Φ−μ) which is Spin-prequantized by
(J, L̃ ⊗ C−μ). We have

mμ =
∑

β∈Bμ

[

RRT
β (M, L̃ ⊗ C−μ)

]T
,

where Bμ parametrizes the critical points of ‖Φ − μ‖2. Here the criterion
(3.9) holds for any non-zero β since the Lie algebra t is abelian. We have
then

mμ =
[

RRT
0 (M, L̃ ⊗ C−μ)

]T
.

In particular, mμ = 0 if μ /∈ Φ(M). When μ ∈ Φ(M), we consider a small
neighborhood U of Φ−1(μ) ⊂ M so that U ∩ Cr(‖Φ − μ‖2) = Φ−1(μ). We
know then that

(3.12) mμ =
[

RRT
Φ−μ(U, L̃|U ⊗ C−μ)

]T
.
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3.4.1. First case: μ is a regular value of Φ. We consider the orbifold
reduced space Mμ = Φ−1(μ)/T which is equipped with a canonical symplec-
tic form ωμ. Let RR(Mμ,−) be the Riemann–Roch character attached to a
compatible almost complex structure. We prove in [21, Section 7.1] that for
any complex vector bundle E → U

(3.13)
[

RRT
Φ−μ(U, E)

]T
= RR(Mμ, E)

where E = E|Φ−1(μ)/T is the induced orbifold bundle on Mμ. If we take
E = L̃|U ⊗ C−μ on sees (thanks to Lemma 2.7) that

L̃μ = (L̃|Φ−1(μ) ⊗ C−μ)/T

is an orbifold line bundle which Spin-prequantizes (Mμ, ωμ), and (3.13) gives
together with (3.12) that

mμ = RR(Mμ, L̃μ) = Qspin(Mμ).

3.4.2. Second case: μ is a not (necessarily) a regular value of Φ. Let−→
Δ ⊂ t∗ be the rational vector subspace generated by {a − b |a, b ∈ Φ(M)}.
We work here with a weight μ ∈ Φ(M) so that the polytope Φ(M) lives in
the affine subspace μ+

−→
Δ. Let tΔ ⊂ t be the subspace orthogonal to Δ, and

let TΔ ⊂ T be the corresponding subtorus.

Lemma 3.11. The group TΔ acts trivially on M and on the line bundle
L̃ ⊗ C−μ.

Proof. See the proof of Lemma 2.9. �
Let T ′ ⊂ T be another subtorus such that T = TΔ×T ′: the dual of its Lie

algebra t′ is identified with
−→
Δ ⊂ t∗. We look now at (M, ω) as a Hamiltonian

T ′-manifold with moment map

Φ′ := Φ − μ : M −→ −→
Δ = (t′)∗.

The T ′-equivariant line bundle L̃′ := L̃⊗C−μ Spin-prequantizes the Hamil-
tonian T ′-manifold (M, ω, Φ′). Let U be a small neighborhood of Φ′−1(0) in
M . The generalized character RRT

Φ−μ(U, L̃|U ⊗ C−μ) belongs to R−∞(T ′)
and corresponds to the localized Riemann–Roch character

RRT ′
Φ′(U, L̃′|U ).

We deform the moment map Φ′ in Φ′ − ε where ε is a small element in−→
Δ. We have proved in [22, Proposition 4.14] the following

Lemma 3.12. • If ε is small enough, the critical set of ‖Φ′ − ε‖2

does not intersect ∂U , so that the localized Riemann–Roch character
RRT ′

Φ′−ε(U,−) is well defined.
• We have RRT ′

Φ′(U, L̃′|U ) = RRT ′
Φ′−ε(U, L̃′|U ) if ε is small enough.
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Now we are left to the computation of mμ =
[

RRT ′
Φ′−ε(U, L̃′|U )

]T ′
when

ε ∈ −→
Δ is small enough. We start with the decomposition

RRT ′
Φ′−ε(U, L̃′|U ) =

∑

β∈Bε

RRT ′
Φ′−ε,β(U, L̃′|U )

where RRT ′
Φ′−ε,β(U,−) denotes the Riemann–Roch character localized near

the compact subset Uβ ∩(Φ′)−1(β+ε). We have proved in [22, Lemma 4.16]
the following

Lemma 3.13. If ε is small enough we have
[

RRT ′
Φ′−ε,β(U, L̃′|U )

]T ′
= 0 when

β �= 0.

At ε ∈ −→
Δ small enough and generic we associate the orbifold Mμ+ε =

Φ−1(μ + ε)/T ′, which is equipped with the orbifold line bundle

L̃μ+ε =
(

L̃|Φ−1(μ+ε) ⊗ C−μ

)

/T ′.

