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CLASSIFICATION OF MULTIPLICITY FREE
HAMILTONIAN ACTIONS OF ALGEBRAIC TORI

ON STEIN MANIFOLDS

Ivan Losev

A Hamiltonian action of an algebraic torus on a symplectic complex
manifold is said to be multiplicity free if a general orbit is a lagrangian
submanifold. To any multiplicity free Hamiltonian action of an alge-
braic torus T ∼= (C×)n on a Stein manifold X we assign a certain
5-tuple consisting of a Stein manifold Y , an étale map Y → t∗, a set
of divisors on Y and elements of H2(Y, Z)⊕n, H2(Y, C). We show that
X is uniquely determined by this invariants. Furthermore, we describe
all 5-tuples arising in this way.
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1. Introduction

Let X be a smooth manifold with a symplectic form ω and T be a compact
torus acting on X by symplectomorphisms. We recall that the action T : X
is called Hamiltonian if there are n = dimT functions H1, . . . , Hn ∈ C∞(X)
such that
(H1) {Hi, Hj} = 0, where {·, ·} denotes the Poisson bracket on X induced

by ω.
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296 I. LOSEV

(H2) The skew-gradient of Hi coincides with the velocity vector field of ξi,
where ξ1, . . . , ξn is a basis of the Lie algebra t of T .

It follows from (H1), (H2) that all functions Hi are T -invariant.
To a Hamiltonian action T : X one assigns a map μ : X → t∗, 〈μ(x), ξi〉 =

Hi(x), called the moment map. This map is T -equivariant and satisfies the
following identity:

〈dxμ(v), ξ〉 = ω(ξ∗x, v),∀x ∈ X, v ∈ TxX, ξ ∈ t,

where ξ∗x denotes the velocity vector in x induced by ξ. Note that the
moment map is defined uniquely up to the addition of a scalar. The manifold
X (or, more precisely, the quadruple (X, ω, T : X, μ)) is called a Hamiltonian
T -manifold.

We remark that, by (H1), (H2), any T -orbit in X is an isotropic submani-
fold. When a general orbit is lagrangian, the Hamiltonian T -manifold X is
called multiplicity free or, shortly, MF (one also uses the term symplectic
toric manifold).

The most crucial result concerning compact MF Hamiltonian T -manifolds
is their classification due to Delzant [D]. If T0 is the inefficiency kernel of
the action T : X (that is, the set of all elements of T acting trivially on
X), then the action T/T0 : X is Hamiltonian with moment map p ◦ μ. Here
μ is the moment map for the action T : X and p is the natural projection
t∗ → (t/t0)∗. So it is enough to deal with effective actions. By the famous
result of Atyah [A], and Guillemin-Sternberg [GS] the image μ(X) is a
convex polytope in t∗ (provided X is compact). This image is called the
moment polytope of X. Delzant proved that a compact MF Hamiltonian
T -manifold is uniquely determined by its moment polytope. He also found a
necessary and sufficient condition for a convex polytope in t∗ to be a moment
polytope of a compact MF Hamiltonian manifold.

The goal of the present paper is to solve a similar classificational problem
for algebraic tori actions on complex symplectic manifolds (with holomorphic
symplectic form). The definition of a (MF) Hamiltonian action is generalized
to the complex case directly (the functions Hi are now taken from the algebra
O(X) of holomorphic functions). Let T denote an algebraic torus (C×)n

and X a complex Hamiltonian T -manifold. Since the moment map μ is
holomorphic, the manifold X is not compact unless the action T : X is
trivial. In this paper we concentrate on the case when X is a Stein manifold.

The data we use to classify MF Hamiltonian Stein T -manifolds are more
complicated than in the Delzant case. Below X is a MF Stein Hamiltonian
T -manifold.

By the results of [S], there is a categorical quotient Y for the action
T : X, which is a Stein space (see Section 2 for details). Let π : X →
Y be the quotient map. It turns out that in our case Y is even a Stein
manifold (Lemma 2.7). Let ψ be a unique holomorphic map Y → t∗ such
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that μ = ψ ◦ π. One can show that ψ is étale (= a local isomorphism),
Lemma 2.7. The manifold Y and the map ψ are the first two pieces of data
we need.

For a one-dimensional subgroup T0 ⊂ T we denote by ˜D(T0) the set of
all connected components X0 of the fixed-point submanifold XT0 such that
there is x ∈ X0 with Tx = T0. Set D(T0) := {π(X0), X0 ∈ ˜D(T0)}. We
will see below (assertion 2 of Lemma 2.7) that any element of D(T0) is a
connected component of ψ−1(α + t⊥0 ), where α ∈ t∗ and t⊥0 denotes the
annihilator of t0 in t∗. Set D := ∪T0D(T0). The set of divisors D is the third
piece of data we need.

The fourth piece of data is a system of certain elements of H2(Y, Z). To
a character χ of T we assign the coherent sheaf Oχ on Y defined by

Oχ(U) = {f ∈ O(π−1(U))|t.f = χ(t)f,∀t ∈ T}.

We will see (assertion 3 of Lemma 2.7) that Oχ is a line bundle for any χ. Let
us fix a basis χ1, . . . , χn in the character group X(T ) of T . Since Y is Stein,
we see that the groups Pic(Y ) and H2(Y, Z) are naturally isomorphic. So we
get n cohomology classes ci := [Oχi ] ∈ H2(Y, Z). We remark that χ �→ [Oχ]
is not a group homomorphism despite for any characters χ1, χ2 there is a
natural map Oχ1 ⊗ Oχ2 → Oχ1+χ2 .

