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FIBERED SYMPLECTIC COHOMOLOGY AND THE
LERAY-SERRE SPECTRAL SEQUENCE

ALEXANDRU OANCEA

We define symplectic cohomology groups FHE; ) (E), —00 < a <
b < oo for a class of symplectic fibrations F' — E — B with closed
symplectic base and convex at infinity fiber. The crucial geometric
assumption on the fibration is a negativity property reminiscent of neg-
ative curvature in complex vector bundles. When B is symplectically
aspherical, we construct a spectral sequence of Leray—Serre type con-
verging to FH[’;’b] (E), and we use it to prove new cases of the Weinstein

conjecture.
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1. Introduction

This paper investigates the behavior of symplectic cohomology in a fibered
context. The foundational papers on symplectic (co)homology are [6, 11,
31], and recent developments are presented in [29]. The symplectic fibra-
tions F < E 5 B that we consider have a closed symplectic base (B, B),
a fiber with contact type boundary and possess a coupling form 2. In this
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sense, they are very close to being Hamiltonian [22]. Moreover, they must
satisfy a negativity property reminiscent of negative curvature in Hermitian
vector bundles, as well as a monodromy condition allowing to define parallel
transport along the boundary. We call them in the sequel negative symplec-
tic fibrations (see Definition 2.1). The total space F is a symplectic manifold
with symplectic form w, = 7*G+€€2, € > 0 but the boundary is not necessar-
ily of contact type. It only satisfies a fiberwise convexity condition which is
nevertheless sufficient for us to define symplectic homology and cohomology
groups FHI""(E) and FH}, ,(E), —00 < a < b < +00. Our definition is
a fibered extension of the one of Viterbo [31] — which corresponds to the
case B = {pt.} — and features the same functorial properties.

We call a symplectic manifold (B, 3) symplectically aspherical if we have
[ £*B = 0 for any smooth map f : S — B. We say that (B, ) is monotone
if there exists A > 0 such that ([5], [f]) = AM(c1(T'B), [f]) for any such f. Our

main result is the following.

Theorem A. Let ' — E — B be a negative symplectic fibration, and
assume B to be symplectically aspherical and E monotone. For any field of
coefficients and any choice of real numbers —oo < a < b < 0o, there exists
a cohomology spectral sequence EX(a,b) = FH[’;JJ] (E), r > 2 such that

1
EP(a,b) ~ Hn+p(B;}"H‘fa7b](F)), n=; dim B.

The spectral sequence is canonical and the notation f’Hra b}(F) stands for

a local system of coefficients with fiber FH[*:I b](F). The spectral sequence is
compatible with the truncation morphisms.

The “truncation” morphisms in the statement are canonical morphisms
FH[);J)] (E) — FHF:l/,b'] (E), a > CL/, b > b/

induced by the truncation of the range of the Hamiltonian action.

Let

v = min { |[{(f*c1(TE), [SQ])| : f S E }

be the minimal Chern number of E. The first Chern class of TE' is computed
with respect to an almost complex structure which is compatible with the
symplectic form we. If v # 0, the Floer cohomology groups are only Z/2vZ-
graded and the statement should be understood modulo 2v. We shall not
mention anymore this grading issue in the course of the paper because it is
of a purely formal nature and has no bearing on the flow of the arguments.

The cohomology spectral sequence is constructed only with field coeffi-
cients because the symplectic cohomology groups are defined as an inverse
limit. We need in the proof of Theorem A that the inverse limit functor be
exact, which is true if the terms involved in the limit are finite dimensional
vector spaces ([8], Chapter VIII). On the other hand, the dual homology
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spectral sequence exists with arbitrary coefficients because the symplectic
homology groups are defined as a direct limit, which is an exact functor (see
Remark 4.28). Unless otherwise mentioned, we will use from now on field
coefficients whenever symplectic cohomology groups are involved.

Let us now introduce the following definition. Given a symplectically
aspherical manifold (M, w) with boundary of contact type, we say that OM
is of positive contact type if every positively oriented closed contractible
characteristic y has positive action A, (y) := [p 7*w bounded away from
zero. Here 5 : D?> — M is any smooth extension of v : S' — M (see
Section 4.3 for a discussion of this notion). Our main class of examples is
that of convex exact symplectic manifolds.

We recall that the homological structure of the fibration (F,w, B, F) is
captured by the Leray—Serre spectral sequence | EV? = HPTI(E,0F) with
EY? ~ HP(B;HY(F,0F)), where H1(F,0F) is the local system of coeffi-
cients on B given by the locally constant presheaf U + H4(7~1(U), 7~(U)N
OF).

Theorem B. Let ' — E — B be a negative symplectic fibration. If B, E
are symplectically aspherical and OF is of positive contact type in F then, for
w > 0 small enough and a < 0 arbitrary, the spectral sequence EX(a, p), r >
2 is canonically isomorphic to the Leray—Serre spectral sequence | E}Hp’lﬁq,

n = %dimB, k= %dim F. In particular, the local system ]:Hra u](F) i8

canonically isomorphic to the cohomological local system H*+*(F,OF).

Theorem B can be read as a description of the Leray—Serre spectral
sequence in Morse homological terms. A related construction is that of
Hutchings [18], with the notable difference that he views the fibration as
being a family of fibers, while we view it as being an additional structure
on the total space. The resulting generalizations and applications to Floer
homology are very different.

The above comparison result yields applications to the Weinstein con-
jecture. Under the hypothesis of Theorem B, we have F Hf‘;oo,u] (E) ~
H*(E,0F), and there is a canonical truncation morphism

¢*: FH*(E) — H*(E,0E),

where FH*(FE) := FH}

]—00,+00
tic cohomology groups FH[’; ’b}(E), which are summarized in Section 4.3,

[(E) The functorial properties of the symplec-

force dynamical consequences from algebraic assumptions. The resulting
principle concerning the Weinstein conjecture [32] is the following.

Main principle. If the morphism c* is not surjective in maximal degree,
then any contact type hypersurface bounding a compact domain in E carries
a closed characteristic, i.e., the Weinstein conjecture holds in E.
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In the case B = {pt.}, this was proved by Viterbo [31]. His proof carries
over verbatim to our situation once the groups F'H*(E) have been defined
and their functorial properties have been established. Following [31], we call
the above condition on ¢* the strong algebraic Weinstein conjecture (SAWC)

property.

Remark 1.1. The morphism c¢* is defined only if the manifold is aspherical
and has positive contact type boundary. Thus the hypotheses of Theorem
B are the most general ones under which one can apply the main principle
stated above.

Theorem C. Let F'— E — B be a negative symplectic fibration. Assume
E, B are symplectically aspherical and F has positive contact type bound-
ary. The SAWC property is inherited from the fiber by the total space. In
particular, if F' satisfies the SAWC, then the Weinstein conjecture holds in
E.

Proof. Under the assumption that the morphism
FH*(F) — H*(F,0F)

is not surjective in degree 2k = dim F', we have to prove that the mor-
phism FH*(E) — H*(E,0F) is not surjective in degree 2n + 2k = dim E.
Because H?>"t?K(E,0F) ~ H?"(B;H?*(F,0F)) and the morphism of spec-
tral sequences Ey" — | (E:™ respects the bigrading, it is enough to show
that the map

H?>(B; FH*(F)) — H>™(B; H**(F,0F))

is not surjective. We apply Poincaré duality on B and we are left to show
that the map Ho(B; FH*(F)) — Ho(B; H?**(F,0F)) is not surjective. We
remark now that parallel transport in F is symplectic and therefore pre-
serves the orientation of the fibers. This implies that the local system
H2E(F,0F) is trivial and therefore Ho(B;H**(F,0F) ~ H*(F,0F). On
the other hand, Hy(B; FH*(F)) is isomorphic to a quotient of FH"(F)
(more precisely the quotient by the submodule F’ generated by elements of
the form ®,(u) — u, where v € FH¥(F), a € m(B) and ®,, is the mon-
odromy transformation along o — see Section 7.2 for details on homology
with values in a local system). Now the hypothesis implies that the map
FHK(F)/F' — H?*(F,0F), induced by FH*(F) — H?¢(F,0F), is not
surjective. O

The most important class of symplectic manifolds which satisfy the SAWC
condition are subcritical Stein domains. In this case, we actually know
by work of Cieliebak [4] that Floer (co)homology is zero. We obtain in
particular the following vanishing theorem.
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Theorem D. Let E be a negative symplectic fibration with symplectically
aspherical base and subcritical Stein fiber. We have

FH*(E) =0

and the Weinstein conjecture holds in E.

In particular, the Weinstein conjecture holds if E is the unit disc bundle
of a Hermitian vector bundle with negative curvature over a symplectically
aspherical base.

Proof. By [4] we know that, if the fiber F' is subcritical Stein, we have
FH*(F)=0. The local system giving the Es-term of the spectral sequence
in Theorem A has trivial fiber and therefore £ = 0, E,, = 0 and
FH*(E) = 0. O

Remark 1.2. The homological analog of the conclusion in Theorem D is
that FH.(F) = 0. If E — B is a negative Hermitian disc bundle as in
Definition 3.1, we deduce FH(E) ~ H, (E,0E) ~ H,\p_»(B) for
n = %dimB and p > 0 small enough. We have used here the tautologi-

cal long exact sequence FH,(F) — FHy[K“’OO[(E) = Hyp(ny1)—1(E,0F) —
FH,_1(F) from [31]. This fits perfectly into the long exact sequence from [2]
which relates FH ’OO[(E) and linearized contact homology HC.(OE) ~
@kzo H, _o(B).

In the case of a trivial fibration, the spectral sequence degenerates at Fo
by construction, since the Floer complex on B x F' can be identified with
the tensor product of a Morse complex on B with a Floer complex on F'.
The local system FH*(F) is trivial and we obtain the Kiinneth formula (see
also [25] for a related statement).

Theorem E. Let B and F' be symplectically aspherical. We have
FH*(Bx F)~ H*(B;FH*(F)).

Remark 1.3. We have FH*(B x F') = 0 for any subcritical Stein manifold
F', hence the Weinstein conjecture holds in B x F' by the main principle
stated above. This was first proved by Floer, Hofer, and Viterbo [13] for
F = C*, ¢ > 1, which implies the statement for any subcritical F using that
such an F' is deformation equivalent to a product with C [5].

The construction of the spectral sequence is geometric. We choose on B a
C?-small Morse function f and a generic almost complex structure Jg. We
work on F with Hamiltonians K whose 1-periodic orbits are nondegenerate
and concentrated in the fibers lying over the critical points of f. We consider
on F a modification of the standard Floer equation having the form

(1.1) us + Juy =Y ou,
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where J is such that the projection 7 is (.J, Jg)-holomorphic and 7Y = V f.
This ensures that the map v = 7w o u will satisfy the equation

(1.2) vs + Jguy = Vfou.

The main point is that we can choose many such pairs (K, Y’) such that the
vector field

(1.3) V(@)=Ji—Yox

defined on the space of contractible loops in F is a strong pseudo-gradient
for the action functional A, i.e.,

dAg - Y >a || Y |3

for some o > 0. This ensures that Floer cohomology can be computed by
studying moduli spaces of solutions of (1.1) (see Section 4.2). Since the
solutions of our pseudo-gradient Floer equation (1.1) on the total space E
project to solutions of the Floer equation (1.2) on the base B, the Floer
complex on F can be filtered by the index of the critical points of f. The
resulting spectral sequence is the one in Theorem A.

The proof of Theorem B uses that Morse homology is equal to cellular
homology as defined in [24, Appendix A.4], provided that the unstable man-
ifolds of the pseudo-gradient vector field give rise to a CW-decomposition
of the underlying manifold (see Section 7.2.1). This last fact was shown to
be true by Laudenbach [20] under the mild assumption that the pseudo-
gradient vector field is equal near its zeroes to the gradient of a quadratic
form with respect to the Euclidean metric. We use Laudenbach’s result also
in order to construct the Floer local system FH, ,)(F).

Remark 1.4. In the case of a monotone basis, our method of construction
of the spectral sequence runs into two kinds of difficulties. The first one
is technical and concerns the proof of the pseudo-gradient property, which
involves a time-independent metric on the base (see Remark 5.7). The sec-
ond one is conceptual and concerns the expression of the Fs-term, which
has to encode quantum homological contributions from the base.

The paper is structured as follows. We give in Section 2 the definition
and first properties of negative symplectic fibrations. Section 3 contains
examples: trivial fibrations, fibrations associated to loops of compactly sup-
ported Hamiltonian diffeomorphisms of the fiber, negative vector bundles
and convex fibrations as defined in [7, §2.10].

We give in Section 4 the construction of symplectic cohomology groups
in a fibered setting, and sketch the dual homological construction in
Remark 4.28. The main difficulty of the construction is the proof of a priori
C°-bounds on Floer trajectories. We emphasize the following two distinctive
features of our approach.
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1) We allow admissible Hamiltonians to be “asymptotically linear.” This
is a much larger class than the ones previously considered in Symplec-
tic homology constructions for arbitrary convex manifolds [6, 31], and
generalizes the class of asymptotically quadratic Hamiltonians in [11].

2) We consider a generalization of Floer’s equation in which the zero-
order term is modified so that the resulting vector field (1.3) is a
pseudo-gradient for the action functional.

We need both these degrees of freedom in order to ensure that solutions of
the Floer equation on E project on solutions of the Floer equation on B.

Sections 5 to 7 deal with the construction of the spectral sequence. We
construct in Section 5 pseudo-gradient vector fields of a special form on the
loop space of E, and we establish in Section 6 transversality within a geo-
metrically meaningful class of almost complex structures. These technical
ingredients are put together in Section 7. The proof of Theorems A and B
is given in subsection 7.6. Subsection 7.2, in which we explain how local
systems of coefficients can be encoded in the Morse complex, may be of
independent interest.

Appendix 8 contains a proof of the (purely linear) fact that a symplectic
form w is determined, in its conformal class, by the set of w-compatible
almost complex structures. This is referred to in Sections 2 and 3.3.

2. Negative symplectic fibrations

Definition 2.1. A locally trivial fibration F < E — B is called a negative
symplectic fibration with contact type boundary fibers (or, for short, negative
symplectic fibration) if the following conditions are satisfied.

1) The base B is closed and the fiber F' has a nonempty boundary.

2) There exists a 2-form € Q?(E,R) and a vertical vector field Z
defined in a neighborhood of JF such that:

e (SYMPLECTIC FIBRATION) (2 is nondegenerate along the fibers and
globally closed;

e (CONTACT TYPE BOUNDARY) Z is outward pointing and trans-
verse to OF, and satisfies L) = (;

e (MONODROMY) the horizontal distribution H = (ker m,)* is tan-
gent to OF.