Let RR(Mμ+ε,−) be the Riemann–Roch map associated to a compatible
almost complex structure. If we use (3.13) together with the Lemmas 3.12
and 3.13 we get:

Theorem 3.14. The multiplicity mμ is equal to the Riemann–Roch number
RR(Mμ+ε, L̃μ+ε) ∈ Z where ε ∈ −→

Δ is small and generic.

We prove here that the quantity RR(Mμ+ε, L̃μ+ε) does not depend of the
choice of ε small and generic: it is the definition of the Spin quantization,
denoted Qspin(Mμ), of the (possibly singular) reduced space Mμ.

3.4.3. Proof of Theorem 2.10. The same kind of proof work for Theo-
rem 2.10. We consider an invariant relatively compact neighborhood Uσ,μ of
Φ−1

σ (μ) = Φ−1(μ + ρ − ρσ) in the slice Yσ so that Cr(‖Φσ − μ‖2) ∩ Uσ,μ =
Φ−1

σ (μ). Thanks to Lemmas 3.12 and 3.13, we know that the Riemann–Roch
character

RR
Z′

σ
Φσ−μ−ε(Uσ,μ, L̃′) ∈ R−∞(Z ′

σ)

are well defined for ε ∈ −→
Δ small enough, and they do not depend of the

choice of ε. If ε1, ε2 ∈ −→
Δ are small enough regular values of Φσ − μ we get

thanks to (3.13) that

RR(Mσ
μ+ε1

, L̃σ
μ+ε1

) =
[

RR
Z′

σ
Φσ−μ−ε1

(Uσ,μ, L̃′)
]Z′

σ

=
[

RR
Z′

σ
Φσ−μ−ε2

(Uσ,μ, L̃′)
]Z′

σ

= RR(Mσ
μ+ε2

, L̃σ
μ+ε2

).
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4. Proof of Theorem 3.1

Let (M, ω, Φ) be a compact Hamiltonian K-manifold which is Spin prequan-
tized. Let σ be the smallest face of the Weyl chamber so that Φ(M)∩t∗+ ⊂ σ.
Let μ be a dominant weight, and let mμ be the multiplicity of V K

μ in
QK

spin(M).
Let Oμ be the coadjoint orbit K · (μ + ρ). Since the dual representation

(V K
μ )∗ can be realized4 as QK

spin(Oμ), we know by the shifting trick that

mμ =
[QK

spin(M ×Oμ)
]K

.

Now we work with the Hamiltonian K-manifold N = M × Oμ with
moment map ΦN (m, ξ) = Φ(m) − ξ. The Witten’s deformation on N gives
QK

spin(M×Oμ) =
∑

β∈Bμ QK
β (M×Oμ) where Bμ is a finite set parametrizing

Cr(‖ΦN‖2), and QK
β (M ×Oμ) is an index of a transversally elliptic operator

localized near Cβ = K(Nβ ∩ Φ−1
N (β)).

We have then

(4.1) mμ =
∑

β∈Bμ

[QK
β (M ×Oμ)

]K
.

We remark that 0 does not appears in Bμ when σ �= t∗+, since μ+ρ /∈ Φ(M).
The main point of this section is the following:

Proposition 4.1. • If μ /∈ σ, the identity (3.10) holds on Cβ for any
β ∈ Bμ. Hence mμ = 0.

• If μ ∈ σ, the identity (3.10) holds on Cβ for any β �= −ρσ. Then

mμ =
[QK

−ρσ
(M ×Oμ)

]K
.

When σ = t∗+, we have ρσ = 0 and Proposition 4.1 tell us that the
multiplicity mμ id equal to

[QK
0 (M ×Oμ)

]K for any μ ∈ ̂K. In particular,
mμ = 0 if μ + ρ /∈ Φ(M).

When σ �= t∗+ and μ ∈ σ, we precise Proposition 4.1 as follow. The
generalized character QK−ρσ

(M×Oμ) is defined as the index of a transversally
elliptic symbol living in a neighborhood of

C−ρσ = K
(

Nρσ ∩ Φ−1
N (−ρσ)

)

.

Let Kρσ be the stabilizer subgroup of ρσ. Let W (Kρσ) ⊂ W be the Weyl
subgroup of Kρσ . A direct computation gives that

C−ρσ =
⋃

w̄∈W (Kρσ )\W
C−ρσ ,w̄

4Oμ is the coadjoint orbit Oμ with the opposite symplectic structure.
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with C−ρσ ,w̄ = K
(

Mρσ ∩ Φ−1(w(μ + ρ) − ρσ) × {w(μ + ρ)}). We are par-
ticularly interested in the component5

C−ρσ ,ē := K
(

Mρσ ∩ Φ−1(μ + ρ − ρσ) × {μ + ρ}) .