Finally, we will see (assertion 4 of Lemma 2.7) that there is a holomorphic
2-form ω0 on Y such that ω = π∗(ω0) − dα, where α is a T -invariant holo-
morphic 1-form on X satisfying α(ξ∗) = Hξ for any ξ ∈ t; here and below
Hξ = 〈μ, ξ〉. Moreover, the class c0 of ω0 in the second DeRham cohomology
group H2

DR(Y ) is well-defined. Since Y is Stein, we know that H2
DR(Y ) is

naturally isomorphic to H2(Y, C), see [O], Theorem 4.16.
So to any MF Hamiltonian Stein T -manifold X we have assigned the

5-tuple YX := (Y, ψ,D, (ci)n
i=1, c0). Now let Y := (Y, ψ,D, (ci)n

i=1, c0),Y ′ :=
(Y ′, ψ′,D′, (c′

i)
n
i=1, c

′
0) be two 5-tuples of the indicated form. By a morphism

between Y,Y ′ we mean an étale holomorphic map ϕ : Y → Y ′ satisfying the
following conditions:

(a) ψ = ψ′ ◦ ϕ.
(b) D is the set of connected components of

⋃

Y ′
0∈D′ ϕ−1(Y ′

0).
(c) ci := ϕ∗(c′

i), i = 0, n.

Let X, X ′ be MF Hamiltonian Stein T -manifolds (recall that T is assumed
to act effectively on both X, X ′) and ω, ω′, μ, μ′ be the corresponding sym-
plectic forms and the moment maps. By a Hamiltonian morphism between
X and X ′ we mean a holomorphic T -equivariant map f : X → X ′ such
that f∗(ω′) = ω, μ = μ′ ◦ f . Since ψ, ψ′ are both étale, we easily see that
a Hamiltonian morphism f : X → X ′ gives rise to a unique morphism
Yf : YX → YX′ such that Yf ◦ π = π′ ◦ Yf , where π, π′ denote the quotient
maps for X, X ′.
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Theorem 1.1. Let X, X ′ be such as above. For any morphism ϕ : YX →
YX′ there is a Hamiltonian morphism f : X → X ′ with Yf = ϕ. In particu-
lar, X, X ′ are isomorphic if YX ,YX′ are.

We note that such a morphism f is not necessarily unique. For example,
shifting f by an element of T , we again get a Hamiltonian morphism with
desired properties.

Our next task is to give a characterization of 5-tuples Y of the form YX .
We say that a 5-tuple Y is Delzant if it enjoys the following property:

(Del) Let y be an arbitrary point of Y , Y 1
0 , . . . , Y k

0 be all elements of D
containing y and T 1

0 , . . . , T k
0 be the corresponding connected one-

dimensional subgroups of T . Then there is a neighborhood U of y
in Y such that any element of D intersecting U is one of Y i

0 , i = 1, k.
Furthermore, the primitive elements of X(T i

0)
∗ ↪→ X(T )∗, i = 1, k,

(each of them is defined uniquely up to the multiplication by ±1)
constitute a part of a basis in the lattice X(T )∗.

Theorem 1.2. Suppose a 5-tuple Y is Delzant. Then there is a MF Hamil-
tonian Stein T -manifold X such that Y = YX .

Let us describe the structure of this paper. Section 2 is devoted to some
general results concerning MF Hamiltonian Stein T -manifolds. Firstly, we
recall results of Snow concerning general reductive group actions on Stein
manifolds. Then we establish the slice theorem 2.4, which asserts that locally
a MF Hamiltonian Stein manifold looks like a model manifold introduced
in Example 2.2. Using this theorem we prove some structure results on MF
Hamiltonian Stein manifolds, Lemmas 2.6, 2.7. In Section 3 we establish a
certain sheaf of groups Aut on the quotient Y of a MF Hamiltonian Stein
manifold X. Its sections are Hamiltonian automorphisms that preserve the
quotient map. This sheaf is important because it controls gluing of local
pieces of MF Hamiltonian manifolds together. The main goal of the section
is to determine the sheaf Aut up to an isomorphism (Lemmas 3.2, 3.3). In
Section 4 we prove Theorem 1.1. The most crucial part of its proof is the
special case of the identity morphism ϕ. To examine this case we consider
a natural action of H1(Y,Aut) on the set of all isomorphism classes of MF
Hamiltonian Stein T -manifolds X such that YX = (Y, ψ,D, •, •). Finally, in
Section 5 we prove Theorem 1.2. The main idea of the proof is to consider
certain local lagrangian sections of the quotient map.

2. Generalities on MF Hamiltonian Stein T -manifolds

Until a further notice T denotes an algebraic torus (C×)n and X is a Stein
T -manifold.

By [S], there is a Stein space Y and a surjective T -invariant holomorphic
map π : X → Y satisfying the following conditions:
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(A) U ⊂ Y is open iff π−1(U) is,
(B) π∗(O(U)) = O(π−1(U))T for any open subset U ⊂ Y .

Such Y, π have the following universal property: for any Stein space Z and a
T -equivariant holomorphic map ρ : X → Z there is a unique T -equivariant
holomorphic map ρ : Y → Z such that ρ = ρ ◦ π. Therefore Y is called the
categorical quotient for the action T : X and π is called the quotient map.
It is known, see [S], that any fiber of π contains a unique closed T -orbit.

In the sequel we will need the following notion.

Definition 2.1. A subset X0 ⊂ X is called saturated if it consists of fibers
of the quotient map, that is X0 = π−1(π(X0)).