3) (NEGATIVITY) there is a symplectic form $ on B and a nonempty
open subset J' C J(B, ) such that, in a neighborhood of F, we
have ~

Q(v, Jpv) >0
for any v € H and any almost complex structure Jg € J'. Here J) B
denotes the lift of Jp to H and J (B, 3) is the set of almost complex
structures Jp which are compatible with (3 in the sense that 3(-, Jg-)
defines a Riemannian metric.
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Notations and terminology. The fiber 771(b) at a point b € B will
be denoted either by FEj or by Fy. We shall refer to H = (kerm,)'? as
the horizontal distribution or the horizontal connection, while V = ker m,
will be called the vertical distribution. As H is tangent to OF, we have a
well-defined parallel transport

Ty Ey) — Ey)

associated to any continuous path v : [0, 1] — B. The form Q will be called
the connection form, while the vector field Z will be called the Liouville
vector field or the Liouville vector field in the fibers. We shall refer to a
negative symplectic fibration as being a tuple (E, w, B, F,$, Z, 3) or, in order
to emphasize the role of ) and Z, we shall simply refer to it as a triple
(E,Q,2).

Remarks.

1. The hypothesis dQ2 = 0 implies in particular dQ(vi, ve,:) = 0 for
any vi,ve € V. This is equivalent to the fact that 7, is a symplectic
diffeomorphism, where the symplectic form on Ej is Q, = Q|g, [22,
Lemma 6.11].

2. The total space of a negative symplectic fibration is itself a symplectic
manifold, with symplectic form

we=7"F+€Q, €> 0 small enough.

The horizontal distribution is symplectic for w.
3. The conditions Lz = ©Q and df2 = 0 imply that € is exact in a
neighborhood of OFE. The primitive is

0= Lzﬂ.

The restriction of © to each fiber is thus a contact form for the bound-
ary of the fiber. Moreover, the assumption that Z is vertical implies

Oy = 0.

We denote by Rg the Reeb vector field on the boundary of the fibers.

4. The boundary 0F may fail to be of contact type, as we do not suppose
that 7*0 is exact in one of its neighborhoods. This phenomenon
happens for example in trivial fibrations £ = B x F'. Nevertheless,
as we shall see in Section 4.1, a version of weak pseudo-convexity still
holds and that will be enough in order to make use of the maximum
principle.

5. Assuming conditions (SYMPLECTIC FIBRATION) and (CONTACT TYPE
BOUNDARY), the (MONODROMY) condition is equivalent to the fact
that the characteristic distribution for we on JF is tangent to the
fibers, and coincides with the characteristic distribution of the restric-
tion of Q) to the fibers.



FIBERED SYMPLECTIC COHOMOLOGY AND SPECTRAL SEQUENCES 275

More precisely, let £ : H — R be the unique linear map such that
YH + ¢YH)Z € T(OF) for every Y7 € H. Let R = RV + RY +
({(RH)Z be a local generator of the characteristic distribution of w,
on OE, with RV € VNT(OE) and R¥ € H. Then (RH) =0
since 0 = w.(R, Ro) = eQ({(R")Z, Rg) and Q(Z, Re) # 0. Hence,
0=w(R,YV)=eQ(RY,YY) for all YV € VNT(OE), so that RV is
collinear to Rg. On the other hand, for any Y¥ € H, we have 0 =
W(RYH 4 0(YI)Z) = w (RE, YH) 4+ eQ(RY, 0(YH)Z). Now RV #0
because R # 0 and H is symplectic for we, hence Q(R",Z) # 0,
which implies that ¢ = 0 if and only if R = 0.

. The characteristic distribution of the restriction of ) to the fibers is
preserved by parallel transport. The Reeb dynamics on the boundary
of the fibrations that we consider in this paper is therefore of Morse—
Bott type, with the meaning that one closed characteristic on 9FE,,
z € B gives rise locally to a family of closed characteristics on OF
parametrized by an open subset of the base. The reader has to keep
in mind this geometric picture as a motivation for the construction of
the geometric Hamiltonians in Section 5.2.

We denote by Spec(OF) the set of periods of closed characteristics
on OF normalized by the 1-form © = 2.

. Let ¢; be the flow of Z. We can trivialize a neighborhood U of OF
by the diffeomorphism

U:0Ex[1-61 —U,

(p,5) — pms(p).
The condition Lz = Q translates into p;Q = e!Q). If ©| denotes the
restriction of © to JF, we have ¥*0 = SO| and
U Q) = d(S0O)).

We can therefore complete E to a fibration

E=E |J 0B x [1,00|
v

and define the connection form  on E by

a— { Q on F |
d(S©|) on dF x [1,00] .
The Liouville vector field Z is transformed by ¥ into S % on OF x
[1—4,1]. We extend it to 9E x [1,00[ as S:% and we denote the
extended vector field by Z.
The (MONODROMY) condition implies that the horizontal distribu-
tion on E is tangent to every level set S = ct, S > 1— 9. This follows
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from the fact that ¢, preserves H, hence the latter is invariant under
the flow of S % (or, equivalently, of %). We therefore have

dS|g =0.

8. One must note that the construction of the manifold E only makes use
of the (SYMPLECTIC FIBRATION) and (CONTACT TYPE BOUNDARY)
conditions, while the (NEGATIVITY) condition ensures that the 2-form
We =76+ eQ on E is symplectic for € > 0 small enough.

Conversely, let us start with a fibration E endowed with a 2-form
Q and a vertical vector field Z which is complete at infinity, satisfy-
ing the (SYMPLECTIC FIBRATION), (CONTACT TYPE BOUNDARY) and
(NEGATIVITY) conditions. A compact hypersurface ¥ C E that triv-
ializes through the flow of Z a neighborhood of infinity as ¥ x [1, oo
will be called a trivializing hypersurface. The choice of any such X
gives rise to a fibration F = int® which satisfies the same three con-
ditions above.

9. We have imposed the (MONODROMY) condition on E in order for
the monodromy to be well defined as a symplectic diffeomorphism of
the fiber. Note however that, if one starts directly with E as above,
the natural condition under which monodromy is well defined is some
uniform nonverticality assumption on H, strictly weaker than the
requirement dS|g = 0. Our choice is motivated by the fact that triv-
ializing hypersurfaces ¥ such that dS|s;, = 0 are a crucial ingredient
in the proof of a priori C%-bounds for the admissible Hamiltonians on
E that we define in Section 4.1.

The following result gives a geometric criterion for the (MONODROMY)
condition.

Proposition 2.2. Let (E,Q,Z\) be a fibration satisfying conditions (SYM-
PLECTIC FIBRATION) and (CONTACT TYPE BOUNDARY), with Z complete
at infinity. There is a choice of a trivializing hypersurface ¥ in E such that

H is tangent to X if and only if the monodromy of E admits an invariant
trivializing hypersurface in the fiber.

Proof. Assume first that H is tangent to . For any loop v on B based at
b, the monodromy will send ¥, = ¥ N E} diffeomorphically to itself and >3
is obviously a trivializing hypersurface in Ej.

Conversely, let ¥, C Ej be an invariant trivializing hypersurface. Define
Y = Uyen Ty (Xb), where 7y is an arbitrary path from b to b'. It is
enough to prove that 7, , (Xp) is independent of vy in order to infer that
3} is smooth and H C TX. Let therefore 7y be another path running from
b to b'. We have

Ty (B0) = Ty © Tt ot (Xp) = 7 ()
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The last equality makes use of the fact that 3 is monodromy invariant. [J

10. One may strengthen the (NEGATIVITY) condition by requiring €2 to be
nonnegative on H for all Jg where Jg € J (B, 3). Appendix 8 shows
that this is a very strong assumption: either €2 is non-degenerate on
H and then it is proportional to 7*(3, or H splits at each point into
a direct sum of two subspaces which are symplectic for 7*3 and such
that € vanishes on one of them and is proportional to 7*(3 on the
other.

Nevertheless, requiring 2 to tame only the almost complex structures
belonging to some nonempty open subset of J (B, 3) is enough for the sub-
sequent transversality issues. If the restriction of Q2 to H is non-degenerate
on JOF, this follows by imposing the (NEGATIVITY) condition to be true only
for one almost complex structure Jp.

3. Examples

3.1. Products. Trivial fibrations £ = B x F' with B closed symplectic and
F symplectic with contact type boundary are negative symplectic fibrations
in the sense of Definition 2.1. Let wp, mr denote the projections on the
two factors, let Qp be the symplectic form on F' and Zp be the Liouville
vector field on F', defined in a neighborhood of 0F. Then €} = 7QF and
Z =(0,Zr) € TB xTF ~ T(B x F) make E into a negative symplectic
fibration. We have H =TB x {0} CT(B x F') and Q|g =0, so the negativity
condition is trivially satisfied.

3.2. Hamiltonian diffeomorphisms. Let F < E — B be a Hamil-
tonian fibration with contact type boundary fibers and structure group
Ham(F,0F), the group of Hamiltonian diffeomorphisms which fix a neigh-
borhood of 0F. A Hamiltonian fibration admits a canonical coupling form
), which in our situation vanishes on the horizontal distribution near the
boundary (see [16]) and makes E into a negative symplectic fibration. As
a special case, we mention fibrations F < E — S? defined by elements of
m1(Ham(F, OF)).

3.3. Negative line bundles.

Definition 3.1. A complex line bundle £L — B over a closed symplectic
manifold (B, ) is called negative if it admits a Hermitian metric h and
a Hermitian connection V such that the curvature ;=FV € Q*(B,R) is
negative:

LFV(U,JB’U) <0

2im

for any Jp € J(B,3) and any nonzero vector v € T'B.
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Remark 3.2. The 2-form —ﬁF V is a symplectic form on B representing
—c1(L). Moreover, it tames all almost complex structures that are tamed
by (8 and this ensures that —%F V. and 8 are proportional by a positive
constant if dim B > 4, or by a positive function if dim B = 2 (cf. Appen-
dix 8). In particular, we have ¢1(£) = —A[f], A > 0 (if dim B = 2, this

is true because dim H%(B,R) = 1). Conversely, assume c1(£) = —\[3],
A > 0. Then —Af represents ¢1(£) and, for any Hermitian metric A on L,
one can find a Hermitian connection V such that %F V. = —)\g. In par-

ticular, —%Fv tames the same almost complex structures as 5. We have
just proved that Definition 3.1 is equivalent to

Definition 3.3. A complex line bundle £L — B over a closed symplectic
manifold (B, 3) is negative if there exists A\ > 0 such that

c1(£) = =A[f]-

We note here that the topological type of £ is uniquely determined by
the choice of an integral lift of —A[3]. The preceding discussion shows in
particular that, up to a change of connection, we can assume that —%FV =
A8, A > 0.

Any linear connection V determines a transgression 1-form 0V € QY(L \
0z, R). Its definition is the following [14]:

Oy (u) =0, 6Y(iu)=1/2m, ueL\O;

0V | v =0, with HY the horizontal distribution defining V.

The transgression form is a primitive for —m*(5-F"). In our case, this
means

oY = A" .
On the other hand, the restriction of 8V to the fibers equals, up to the factor
5, the angular form. If 7(u) = |u| is the radial coordinate in the fibers, we
infer that

Q = d(r?0V)
equals %dArea along the fibers. Moreover, ) extends to a smooth form on
L by 2,(,)=0,£€T,0r and Q,|,, = %dArea, z € 0g. This follows from
the expansion Q = dr? A 0V + r2A7* 3, with dr2 A0Y (€,-) =0, £ € HY and

dr? A 6Y | Loty = LdArea, u € £\ 0. The vertical vector field
u
Z(u) = =
(w) = 2

satisfies tzQ = r20V, hence Lz = Q. We define
E={uel : |ul <1}

We claim that F together with 2 and Z as above is a negative symplectic
fibration in the sense of Definition 2.1. The (SYMPLECTIC FIBRATION) and
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(CONTACT TYPE BOUNDARY) conditions are clear by construction. The con-
nection being Hermitian, parallel transport preserves the length of vectors in
L, hence the (MONODROMY) condition is also satisfied. The (NEGATIVITY)
condition follows from the expansion of €2, which implies Q|yv = r?A7*j3
with 72\ > 0.

Remark 3.4. The dual £* of an ample line bundle £ over a complex mani-
fold B is a negative line bundle in the sense of Definition 3.3, with the mean-
ing that there is a symplectic form 8 on B such that ¢ (L£*) = —A[F], A > 0.
Indeed, Kodaira’s embedding theorem ensures the existence of an embed-
ding ¢, : B = PV given by the sections of £L&™ such that ¢%,O(1) = L™,
Let wrs be the Fubini-Study form on PV representing c1(O(1)), and define
8 = ¢} wrs. Then
(L) = = e (L9™) =~ g5,er(O(1) =~ [Bms] =[5

1 = 5,4 = mmcl =T mWrs| = m[]

3.4. Negative vector bundles. Our discussion in this section follows Grif-
fiths [15] and Kobayashi [19].

Definition 3.5. A complex vector bundle E — B over a closed symplectic
manifold (B, 3) is called negative if it admits a Hermitian metric A and a
Hermitian connection V such that the curvature %FV € O%(B,End E) is
negative definite as a Hermitian matrix:

1
~F¥(v,Jpv) <0
i
for any Jp € J(B, ) and any nonzero vector v € T'B.

Remarks 3.6. Negative projectively flat bundles (with curvature —F1d)
are a particular case of negative vector bundles.

The projectivized bundle associated to E is
P(E) = {(b,[v]) : be B,ve E,\{0}}.

Let p : P(F) — B and p : p*E — F be the induced projection and the
corresponding bundle map. The tautological bundle L — P(FE) is the
subbundle of p*E defined as

Lg={(b,[v], ) : (b [v]) € P(E), A € C}.
Let ¢ : Ly — p*E be the canonical inclusion and ® = poi. Then
®:Lp\0z, — E\Og

is a diffeomorphism (respectively a biholomorphism if the bundle £ — B
is holomorphic). Its inverse is (see the diagram below)

U:E\Og — Lg\ Oz,
(b,v) — (b, [v],v).
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We show now that, under the negativity condition on F, the line bundle
L is negative in the sense that there is a canonical connection V which
preserves the induced Hermitian metric on Lg, as well as a canonical sym-
plectic form on P(F), such that Definition 3.1 is satisfied. Moreover, if Q
and Z are constructed on Lp as in the previous section, their pull-backs
Qp =¥*Q and Zgp = V*Z, defined a priori only on E'\ 0, extend smoothly
to F and make

DE={veFE : |v|<1}
into a negative symplectic fibration.

p ﬂ-ijb

B <" P(E) —— P(E)

3.4.1. Connection on Lg. We write P(E), for the fiber p~1(b), b € B and,
for a connection D, we denote by HP the associated horizontal distribution,
or simply H if there is no danger of confusion.

The connection V canonically defines a parallel transport in P(E) and
hence a horizontal distribution Hp(gy with monodromy in PGL(r), r =
rk(E). The horizontal distribution H associated to any connection on p*FE
canonically decomposes as

H= Hﬁber @ Hbasea

where the subspaces Hgper and Hy,ge of H are uniquely determined by the
conditions
b« © s Hfiper = 0, s Hpase = HIP(E)

Note that Hgper C T(p*E|P(E)b) and Hpaee M T(p*E\P(E)b), b e B. We call
them respectively the components of H along the fibers of P(E) and along
the base B. The distribution Hgper defines a linear connection on every
p*E|P(E)b’ be B.