Let us denote C−ρσ ,out the union of the C−ρσ ,w̄ for w̄ �= ē. We have a decom-
position

(4.2) C−ρσ = C−ρσ ,ē ∪ C−ρσ ,out

into closed invariant disjoint subsets. Then the generalized character
QK−ρσ

(M ×Oμ) is equal to the sum

QK
−ρσ,ē(M ×Oμ) + QK

−ρσ,out(M ×Oμ)

where both terms correspond to the specialization of the transversally elliptic
symbol to the neighborhood of each part of the decomposition (4.2).

Proposition 4.2. Suppose that σ �= t∗+ and that μ ∈ σ. The identity (3.10)
holds on the subset C−ρσ ,out, and then

mμ =
[QK

−ρσ ,ē(M ×Oμ)
]K

.

Note that C−ρσ ,ē = ∅ if μ + ρ − ρσ /∈ Φ(M). At this stage we know then
that mμ = 0 if μ+ρ−ρσ does not belongs to the image of the moment map.

4.1. Proofs of Propositions 4.1 and 4.2. Let N = M × Oμ and let
‖ΦN‖2 : N → R be the square of the moment map. Recall that we denote
by σ the smallest face of the Weyl chamber so that Φ(M) ∩ t∗+ ⊂ σ.

We want to prove that for any n = (m, ξ) ∈ Cr(‖ΦN‖2) the vector β :=
Φ(m) − ξ satisfies

(I) ‖ β ‖2 +1
2Trβ |TnN | ≥ Trβ |k|.

Afterwards we will discuss the case of equality in (I).
The tangent space TξOμ is equal to the kξ-module k/kξ: then

Trβ |TξOμ| = Trβ |k| − Trβ|kξ|
= Trβ |k|,

since β belongs to the abelian subalgebra kξ. Using that Trβ |TnN | =
Trβ |TmM | + Trβ |k|, we see that (I) is equivalent to

(II) ‖ β ‖2 + 1
2Trβ |TmM | ≥ 1

2Trβ |k|.
The module k/km is naturally a subspace of TmM . Let Em be a

Km-equivariant supplement to k/km in TmM . Using that Trβ |TmM | =
Trβ |k/km| + Trβ |Em|, we see that (II) is equivalent to

(III) ‖ β ‖2 + 1
2Trβ |Em| ≥ 1

2Trβ |km|.
5ē is the class of the neutral element in W (Kρσ )\W .
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Since the moment map Φ is equivariant, the Lie algebra stabilizer km is
contained in Lie algebra stabilizer kΦ(m). Finally, we see that (I) ⇔ (II) ⇔
(III) are induced by the following inequality

(IV) ‖ β ‖2≥ 1
2Trβ |kΦ(m)|.

Lemma 4.3. • For any (m, ξ) ∈ Cr(‖ΦN‖2) the vector β := Φ(m) − ξ
satisfies the inequality (IV).

• Let (m, ξ) ∈ Cr(‖ΦN‖2) such that β := Φ(m)−ξ satisfies the ‖ β ‖2 =
1
2Trβ |kΦ(m)|. Then there exists a face τ of σ such that

(1) μ ∈ τ
(2) (m, ξ) belongs to the K-orbit of Φ−1(μ + ρ − ρτ ) × {μ + ρ} ⊂ N .
(3) β belongs to the coadjoint orbit K · (−ρτ ).

Proof. Up to the multiplication of (m, ξ) by an element of K, we can assume
that β ∈ t∗. Up to the multiplication of n = (m, ξ) by an element of the
stabilizer subgroup Kβ := {k ∈ K |Ad(k)β = β} we can assume that n =
(m, w(μ + ρ)) with m ∈ Mβ and Φ(m) = β + w(μ + ρ) ∈ t∗.

Up to the multiplication of n = (m, w(μ + ρ)) by an element of the Weyl
group, we can assume that Φ(m) belongs to the Weyl chamber: let τ be the
face of σ containing Φ(m) so that KΦ(m) = Kτ .

So we have to prove that for Φ(m) = a ∈ τ and w ∈ W the vector
β = a − w(μ + ρ) satisfies the relation

(4.3) ‖ β ‖2 ≥ 1
2Trβ |kτ |.