If X0 is open and saturated, then π(X0) is open.
Now we quote the Snow slice theorem. Let x ∈ X be a point with closed

T -orbit. Let T0 denote the stabilizer Tx of x in T and V denote the slice
T0-module TxX/t∗x. Here and below t∗x denotes the tangent space to the
orbit Tx. Then there is an open saturated neighborhood U of x in X and
an open T0-stable neighborhood U0 of 0 in V such that U is T -equivariantly
isomorphic to the homogeneous bundle T ∗T0 U0. By definition, T ∗T0 U0 is
the orbit space for the action T0 : T × U0 given by t0.(t, u) = (tt−1

0 , t0u), t ∈
T, u ∈ U, t0 ∈ T0; it is easy to see that T ∗T0 U0 is a Stein manifold. Let π0
denote the quotient map for the action T0 : V . From property (B) above it
follows that π(U) ∼= π0(U0) and the quotient π : U → π(U) is identified with
T ∗T0 U0 → π0(U0). Since U is saturated, we see that U0 is also saturated
(w.r.t. T0).

Now we would like to produce some examples of MF Hamiltonian Stein
T -manifolds.

Example 2.2. Fix a connected subgroup T0 ⊂ T , characters χ1, . . . , χk of
T0 forming a basis of X(T0), and λ ∈ t∗. To these data we assign an MF
Hamiltonian Stein manifold X as follows. Let V be a vector space with
a basis v1, . . . , vk. Define the linear action T0 : V by t.vi = χi(t)vi, i =
1, k, t ∈ T0. Let X0 be the homogeneous vector bundle T ∗T0 V . There is a
subtorus T1 ⊂ T such that T1 × T0 = T . For any such T1 we have X0 =
T1 × V . Choose a basis θ1, . . . , θl, l = n − k, in X(T1), set βi := dθi

θi
=

d(ln θi). One can regard β1, . . . , βl as a basis in t∗1 . Let βi, i = 1, l, be the
basis in t1 dual to βi. Further, let v1, . . . , vk be the basis of V ∗ dual to
v1, . . . , vk. Set X := T ∗X0. We can consider θi, β

i, vj , v
j as functions on

X and these functions form a coordinate system. The manifold X has the
natural symplectic form ω = −dα, where α :=

∑l
i=1 βid ln θi +

∑k
i=1 vidvi.

The form α is T -invariant and the action T : X is Hamiltonian with moment
map μ(x) = λ +

∑l
i=1 βi(x)βi +

∑k
i=1 vi(x)vi(x)d(lnχi). One can easily

check that α, μ do not depend on choices we have made (i.e., the choices of
vi, T1, θj). We also note that the action T : X is effective and α(ξ∗) = Hξ.
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Let us check that the 5-tuple YX is well-defined and compute it. We have
Y ∼= C

n, β1, . . . , βl, v1v
1, . . . , vkv

k being coordinates. The map ψ is identical.
We easily get D = {Di, i = 1, k}, where Di is the affine hyperplane of the
form viv

i = const. containing λ.
Choose χ ∈ X(T ), χ =

∑l
i=1 aiθi +

∑k
i=1 biχi. Then Oχ is a trivial line

bundle on Y generated by (
∏l

i=1 θai
i )(

∏k
i=1 u

|bi|
i ), where ui = vi if bi � 0 and

vi otherwise. So c1, . . . , cn are well-defined and equal to zero for any choice
of a basis in X(T ).

Since ω is exact and H2(Y, C) = 0, we see that c0 in this case is well-
defined and equals 0.

We remark that the 5-tuple YX is Delzant.
We call X a model Hamiltonian T -manifold associated with T0, λ,

χ1, . . . , χk. By a base point in X we mean any point from a unique closed
T -orbit in X0 (i.e., any point x ∈ X0 with v1(x) = . . . = vk(x) = 0).

Definition 2.3. Let X1, X2 be MF Hamiltonian Stein T -manifolds, x1 ∈
X1, x2 ∈ X2 be points with closed T -orbits. We say that the pairs (X1, x1),
(X2, x2) are locally equivalent if there are saturated open neighborhoods
Ui, i = 1, 2, of xi in Xi and a Hamiltonian isomorphism ϕ : U1 → U2 such
that ϕ(x1) = x2.

Till the end of the section X is an arbitrary MF Hamiltonian Stein
T -manifold.

Theorem 2.4 (symplectic slice). Let x ∈ X be a point with closed orbit,
T0 = Tx, λ = μ(x). Then the following assertions hold:

(1) T0 is connected, and the set of weights of T0 in TxX has the form
{0, χ1, . . . , χk,−χ1, . . . ,−χk}, where χ1, . . . , χk is a basis of the char-
acter group X(T0).

(2) Let X ′ be a model Hamiltonian T -manifold associated with T0, λ,
χ1, . . . , χk and x′ its base point. Then the pairs (X, x) and (X ′, x′)
are locally equivalent.