We can give further details on the preceding decomposition for the
induced connection p*V. The associated horizontal distribution is HP"Y =
(p«)"LHY. Any choice of frame (ey, ..., e,) in Ej gives rise to a trivialization

~

P(E), x C" — p*E|]P’(E)b>
(bv [’U], (Ala SRR )\T)) — (ba [’U], Arer+ -+ )‘Ter)'

The associated flat connection does not depend on the choice of frame and
its horizontal distribution is precisely H. g;z.

Let us now go to Lg. Its restriction to any P(E), is clearly not pre-
served by parallel transport along H. g;z, otherwise £ Ehp( E), would be trivial.
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On the other hand, Lg is preserved, together with the induced Hermitian
metric, by parallel transport along H{;;SZ . This follows from the fact that
T Hpase = HIF’(E)

We want to associate to h and V in a canonical way a connection Voncl E
which preserves the induced Hermitian metric. Its horizontal distribution
decomposes as H= ﬁﬁber @ E’base and we define

Hbase = Hﬁ);sve

Let us define Hgper. Bach restriction LEg|pp),, b € B is isomorphic (as
a Hermitian bundle) to the canonical bundle O(—1) — P"~! endowed
with the canonical Hermitian metric. The isomorphism is given by the
choice of some frame in Ej which is orthonormal with respect to h. The
Chern connection on O(—1) is invariant under the action of PSU(r), and
this implies that the induced connection on EE\P( E), is independent of the
choice of orthonormal frame. We define its horizontal distribution to be
lL:Iﬁber.~ With a slight abuse of notation, we can write the decomposition
H = Hfper © Hpase as

H=Hop @ HEY

base *

3.4.2. Symplectic form on P(E). The curvature of the Chern connec-
tion on O(—1) is —wpg, with wpg the Fubini-Study form normalized by
([wrs], [CPY]) = 1. We infer that

I %

Y= 22'7TF
is a 2-form which restricts to wpg on every fiber P(E),, b € B. We claim
that w is actually nondegenerate on P(FE). This will define our preferred
symplectic form on P(F).

First, we show that T(P(E);) and Hpg) are orthogonal with respect to

w. This amounts to proving that Hp(_;) and Hﬁ;sve are in involution, as the
value of the curvature at two vectors is given by the vertical projection of
the Lie bracket of their horizontal lifts (see e.g., [14]).

Let u(s,t), s,t € [0,1] be a parametrized surface on P(E) such that
e u(-,0) is tangent to some P(E);, b € B;
e u(-,t) is the parallel transport of u(-,0) along some curve v on B with
7(0) =b.

Let us fix a point ¢ € L 4,(0,0) and a horizontal lift u of u(-,0) at g. This
allows to lift horizontally every curve u(s,-) with initial point u(s,0). We
still denote by w the resulting lift of u(-,-) and we have to show that every
u(+,t) is horizontal.

This amounts to show that Hp(_1) is preserved by parallel transport along
HP'Y. But Hp(_1) corresponds via the isomorphism C" \ {0} ~ O(-1)\

base *
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0p(—1) to the distribution of hyperplanes (C - v)t, v € C*\ {0}, which is
clearly preserved by Hermitian parallel transport in E. The latter in turn
corresponds to parallel transport along Hg;sve in Lg.

Secondly, we show that the negativity condition in Definition 3.5 is
equivalent to the fact that w is positive on Hp(pg), with the meaning that
w(X, jBX) > 0 for any nonzero vector X € Hp(g), where Jpg is the lift to
Hp(p) of an almost complex structure Jp compatible with 3. We denote
X’ = p, X and we have

1

{

1,

Fg,[v])(X, JpX) = v-FPY(X,JpX) v

~ifof?
= —#t@ CFY(X', JpX') v > 0.
ilv]?
This shows that L is a negative line bundle in the sense of Definition 3.1.
If 6V is the transgression 1-form associated to 6, then the connection 2-form
and the Liouville vector field on Lg are

Q=dr20Y), Z(u) = -

3.4.3. Connection form and Liouville vector field on E. We define
Qp=9"Q, Zp=V*Z

We claim that Qp and Zg extend smoothly to the whole of F and they
verify Definition 3.5. The key step is to consider

0 = u*(r26Y).

We clearly have ©|g,\(0y = ¥* (TQQV\p(E)b) and we claim that this is the
positive U(r)-invariant Liouville form on Ej,. By choosing a unitary frame
on Ej, we can work within the explicit model of the biholomorphism C" \
{0} ~ O(=1) \ Op(=1), v = ([v],v). We have already mentioned that the
horizontal distribution of the Chern connection on O(—1) corresponds to
the distribution of hyperplanes (C-v)*, v € C"\ {0}, and we therefore have

@v|(<c-v)L =0, O,(v) =0, O4(iv) = g]—‘ or else stated

2
T )
I 1<
Oy = 5—(iv,") = o > wjdy; — yjdz;.
j=1

As a consequence, © extends smoothly over the origin in every fiber. But it
is clear that this argument can be performed in families and the extension
is smooth on E so that dO© is a smooth extension of Qg which is closed and
equal to %dArea in the fibers. It is also clear that Zg extends smoothly by 0
over O, with ¢z,Qp = ©. This accounts for the (SYMPLECTIC FIBRATION)
and (CONTACT TYPE BOUNDARY) conditions. The (MONODROMY) condi-
tion is automatic as the connection V was supposed from the very beginning
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to be Hermitian. In order to verify the (NEGATIVITY) condition, let us recall
that @, Hpaee = HY. We then have

(W Q) |y = U (Qlg, ) =V (N2 (m0)|g ) = 20T (0] )-

Let Jp € J(B, ) and denote Jg the lift to HY and Ji the lift to Hp(g).

Let X be a vector field on B and denote X the lift to HY and X' the lift
to Hp(g). We have 7, W, X = X' and therefore

Qp(X,JpX) = U*QX, JpX) = Mw(X', JpX'),
or
s Ty Ly
QE\(M)(X, JpX) = —5 0 F (X,JpX) -v.
The last expression is positive for v # 0.

Remark 3.7. The case of projectively flat negative vector bundles (with
curvature equal to —if3 Id) corresponds precisely to a connection form Qg
which depends only on |v| (and, of course, on b).

3.5. Convex fibrations. We explain now a variation on an example
from [7, §2.10]. Let G be a compact Lie group with Lie algebra g. Let

X - B be a principal G-bundle with connection 84 € Q'(X, g). We denote
by Fa € Q?(B, X X ,q9) its curvature and by Hor 4 its horizontal distribution.
We assume that B is symplectic with symplectic form g.

Let (F,wr) be a symplectic manifold endowed with a Hamiltonian action
of G with moment map ¢r : FF —> g*. We impose the following conditions.

e (G-CONTACT TYPE BOUNDARY) The boundary OF is G-invariant and
admits a G-invariant Liouville vector field Z which is also conformal
for the moment map:

dop - Z = ¢p.
e (G-NEGATIVITY) There exists Jp € J (B, 3) such that
(Fa(X, JpX),¢p(f)) <0
for all X € Hory and f in a neighborhood of OF.

Remark 3.8. The (G-NEGATIVITY) condition is related to Weinstein’s
notion of fat bundles, i.e., G-principal bundles admitting a connection 64
such that the 2-form (F4(-,-),n) is nondegenerate for all nonzero n € g*.
The (G-NEGATIVITY) condition also plays a crucial role in [7].

We claim that the associated bundle
Xrp=XxgF
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is a negative symplectic fibration. In order to see this, we recall Wein-
stein’s construction of symplectic fibrations through symplectic reduction
as explained in [16, §2]. The connection Hor 4 defines the subbundle

M={neT*X : ngn, =0} CT*X.

One can show that M ~ X x g*. In any case, M inherits from T*X a
2-form wp which restricts to the canonical symplectic form on the fibers
Xp X g* ~T*G. Then M x F is a Hamiltonian G-space with moment map

o(x,m, f) = or(f) +n.

The zero set ¢~1(0) is naturally identified with X x F and the symplectic
reduction ¢~1(0)/G is isomorphic to X. The (pre)symplectic form wr +wp
on M x F is G-invariant, and the same is true for its restriction to ¢=1(0).
Moreover, for any £ € g, we have 1(&yr, Ep)(wr + wp) = —d{pp + pry, &) =0
on ¢~ 1(0), hence (wr +wr)|4s-1(g) is the pull-back of a (pre)symplectic form
on M xg F' = Xp which we denote by wr p. We have denoted by &{u/, {F
the infinitesimal generators of the action of G on M and F', respectively.
The form wr r restricts to the symplectic form wg in the fibers of Xp. We
define

Q = Wr,F-

The (NEGATIVITY) condition for wr p is now equivalent to the (G-
NEGATIVITY) condition above because wr r acts at a point [z, f] € Xr as
—(or(f), Fa(z)(-,-)) (cf. [16]). One can also prove that the horizontal distri-
bution of wr  is the distribution induced by the connection 6 4. On the other
hand, parallel transport 7, along a curve v in B with respect to the latter
horizontal distribution acts as 7, ([z, f]) = [7y(z), f]. Because OF is invari-
ant under GG, we infer that parallel transport preserves 0Xp = X xgdF and
the (MONODROMY) condition is satisfied. The (SYMPLECTIC FIBRATION)
condition is satisfied by construction of Xy and we are left to verify the
(CONTACT TYPE BOUNDARY) condition. The natural Liouville vector field
on X x Fis

Z(l“ﬂ?vf) = (O’ 5’ Zf)

By G-invariance Z descends to a Liouville vector field on Xp provided it
is tangent to ¢~'(0), and this is equivalent to ¢r(f)=dor(f) - Zs in a
neighborhood of 0F. Moreover, if the last condition holds, then verticality
in Xp is automatic.

Remark 3.9. Negative vector bundles, seen as associated bundles of
the corresponding frame bundles, are a special instance of the above
construction.
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4. Fibered symplectic cohomology groups

We define now the Floer or Symplectic cohomology groups F H*(E) for neg-
ative symplectic fibrations. The key concept is that of an asymptotically
linear Hamiltonian, and from this point of view our definition can also be
thought of as a bridge between the one of Viterbo [31], who uses Hamiltoni-
ans that are linear at infinity, and the one of Floer and Hofer [11], who use
Hamiltonians that are asymptotically quadratic on C™ (with the somewhat
surprising remark that “quadratic” is the same as “linear” after the change
of variables S = r?).

The main feature of the Floer cohomology groups that we define in this
paper is that they have the same functorial properties as those of Viterbo
in [31] (see Section 4.3).

Convention. We shall assume in this section that the form we is symplectic
for 0 < e < 1. For clarity, we drop the subscript ¢ and work with w = w;.

4.1. Admissible Hamiltonians and almost complex structures. C°-
bounds. The crucial ingredient of the construction is the proof of a priori
C°-bounds for solutions v : R x S' — E of the equation

-~

(4.1) us + J(s,t,u)(uy — Xp(s,t,u)) =0,
(4.2) —oo < inf Ap(s(u(s)), sup Ags)(u(s)) < +oo.
SGR SGR

~

Here H(s,t,u), J(s,t,u) is a homotopy of Hamiltonians and almost com-
plex structures on which we impose additional constraints as described
below. The constraints on H and J, , as well as the proofs of the C?-estimates,
are adapted from the papers of Cieliebak, Floer and Hofer [6, 11].

A point u € E which belongs to dE x [1, 00[ will be denoted u = (i, S).

Definition 4.1. Let (X, \) be a contact manifold. The manifold
(X% ]0,00[,d(SN)), S €]0,00]

is called the symplectic cone over X, or the symplectization of ¥. The Reeb
vector field Xgeer on X is defined by txp ., d\ = 0, A(XReeb) = 1. The
contact distribution ker X is denoted by £. An almost complex structure J
on Xx |0, 00| is called standard if

0 1
J(a == | = 55X eeb(U),
(@5) (as) g XReeb(®)
0
4.3 Jia.9)(XReeb (1)) = —CS—,
(4.3) (@,5) (XReeb (1)) 55
Jas)le = Jo,

where Jy is an almost complex structure compatible with dA on £ and C' > 0

is a positive constant.
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Standard almost complex structures are precisely the ones that are
preserved by homotheties in the S variable. As an example, for 3 =
§?71(1) C C" and A = 1 3" @;dy; — yida;, the manifold (Xx ]0, o[, d(SA))
is symplectomorphic to (C” \ {0},> dx; A dyl-) through the map (u, S) —

©'%9(w). Here ¢l stands for the flow of X (z) = 3z. The inverse map satis-

fies S(z) = 1/]z] and the canonical complex structure on C™\ {0} translates
into a standard almost complex structure on ¥ x ]0, co[ which satisfies (4.3)
with C' = 4.

The metric d(SA)(-, J-) associated to a standard almost complex struc-
ture will be called conical. The following homogeneity property is straight-

forward:

2 2

:S’v—Fa8

+al
vra 505

S y UET@E,GGR.

(a,1)

(4.4)

(@,5)

Definition 4.2. Let F < E — B be a fibration satisfying the assumptions
(SYMPLECTIC FIBRATION) and (CONTACT TYPE BOUNDARY). Let H be the
horizontal distribution on E. An almost complex structure J on dE x [1, 00|
is called (standard) split if

JIJvéBjB,

where Jy is a (standard) almost complex structure in the fibers and Jp is
the lift to H of an almost complex structure Jp on B which is S-tame.

The thrust of the present section is that the a priori C°-bounds on Floer
trajectories (and ultimately a variant of the maximum principle) hold in EF
with respect to almost complex structures that are standard split at infinity.

Definition 4.3. An admissible homotopy of almost complex structures on
E is a smooth family J(s,t), s € R, t € S! of almost complex structures
tamed by w = 7% 4+  such that the following conditions hold.

i) J is standard split for S large enough, i.e., there exists R > 1 such
that

(4.5) J(s,t,0,8) = Jy(s,t,u,S)® Jg(s,t,4), S>R.

ii) J is constant for |s| large enough, i.e., there exists so > 0 such that
j(87t7u) = J*(tu)) s < —So0,
(4.6) R
J(S,t,U) = ‘]+(t7u)7 s 2 So.

Here Jy is a standard almost complex structure in the fiber and J, B is the
horizontal lift of an almost complex structure Jp on B which is S-tame.