The inequality (4.3) is the consequence of three basic inequalities. The
first one is given by the following:

Lemma 4.4. Let a ∈ t∗+ and b in the interior of t∗+. We have

(4.4) ‖a − wb‖ ≥ ‖a − b‖
for any w ∈ W , and (4.4) is strict unless w ∈ W (Ka).

Proof. In order to prove (4.4), we consider the function ξ ∈ K · b �−→ ‖ξ −
a‖2 = ‖a‖2 + ‖b‖2 − 2(ξ, a). The inclusion K · b ↪→ k∗ is the moment map
relatively to the K-action. The function ξ ∈ K · b �→ (ξ, a), which is the
a-th component of the moment map, has a unique local maximum on the
coadjoint orbit K · b which is reached on an orbit of the stabilizer subgroup
Ka (see [11, Theorem 5]). Let r be a subspace such that k = ka⊕r. For X ∈ r,
we compute (eX · b, a) = (b, a) + ([X, b], a) + 1

2([X, [X, b]], a) + o(‖X‖2). The
term ([X, b], a) vanishes and ([X, [X, b]], a) = −([X, b], [X, a]) ≥ −Cst‖X‖2

since a, b belongs to the Weyl chamber and ka ∩ r = kb ∩ r = {0}. Then we
have proved that the local (hence global) minimum of k · b �→ ‖a − k · b‖ is
reached on Ka · b.
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Finally, we have proved that ‖a−wb‖ ≥ ‖a− b‖ for any w ∈ W , and that
the equality ‖a−wb‖ = ‖a−b‖ implies that wb ∈ Ka ·b, i.e., w ∈ W (Ka). �

The second inequality is

‖μ + ρ − a‖ ≥ (μ + ρ − a, ρτ )
‖ρτ‖(4.5)

=
1

‖ρτ‖ (μ, ρτ )
︸ ︷︷ ︸

≥0

+
1

‖ρτ‖ (ρ − ρτ − a, ρτ )
︸ ︷︷ ︸

=0

+
1

‖ρτ‖(ρτ , ρτ )

≥ ‖ρτ‖.
Note that (4.5) is strict unless μ ∈ τ and μ+ρ−a = ρτ . The third inequality
is

(4.6) 1
2Trβ |kτ | ≤ ‖ρτ‖ ‖β‖.

See Example 3.7. If we put (4.4), (4.5) and (4.6) together we have for β =
a − w(μ + ρ) the inequalities

‖ β ‖2 ≥‖ β ‖ ‖a − (μ + ρ)‖ ≥‖ β ‖ ‖ρτ‖ ≥ 1
2Trβ |kτ |,

and the equality ‖ β ‖2 = 1
2Trβ |kτ | holds if and only if we have the equality

in (4.4), (4.5) and (4.6).
However, equalities in (4.4) and (4.5) gives that w ∈ W (Kτ ), μ ∈ τ and

a = μ + ρ − ρτ ∈ τ . Then (m, w(μ + ρ)) = w(m′, μ + ρ) with Φ(m′) =
w−1(μ + ρ − ρτ ) = μ + ρ − ρτ and β = μ + ρ − ρτ − w(μ + ρ) = −wρτ . We
have then

1
2Trβ |kτ | = 1

2Trρτ |kτ | = ‖ρτ‖2,

which is the equality in (4.6). �
Since the strict inequality in (IV) implies the strict inequality in (I),

Lemma 4.3 tells us that the identity (3.10) holds on Cβ for all β ∈ Bμ when
μ /∈ σ. When μ ∈ σ the identity (3.10) holds

(1) on Cβ for the β which are not in K · (−ρτ ), where τ is a face of σ
such that μ ∈ τ ,

(2) on C−ρσ ,w̄ for all the w̄ �= ē.
The proof of Propositions 4.1 and 4.2 is completed by

Lemma 4.5. Let τ be a face of σ, distinct from σ, such that μ ∈ τ . Then
the identity (3.10) holds for Cβ for β = −ρτ .

Proof. Let β = −ρτ . The critical set C−ρτ := K(Nρτ ∩ Φ−1
N (−ρτ )) admits

the decomposition C−ρτ = ∪w∈W (Kτ )\W C−ρτ ,w̄ where

C−ρτ ,w̄ = K
(

Mρτ ∩ Φ−1(w(μ + ρ) − ρτ ) × {w(μ + τ)}) .