Proof. Note that TxX is a symplectic T0-module. There is a trivial isotropic
T0-submodule t∗x ⊂ TxX. Therefore TxX/(t∗x)∠, where ∠ denotes the skew-
orthogonal complement, is also a trivial T0-module. Set V := (t∗x)∠/t∗x.
This is a symplectic T0-module of dimension dimX − 2 dim Tx = 2 dimT0.
By Snow’s slice theorem, the action T0 : V is effective. It follows that the
weights of T ◦

0 in V have the form χ1, . . . , χk,−χ1, . . . ,−χk, where χ1, . . . , χk

form a basis of X(T ◦
0 ). Therefore T ◦

0 is a maximal torus in Sp(V ) whence
T0 = T ◦

0 . So assertion (1) is proved.
In view of the Snow slice theorem, the proof of assertion (2) is com-

pletely analogous to that of the symplectic slice theorem from [L] (where
it was proved for Hamiltonian reductive group actions on affine algebraic
varieties). �
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Remark 2.5. Now let X1, X2 be model Hamiltonian T -manifolds corre-
sponding to the data (T 1

0 , λ1, χ1
1, . . . , χ

1
k1

), (T 2
0 , λ2, χ2

1, . . . , χ
2
k2

) and x1, x2 be
the corresponding base points. Then the pairs (X1, x1), (X2, x2) are locally
equivalent iff the following conditions are satisfied:

(1) T 1
0 = T 2

0 whence k1 = k2.
(2) λ1 = λ2.
(3) After reordering χ2

1, . . . , χ
2
k2

, we get χ1
i = ±χ2

i , i = 1, k1.

Below we will often use a certain open submanifold of X associated with
a “general enough” element ζ ∈ X(T ) ⊗ R.

We say that ζ ∈ X(T ) ⊗ R is general for X if ζ is nonzero on the Lie
algebra of Tx for any x ∈ X. Since the set of all Tx is countable, we see that
such ζ does exist. By Xζ we denote the subset of X consisting of all points
x satisfying the following two conditions:

(1) Tx = {1}.
(2) Let τ : C

× → T be a one-parameter subgroup. If limt→0 τ(t).x exists
in X, then 〈ζ, τ〉 > 0 (we note that the l.h.s of the previous inequality
is always nonzero because im τ lies in the stabilizer of limt→0 τ(t).x).

The following lemma describes some properties of the subset Xζ ⊂ X.

Lemma 2.6. (1) If X0 is an open saturated Stein subset of X, then
(X0)ζ = Xζ ∩ X0.

(2) The set Xζ is open in X.
(3) For any y ∈ Y the intersection Xζ ∩ π−1(y) is a single T -orbit. In

particular, the map π|Xζ : Xζ → Y is surjective.
(4) The map π|Xζ : Xζ → Y is a locally trivial principal T -bundle whence

the quotient map for the action T : Xζ .

Proof. Since π−1(π(x)) ⊂ X is a closed subset, for a one parameter subgroup
τ the following three conditions are equivalent:

(1) limt→0 τ(t).x exists in X.
(2) limt→0 τ(t).x exists in π−1(π(x)).
(3) limt→0 τ(t).x exists in X0.

Hence the first assertion.
Using the Snow slice theorem we reduce assertions (2), (3) to the case

when X is a model Hamiltonian manifold (we do not need a symplectic
structure here). Let T0, χ1, . . . , χk, λ, θi, β

i, vj , v
j be such as in Example 2.2.

Write the decomposition ζ =
∑l

i=1 aiθi +
∑k

i=1 biχi. The condition that ζ
is general implies that all bi are nonzero. Thanks to Remark 2.5, we may
assume that all bi are positive. In this case one checks directly that Xζ =
{x ∈ X|vi(x) �= 0, i = 1, k} and assertions (2), (3) follow.
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Assertion (4) follows from the observation that there is a holomorphic
slice S for the action T : Xζ at any point of Xζ and the restriction of π to
S is an open embedding S ↪→ Y . �

Lemma 2.7. (1) Y is smooth and ψ is étale.
(2) Let T0 be a one-dimensional connected subgroup of T and Y0 ∈ D(T0).

Then there is α ∈ t∗ such that Y0 is a connected component of ψ−1(α+
t⊥0 ).

(3) For any χ ∈ X(T ) the sheaf Oχ is a line bundle.
(4) There is a 2-form ω0 ∈ Ω2(Y ) and a T -invariant one-form α ∈ Ω1(X)

such that ω = π∗(ω0) − dα, and α(ξ∗) = Hξ for any ξ ∈ t. Moreover,
the class of ω0 in H2

DR(Y ) does not depend on the choice ω0, α.
(5) The 5-tuple YX is well-defined and Delzant.

In the proof below we will need the following elementary fact.

Lemma 2.8. Let y ∈ Y . Then the manifold π−1(U0) is Stein for any open
Stein neighborhood U0 of y in Y .

Proof. Note that π−1(U0) is the fiber product U0 ×Y X. Being a product of
two Stein manifolds, U0 × X is Stein. Since π−1(U0) = U0 ×Y X is closed in
U0 × X, we are done. �

Proof of Lemma 2.7. Everything but assertion (4) follows directly from The-
orem 2.4 and Example 2.2. Let us prove assertion (4).

Let us check that [ω0] ∈ H2
DR(Y ) is unique if ω0 exists. Let ω = π∗(ω1

0) −
dα1 = π∗(ω2

0) − dα2 be two representations of the required form. Then
α0 := α1 − α2 is a T -invariant form such that α0(ξ∗) = 0. Choose a general
for X element ζ ∈ X(T ) ⊗Z R. By assertion 4 of Lemma 2.6, the map
π : Xζ → Y is a principal T -bundle. It follows that there is α0 ∈ Ω1(Y )
such that α0 = π∗(α0) on Xζ and thence on the whole manifold X. So
π∗(ω1

0 − dα0) = π∗(ω2
0) whence ω1

0 − dα0 = ω2
0.