We now define admissible homotopies of Hamiltonians. In the usual set-
ting of Floer homology, these are functions H (s,t,u,S), s € R, t € S! with a
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special asymptotic behavior that ensures compactness for the moduli spaces
of finite energy solutions of Floer’s equation us = —V Ap, ) (u(s,)). Here

AH(&.)(QC) = —/D2 Tw— . H(s)ox

is the symplectic action defined on the space AOE of 1-periodic contractible
loops in E, Z denotes an extension of the loop z over a disc and the L*-
gradient of Ay is

VAg(z) = Ji — VH(z).
The construction of the spectral sequence will crucially require the use of
negative pseudo-gradient trajectories for the action functional. We shall be
interested in solutions wu(s,t) of

(4.7) us = —Y(u(s,")),
(4.8) —00 < inf Aps)(uls)), Sup Api(s)(u(s)) < +oo,

where ) is a pseudo-gradient for some action functional Ay on AOE , l.e.,
dAg(z) - Y(x) =0,

with equality if and only if the loop = is a critical point of Agy (hence a
periodic orbit of Xyr). We shall actually need the stronger pseudo-gradient
condition

dAp(z) - Y(x) > a® || Y(z) % a>0,
with ) and VAp having the same zeroes. We shall use vector fields ) of
the type

(4.9) V(z) = Ji—Y(z),

where Y is a vector field on E. The vector field Y will therefore be, along
with the Hamiltonian H, part of the data defining an admissible deforma-
tion. In the following, we let X = XV + X" be the decomposition of a vector
X € TE in its vertical and horizontal parts.

Definition 4.4. Let J be an admissible homotopy of almost complex struc-
tures. An admissible pseudo-gradient deformation consists of a one param-
eter family H(s,t,u), s € R, t € S! of Hamiltonians and of a one parameter
family of vector fields Y'(s, ¢, u) on E , which satisfy the following properties.

i) (Strong pseudo-gradient) Let
V(s,z) = J(s)i — Y(s) o .

We require the existence of a function a : R — [0, co[ with nowhere
dense vanishing locus such that, for every loop z € AgE, we have

(4.10) dAp(s)(2) - Y(s,2) 2 a(s)* || Y(s,2) |I%

Js)
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Moreover, )(s,z) is required to have the same critical points as
VAH(S)'
ii) (Monotonicity) H is increasing
OH
4.11 —(s,t,u) >0
(411) (s tu) 2
and there exists sg > 0 such that

H(s,t,u) = H_(t,u), Y(s,t,u)=Y_(t,u), a(s)=a_ >0,

(4.12) H(s,t,u) = Hy(t,u), Y(s,t,u)=Yy(t,u), a(s)=ay >0,

for s < —sq, respectively s > sg.
iii) (Asymptotes) There exists f(s,u): R x OE —]1 — §, 00| so that the
function F'(s,u,S) = Sf(s,u) satisfies

(4.13) YV — (VF)¥];, /VS — 0,
(4.14) IVH - VF|, .5 /VS—0,
0’H  0°F

4.1 -
(4.15) 9505 asas| 0 ST

uniformly in s, ¢ and . Moreover, the function f is required to satisfy
the following conditions:
e For every s € R and every large constant ¢, the horizontal distri-
bution H is tangent to

(4.16) (graph ¢/ f(s)) C OF x ]1 — 4, 00].
e There exists sg > 0 such that
(417) f(svﬂ) = fi(a% S S —S0,

f(s,u) = fH(u), s> so.

e The vector fields X+ have no 1-periodic orbits at infinity, where
(4.18) FX(a,8) = SfE(a).
°
(4.19) Osf = 0.
e If the 1-periodic orbits of Xp(s) are not contained in a compact
set, then
(4.20) Osfls=5 > €(5) > 0.
iv) (Boundedness) There exists a constant ¢ > 0 such that
(4.21) VP55, < e
(4.22) |0:Y (s,8,0,8)] ;. o5, < c(1+VS),
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(4.23) |VxY(s,t,u,S) <Xl 7, X € Tas) (9F x [1,00f).

‘Jv@jB

Remarks. 1. Condition (4.16) is equivalent to saying that the graph of
f(s) restricted to some fiber is a monodromy invariant hypersurface,
and determines the values of f(s) on the whole of 0F through parallel
transport along H. This condition is clearly void if the base B is a
point. In case the base B is not a point, it ensures that Xp(), s € R
is preserved by parallel transport along H, being colinear with the
Reeb vector field on the level sets ¢/ f(s), ¢ >> 1. We shall crucially
use this fact in the proof of Proposition 4.8.

2. Condition (4.18) means that, for any choice of a large enough constant
¢, the graphs of ¢/ f* have no closed characteristics of period 1. This
can be achieved for example if f* are equal to constants not belonging
to the period spectrum of OF (this is a generic condition).

3. The pseudo-gradient condition (4.10) obviously holds with a(s) = 1
in case Y(s,z) = V‘](S)AH(S) (x), which corresponds to the usual Floer
equation.

4. The function F' defined above satisfies

‘XF|w = O(\/g)

5. The above conditions are satisfied in the s-independent case by vector
fields Y = Vh + Vf, where h = h(S) is linear for S big enough and f :
B — R is a smooth function. We must take in this case F' = h and
H = h + f. The pseudo-gradient property is the only nontrivial one,
and we refer to Section 5 for a proof. There are two other nonempty
properties, namely (4.21) which holds since Y® = Jp X/, and (4.14)
which holds because | X f| 7, is bounded. This in turn is implied by

the fact that Q|g, = SdO|n,, hence the component of X 7 on some

nondegeneracy subspace of Q|x, goes to zero as S — oo, whereas the
component on the degeneracy subspace stays bounded.
The proof of the C%-bounds follows the arguments in [11]. We recall the
notations and a crucial technical result therein.

Let o : R x S — R be a smooth function. Let § > 0. We denote by I's
the set of all sequences (si)kez such that

(4.24) 0<spr1—sp <6, kelkZ,
S — oo, k — Foo.
For s = (s) € I's, we define
[a]® = sup{a(sy,t): k€ Z, t S}

Let
[a]s = inf{[a]® : s € [s}.
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Proposition 4.5 ([11], Prop. 8). Let A, B, A > 0 be nonnegative real
numbers and let § > 0 satisfy

5N < w2
There exists a positive constant C = C(A, B, \,6) > 0 such that, for any
function o : R x St — [0, 00| satisfying
—Aa—Xa<A onRxS!
[a]s < B,

we have

sup{a(s,t): (s,t) eR xS} < C.

This is a key result involving the maximum principle, which is unavoidable
in the proof of the C°-bounds for all versions of Floer homology defined on
open manifolds. Proposition 4.5 will be applied to the function o = S o u,
with u an arbitrary solution of (4.7) and (4.8), and will ultimately yield the
following result.

Theorem 4.6 (a priori C%-bound; compare [11], Thm. 12). Let J, H and
Y satisfy conditions (4.5) and (4.6) and (4.10) to (4.23). There is a constant

d=d(J,H,Y) >0 such that any solution of

~

us + J(s,t,u)uy — Y(s,t,u) =0,
—00 < inf AH(S)(U(S))u sup AH(S)(’U,(S)) < 400
seR seR

satisfies

(4.25) sup  Sou(s,t) <d.
(s,t)eERxST

The rest of this section is devoted to the proof of Theorem 4.6.

Notation.

la. We extend the function v/S, which is canonically defined on OF x [1—
J,00[, to a smooth function on the whole of E as follows. Consider a
strictly increasing smooth bijective map p : [1 — §,1] — [0, 1] whose
derivatives vanish at infinite order at 0 and 1. Our smooth extension
of VS is defined to be equal to p(S)v/S on GE x [I — 6,00, and
identically equal to zero on E \ OF x [1 — &, 00[. We still denote this
SAmooth extension by v/S, and its square is a well-defined function on
E, which we denote by S.

1b. Every point u € OF x [1 — 4, 0o] can be uniquely written as u = (1, S),
u € OF x {1 —0}. The map u — @ continuously extends as the
identity over E'\ OF x [1 — 4, 1] and we denote the extension again by
U —> U.
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lc. Every point u € E is now uniquely characterized by the pair (u,S)
and we shall identify the two in the sequel.
2. We define the following three norms.

1X]% = QXY, JyXV) + 7 B(X", Tp XM,
X2 = QXY Jy XY) +w(X", JpX™),
X4 = Q(XY, JyX¥) + (X", TpX™).

The last expression only defines | - |o as a semi-norm on H. Its
utility will nevertheless become appearant in the sequel. The above
norms all satisfy the homogeneity property (4.4) along the vertical dis-
tribution, whereas on the horizontal distribution, which is preserved
by the Liouville flow, they satisfy the inequality

(4.26) |Xh|%a7s) < S|Xh‘%a,1)’ S22 1L

Convention. The default norm used in the sequel is | - |.
3. We define

LS E) = {z:S'— E measurable : VSox e L*(S',R)},
HYSYE) = {zeL*S E): e L?(a*TE), VSoz eL*S'R)}.

Here E is endowed with the metric (X,Y), = %(w(X, JY) + w(Y, JX)),
J=Jvd jé and with its associated Lebesgue measure. The meaning of the
condition Z € L?(x*TE) is the following: 7 is well defined as a distribution
once we choose an embedding of E into some Euclidean space. We require
it to be an L2-function, and this does not depend on the choice of the
embedding.

Lemma 4.7. There is a compact embedding
H'(S',E) — C°(S", E).

Proof. Let (yx) be a sequence in Hl(Sl,E). We denote S, = S oy. The
embedding H'(S',R) — C°(S',R) is compact and therefore a subsequence
of 1/S}, converges uniformly to a continuous function 1/Sp. As a consequence,
the corresponding subsequence of y; takes values in a compact set F, =
{S < ¢}. The embedding H!(S!, E.) < C°(S!, E.) is again compact and
we get a subsequence converging uniformly to a continuous limit y, with

Soy=.9p. O

Proposition 4.8 (compare [11], Lemma 10). Let J, H and Y satisfy con-
ditions (4.5) and (4.6) and (4.10) to (4.23). Let s € R be such that a(s) > 0.
For any choice of ¢ > 0 there is a constant d = d(¢,s) > 0 such that, if
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we have

Lom

(4.27) dAH(s) (:c) . y(s, l‘) + a
0

—(s,t,x(t))dt < ¢

for some x € HY(S', E), then
(4.28) ||| g1 < d.
We have denoted ||z||%, = ||[V/Sox|[% + ||Z]|2, for some fized embedding

of E in a Euclidean space.

Remark 4.9. The statement is false if a(s) is allowed to vanish. As a
counterexample, one can consider a weak pseudo-gradient vector field of the
form Y = Jy X}, + JBXf as in Section 5, where h = h(S) has critical slope
at infinity. The expression (4.27) is bounded if x is a periodic orbit, but x
can nevertheless go to infinity.

Note also that, if a(s) > ap > 0 and ¢ < ¢y < 00, then d(c, s) < d(ap, cp).

Proof of Proposition 4.8. The strong pseudo-gradient condition (4.10)
implies that || YV(s,x) H?@ is bounded by ¢ =c/a(s)?. The asymptotic
behavior of .J ensures that the norms |- |8w,n defined with respect to J (s,t),
s € R, t € S! are equivalent to the corresponding norms defined with respect
to some fixed almost complex structure J which is standard split at infinity.
Moreover, the operator norm of J is bounded. We can therefore assume in
the sequel, without loss of generality, that J=J.

Claim 4.10. If | Y(x) ||z2 and || VS oz ||, are bounded, then || = ||z is
bounded.

Proof of Claim 4.10. We remind that Y(z) = J&—Y (z) and we have |Y],, <
¢1(1 4+ +/S). The hypothesis implies therefore that || & || ;2 is bounded.

Let S(t) = Sox(t). At a point t where S(t) > 1, we have z(t) = (z(t), S(t))
and |#(t)]? = |2(t )]i(t) +|S'(t )8S|2 |z (t )|2(t) + S'(t)?/S(t). This ensures
VS”? < Li(t)[2. Atapoint ¢ where S(t) < 1, we have VS~ = [d(V/S)-i(t)]*
< ¢|#(t)|?, the norm of dv/S being bounded on E.

On the other hand, we clearly have |Z(t)| ;) < |Z(t)|2@) < [#(t)] at a point
t where S(t) > 0, while for S(t) = 0 we have z(t) = %(t) hence |Z(t)| = |Z(t)].

This shows that || & ||z2 bounds || VS’ |2 and || Z ||p2. Claim 4.10 is
proved. O

We are left to prove that || v.Sox ||z2 is bounded. Arguing by contra-
diction, let us suppose the existence of a sequence (sg,xy) such that

(4.29) | V/Soap || — oo,
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LoH
| Vo) P<ds [ ntmt)de < c.
0

By (4.12) we can suppose sy — §. Let Sy = S oz, and A\ =[] Sk || /A,
with A > 1 a constant to be chosen below.

Claim 4.11. The sequence vi(t) = (Zx(t), Sk(t)/A2) has a uniformly con-
vergent subsequence.

Proof of Claim 4.11. Let Sy =S o v;. We have | \/gk |= A < oo and, by
Lemma 4.7, it is enough to prove that || 0y || is bounded. We shall drop the
subscript k in the next paragraph. For S > 0 we denote by S° (resp. go) the
“true” S-coordinate corresponding to S (resp. S), with values in ]1 — doo|
and with respect to which the homogeneity property (4.4) is verified.

We first prove the following inequality, with the convention S°/S° =1 if
S=0:

(4.30) [o(t)]? < Cglm% + 123,

where ¢ > 1 is some constant. At a point ¢t where S(¢) = 0, we have v = &
and (4.30) is clear. Let us examine the situation at a point ¢ where S(t) > 0.
After expansion (4.30) reduces to

( j/)Z _ 7:570 (So/)Q

Go — 50 go
which is equivalent to
gol So/
4.31 —| <e1|—=].
( ) SO =4 So

We prove (4.31) under the assumption that 59 and S° are both strictly
positive (note that they necessarily have the same sign). The proof applies
as such to the negative case as well.

We have S° = g(S) where g :]0,00[—]1 — §,00] is a strictly increasing
diffeomorphism, with g(y) = y for y > 1 and ¢'(07) = co. The inverse
f = ¢! has to vanish at infinite order at 1 — ¢ and has as typical profile
f(@) = exp (—1/(z — (1 —9))). Therefore g can be chosen to be equal to
g(y) = (1—=6) —1/Iny near 0, say on |0, €], with ¢’(y) = 1/y(Iny)?, whereas
on [e,1] we have 0 < ¢ < ¢ < C.

a. Assume 0 < S < 1. This means that 5° and S° belong to |1 — 6, 1].
It is enough to prove that, for any A > 1, we have ¢'(S/\) < é\g'(S)
for some constant ¢5 > 0. Now:

e If S €0, €], we have ¢’(S) = 1/S(In S)? and ¢'(S/A\) < Ag'(S).
o If S €le, e, we have ¢'(S/A) < ed/S-¢'(e) < AC < AXC/c-¢'(9).
e If S €]e), 1], we have ¢'(S/\) < CJ/c-¢'(S) < AC/c- ¢ (9).
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b. Assume S > 1. We have to prove that S/\ - ¢'(S/\) < ég(S/N),

A> 1.

eIf 1 < S < e\ then S/A-¢(S/)) < 1/(lne)? < 1/(1
0)(Ine€)?- g(S/A).

e If 1 <eX <8 <A wehave S/\-¢'(S/\) <1-C <C/(1-9)-
9(S/A).

e If S > A, we have ¢/(S/\) =1 and S/ = g(S/)).
Inequality (4.30) is now proved.
We can now proceed to the proof of Claim 4.11. We have

loir= [ poPas [ P

Sy<1 S(t)>1

5 5
SZ/ E§|x JYO$|Q+C |JY01:]Q+|33 —JYoxh|5
S(t)<1
L.
—HJYoaﬁh]%—i— 2/~ F\x—JYox\%—i—F\JYom%
S(t)>1

+ 2" — JY o a3+ |JY 02"}
§2(6|yg'c—JYox||2+|| JY o a |3

+/ . SO|JY o z|3, +/ |JYox|§2)_
~ So ~ A2
S(t)<1 S(t)>1

We claim that all four terms in the last sum are bounded. The first equals
| Yoz ||. The second is bounded by assumption (4.21) on Y. In the third
term, we have S° < 1 whereas |JY oz|3/S° is bounded as seen in the proof
of Claim 4.10. Finally, the fourth term is bounded by § S 1 VSox |2,=CA
and Claim 4.11 is proved. O

. o .
After going to a subsequence, we can now assume that vy — v with v
continuous.