We know then from Lemma 4.3 that the strict inequality in (IV) holds on
C−ρτ ,w̄ for w̄ �= ē.
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Let us consider now the case where m ∈ Mρτ ∩ Φ−1(μ + ρ − ρτ ). We
know that the equality holds in (IV) for (m, μ + ρ). The equality in (I) for
(m, μ + ρ) is then equivalently to

(4.7) Trβ |Em| + Trβ |kτ/km| = 0.

Let us prove that (4.7) can never happen. The image of m by the moment
map belongs to τ . Then m belongs to the symplectic slice Yτ ⊂ M . A
neighborhood m is then K ×Kτ Yτ . So the tangent space at m decomposes
in two manners

TmM = k/kτ ⊕ TmYτ

= k/km ⊕ Em.

If (4.7) holds we see that Trβ |TmYτ | = Trβ|Em|+ Trβ |kτ/km| = 0, which
means that β = −ρτ acts trivially on the tangent space TmYτ . Hence, it
would implies that ρτ acts trivially on the manifold Yτ . Since Yσ ⊂ Yτ , the
action of ρτ on the principal slice Yσ is also trivial.

We know that [kσ, kσ] acts trivially on Yσ: since ρσ ∈ [kσ, kσ], the infinite-
simal action of ρσ is trivial on Yσ. Finally if (4.7) holds, we have that

ρτ/σ := ρτ − ρσ ∈ Rσ

acts trivially on Yσ. Note that ρτ/σ is a sum of weights, which are orthogonal
to τ .

The moment polytope of M , Δ(M), which is equal to the closure of
Φ(Yσ) ⊂ σ is a convex polytope. Since the action of ρτ/σ is trivial on Yσ we
knows that the map ξ ∈ Δ(M) �→ (ξ, ρτ/σ) is constant.

Finally, we can use the last information in our hands: μ + ρ− ρτ = Φ(m)
belongs to Δ(M). Then for ξ ∈ Δ(M) we have

(ξ, ρτ/σ) = (μ + ρ − ρτ , ρτ/σ) = 0,

since μ + ρ − ρτ ∈ τ and ρτ/σ ∈ τ⊥. It is contradictory with the fact that
(ξ, ρτ/σ) = (ξ, ρτ ) > 0 for any ξ ∈ σ.

We have finally proved that when (m, ξ) ∈ Nρτ ∩ Φ−1
N (−ρτ ) the vector

β = Φ(m) − ξ satisfies ‖ β ‖2 + 1
2Trβ|TmM | > Trβ |k|. �

4.2. Computation of the multiplicities when σ = t∗
+. In this section,

we suppose that the moment polytope Δ(M) = Φ(M) ∩ t∗+ intersects the
interior of the Weyl chamber. Let Δ(M)o ⊂ (t∗+)o be the relative interior of
the moment polytope. We know that mμ = [QK

0 (M ×Oμ)]K for any μ ∈ ̂K.

In Definition 2.11, we have defined the number Q(M
t∗+
μ ) has follows. If μ+ρ /∈

Δ(M)o, we set Q(M
t∗+
μ ) = 0. If μ + ρ ∈ Δ(M)o, we consider, for ε generic

and small enough, the orbifold reduced space M
t∗+
μ+ε := Φ−1(μ + ε + ρ)/T
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and the orbifold line bundle

L̃μ+ε =
(

L̃|Φ−1(μ+ε+ρ) ⊗ C−μ

)

/T.

The Spin-quantization Qspin(M
t∗+
μ ) ∈ Z is defined as the Riemann–Roch

number

RR(M
t∗+
μ+ε, L̃μ+ε).

The main result of this section is the following

Theorem 4.6. The number
[QK

0 (M ×Oμ)
]K is equal to Qspin(M

t∗+
μ ).

Proof. When μ+ρ /∈ Δ(M), we see that QK
0 (M×Oμ) = 0 since the moment

map on M × Oμ does not goes through 0 ∈ k∗. We have then [QK
0 (M ×

Oμ)]K = Qspin(M
t∗+
μ ) = 0.

We consider now a dominant weight μ such that μ + ρ ∈ Δ(M). Let Y =
Φ−1((t∗+)o) be the symplectic slice with its canonical symplectic form ωY .
The action of T on (Y, ωY ) is Hamiltonian with moment map ΦY := Φ|Y −ρ.
We know that L̃|Y Spin-prequantizes (Y, ωY , ΦY ) (see Lemma 2.8).

We consider the Riemann–Roch character RRT
0 (Y, L̃|Y ⊗ C−μ) which is

localized near (ΦY − μ)−1(0) ⊂ Y . Thanks to the induction formula (3.11),
we know that

mμ =
[QK

0 (M ×Oμ)
]K

=
[

RRK
0 (M ×Oμ, L̃ � C[−μ])

]K

=
[

RRT
0 (Y, L̃|Y ⊗ C−μ)

]T

=
[

RRT
Φ

Y
−μ(U, L̃|U ⊗ C−μ)

]T
,

where U is a small neighborhood of Φ−1
Y (μ) in Y .