So it remains to prove that there exist ω0, α with the required properties.
It follows from Example 2.2 and Lemma 2.8 that there exists an open

covering Y = ∪i∈IYi satisfying the following conditions:

(1) Both Yi and π−1(Yi) are Stein.
(2) ω|π−1(Yi) = −dαi, where αi is a holomorphic T -invariant 1-form on

π−1(Yi) such that αi(ξ∗) = Hξ.

For a finite subset J ⊂ I set YJ := ∩j∈JYj .
Set αij := αi − αj . This is a T -invariant holomorphic 1-form on π−1(Yij)

with αij(ξ∗) = 0. It follows that there is a (unique) holomorphic 1-form γij

on Yij such that αij = π∗(γij). The collection (γij) is a 1-cocycle in Ω1.
Since Y is Stein, we see that there are holomorphic 1-forms γi on Yi such
that γij = γi − γj . Further, 0 = dαij = π∗(dγij), whence dγi = dγj on Yij .
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Set ω0 := dγi on Yi. Then ω − ω0 coincides with d(αi − π∗(γi)) on π−1(Yi).
Since αi −π∗(γi) = αj −π∗(γj) on π−1(Yj), we may set α = αi −π∗(γi). �
Remark 2.9. Let YX = (Y, ψ,D, (ci)n

i=1, c0). Let us show how to recover
the structure of X in a neighborhood of a point x ∈ X with closed orbit. Let
D1, . . . , Dk be all elements of D containing π(x). For each i there is a unique
affine hyperplane Γi ⊂ t∗ containing ψ(Di). Let ηi, i = 1, k, be a nonzero
element from t lying in the annihilator of the (linear) hyperplane associated
with Γi. Then the Lie algebra of T0 is spanned by η1, . . . , ηk, the character
χi, i = 1, k is a primitive element of X(T0) annihilating all ηj with j �= i (a
character χi is determined uniquely up to changing the sign), and λ = ψ(x).

In the sequel we will need the following proposition that is a special case
of Theorem in Section 1 of [HMP].

Proposition 2.10. Let X be a complex T -manifold such that the action
T : X is effective, Y a Stein manifold, and π : X → Y a holomorphic T -
invariant map. Suppose that there is an open covering Yi, i ∈ I, of Y by Stein
submanifolds such that π−1(Yi) is a Stein T -manifold and π : π−1(Yi) → Yi

is the quotient map. Then X is Stein and π : X → Y is the quotient map.

3. The sheaf Aut

Let T, X, π, YX = (Y, ψ,D, (ci)n
i=1, c0) be such as above. The goal of this

section is to study the sheaf of groups AutX on Y defined as follows: the
group AutX(U) consists of all Hamiltonian morphisms of π−1(U) preserving
π. This sheaf plays a crucial role in the subsequent development, compare
with the proof of the uniqueness part of the Delzant theorem in [W].

At first, we construct a certain morphism of sheafs OY → AutX .
To any function f ∈ O(U), where U is an open subset of X, we assign its

skew-gradient v(f) by

ωx(v(f), η) = 〈η, dxf〉, x ∈ U, η ∈ TxX.

Exponentiating the vector field v(f) we get the local one-parameter sub-
group t �→ exp(tv(f)), t ∈ C, of holomorphic automorphisms of X. Since
v(f).ω = dιv(f)ω + ιv(f)dω (ιv(f) denotes the contraction with v(f)), we see
that v(f) annihilates ω. So exp(tv(f)) preserves ω.

Lemma 3.1. Let U be an open subset of Y and f ∈ O(U) ∼= O(π−1(U))T .
Then the map t �→ exp(2πitv(f)) is a well-defined homomorphism C →
AutX(U) such that the corresponding action C : π−1(U) is holomorphic and
its velocity vector field coincides with 2πiv(f).

Proof. Define two constant sheafs tY , TY on Y with fibers t, T , respectively.
There is the natural epimorphism tY → TY , ξ �→ exp(2πiξ). Also there
is the natural action TY (U) : π−1(U), ϕ.x = ϕ(π(x))x by holomorphic
T -equivariant automorphisms preserving π.
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At first, suppose that the action T : π−1(U) is free. Note that the vector
field v(f) is T -invariant and tangent to all T -orbits (the latter stems from
ω(v(f), ξ∗) = 0 for any ξ ∈ t). So we may consider v(f) as a section of tY .
Applying the exponential map to v(f), we get the one-parameter subgroup
exp(2πitv(f)) of TY (U). So we get the action C : π−1(U), whose velocity
vector field is 2πiv(f). Since v(f) is a Hamiltonian vector field, this action
preserves ω. Finally, by definition, the action preserves π and thus also μ.

Consider the general case. Choose general ζ ∈ X(T ) ⊗Z R. Since the
actions of TY (U) and T commute, it follows from the definition of Xζ that
π−1(U)∩Xζ is stable with respect to the action TY (U) : π−1(U). The action
C : Xζ ∩ π−1(U) constructed above is factorized through a homomorphism
C → TY (U). Since TY (U) acts on π−1(U) by holomorphic automorphisms,
we see that the action C : π−1(U) ∩ Xζ can be extended to an action by
holomorphic symplectomorphisms on the whole set π−1(U). �

So we have the sheaf morphism OY → AutX given by

(3.1) f �→ exp(2πiv(f)).

Lemma 3.2. The morphism of sheafs (3.1) is surjective.