Claim 4.12. We have Sowv > 1 if A is big enough.

We prove Claim 4.12 after having proved Claim 4.13 below.

Let now U C B be a ball such that v C E|U, hence v, C E’\U for k large
enough. The existence of U follows from the contractibility of the wvy’s.
Choose a radial contraction of U onto b € U and consider the associated
parallel transport 7 : E|U — Eb We define v = Tov, U = Touvy, Ty, =
Toxg, T, = T o Tx. We clearly have Ty, = (Zy, Si) and Uy, = (g, Sk/A2).

Claim 4.13. We have || U — Xp@E () lo — 0.

Proof of Claim 4.13. We write in this paragraph F for F(5) and we recall
that, by condition (4.16), the vector field Xp is vertical (and collinear to
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the Reeb vector field on the level surfaces of F'). We have

(4.32) |0k — Xp(@) lo = +— || k= Xp(ARD) [lo;
due to the homogeneity property of the conical metric. We also have

1 ~ ~ 1 ~ vert [~ ver ~
" |z — Xp(Aj0) || < /\*k( |z = JYY (@) ||+ || (JYY = Xp) (@) )
+ H Xr(A\for) — Xr(A20) || -

The first term of the right hand side is bounded by /\—1]6 || Y(z) || and goes
to zero as k goes to infinity. The second term goes to zero with k by (4.13).
The third term is bounded by || Xz (vx) — Xr(v) ||q and therefore also goes
to zero. This proves Claim 4.13. O

A direct consequence of Claim 4.13 is that v = X (7). Indeed, we have
. 2 2 . .
U = Xp(?) and T, = v. This implies & € L2 and & = X5 ().

Proof of Claim 4.12. We choose A>1 such that AZ%-min f(s,u)>
max f(s,%). There exists to such that S(v(ty)) =A% Suppose by contra-
diction that S(v(t)) = 1 for some t and let t; be the smallest such ¢ with
Sowv>1on [ty t1] and S(v(t;)) = 1. The same argument as in the proof of
Claim 4.13 can be applied on the interval [to, t1[ instead of S* in order to show
that v = Xp(v) on this interval. In particular, the image of [to,?1] under v
is located on the level S(v(to))f(5, v(to)) = A2f(5,9(t0)) > f(5,0(t1)). In
particular, S(v(t1)) f(8,0(t1)) > f(5,0(t1)), which means S(v(t1)) > 1. This
is a contradiction and Claim 4.12 is proved. O

At this point, we have exhibited a 1-periodic orbit v for Xp, living on an
arbitrarily large level. This ensures by (4.20) that af ~(5) > € > 0. We shall

put to work the hypothesis fo %1;[ < cin order to derlve a final contradiction
and complete the proof of Proposition 4.8. We first compute:

Eyj(s,t,x,S)

— /Odcfy%H(stxfySJrl— )d7+({gz(87tax,1)

- gjas(stx75+1—7) (S—l)d’y+%H( 4,7, 1)

= [ (Gt ma8 1) = LR sas +1 =) (51
OH

+ E( t,2,1) + Osf(s) - (S—1).
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We have used (;38278}; = O0sf. On the other hand, condition (4.15) implies, for

any 7 > 0, the existence of a constant ¢, such that
0’H O0’F c
a.aa 7t7 _7 S)— %5 9 _7 S ‘ < 77—
9508 b8~ gpg e &) s T+ T

For k large enough, s is close to 5§ and we get:
' OH
ez [ ntanle), Su0)de
0 88

€ €
>~ | V/Sk I3 —er Bk Il — C+ 511 v/Sk 3 5.

But || v/Sk |l11 < || V/Sk || 12 and, for 7 < €, the right hand term of the above
inequality goes to +oo with k because we have supposed || v/Sk ||r2 — 0.
This is the desired contradiction and Proposition 4.8 is proved. g

Lemma 4.14 (compare [11], Lemma 9). Let J, H and Y satisfy conditions
(4.5) and (4.6) and (4.10) to (4.18). There exist c; <ca such that every
solution of

~

us + J(s,t,u)uy — Y (s, t,u) =0,
—oo < inf Ag(s)(u(s)), sup Ag(s(u(s)) < +oo
SER ng

satisfies
(4.33) Apsyu(s) € [e1, ).
Proof. We have

1
GoAmeu(s) = = [ st )t = dA g u(s) - V(s,u(s),

where

~

1
1§12 = [ wle. T 0 o:8' — B, € €T TE)
0
By (4.11), we infer that Ap(s)u(s) is decreasing with s and therefore

im Apgu(s) = Sup Ap(syu(s),

Jm  Apyu(s) = inf Agu(s).
We also have fj;o dAp(s)(u(s)) - Y(s,u(s)) <oo and we get a sequence
sk — oo such that dAg,,)(u(sk)) - Y(sg,u(sg)) — 0. We shall prove
that A H(sk)u(sk) is bounded from below by a universal constant c¢;. The
same argument applied to a sequence s —> —oo will yield the universal
upper bound cs.
We note at this point that, because s — 0o, we can assume by (4.6)

and (4.12) that J=J., H=H,, Y=Y, are all independent of s. As
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usual, we denote xp =wu(sg), Sk =S o xg. The strong pseudo-gradient prop-
erty holds therefore with the uniform constant a; >0, and we infer that
| V(s i) [I2,— 0.

Claim 4.15. || v/Sk |12 is bounded by a constant depending on u.

Let us assume for a moment that Claim 4.15 is true. Combining it with the
fact that || Y(xk) |2 is bounded we get by Claim 4.10 of Proposition 4.8 a
H'-bound on zj, which again depends on u. By Lemma 4.7, we can then find
a subsequence still denoted z; which converges uniformly to a continuous
loop x.

We know that )(xy) L2, 0 and therefore = € H, Y(z) = 0 and @y, o
#. The fact that ) is a (negative) pseudo-gradient for the action implies
that x satisfies the equation #=Xpg_ (x). By Proposition 4.8 applied to
H(s) = Hy, Y(s) = Yy, we get a universal bound on the H'-norm of z.
This implies a universal bound on its C°-norm through Lemma 4.7 and a
universal bound on its C'-norm through the equation & = Xy (z). Finally,
a C'-bound on a contractible loop implies a universal bound on the action
Ap, (). Moreover, we have A, (k) — An, (2).

It is now clear that we can set

clzinf{AH+(m) : i:XH+(.7})}>—OO. 0

Proof of Claim 4.15. We suppose by contradiction that, up to considering
a subsequence, we have ||\/Sk| 2 — co. We shall derive a contradiction
along the lines of the proof of Proposition 4.8.

Let Ax = [|[v/Skllzz/A, A > 1 and vy (t) = (Tx(t), Sk(t)/A2). We are now
precisely in the situation of (4.29) in Proposition 4.8, with H = Hy and ) =
Y. We get a subsequence still denoted vy which converges to a continuous
limit v, giving rise to a 1-periodic orbit of X, which is located on a level
set of F with arbitrarily large S coordinate. This contradicts hypothesis
(4.18) and concludes the proof of Claim 4.15 and of the Lemma. O

Lemma 4.16 (compare [11], Proposition 11). Let j, H andY satisfy condi-
tions (4.5) and (4.6) and (4.10) to (4.23). For any § > 0, there is a constant
cs > 0 such that any solution of

Ug + j(s,t, wug — Y (s, t,u) =0,
—oo < inf Ag(s)(u(s)), sup Aps (u(s)) < 400
seR seR
satisfies

(4.34) [VSouls < cs.

Proof. Let u : R x St — E satisfy the hypothesis. By Lemma 4.14, there
are constants ¢; < cp such that AH(s)u(s) € [c1,c2], s € R. Let ¢ =co — 1.
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We infer that, for any a < b, we have

b
(4.35) / (a4 (uls)) - Vs, u(s)) +

Let 5, = k0/4, 7 = §/16. Inequality (4.35) applied to a = 5 — 7 and
b = S + 7, together with the density of the set {s : a(s) > 0}, yields the
existence of s € [ —7, i+ 7| such that a(s;) > 0 and such that z; = u(sy)
satisfies

' OH
0

By the asymptotic behavior of a(s), there are only a finite number of inter-
vals on which a(s) is nonconstant. We deduce the existence of some ag > 0
such that a(sg) > ag for all k € Z. Proposition 4.8 implies the existence of
a constant d(d) such that || v/Soxy |[g1< d(d). The compact embedding
H(S',R) < C°(S',R) gives a constant cs such that || v/Soxg ||co < cs.
On the other hand, (s) € I's, where I's is defined by (4.24), and this implies
[VSouls <cs. O

Proof of Theorem 4.6. Let a(s,t)=S5 o u(s,t). By Lemma 4.16, we have
[a]s < (c5)? for any 6 > 0. In view of Proposition 4.5, it is enough to show
that « satisfies an equation of the form

Aa > —A — Ba,

with A, B positive constants depending only on j, H and Y but not on u.
Choosing 6 such that 6B < 72 will yield a C%-estimate on .

We first express A« in a suitable way. The trick of exhibiting in (4.36)
the term 3 (|us|3 + |u|3) is borrowed from [6]. Let us consider R > 1 such

that J(s,t) = Jy (s,t)®Jp(s,t) is standard split for S > R2. Let T = {(s,t) :
a(s,t) > R%}. We have dS o J(s,t) = —C(5,t)SO on I' and the following
hold.

ag(s,t) = dS - us(s, t) = dS - (=Jug + Y (s, t,u))
= C(s,t)S(u(s,t))O(u) +dS - Y (s, t,u).

ar(s,t) = dS - uy(s,t) =dS - (Jus — JY (s, t,u))
= —C(s,t)S(u(s,1))O(us) + C(s,t)S(u(s,t))O(Y (s,t,u)).
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(4.36) s (S (ul(s, )) ( 1)) — 9 (S(u (3 £))O(us))
= us ((90) () — u((SO)(us))
=d(59)(% ut) + (SO ([us,m])

— d(SO) (s, wr) = Vg, ug) ;Q(us, w) + %Q(us, )
= 1Q(us, Jus — JY) — 5Q(ut, —Ju +Y)

1 ~ 1
(Jusld + lwld) — QQ(uSa JY) — iﬁ(ut,Y).

l\Z)\*i

We get
D (el + ulz) ~ CC (0, 7¥) + Q. v))
+ Cs(s,1)SO(ur) — Ci(s,t)SO(us) + Ci(s,t)SO(Y)

+dS - 0sY (s,t,u) + dS -V, Y (s, t,u)

+ C(s,t)((dS cup) - O(Y) + SO(0,Y (s,t,u)) + SO(V,,Y (s, u)))
We estimate now the terms composing the right side of the above identity.

Condition (4.6) implies that C(s,t) is independent of s for |s|>sg. As
C(s,t) > 0 we get the existence of strictly positive constants Cp,C; such

that

- C(s,t)
Aa = —

We get

C(s,t)
50 (fuaff + ) >

On the other hand, we have

[Qus, V)| < Juslo - Vg, [92(us, V)| < Juclo - [V]a.

We can estimate |Y'|q through the first condition of (4.13), which implies
Vg <|Y|w < c1(1+VS) + | XF|o. Now a direct computation shows that
|Xrl, = O(VS) and this gives |Y|q < ¢1(1 ++/S). As a consequence, we

have

(|Us|Q + |Ut|Q)

Co
2

1Q(us, JY)| < &1 (1 + Va)luslo,
[Que, V)| < a1+ Va)luo.
The norm of O(@,S) as a linear map is equal to 1/4/S for S>1, and
we get
CsSO(w)| < Ci(1 + V)|,
CeSO(us)| < C1(1 + Va)lusl,
ICSO(Y)| < Crar (14 Va)®.
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The norm of dS(@,S) as a linear map is equal to v/S for S > 1, while
|0sVF(s)],=0(VS). The second condition in (4.13) implies |95Y |, =
O(V/'S) and we obtain

dS - 0,Y (s,t,u)] < ca(1 4 va)?.
We have as well
[(dS - ue) - O (s, t,u))| < &1 (1 + Va)lulo
and, by (4.22):
SO0 (5,1, )| < (1 + Va)?.
Finally, condition (4.23) gives
SO (VY (s,t,u)| < (1 + vVa)|uq,
45 VY (5,1, 0)] < (1 + V) uslo

The absolute value of the sum of the terms other than 3C(s,t)(|us[3 +
|ut|3) is therefore bounded by

Ci(1+a) + Co(1 4+ Va)|uia + C3(1 + Va)|us|o,
with obvious constants C;, Cy and C3. This implies

Aa > —A — Ba,

with suitable constants A and B. This inequality holds for a(s,t) > R%. In
order to get a global inequality on R x S!, we use a trick that we borrow
from [11]. Let ¢ : Ry — Ry be a smooth function such that ¢(S5) =0 for
S <R Q(S)=1for S>R?+1and ¢"(S) >0 for RZ < S < R+ 1.
Then ¢ satisfies

(4.37) S<p(S)+C

for a suitable constant C. Let ((s,t) = ¢ o a(s,t). Inequality (4.37) gives
a bound on « in terms of a bound on 5. On the other hand, we obviously
have [B]s < [a]s, d > 0. It is therefore enough to show that § satisfies
an inequality of the form A3 > —A’ — B’3, with A’ > 0, B’ > 0 positive
constants. Indeed
AB = 05(¢ (a(s, 1)) - ozs)—i-@t( o)
= ¢ (a(s,t ( as)? + ) ( (s,)) - A
2(,0(04(3, ))(—A—B )Z—A—Ba —A— ﬂ

O
Remark 4.17 (On the maximum principle). A priori C%bounds for
Hamiltonians that are linear at infinity can be obtained directly through
the maximum principle as in [31]. Nevertheless, the interested reader can

convince himself that such a direct approach is not effective for Hamiltonians
of the form h(S) + f. The solutions of Floer’s equation satisfy in this case
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a second-order elliptic equation with zero-order term — an avatar of which
has already appeared in the previous proof — and no general maximum
principle is available in this context.