The computation of the expression [RRT
Φ

Y
−μ(U, L̃|U ⊗C−μ)]T is identical

to what we have done in Section 3.4. For ε small enough and generic, we get

[RRT
Φ

Y
−μ(U, L̃|U ⊗ C−μ)]T = [RRT

Φ
Y
−μ−ε(U, L̃|U ⊗ C−μ)]T

= RR(M
t∗+
μ+ε, L̃μ+ε)

= Qspin(M
t∗+
μ ).

When μ + ρ does not belong to the relative interior of Δ(M), we
can choose ε so that μ + ρ + ε /∈ Δ(M), and then RR(M

t∗+
μ+ε, L̃μ+ε) =

Qspin(M
t∗+
μ ) = 0. �
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4.3. Computation of the multiplicities when σ �= t∗
+. Let μ ∈ σ so

that μ + ρ − ρσ ∈ σ. In the rest of this section the term β is −ρσ.

We have proved in the previous section that mμ =
[

QK
β,ē(M ×Oμ)

]K

where the character QK
β,ē(M ×Oμ) corresponds to the Riemann–Roch char-

acter RRK
β,ē(N, L̃N ) localized with the Kirwan vector field near

Cβ,ē = K
(

Mβ ∩ Φ−1(μ + ρ − ρσ) × {μ + ρ}
)

⊂ Cr(‖ΦN‖2).

Look now at N as a Kβ-Hamiltonian manifold. Let Φ′
N : N → k∗β be the

corresponding moment map. We are interested in the component6

C ′
β := Kβ(Nβ ∩ (Φ′

N )−1(β))

= Nβ ∩ Φ−1
N (β)

=
⋃

w̄∈W (Kβ)\W
Kβ

(

Mβ ∩ Φ−1(w(μ + ρ) − ρσ) × {w(μ + ρ)}
)

of the critical set Cr(‖Φ′
N‖2). Let us consider the Riemann–Roch character

RR
Kβ

β,ē (N,−)

localized with the Kirwan vector field near

C ′
β,ē := Kβ

(

Mβ ∩ Φ−1(μ + ρ − ρσ) × {μ + ρ}
)

⊂ C ′
β .

We have proved in [21, Th. 6.16, Cor. 6.17] that

(4.8) RRK
β,ē(N, L̃N ) = Ind

K

Kβ

(

RR
Kβ

β,ē (N, L̃N ) ∧•
C

(k/kβ)C

)

,

where Ind
K

Kβ
: R−∞(Kβ) → R−∞(K) is the induction map, and (k/kβ)C is

the complexification of the real Kβ-module k/kβ . It gives that

mμ =
[

RRK
β,ē(N, L̃N )

]K
=

[

RR
Kβ

β,ē(N, L̃N ) ∧•
C

(k/kβ)C

]Kβ

.

Let Yσ be the principal symplectic slice of M . Recall that the subgroup
[Kσ, Kσ] acts trivially on Yσ and that β = −ρσ belongs to [kσ, kσ]: hence
Φ−1(μ + ρ − ρσ) ⊂ Yσ ⊂ Mβ and then

C ′
β,ē = Kβ

(

Φ−1(μ + ρ − ρσ) × {μ + ρ}) .

We are looking at a Kβ-invariant neighborhood U of C ′
β,ē in Nβ . We

consider the open neighborhood K ×Kσ Yσ of Φ−1(μ + ρ − ρσ) in M . Since
Kβ ∩ Kσ = T , one sees that

Kβ ×T Yσ ⊂ (K ×Kσ Yσ)β

6In the second equality, we use that β is central in kβ , and that Φ′
N = ΦN on Nβ .
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is a Kβ-invariant neighborhood of Yσ in Mβ . Then we can take

U := (Kβ ×T Yσ) × Kβ(μ + ρ) ⊂ Nβ.

We look at U as a Hamiltonian Kβ-manifold with moment map ΦU ([k, y],
ξ) = kΦ(y)−ξ ∈ k∗β . The set C ′

β,ē is a connected component of critical points
of Cr(‖ΦU‖2), and we consider the Riemann–Roch character

RR
Kβ

β (U ,−)

localized with the Kirwan vector field near C ′
β,ē ⊂ U .