Proof. Again, choose an element ζ ∈ X(T ) ⊗Z R general for X and an open
subset U ⊂ Y . We get a natural embedding AutX(U) ↪→ AutX

ζ
(U) induced

by the restriction to Xζ ∩ π−1(U). This embedding is compatible with mor-
phisms OY → AutX ,OY → AutX

ζ
. So we may replace X with Xζ and

assume that the action T : X is free. Since the question is local, we may
assume X = T ∗(T ) and U is given by (in the notation of Example 2.2)
|βi| < 1, i = 1, n. We need to prove that the map O(U) → AutX(U) is
surjective.

The group AutX(U) ↪→ TY (U) consists of all holomorphic maps Φ =
(Φ1, . . . ,Φn) : U → T such that the map (t, y) �→ (Φ(y)t, y) preserves
ω. Fix a basis θ1, . . . , θn of X(T ). Since U is simply connected, there is
a holomorphic map ϕ = (ϕ1, . . . , ϕn) : U → t such that Φ = exp(2πiϕ). A
direct computation shows that the map (t, y) �→ (Φ(y)t, y) preserves ω iff
∑n

i=1
dΦi
Φi

∧ dyi = 0. The latter is equivalent to the system of equations

∂ϕi

∂βj
=

∂ϕj

∂βi
, i, j = 1, n.

By the Dolbeaux lemma, there is f ∈ O(U) such that ϕi = ∂f
∂βi . It follows

that v(f) = ϕ. The homomorphism O(U) → AutX(U) maps f to Φ. �

Lemma 3.3. The kernel of the epimorphism (3.1) is C ⊕ X(T )∗ (where C

denotes the sheaf of constant functions and X(T )∗ the sheaf of
Hξ, ξ ∈ X(T )∗).
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Proof. Again, it is enough to prove this lemma for X = T ∗(T ), where it is
checked directly. �

Finally, AutX ∼= OY /(C ⊕ X(T )∗). In particular, AutX depends only on
Y and ψ : Y → t∗, so we write Aut instead of AutX .

Corollary 3.4. Hj(Y,Aut) = Hj+1(Y, C ⊕ X(T )∗).

Proof. Since Y is Stein, we have Hj(Y,OY ) = 0 for j > 0. It remains to
consider the long exact sequence associated with 0 → C ⊕ X(T )∗ → OY →
Aut → 0. �

4. Uniqueness

The goal of this section is to prove Theorem 1.1. Throughout this section X
is an MF Hamiltonian Stein T -manifold and YX = (Y, ψ,D, (ci)n

i=1, c0) the
corresponding 5-tuple.

Denote by X the set of all isomorphism classes of multiplicity free Hamil-
tonian Stein T -manifolds with 5-tuples of the form (Y, ψ,D, •, •). Two such
Hamiltonian T -manifolds X, X ′ are supposed to be isomorphic if there is a
Hamiltonian isomorphism ι : X → X ′ such that π′ ◦ ι = π, where π, π′ are
the quotient maps for X, X ′.

There is a natural action of H1(Y,Aut) on X, which we describe now.
Choose c ∈ H1(Y,Aut). Let Yi, i ∈ I, be an open covering and ϕij ∈

Aut(Yij), where Yij := Yi ∩ Yj , be a 1-cocycle representing c. Set

X ′ :=
∐

i∈I

π−1(Yi)/ ∼,

where points xi ∈ π−1(Yi), xj ∈ π−1(Yj) are equivalent if they both lie in
π−1(Yij) and xi = ϕij(xj) (the equality of points in X). Since (ϕij) is a
1-cocycle, we see that ∼ is a genuine equivalence relation. Clearly, X ′ has
a unique structure of a Hamiltonian T -manifold such that the embedding
π−1(Yi) → X ′ is a Hamiltonian morphism. It follows from Proposition 2.10
that X ′ is Stein.

It is clear that if ϕ′
ij is another 1-cycle and X ′′ is obtained by applying ϕ′

ij

to X ′, then X ′′ is obtained from X by applying ϕ′
ijϕij . Now suppose ϕij is

a 1-coboundary, that is, there is a 1-cochain fi ∈ Aut(Yi) with ϕij = fif
−1
j .

Then there is the isomorphism X → X ′ given by fi on π−1(Yi). So X ′

depends up to isomorphism only on c and we write Xc for X ′. Also we note
that Xc1c2 = (Xc1)c2 , so we do have an action of H1(Y,Aut) on X.

The following proposition is the main property of this action.

Proposition 4.1. Suppose X is nonempty. Then the action of H1(Y,Aut)
on X is free and transitive. Further, for any (c′

i)
n
i=0 ∈ H2(C ⊕ X(T )∗) there

is a unique element X ′ ∈ X with YX = (Y, ψ,D, (c′
i)

n
i=1, c

′
0).
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The proof of this proposition will be given at the end of the section
after two auxiliary lemmas. Now we are going to derive Theorem 1.1 from
Proposition 4.1.

Proof of Theorem 1.1. Let X ′ be an MF Hamiltonian Stein T -manifold and
ϕ : Y = (Y, ψ,D, (ci)n

i=1, c0) → YX′ = (Y ′, ψ′,D′, (c′
i)

n
i=1, c

′
0) be an arbi-

trary morphism of 5-tuples. Set X = Y ×Y ′ X ′ and let ˜ψ denote the map
X → X ′ arising from the Cartesian square. There is a unique structure of
a Hamiltonian T -manifold on X such that ˜ψ is a Hamiltonian morphism.
Being a closed submanifold in Y × X ′, the manifold X is Stein. The nat-
ural map π : X → Y is the quotient map. It is clear from construction
that YX = Y.