4.2. Definition of symplectic cohomology. We define in this mainly
expository section the Symplectic cohomology groups F' H, [’; ] (E). We com-
bine the philosophy of [31] with the setup of [11].

Let j(E) be the set of admissible almost complex structures, consisting of
time-dependent elements J such that the associated constant deformation
J(s) = J satisfies (4.5) in Definition 4.3. Let 7 (R; E) be the set of admissible
deformations of almost complex structures given by Definition 4.3.

Given J € J(E), we denote by HY(E, J) the set of admissible Hamil-
tonians and pseudo-gradient vector fields, consisting of time-dependent
pairs (H,Y') such that the constant deformation (H(s),Y (s))=(H,Y) sat-
isfies Definition 4.4 and Hlgip <0. Given Je€ J(R;E), we denote by

~

HY(R; E, J) the set of admissible deformations of Hamiltonians and pseudo-
gradient vector fields, consisting of pairs (H,Y') satisfying Definition 4.4 and
such that H(s)|sixg <0, s € R.

We also define

THY(E) =|J {T} x HY(E.J), THYR;E) =|J {J} x HY(R; E, J).
7 7

Definition 4.18. Let p > 2 be fixed. We define JHYreg(E) to be the set

of all triples (J, H,Y) € JHY(E) such that the 1-periodic orbits of H are
nondegenerate and the linearized operator

Dy, : WY (u*TE) — LP(u*TE),

Dyé = Vi€ + J1(u) V€ + Vi (u)du — Ve Yy(u)

is surjective for any finite energy solution u : R x S! —» E of the equation

~

(4.38) us + J(t,u(s, t))ug = Y (t,u(s, t)).

It is proved in [9, 27] that, if the 1-periodic orbits of H are nondegenerate,
the operator D, is Fredholm and its index at a solution u is equal to

ind D, = icz(zt) —icz(z7), 5= lim u(s,-).
s—Foo
We have denoted by icz the Conley—Zehnder index as defined in [26]. The
arguments in [12] can be adapted to the pseudo-gradient setting and show

that JHYreg(E) is of the second Baire category in JHY(E).
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Let P(H) be the set of 1-periodic orbits of H. Given a regular triple
(J,H,Y), we define the complex

(4.39) FCY(J,HY)= P Z@),
z € P(H)
—icz(x) = *

(4.40) N z) = > #(M(y, z)/R)(y).

y : dim M(y,z)=1

Here M (y, x) stands for the space of solutions u of equation (4.38) with the
limit conditions limg_, oo u(s, ) = y(-), limsoou(s, ) = x(-). The addi-
tive group R acts on M(y,z) by reparametrizations, and we denote by
#(M(y,z)/R) the algebraic number of elements of M (y, z)/R with respect
to a choice of coherent orientations [10]. We claim that % = 0 and hence
(FC*(j, H)Y), 8) is a differential complex.

The first important observation is that the equation wug-+ T Up =
Y (t,u(s,t)) has the same analytic nature as the ordinary Floer equation,
namely the linearization D, is a compact perturbation of the Cauchy—
Riemann operator. In particular, a bound on the energy E(u) = [p. o1 |us|?
implies compactness up to breaking of trajectories for the relevant moduli
spaces. This in turn implies 9> = 0. The second observation is that such
a uniform bound on the energy for the elements of M(y,x) follows from
the strong pseudo-gradient property dAy - Y > c||V||?, ¢ > 0. Indeed, if
Us = _y(tvu(sv )) and U(—OO, ) = y()a u(+oo7 ) = l’(), we get

A(y) - An(e) = — [ LAn(u(s, ) = /R Ay -V > e /R V]2 = cEw),

R ds
so that E(u) < (Ag(y) — Ag(x))/c.

Remark 4.19 (Convexity). Since the space of strong pseudo-gradient
vector fields is convex, the homology groups that are computed by means
of any strong pseudo-gradient are the same as the ones computed with the
usual gradient of the action functional.

The pseudo-gradient property implies that the action decreases along solu-
tions of (4.38), so that we have subcomplexes

(4.41) FCh (JHY)= P Zz) c FC*(J,HY)

[a,00(
Apg(z)>a

defined for a < oo, as well as quotient complexes

(4.42) FChLy(J,HY) = FC}, JFCh o = P Z)
Apg(z)€la,b]
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defined for —oo < a < b < oo. We denote the corresponding homology groups
by FH! [a, b}(J ,H,Y). They are endowed with natural restriction morphisms
induced by inclusions of subcomplexes

FH[t‘L,b}(j:H?Y) —>FH[>‘;)/7I;/](:]\7H7Y)7 G/Za/7 be/

The above homology groups depend on the asymptotic profile F' of the
Hamiltonian H (see Definition 4.4). In order to define invariants of E, one
needs to use an algebraic limit procedure which we describe below, and
for which we need to further restrict the class of admissible deformations
considered in Definition 4.4 in order to be able to get a priori energy bounds
for solutions of the s-dependent Floer equation.

Definition 4.20. Let J € J(R; E). A good deformation of Hamiltonians
and pseudo-gradient vector fields is an admissible deformation (H,Y') such
that H(s)|sixg <0, s € R and the following additional condition is satisfied.

e For any compact set K C E, there exists a constant ax > 0 such that
(443) dAH(s,)(':L‘) ) y(S,ZL') > CLKHy(Sa "L‘)H%(S)
for all contractible loops x : S' — K and all s € R.

Remark 4.21 (admissible versus good deformations). The difference
between admissible and good deformations is that, for the latter, )(s,-)
might still be only a weak pseudo-gradient for a nowhere dense set of values
s € R, but this phenomenon is controlled in a precise way, namely ax — 0
as K exhausts E.

Remark 4.22 (Example). Given two triples Ty = (ji, H ) YL)e JHY(E),
we can construct a good deformation connectlng them as follows. We inter-
polate from Y_ to V- H _, then deform J_ to J+, H_ to Hy and implicitly
VI-H_ to VJ+H+, and then interpolate from v/t H, to Yi. Such defor-
mations admit a uniform pseudo-gradient constant a > 0 depending only
on T:t.

Remark 4.23 (Degree of generality). We actually use in Section 7.6
good deformations which satisfy (4.43) with a uniform constant, independent
of the compact set K. Nevertheless, we chose to give the more general
Definition 4.20 in order to stress the fundamental role of the strong pseudo-
gradient inequality.

We denote by
THY(E:T_, T}) C THY(R; E)
the space of good deformations connecting T and 7. Standard transver-
sality methods allow one to define a space

ijreg(E; T, T+)
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of regular good deformations, which is a set of second Baire category in
JHY(E;T_,T;) and has the property that the spaces of solutions of the
equation

~

(4.44) us + J(s,t,u(s,t))ug = Y (s, t,u(s,t))

are smooth manifolds. We claim that, just like in the case of constant defor-
mations, these spaces of solutions are compact modulo breaking of trajecto-
ries. The main ingredient is an a priori energy bound for the elements of the
space M(z~,z") of solutions connecting = € P(H_) to x* € P(H, ), and
Definition 4.20 plays a crucial role in obtaining it. Since a good deformation
is admissible, we know that Floer trajectories stay inside a compact set K,
hence ) is a strong pseudo-gradient along Floer trajectories with uniform
pseudo-gradient constant ax > 0 and we have

Ap_ (z7)— Apg, («¥) = —/RCZAH(S)<U(57 ) —/RdAms) '3’+/R

> ax /R V)2 = axE(u).

o
xSt 88

Therefore, E(u) < (Ag_(x~)—An, (z1))/ak is a priori bounded. Note that,
although we have used the hypothesis 9H/ds > 0 in the above computation,
this is not a crucial assumption at this point.

The pseudo-gradient property again implies that the symplectic action
decreases along solutions of (4.44), hence a good deformation induces chain
maps

o Foﬁlm[(ﬁ, Hy Yy) — FC[’;lm[(f_, H_,Y_),
ofat) = > #M(z™, 2 (a)

- € P(H-)
dim M(z—,z+t) =0

which pass to the quotient as chain maps
0 FCh (T Hy Y1) — FCy(J- H_Y.), —oco<a<b< oo

Since the space of good deformations is convex, the induced morphisms in
homology

o FHfy y(Jy, Hy, Yy) — FHfy(J H_Y ), —c0<a<b<oo
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do not depend on the choice of the deformation. We call them monotonicity
morphisms. We define the Floer or symplectic cohomology groups by

(4.45) FHj, y(B) = lim FHj, (], H,Y),
<
(4.46) FH'(E) = lim FH] ().

b

Here the partial order < on JHY(E) is defined by
(4.47) R
(J_,H_,Y_ )< (Jy,H.,Y,) iff H (t,2) < H (t,x), t€S', z€E,

and it makes JHY(F) into a directed set.
We conclude this section with an invariance statement.

Theorem 4.24 ([4], Lemma 3.7, [31], Theorem 1.7). Let By, 4, Z;, t €
[0,1] be a deformation of the symplectic structure on the fibration E such
that

(E77TaBaFth7Ztaﬁt)

defines a negative symplectic fibration in the symplectically aspherical cate-
gory for each t € [0,1]. We then have a natural isomorphism

FH*(E;ﬂo,Qo,Zo) ~ FH*(E;,Bl,Ql,Zl).

4.3. Properties of symplectic cohomology. In this section, all sym-
plectic manifolds are assumed to be symplectically aspherical. We recall the
definition of positive contact type boundary given in the Introduction.

Definition 4.25. Let (M,w) be a symplectically aspherical manifold with
boundary of contact type and Liouville form A defined in a neighborhood of
OM. We say that OM is of positive contact type if every positively oriented
closed contractible characteristic v has positive action A, () bounded away
from zero, i.e., there exists Ty > 0 such that

A1) = Aulr) = / Y > T,
D2

where 7 : D> — M is any map satisfying 7|yp2 = 7.

Remark 4.26 (Examples). 1. Restricted contact type implies posi-
tive contact type in view of the equality [, 7*w = [ 7*A. Bound-
aries of Stein domains are in particular of positive contact type.

2. If the boundary dM is of contact type and has no closed contractible
characteristics, then it trivially satisfies the positive contact type

property.
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3. Negative unit disc bundles satisfy the positive contact type property.
In that case we have w = m*3 4 Q and A = (1 + r2)6, where 0 is the
transgression 1-form (see Example 3.3). The closed characteristics
are contractible in the fibers and we have, for each of them, A, (v) =
Jor 770 =5 Jsi 7N

4. T do not know any example of a symplectically aspherical manifold
whose boundary is of contact type but not of positive contact type.
One should note that the definition only makes sense in a symplec-
tically aspherical manifold. If (w,m(M)) # 0, we can always glue
a sufficiently negative sphere to any filling disc 4 so that A,(v,7)
becomes negative.

Remark 4.27 (Computation). If OF has the positive contact type prop-
erty as defined in Section 4.3, we can compute F'H*(E) with a cofinal family
of Hamiltonians such that their 1-periodic orbits are either constant with
negative action close to zero, or nonconstant with positive action [31]. Given
any a < 0, we then have

FH*(E) = lim FH},,(E).
—
b

Under the positive contact type assumption on the fibers of E, the proofs
of [31], based on manipulations of energy levels, apply verbatim in order
to show that our fibered version of symplectic homology has the following
properties.

a) ([31], Prop. 1.4) If u > 0 is small enough, we have
FH'  (B)~FH , (E)~H""(E,0E), 2m=dim E.

In particular, there is a canonical morphism ¢* : FH*(E) —
H**™(E,0F) induced by the truncation of the range of action.

b) ([31], Thm. 3.1) Any codimension 0 embedding j : W — FE of a
domain W such that OW is of positive contact type and W satisfies
condition (A) of [31] induces a transfer morphism Fj': FH*(W) —
FH*(E) which makes the following diagram commutative

Fj

FH*(W) FH*(E)

A

j‘

H*™(W,0W) — H**™(E,0F).
The bottom arrow is the Poincaré dual of H,,—.(W) LN Hy—«(E).
The requirement that W be of positive contact type can be relaxed

to the weaker assumption that W be the boundary of a negative
symplectic fibration whose fibers satisfy the positive contact type
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condition. Moreover, if there exists no closed characteristic on W
or if OW is of restricted contact type in M, then Fj' is defined in
the symplectically aspherical case without reference to the additional
condition (A) of [31].

c) ([31], Thm. 4.1) If the map FH*(E) — H*™(E,0F) is not surjec-
tive, then any contact type hypersurface which bounds a domain W
in M carries a closed characteristic. The same conclusion holds if 9W
is the boundary of a negative symplectic fibration.

Remark 4.28 (Homological versus cohomological formalism). As
announced in the introduction, one can build symplectic homology groups
based on the same chain groups as the cohomological ones, but with dual
differential

o(y) = > #(M(y, =) /R)(z).

z @ dim M(y,x)=1

This formula is to be compared with (4.40). The main difference between
cohomology and homology is that the first involves an inverse limit, whereas
the second involves a direct limit. The latter is always an exact functor and
therefore the homological spectral sequence holds with integer coefficients,
whereas the cohomological one holds with field coefficients. We chose to
work with cohomology in order to respect the setting of [31] on which we
base our applications.

5. Pseudo-gradient vector fields

We construct in this section a special family of almost complex structures,
Hamiltonians and pseudo-gradient vector fields (J,, K,,Y,), v — oo which
is cofinal for the previously defined order < and which satisfies the following
two properties.

A) The 1-periodic orbits of K, are located in the fibers over the critical
points of a function f : B — R which is C?-small and whose gra-
dient flow is Morse-Smale. The gradient is computed with respect
to the metric induced by a generic time-independent almost complex
structure Jp.

B) Floer trajectories for the Floer complex FC*(J,,Y,) project on gra-
dient trajectories of the Morse complex FC*(Jp, ¢, f) on B, for some
c, > 0.

Conditions (A) and (B) will be used in Section 7 in order to filter each
Floer complex FC*(J,,Y,) by the Morse index of the projections of the
1-periodic orbits of K.