Let N be the normal bundle of U in N . We have N = N1 �N2 where N1

is the normal bundle of Kβ ×T Yσ in K ×Kσ Yσ and N2 is the normal bundle
of Kβ(μ + ρ) in K(μ + ρ). One computes that N1 = Kβ ×T N1 where

N1 =
∑

α>0

α|σ =0, (α,β) =0

k(α),

and that N2 = Kβ ×T N2 where

N2 =
∑

α<0

(α,β) =0

k(α).

We decompose N in the sum of the polarized bundle N+,β and N−,β. Sim-
ilarly let NC the complexified bundle, and its polarized β-positive part N+,β

C
.

Let S(N+,β
C

) =
∑

k≥0 Sk(N+,β
C

) be the symmetric algebra vector bundle
associated to N+,β

C
. Let us compute the rank n+,β of the polarized vector

bundle vector N+,β. We have

n+,β = � {α > 0 | (α, β) > 0 and α|σ �= 0} + � {α < 0 | (α, β) > 0}
= � {α > 0 | (α, β) > 0 } + � {α < 0 | (α, β) > 0} (1)

=
1
2

dim(K/Kβ).

In (1) we use that α|σ = 0 imposes (α, ρ − ρσ) = 0. Then (α, β) =
−(α, ρ) < 0 for α > 0. Let detN+,β be the determinant line bundle associ-
ated to N+,β.

Thanks to the results in [21, Section 6.3], we know that

(4.9) RR
Kβ

β,e(N, L̃N ) = (−1)n+,βRR
Kβ

β

(

U , L̃N |U ⊗ detN+,β ⊗ S(N+,β
C

)
)

.



418 P.-E. PARADAN

Hence we know that mμ =
[

RRK
β,ē(N, L̃N )

]K
is equal to (−1)n+,β times

[

RR
Kβ

β

(

U , L̃N |U ⊗ detN+,β ⊗ S(N+,β
C

)
)

∧•
C (k/kβ)C

]Kβ

=
∑

k≥0

[

RR
Kβ

β

(

U , L̃N |U ⊗ detN+,β ⊗ Sk(N+,β
C

)
)

∧•
C

(k/kβ)C

]Kβ

.

(4.10)

Let E → U be any Kβ-equivariant Hermitian vector bundle. Since β acts
trivially on U we can look at the Lie derivative LE(β) on E. Then 1

iLE(β)
defines for each x ∈ U a Hermitian endomorphism of Ex. Let us denote
introduce Tian–Zhang’s positivity condition (see (4.2) in [27]): we write

1
i
LE(β) > 0,

when all its eigenvalue on the fibers of E are strictly positive.
We made in [21, Lemma 9.4] the crucial observation

Lemma 4.7. If 1
iLE(β) > 0, then

[

RR
Kβ

β (U , E)
]Kβ

= 0.

Let us compute the Lie action L(β) on the fibers of the bundle L̃N |U ⊗
detN+,β ⊗Sk(N+,β

C
). It is easy to check (see [22]) that on L̃N |U ⊗detN+,β

the Lie action 1
iL(β) is equal to

‖β‖2 + 1
2Trβ |N |.

Look now at the Lie derivative L(β) on ∧•
C
(k/kβ)C. As a T -module

∧•
C
(k/kβ)C is equal to

∏

(α,β) =0

(1 − eiα) =
∏

(α,β)<0

(1 − eiα)
∏

(α,β)>0

(1 − eiα)

= (−1)1/2 dim(K/Kβ)e−iδβ

(
∏

(α,β)>0

(1 − eiα)
)2

with δβ =
∑

(α,β)>0 α. Note that e−iδβ defines a character of the group Kβ

that we denote C−δβ
. We have proved then that

∧•
C(k/kβ)C = (−1)n+,β C−δβ

⊕ R

where the Lie derivative 1
iL(β) on C−δβ

is equal to −(δβ , β) = −Trβ |k| and
the Lie derivative 1

iL(β) on the kβ-module R is > −Trβ|k|.
Since ‖β‖2 + 1

2Trβ |N | = Trβ |k|, we can conclude that the Lie derivative
1
iL(β)

(1) is equal to zero on L̃N |U ⊗ detN+,β ⊗ C−δβ
,

(2) is > 0 on L̃N |U ⊗ detN+,β ⊗ R,
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(3) is > 0 on L̃N |U ⊗ detN+,β ⊗ Sk(N+,β
C

) ⊗ ∧•
C
(k/kβ)C for any k ≥ 1.

With Lemma 4.7, we see that the sum (4.10) restricts to

(−1)n+,β

[

RR
Kβ

β

(

U , L̃N |U ⊗ detN+,β
)

⊗ C−δβ

]Kβ

.