The previous construction reduces the proof of the theorem to the case
ϕ = id. This case stems from Proposition 4.1. �

Let X ′ be constructed from X by applying c ∈ H1(Y,Aut), π′ denote the
quotient map X ′ → Y , and YX′ = (Y, ψ′,D′, (c′

i)
n
i=1, c

′
0). It is clear from the

construction of X ′ that ψ′ = ψ, D′ = D. Let us examine the behavior of c′
i.

We recall that H1(Y,Aut) ∼= H2(X, C ⊕ X(T )∗) (Corollary 3.4).
Recall also that there is a natural embedding of sheafs Aut ↪→ TY , see

the proof of Lemma 3.1. So one can consider the homomorphism ϕ �→ 〈χ, ϕ〉
from Aut to the constant sheaf with fiber C

×.

Lemma 4.2. Choose χ ∈ X(T ) and let cχ, c′
χ be the classes of the line

bundles Oχ,O′
χ corresponding to X, X ′ in H2(Y, C). Then c′

χ = cχ + 〈χ, c〉.

Proof. Let fij denote the transition functions for the sheaf Oχ on Y . From
the construction of the isomorphism H1(Y,Aut) ∼= H2(Y, C ⊕ X(T )∗) it fol-
lows that we need to check that fij〈χ, ϕij〉 is a system of transition functions
for O′

χ.
Indeed, let O′ be the line bundle on Y with transition functions fij〈χ, ϕij〉.

Let T act on sections of O′ by χ. We may assume that O′ is trivialized over
each Yi. Let σ be a global section of O′. Our claim will follow if we check
that σ can be regarded as a function on X ′ of weight χ. To verify this we
need to check that σi(x) = σj(ϕ−1

ij x), where σi is the trivialization of σ. Here
the subsets π−1(Yij) ⊂ π−1(Yi), π−1(Yj) are assumed to be identified as in
X. But σj(ϕ−1

ij x) = 〈χ, ϕij〉−1σj(x) = σi(x) (the factor fij does not appear
because of the choice of the identification of two different π−1(Yij)). �

Lemma 4.3. Let c ∈ H2(Y, C) ↪→ H2(Y, C ⊕ X(T )∗) ∼= H1(Y,Aut). Then
2πic = c0 − c′

0.

Proof. As in the proof of Lemma 2.7, we may assume that the actions T :
X, T : X ′ are free. There is an O(Y )-valued 1-cochain (fij) such that ϕij =
exp(2πiv(fij)). Let αi be such as in the proof of Lemma 2.7. The 0-cocycle
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in closed 1-forms constructed for ω′ as in the proof of Lemma 2.7 equals
αj − ϕ∗−1

ij (αi) = (αj − αi) + αi − ϕ∗−1
ij (αi). Let us compute αi − ϕ∗−1

ij αi.
We may assume that π−1(Yi) is an open neighborhood in T ∗(T ). Let θi, β

i

be such as in Example 2.2. Then αi =
∑n

i=1 βid(ln θi). The map ϕij equals
(θi, β

i) �→ (θi exp(2πi
∂fij

∂βi ), βi). Thus

αi − ϕ∗−1
ij αi = 2πi

n
∑

k=1

βkd

(

∂fij

∂βk

)

= 2πid

(

n
∑

k=1

βk ∂fij

∂βk
− fij

)

.

So the 1-cocycle in H1(Y,OY /C) corresponding to c′
0 − c0 is given by

2πi(Lfij − fij), where L =
∑n

k=1 Hi
∂

∂Hi
(by abusing notation, ∂

∂Hi
stands

for the lifting of the corresponding vector field on t∗ to Y ). Note that
L(fij + fjk + fki) = 0, for fij + fjk + fki = const. Therefore the classes
of c0 − c′

0 and 2πic in H2(Y, C) coincide. �

Proof of Proposition 4.1. Let us prove that the action of H1(Y,Aut) on X

is transitive. Let X, X ′ ∈ X and π, π′ be the corresponding quotient maps.
By Remark 2.9, there is an open covering Yi, i ∈ I, of Y such that there are
Hamiltonian isomorphisms ιi : π−1(Yi) → π′−1(Yi), i ∈ I, with π′ ◦ ιi = π. So
ιi ◦ ι−1

j is a 1-cocycle in Aut and X ′ = Xc for the corresponding cohomology
class c. It follows that the action is transitive.

Choose X ∈ X and (c′
i)

n
i=0 ∈ H2(Y, C⊕X(T )∗). Let YX = (Y, ψ,D, (ci)n

i=1,
c0). By Lemma 4.2, there is c1 ∈ H2(Y, C ⊕ X(T )∗) such that YXc1

=
(Y, ψ,D, (c′

i)
n
i=1, c

′′
0) for some c′

0 and any two elements c1 with this property
differ by an element of H2(Y, C). Now, by Lemma 4.3, there is a unique ele-
ment c2 ∈ H2(Y, C) such that YXc1c2

= (Y, ψ,D, (c′
i)

n
i=1, c

′
0). This completes

the proof. �

5. Existence

The goal of this section is to prove Theorem 1.2. Thanks to Proposition 4.1,
it is enough to check that for any 5-tuple Y of the form (Y, ψ,D, (ci)n

i=1, c0)
with some ci, i = 0, n, there is X with YX = Y.

Choose an open covering Y =
⋃

i Yi such that Yi is an open disk and
there is an open saturated subset Xi of some model Hamiltonian T -manifold
such that YXi = (Yi, ψ|Yi ,Di, 0, 0), where Di is the set of components of D ∩
Yi, D ∈ D. Let πi : Xi → Yi be the quotient map. Choose some isomorphisms
ιij : π−1

j (Yij) → π−1
i (Yij) of Hamiltonian manifolds such that πi ◦ ιij = πj .