5.1. A model pseudo-gradient property. We begin by introducing hori-
zontal distributions which are time-dependent. These play an important role
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in order to achieve transversality within the class of split almost complex
structures (see Section 6). We denote by

Hy = Vert©

the horizontal distribution determined by €, and by H = (H;), t€S!
an arbitrary time-dependent horizontal distribution such that H = Hy on
{S>1}. Every such horizontal distribution can be described as a loop of
graphs of linear maps

L;: Hy — Vert, teSt,

with graph(L;) C HydVert = TFE and L; supported in E. Given a horizontal
distribution H, we mark the horizontal lift of objects on B by the symbol .
In order to emphasize the horizontal distribution H with respect to which
we construct the lift, we shall sometimes use the superscript H. We point
out that time-dependent horizontal distributions produce time-dependent
lifts, even if the objects on B are time-independent. On the other hand,
the property of being vertical is independent of the choice of horizontal
distribution. We denote by

X =XP 4 xv

the decomposition according to the splitting T' E = Hy & Vert. We denote
by

X = Xhoriz + Xvert

the decomposition of a vector X € TE according to the splitting TE =
H @ Vert. We have X[ = XI 4 [, (X)) Xyert = XV — L, (X1D).
In the next statement we make the following notations:

e Jy is an almost complex structure on Vert which is compatible with

Q|vert and which is standard on OF X [1, 00];

Jp is an almost complex structure on B compatible with G and such

that (-, Jp-) is positive on the horizontal distribution Hy for S > 1,

f : B — R is a Morse function with critical points {p1,...,ps}

and U;, i€{1,...,¢} are mutually disjoint open neighborhoods of

the p;’s;

H is a horizontal distribution given by a loop L = (L; : Hy — Vert),

t € S! supported in E \ Ule 7Y (U;);

e h: E —» R is a Hamiltonian with vertical Hamiltonian vector field,
linear for S > 1 with slope Apax (typically of the form h = h(S)).

We use a superscript € in order to emphasize that the Hamiltonian vector
fields or the Hamiltonian action are computed with respect to w. = 73 + €.
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Proposition 5.1. Assume the almost complex structure Jg € J(B,3) is
time-independent, and assume that the mazimal slope of h satisfies the con-
dition
Amax & Spec(OF).
There exist constants €g, dg, po, g >0 such that, for e <ep, a<ag, § <dg
and || L ||co < pod, the following statements hold true:

o the form we, 0 < € < €g is nondegenerate on E and tames Jy & jg;
e the vector field defined on the space of 1-periodic loops by

YVi(x)=J(@ - XGHox— Xspox)
satisfies the strong pseudo-gradient inequality
(5.1) A4S 57 (@) V(@) > o | V() 12,

with equality iff x is a 1-periodic orbit of Xj, = X, in a critical fiber

of f.

Remark 5.2 (The trivial case). If Xy = 0 the pseudo-gradient property
is clearly satisfied with oo = 1 since Y = VA, .

Remark 5.3 (Comparing )¢ and VAz(th)). Let us assume in order to
simplify notation that e = § = 1. Then Y(z) — VAth;(x) = (Xf_ )?}) ox.
On the other hand, if Q|sg is nondegenerate on Hy, we have |X}"ﬁ — 0 as

S — oo, whereas |)?}|5 stays constant as S — oo. The vector field Y is
thus a “big” perturbation of VA, 7 and inequality (5.1) should come as a
pleasant surprise.

Proof. The statement concerning w, follows immediately from the (NEG-
ATIVITY) assumption and from the fact that L is supported in FE, so
that we are left to prove the statement concerning J°. We note that
V() = J(& — Xpox—eXspox) and, in order not to burden the notation,
we give the proof for e = ¢y = 1. The reader can easily convince himself that
the proof holds verbatim for an arbitrary value 0 < € < €. The intuitive
reason is that, as € decreases, the factor in front of f is allowed to vary in

the smaller interval ]0, edp] and the vector field V¢ gets closer to VAE (ho)"

Let B =dA,  #(x) - Y(z) = dA,  #(x) - J (& — X, — Xf). We have
E= /w(a’s, Ji— JXp — JX[) — /(df+ dh) - (Ji: — JX), — JX[)
=X |2 —/ (. JXp) + 7" B T — TX ) — (X, TX 7))

— i X0 = Xy I+ [ (7. 8) - 90, IX) + QX0 X)),
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We distinguish three cases: either the loop x is contained in OF x [1, 0o,
either it is contained in the compact region S < A, either it intersects both
S =1and S = A. The real number A > 1 will be suitably chosen below (we
will see that A = 4 is a convenient choice).

Case 1. We suppose that z is contained in OF X [1, 00[. Because H = H

on OF x [1, 00, the term Q(J X}, X ) vanishes and inequality (5.1) becomes
(1=a®) || (& = Xn—Xp)" |13
6:2) 4 (0-a?) i- X=X B - I Xy B+ [ 0K 00) = o

It is enough to prove that the term in (5.2), which we denote by Ej, is
positive. Let z(t) = (Z(t), S(t)). Because X}, has no 1-periodic orbits on
OF x [1,00[ and X}, is contained in a nondegeneracy subspace of €2, there
exists ¢ > 0 such that any 1-periodic loop Z : S' — OF satisfies

(5.3) / 15— Xul > c.
Sl

We denote 6 = maxpg |)?}|Q We let >0 be a positive number. The con-
dition E7 >0 is invariant under homotheties and we may therefore assume
that ming: S(¢) = 1. We have

By =4(1-0?) | V5 32 +(1-?) [ S(0li - Xl -~ o? | SOIX; 01l
S S

-(2-20% | SO Xpa+ | SOV, I

> 4(1- ) | V5 [ + (1= a?) [ S0l - Xiff - o207 | V5 [
S

EQ) / S(t) (ﬁlx — Xplg + \Xﬂ%)
St n

>41-a?) | VS |2+ (1—a?—(1—a?)n—n| Qg /2)-c
1
~(at (1-a+ 5 120ma) /) 1V5 I

This last expression is strictly positive for nn and § small enough due to the
Poincaré inequality which, for ming1 S(¢) = 1, writes

/
IVS e <1+ VS g2

We note that, because we do not assume Jg to be compatible with € on
H, the norm || Q ||gq of Q as a bilinear map in the induced (possibly
degenerate) metric may be arbitrarily large. One can construct explicit
examples for this phenomenon.

1
—(1-*4+ 20
( o’ +5 | 2]
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Remark 5.4 (Slope). The above argument crucially uses the hypothesis
that the maximal slope of h does not belong to Spec(0F), through inequal-
ity (5.3).

Case 2. We suppose now that x intersects both regions S < 1 and S > A,
where A is to be chosen later (A = 4 is a suitable choice). Let J = {t € S' :
S(z(t)) > 1} and J¢=S'\ J. We can assume without loss of generality that
x has transverse intersection with 0F, in which case J is a finite union of
intervals Ji, k€ {1,..., N} and Sox]aJk =1. Let 6% = maxp |B(Xy, JpX7)|.

We must prove that E’ > 0, where

B = (1-a?) H;U—Xh—)?f||3+/Q()”§,J¢—th—J)Zc)
:(1—o/")/Jc|¢—Xh—E\3+LCQ(E,J¢—JXh—Jch)
+(1—a2)/Jya‘:—Xh—)’@]3+[TQ(Z¢,J¢—JXh—J)'§).
For €y small enough, we have | Qg <land|-|, > 3| |g on E, hence

‘Q(Xf,Jl‘ —JXp — JXf)’ < 5|l‘ . Xf’ﬁ < 25‘1’ — X, — Xf|w
therefore obtain

(1-a?) |¢—Xh—)”§c|i+[] Xy, Ji — JX) — JX[)

2/ (\/l—az\x—Xh—Xf]w—5/\/1—a2> 2/(1 — a?)

—5%/(1 — a?).

A\

On the other hand, we have x(t) € OE x [1,00[ for t € J and H = Hy on
OF x [1,00][. If ) is a small enough positive real, we get

(1—a2)/|¢—Xh—)?f|§+/Q()E,J:b—JXh—J)?})
J
<1—a>||f||L2 <1—a2—nr\Q\|E,Q/2>[]s<t>x—
- X5 120ma- [ S@I5 0l
52 9
> 4(1-0) | VS ) = 5 1 2z | VS g

We denote A = 4(1 —a?), B=1/(1-a?), C= || Q |gqa /217 and we have
obtained

/
(5.4) E'> A VS |25y =B8* = C8 | VS |72, -
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The Poincaré inequality for a positive function f defined on an interval I
of length a gives

11220y <altm + | f lr@)? < alm+Vall f ll2m)?

where m = miny f > 0. If aj, denotes the length of Jy, with ), ar < 1, we
obtain

!/
IVS 2y < D ar(l+ var [| VS ll12(5)?
k

! ! /
<12 V5 Ny + VS I2aiy = W+ VS i)

At this point we exploit the hypothesis on z in order to produce a lower
bound on || Vs’ lz2(s)- Let I = [to,t1] C J be an interval such that
Sox|r >1, S(z(ty)) =1 and S(z(t1)) = M, with M = maxSoxz > A. We
have

!/ / !/
VS N2y 2 1VS iy = 1 VS gy =2VM —1>VA-1.
We claim that (5.4) is strictly positive if we choose A = 4, o < § and § such
that 628 < 1 and 62C' < §. Indeed, we obtain || /S |2, <4 || VS |2,

and the expression in (5.4) is bigger than || Vs ||%2(J), hence bigger than 1.

Case 3. We suppose z is contained in the region {S < A}. We choose ¢
small enough so that |- |2 > 2| - ]% on E and || Q|g, [l{s<a},p < 1/2. We
write

(5:5) B'=(1=a®) | &= X, [} =21 - a?){i — X Xp)o + [ K5, 70)
—~h —~ —
50) X | X+ [ 00, X))

The choice of a small enough constant p = p(f, h) ensures |Q(J X}, )7]0)\ <
—~nh —~ —~h
o?| Xy |%N and  |Q(Xp, Xp)| <a?|X; |% pointwise. Let us argue for
Q(JXn, Xy). The inequality is clearly true on Ule N U)UOE x [1,00],
where Q(JX}, Xs) =0. On E '\ Ule 7~1(U;) there exists n > 0 such that
~h
| X ¢ |% > 1. On the other hand,

~ —~h ~h
[T X, Xp)| = [T Xn, L(Xy )] <[ Q oo, ell Xn o, ell L lloo,z [ X 5,

where || - ||oo,g = maxg |-|g. By choosing p < a?n/ || Q |leo.ell Xn ||lso,z, We
get |Q(J X}, va)’ < a2|)f(vfh\%. Because p depends on 7, the actual constant
that we get in the statement of the Proposition is of the type p(f,h,€)d.
The same argument applies to Q(Xp, )7]0)
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~ —~h
By further diminishing p we can achieve | X f\% < 2|Xy \% Indeed, we
have
—~h —~h
X713 = X BHIEE OB < 0 12 gseaysl L 1% 0) X7 13 < 21X, 3.

We infer that, for €y and p small enough, the expression in (5.6), which we
denote by F, satisfies

—h
EBy> (1-4a%) | X" 13
We denote the expression in (5.5) by Ej. It satisfies
. . > VvV
Bl =(1-a®) | (&= Xp)" & —(1—20%){(& - Xp)", Xy )o
—~h —~h
F-ad) [ 2 - 20 - o) X + [ " ga0)

— a2 >V — z(x
= - - - e X - SR

1 —a?

: h g h
5 |l " |5 —2(1 - a®)(@" Xy )

_l’_

2 — —_—
[ 2 -1 - a?) [t X" +a? [ a0 i),

2 2
0 =h l-«a —~h
Eiz—m I X5 113 & 13 =201 = a®)(@" Xy )5

e Y
+—a— 2 \\5—2/\33 181X |5
1 p? ~h 5 1-a? 1 h 112
>—-4+— X - i >
> (345 ) 15 B (S5 - ) 145 2
Lo\ | wh e
—(=+E5) X .
<4+4>H s Iz

We have used for the first inequality that |)7fv\% < p2\j(vfh|%, | &
> %H ih H% and || Q lys<ays < 1. We have used for the second inequality
the fact that (1 —a?)/3 | &b |3 —2(1 — a2)(#", X, ")y > 0 if & is small
enough, by Lemma 5.5 below applied with (W,g) = (B,gg), 95(,:) =
B(-,Jp-) and n = 1/12. We have also used the inequality ]j:h|5|)?}h|g <

~h
%(]xh% + | Xy |%) Finally, the last inequality holds if (1 —a?)/3 —1/4 > 0.
As a conclusion, we obtain

/ 3 P’
B> (F-102 - )15 1B

ll
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hence E' >0 if o and p are small enough. The equality case is readily
characterized from this last inequality. O

Lemma 5.5. Let (W,g) be a compact Riemannian manifold. If n > 0 is
small enough, any time-independent C-vector field X on W with || X ||c1 <
n satisfies

. 1.
(5.7) | &7 =5 (& X ox)pe
n
for any 1-periodic loop x of class C'. Equality is achieved if and only if =
1 a constant loop.

Proof. We embed isometrically (W, g) into Euclidean space and, for 7 small
enough, we can extend X to a vector field supported near the image of
W and whose derivative is pointwise bounded by 2n. We can thus assume
without loss of generality that (W, g) is Euclidean space with the standard
metric, and X is a compactly supported vector field such that ||dX||c < 27.
Since (&, ct.) = 0 and since we only impose a hypothesis on ||dX ||, we can
further assume that X (0) = 0 and z(0) = 0. By the Poincaré inequality we
obtain

(@, X ox)p2] < || & |2l Xow e < 1 dX oo - [ & [I72 <20l & 172 -
The equality case is readily characterized. O

Remark 5.6 (Small orbits). Inequality (5.7) implies in particular ||# — X o
x|z > || X o z||z2. It should therefore be seen as a quantitative expression
of the well-known fact that a vector field which is small-enough in C'-norm
has no nonconstant 1-periodic orbits. In particular, inequality (5.7) does
not hold if X is time-dependent.

Remark 5.7 (Asphericity). Case 3 in the proof of Proposition 5.1 is the
one crucially involving the fact that Jp does not depend on time through
the use of Lemma 5.5. This is one important reason for requiring the base
to be symplectically aspherical in the construction of the spectral sequence:
it is the only case where transversality for Floer’s equation can be achieved
within the class of time-independent almost complex structures.

5.2. Definition of the geometric Hamiltonians. We construct now the
Hamiltonians K, announced in the introduction of the present section. We
recall that the vertical coordinate S was defined only in a neighborhood of
OF as S € [1 —6,1]. We abandon in this section the notation that we have
used in Section 4.1 and do not consider anymore the function S as being
extended over E. R

We first define Hamiltonians H,, : E — R, v € N by the formula

H,=h, —I—Cl,]?.
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Here f : B — R is a Morse function on B, its lift to E is f: f om, while
(cv)y is a decreasing sequence of strictly positive real numbers converging
to zero, to be chosen below.

We define the function h, as follows. We fix a strictly increasing sequence
Ay of positive real numbers which do not belong to the period spectrum of
OF and satisfy A\, — oo, v — 00. We choose h, to be a smooth function
which is constant on E\E)E x [1— g, oo[ and depends only on S on OF x [1—
g, oo[. We shall use the notation h, (S) both for the function h, and for the
corresponding function on [1 — %, oo[. We denote by T the smallest element
of Spec(OF) and use the convention Ty = oo if Spec(0E)=0. We impose

the following conditions on h,:

e h,(S) is strictly convex on ]1 — $,1[ and A (1 — &) < T;
o W, (S)=\, forSZl—%;

e h, <0Oon FE.
We note that the smoothness assumption on h, implies that h], vanishes
at infinite order at S =1 — g. We moreover require that

e for every v € N we have h, + cyf< 0 on E;
e for v < v/ we have h, < h,, and therefore H, < H,  for ¢, small
enough.