At this stage we have proved that the multiplicity mμ is equal to

(4.11)
[

RR
Kβ

β

(

U , L̃N |U ⊗ detN+,β
)

⊗ C−δβ

]Kβ

.

On the symplectic slice (Yσ, ωσ), we have the moment map Φσ−μ relative
to the action of Zσ. The data (Yσ, ωσ, Φσ − μ) is Spin-prequantized by the
line bundle L̃|Yσ ⊗ C−μ. Let

(4.12) RRZσ
0 (Yσ, L̃|Yσ ⊗ C−μ) ∈ R−∞(Zσ)

be the Riemann–Roch character localized near (Φσ −μ)−1(0) = Φ−1(μ+ρ−
ρσ) ⊂ Yσ.

We conclude the computation of the multiplicity mμ with the

Lemma 4.8. We have

mμ =
[

RR
Kβ

β

(

U , L̃N |U ⊗ detN+,β
)

⊗ C−δβ

]Kβ

=
[

RRZσ
0 (Yσ, L̃|Yσ ⊗ C−μ)

]Zσ

(1)

= Qspin(Mσ
μ ). (2)

Proof. Let us prove that (1) is a consequence of the induction formula of
Proposition 3.10. First, we notice that the data (Yσ, ωσ, Φσ −μ, L̃|Yσ ⊗C−μ)
is naturally equipped with an action of the maximal torus, but with a trivial
action of T/Zσ. So the generalized character (4.12) coincides with

RRT
0 (Yσ, L̃|Yσ ⊗ C−μ) ∈ R−∞(T ).

Let us consider the Hamiltonian Kβ-manifold U := (Kβ ×T Yσ) ×
Kβ(μ + ρ). Since Kβ acts trivially on ρσ the map ξ �→ ξ − ρσ realizes a
Kβ-equivariant symplectomorphic between the coadjoint orbits Kβ(μ + ρ)
and

O := Kβ(μ + ρ − ρσ).

The manifold U is then symplectomorphic to (Kβ ×T Yσ) × O. Moreover,
one sees that the generalized Riemann–Roch character RR

Kβ

β (U ,−) coin-
cides with the Riemann–Roch character

RR
Kβ

0 ((Kβ ×T Yσ) ×O,−)

localized on C0 := Kβ(Φ−1(μ + ρ − ρσ) × {μ + ρ − ρσ}).
Since Kβ ∩ Kσ = T , the Hamiltonian T -manifold Yσ corresponds to the

symplectic slice of the Hamiltonian Kβ-manifold Kβ ×T Yσ.
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The bundle detN+,β over (Kβ ×T Yσ) × O is equal to the product of
Kβ ×T Cδ1 → Kβ ×T Yσ with Kβ ×T Cδ2 → O, where

δ1 =
∑

α>0

(α,β)>0

α and δ2 =
∑

α<0

(α,β)>0

α.

The line bundle L̃N is equal to the product of L̃ with K ×T C−μ. Then the
restrictions of the lines bundle detN+,β and L̃N to Yσ × {μ + ρ − ρσ} are
respectively equal to, the trivial line bundle Cδ1+δ2 = Cδβ

, and to the line
bundle L̃|Yσ ⊗ C−μ.

Finally, the induction formula of Proposition 3.10 gives that

RR
Kβ

β

(

U , L̃N |U ⊗ detN+,β
)

= RR
Kβ

0 ((Kβ ×T Yσ) ×O, L̃N |U ⊗ detN+,β)

= Ind
Kβ

T

(

RRT
0 (Yσ, L̃|Yσ ⊗ C−μ) ⊗ Cδβ

)

= Ind
Kβ

T

(

RRT
0 (Yσ, L̃|Yσ ⊗ C−μ)

)

⊗ Cδβ
.

Hence
[

RR
Kβ

β

(

U , L̃N |U ⊗ detN+,β
)

⊗ C−δβ

]Kβ

=
[

RRT
0 (Yσ, L̃|Yσ ⊗ C−μ)

]T

=
[

RRZσ
0 (Yσ, L̃|Yσ ⊗ C−μ)

]Zσ

.

Equality (2), i.e.,
[

RRZσ
0 (Yσ, L̃|Yσ ⊗ C−μ)

]Zσ

= Qspin(Mσ
μ ),

has been proved in Section 3.4. �
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sité Montpellier 2

E-mail address: Paul-Emile.Paradan@math.univ-montp2.fr

Received 03/04/2010, accepted 09/12/2011