Such isomorphisms exist by Theorem 2.4. We may assume that ιii = id, ιji =
ι−1
ij . Note, however, that, in general, ιijιjkιki �= id. So our task is to modify

these isomorphisms for the cocycle condition to hold.
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There is ζ ∈ X(T ) ⊗ R general for all Xi. Using Example 2.2, one easily
gets that for any i there is a subvariety ˜Yi ⊂ Xζ

i satisfying the following
conditions:

(1) The restriction of πi to ˜Yi is an isomorphism ˜Yi → Yi.
(2) ˜Yi is a lagrangian submanifold of Xi.

Proposition 5.1. For any i, j there is a unique element ϕij ∈ Aut(Yij)
such that

(5.1) ϕij(˜Yi ∩ π−1
i (Yij)) = ιij(˜Yj ∩ π−1

j (Yij)).

Proof. By Lemma 2.6, ιij(π−1
j (Yij)ζ) = π−1

i (Yij)ζ . Since the group Aut(Yij)
depends only on Yij , ψ and does not depend on D, we may assume that
the actions T : Xi, Xj are free. By (1), there is ϕij ∈ TY (Yij) satisfy-
ing (5.1). Note that ϕij∗ξ∗ = ξ∗, ϕ∗

ijHξ = Hξ for any ξ. Therefore for any
x ∈ π−1

i (Yij), η ∈ Tx(π−1
i (Yij)) we have

ωϕij(x)(ξ∗, ϕij∗η) = ∂ϕij∗ηHξ(ϕijx) = ∂ηHξ(x) = ωx(ξ∗, η).

Since both ˜Yi ∩π−1
i (Yij), ιij(˜Yj ∩π−1

j (Yij)) are lagrangian, we easily see that
ϕij is a symplectomorphism. Thus ϕij ∈ Aut(Yij). �

Set ι̃ij := ϕ−1
ij ιij . By the construction of ϕij ,

˜Yi ∩ π−1
i (Yij) = ι̃ij(˜Yj ∩ π−1

j (Yij)).

This equation and (1) imply the cocycle condition ι̃ij ι̃jiι̃ki = id.
Set X := �iXi/ ∼, where points xi ∈ Xi, xj ∈ Xj are equivalent if

πi(xi) = πj(xj) ∈ Yij and xi = ι̃ij(xj). The manifold X is Stein, see Propo-
sition 2.10, it has the natural Hamiltonian structure and the action T : X
is MF. By construction, YX = (Y, ψ,D, (ci)n

i=1, c0) for some ci.

6. An open problem

Here we would like to state an open problem communicated to us by F.
Knop. Until a further notice T is a compact torus. Recall that any MF
compact Hamiltonian T -manifold admits an invariant Kähler structure. This
follows, for example, from the Delzant construction involving a Hamiltonian
reduction.

For a moment, let X be an arbitrary smooth manifold. Recall that a
hyperkähler structure on X is a quadruple (q, I, J, K), where q is a Rieman-
nian metric, and I, J, K are complex structures satisfying the quaternionic
relations IJ = K, JK = I, KI = J and such that the three 2-forms defined
by ωA(u, v) = q(Au, v), A = I, J, K, are symplectic. The basic example here
is X = R

4n considered as an n-dimensional quaternionic vector space H
n.

Note that ωJ + iωK is a holomorphic symplectic form with respect to the
complex structure I.
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Now let X be a hyperkähler manifold equipped with an action of T pre-
serving the hyperkähler structure. This action is called hyperhamiltonian if
it is Hamiltonian for all symplectic forms ωA, A = I, J, K. Let μI , μJ , μK

be the corresponding moment maps. Then one easily checks that μJ + iμK

is a holomorphic map with respect to the complex structure I. If one can
lift the action T : X to a holomorphic action TC : X, where TC denotes the
complexification of T , then X becomes a Hamiltonian TC-manifold.

We say that a hyperhamiltonian action T : X is MF if dimX = 4(dimT −
dim T0), where T0 denotes the inefficiency kernel for the action T : X.

Actually, there is a special class of MF hyperhamiltonian actions stud-
ied extensively in the last 10 years, so-called hypertoric manifolds (or toric
hyperkähler manifolds), see, for example, [BD],[HS],[K],[P]. Let us give
their definition.

There is a reduction procedure for hyperhamiltonian manifolds introduced
in a more general setup in [HKLR]. Choose a connected subgroup T0 ⊂ T .
For α ∈ (t∗0)⊕3, α = (α1, α2, α3), we put X///αT := (μ−1

0 (α))/T0, where
μ = (p ◦ μI , p ◦ μJ , p ◦ μK), p : t∗ → t∗0 is the natural projection. If T0
acts freely on μ−1(α), then X///αT0 is a genuine manifold of dimension
dim X − 4 dim T0 possessing a natural hyperkähler structure. Moreover, X
is a hyperhamiltonian T/T0-manifold. By a hypertoric manifold one means
a reduction of H

n by a subtorus in a maximal torus of Sp(n).

Problem 6.1. Let X be a MF Hamiltonian Stein TC-manifold with sym-
plectic form ω and moment map μ. Does there exist a hyperkähler structure
(q, I, J, K) on X such that

(1) I coincides with the initial complex structure on X.
(2) ωJ = Re ω, ωK = Im ω.
(3) The action T : X is hyperhamiltonian with μJ = Re μ, μK = Im μ.
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