Because Xjp, is vertical, Proposition 5.1 implies that the vector field
(Jy ® JB)(:t — Xp, 0o —ec, Xyo :L'), z € AoF is a strong negative pseudo-
gradient for the action functional A¢y if Apax ¢ Spec(OF) and ¢, is small
enough. The lift X is considered here with respect to a horizontal distri-

bution which is close enough to Hy.
The 1-periodic orbits of H,, are all degenerate and fall in two classes:

1) constants in the critical fibers of ﬂE\aEx}l—g,oo[5
2) nontrivial orbits in the critical fibers of ]?, appearing in the region
{1- g <S<1- g} and corresponding to closed characteristics with
period smaller than A,. The characteristics are understood to be
parametrized by Xgeep. In the best of the situations, they are

transversally nondegenerate.

We construct now Hamiltonians K,, with nondegenerate 1-periodic orbits
by perturbing H,. We need two kinds of perturbations, corresponding to
the above two types of orbits:

(A) a time-independent perturbation localized in a neighborhood of the

critical fibers of f‘E\aEX]lfg,oo[;

(B) atime-dependent perturbation localized in a neighborhood of the non-
constant 1-periodic orbits.
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(A) Let {p1,...,p¢} be the critical points of the Morse function f : B —
R. We denote F; = F),, and S; = S|p,. We choose mutually disjoint open
sets U; 5 p; admitting trivializations ¥, : 7T_1(UZ‘) = U; x F; such that
SiopryoW; = S| 1, and V. Hy = H, for all y € F;, where H is the trivial
horizontal distribution on U; x F;. Such a trivialization can be constructed
by parallel transport along the radii of a geodesic ball centered at p;. This
type of trivialization is even a symplectic diffeomorphism in the fibers, but
we shall not use this fact.

v, : UXF9 ——————

\/ \/

We choose now functions ¢; : F; — R subject to the following conditions:
e p;=0forl—3<S5<1;
o v, = ¢;(S)forl —% <S<1-— g, a strictly concave function satisfying
|h(1 = §)| < To;
e ; is a Morse function on E \ O0F x [1 — g, 1].

We denote by f; the composition ¢; opryoW¥; : 7-1(U;) — R. We choose
relatively compact open subsets V; € U;, p; € V; and smooth compactly
supported cut-off functions p; : U; — R such that p;|y; =1 and 0 < p; < 1.

We now define the first perturbation IN(,, of H, to be

(5.8) K,=H,+d, > i f

pi €Crit(f)

Here ¢, is a decreasing sequence of strictly positive real numbers, with ¢,
small enough such that the only critical points of K , inside F are the critical
points of f; in Fj.

(B) The Hamiltonian K, has nontrivial 1-periodic orbits in the criti-
cal fibers F; in the region 1 — Z 8 <S§<1. For any § > 0, there exists a
time-dependent Hamiltonian xJ , : S' x F; — R, with || Xw lc2< 0 and
supported in an arbitrarily small neighborhood of the nontr1v1a1 1-periodic
orbits of KV| F;, such that the 1-periodic orbits of Kl,] F+ Xv,i are nondegen-
erate. We denote Gi’i = Xii o (id x (prg o ¥;)) : St x 77 1(U;) — R. We
define

(5.9) K, = > ni G

pZECrlt(f)

The property ¥, H, = E[y, y € F; ensures that Xs and Xy, are vertical
along the fibers F;. We infer the existence of a constant m > 0 depending
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on all the choices made before such that, for a given v, we have
h —~h
[XGs s <mlXy s,
b —~h
[ X7.lg < m|Xy |

Moreover, by multiplying G‘,il- and f; by sufficiently small positive reals,
we can achieve that the above two inequalities hold for all v and 7 with a
uniform constant m > 0, which can moreover be chosen arbitrarily small.

5.3. Geometric pseudo-gradient vector fields. The objects that we
consider in the next statement are those of Proposition 5.1, namely an almost
complex structure J = Jy @ Jg, a Morse function f : B — R, a horizontal
distribution H given by a loop L = (L; : Hy — Vert) and a Hamilton-
ian h with vertical Hamiltonian vector field. We consider in addition a
time-dependent pertubation GG supported in EN Ule 7 1(U;) satisfying the
inequality

—~h
(5.10) 1 X&ls <m| Xy |
for some m > 0.

Proposition 5.8. Assume the almost complex structure Jp € J(B, ) is
time-independent, and assume that the mazximal slope of h satisfies the con-
dition

Amax & Spec(OF).

There exist constants €y, dg, po, g, mg > 0 such that, for € < ey, a < ag,
0 <0, || L||lco< pod and m < myg, the vector field defined on the space of
1-periodic loops by

V() = J(@ — X0 — Xespow — (Xig) o)
satisfies the strong pseudo-gradient inequality

(5.11) QA ey () (@) = 0 V() 12,

Equality holds iff x is a periodic orbit of Xpiq = Xj(h+G) in a critical fiber
of f.

Proof. We follow the proof of Proposition 5.1 and we again assume without
loss of generality that ¢ = 1 in order not to burden the notation. Because
G is supported in E, the proof of Case 1 remains unchanged. The spe-
cific feature of Case 2 is the Poincaré inequality for loops and this remains

unchanged as well, although some new estimates are needed in the prelimi-
nary computations. These estimates appear also in the proof of Case 3, and
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we give full details only for this last case. We denote ¥ = dA

nifra V(@)
and assume that x is contained in {S < A}. We have

E = / w(E, J (& — X — Xp— X&) —d(h+ f+G) - J(& — X, — X; — X&)
:|j:—Xh—Xf—XZ;Hw—/ (X7, X)) +/QXf,J9'c—JXh)

- /w(Xg,Jj; —JX).
Inequality (5.11) is equivalent to

(1= |- Xn - Xy - X3 | - [ (X5 9X)

+/Q(5(vf, Ji — JXp) — /w(Xg, Ji—JXf) >0
The left hand side of the above inequality can be written as

(5.12) E'=(1-a?) || i—Xp—X& 2 —201 - a®)(@ — Xp — X& X))
(5.13) +/Q()E,J:b)—/w(xg,m
(514 + (1o)X 3 —a? / (X7, JX7)

(5.15) —/Q()?f,JXh) +/w(Xg,J5(vf).

For €y and p small enough, the expression E” obtained by summing up
(5.14) and (5.15) satisfies

—~h
E">(1-30"-2m) || Xy [5.

Again for ¢y and p small enough, we break the expression obtained by
summing up (5.12) and (5.13) as a sum EY + EY as follows.

B =(1-0a®) || & — Xp — X |13

—(2—-20%) (3" — Xp, — X5, X5 o + / (X, Jiv)
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1-2a2 —v|?
= (1— 2 VX, - XY, T
( a) x h G 2(1—a2) f
(1—2@2)2 >V 2 —~V
D) | X7 o+ [ QXn, X5 )

~h
> 20" || X I
. 1 —h
Ey=(1-a®) & |2 —(2-2a°)(E" X} )
—h
+/Q(Xf ,J:'ch)—/w(Xg,Ji:h)

S 2(1 — a?)
- 3

—(1-a?) / (", X;") + o? / O(X;", i) - / (X8, i)

1 —a?

. .hw o h % .
b |2 - (2 - 202) (" X" - / T B(Xh, i)

>

. 4 =h —~h 1
I8 1 ~(2 - 202)(8" g — 6m® | 7" I =5 1" I
1—a? . L [ .h (=h,  m [ ., ,oh
F N =5 (18I - T 1860
3 2 4
1-a? 1 1 m h 112 1 m 9 <h o
S [ LR TP A (L X
> (St m ) B (G o) 15

1 m 9 ~h
>—<4+4+6m> HXf Hﬁ

The inequalities involving EY hold if (1—a?)/3—1/4— & —m/4 > 0 and
if €9 is small enough so that || Q| [le (s<ay <1/4 and |- |2 > HE \% on E.
The inequality involving EY holds if p is small enough (determined by «).
We finally obtain

3 —~h
E' > <4—5a2—2m—7z—6m2> | X5 |3 >0.

The last inequality holds if m is small enough, provided « is also small
enough.
The fact that equality in (5.11) is attained only if x is a 1-periodic orbit

of h 4+ G in a critical fiber of f is obvious from the fact that all the above
inequalities have to be equalities. In particular, we must have Xyox =0. [0

6. Transversality for split almost complex structures

One crucial ingredient in the construction of the Floer complex associated
to a vector field Y and to an almost complex structure J is the possibility
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to choose the pair (Y, J) such that the linearized operator

Dy : WHP(R x SY u*TE) — LP(R x S', u*TE),
E— V& + J(u)Vi€ + Ve (u) - up — VeY(u)
is surjective for every finite energy solution of the equation
(6.1) us + J(u) - up =Y (u).

In Floer’s original setting one has Y = JXp, with H a given Hamiltonian,
whereas in our setting Y is a (s-independent) vector field satisfying Defini-
tion 4.4.

Our definition of the Floer homology groups makes use of the fibered
structure on only in order to prove the a priori C%-bounds on the finite
energy solutions of (6.1). The arguments developed in [11, 12, 17, 27] apply
in order to show that, for a fixed choice of Y, transversality can be achieved
by a generic choice of J provided one allows the use of almost complex
structures that are time-dependent. This is sufficient in order to define the
Floer homology in the setting of the present paper. Nevertheless, in order
to compute it by constructing a spectral sequence, one needs to establish
transversality inside the smaller class of split almost complex structures
whose horizontal component is time-independent. This requires a refinement
of the above mentioned arguments, by allowing not only variations of the
vertical almost complex structure, but also of the horizontal distribution as
in [23, §8.2 sq.] and [28]. The purpose of this section is to prove this refined
version of transversality.

We denote by V or Vert the vertical subbundle ker 7, C TE, whereas the
horizontal subbundle V+¢ is denoted by Hy or Hor. We denote by JY°'* the
space of smooth 7T-periodic almost complex structures on V which are time-
independent and standard outside a compact set and which are compatible
with € (see Definition 4.1). We denote by Jp the space of smooth time-
independent almost complex structures on B which are compatible with 3
and which satisfy the (NEGATIVITY) property of Definition 2.1. We endow
j}ert and Jp with the C'*°-topology. Given Jp € Jp, we denote by jg its
lift with respect to a given horizontal distribution H.

The connection 2-form {2 can be perturbed while preserving at the same
time closedness and keeping it unchanged along the fibers. We describe here
a method borrowed from [23, §8.2], with the significant difference that we
need to allow time-dependent perturbations of the horizontal distribution in
order to achieve transversality.

The starting point is to consider on B a 1-form H with values in the
bundle C§°(E) whose fiber at z € B is the space C§°(E;) of compactly sup-
ported smooth functions on EZ. We assume that H is 7-periodic and we use
from now on the notation H' in order to express the dependence on ¢, with
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H' = H'"™. We denote the action of H by
T.B — C°(SL x E.), z¢€ B,
¢ — HZ,
where S! is the circle of length 7. We define a time-dependent 1-form o%; €
QY(E) by
op(wiv) = Hi(z), ¢ =mu,

where 2 € E and v € T, IE The 1-form o}, vanishes on the fibers by
definition. The connection 2-form associated to H? is defined to be

(6.2) QL = Q —doly.
The horizontal subspace of Qf; at x € Eis
Horpe, = {v — XHé(x) :v € Horg, (= mu}

= graph (—XHt : Hor, — Vert,, v+ —Xp (x)) .

In the above notation, X Ht represents, for a given z € B, the Hamil-

tonian vector field of the function Hé defined on EZ. We denote H, =
QY (B,C5°(SL E)) and, for a given compact set N C E, we let

H,(N) C H,

be the subspace of all those forms with support contained in N. The con-
nection 2-form € is time-dependent but nevertheless constant on the fibers.
For each curve in B, parallel transport along H! defines a path of symplec-
tomorphisms between the fibers.

We use the shorthand notation .J: g for the (time-dependent !) lift J, BHOYH !
of an almost complex structure Jp on the base. Any triple (Jy,Jp, H) €
j;’ert X JB X H, gives rise to an almost complex structure J on E defined as

J=JvaJi.

Let Jp be the almost complex structure corresponding to the fixed triple
(Jv,JB,0). The action of the almost complex structures corresponding to
triples (Jy, JJg, H), H € H, can be explicitly described (see [23]) as

(6.3) Jw = Jov+ vy Xps () = Xpy  (2), veT,E.
*V BTV
Before stating our transversality result, we recall the following theorem
of Salamon and Zehnder, which implies in particular transversality for all
moduli spaces of Floer trajectories in the time-independent setting for sym-
plectically aspherical manifolds.
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Theorem 6.1 ([27], Thm. 7.3). Let (B, [3) be a closed symplectic manifold
such that

([8], m2(B)) = 0.
Let f: B — R be a Morse function and Jp a time-independent almost

complex structure compatible with 3, such that the flow of V/B f is Morse—
Smale. Let

Dy, : WH(R x SLu*TB) — LP(R x SL,u*TB),
E— V& +Jp(u)Vi& + Vedp(u) -ug — VeV
be the linearization of Floer’s equation
(6.4) us + Jp(u)u; = (V7B f) o u,

defined for T-periodic maps u : R x St — B. The following assertions hold
if T 1s small enough.

a) The operator D, ; is surjective for any solution v : R — B of (6.4)
which is independent of t.
b) FEvery finite energy solution of (6.4) is independent of t.

Remark 6.2 (Reparametrizations). (i) The norm of D, , does not
depend on the parameter 7 €]0, 79] because D, § = V£ — VVf.

(ii) The statement of the above theorem remains true if we fix the period
and allow the coefficient in front of f to go to zero. The reason is that
any T-periodic solution u(s,t) gives rise to a 7y-periodic solution ug(s,t) =

U (%s, :—Ot>, which in turn satisfies the equation Osug + Jpdiug = %Vf.

We fix from now on a Morse function f : B — R, an almost complex
structure Jp € Jp and a period 7 > 0 such that the conclusions of Theo-
rem 6.1 hold true.

If the almost complex structure Jp satisfies the (NEGATIVITY) assumption
of Definition 2.1, then for every (Jy, H) € JY*'* x H, there exists ¢y > 0
such that

We =70+ €
tames _

J=JyaJi

for all 0 < € < ¢y. Following the previous section, we consider Hamiltonians
of the form N

K=h+f+G.
The function h = h(S) is convex and linear for S > 1 with slope Amax
satisfying

—%~&mx¢8mm@E)

The function G is a T-periodic perturbation localized in a neighborhood of
the critical fibers of f = wo f. More precisely, we denote the critical points
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of f by p;, 1 < i </, we fix open neighborhoods p; € V; € U; such that
UinNU; =0, i # j and we require that supp(G) C EN UpiGCrit(f) 7 1(V;).
We denote

N=FE n ' (|Ju),
so that N Nsupp(G) = 0. Given h we choose G and €y such that the
T-periodic orbits of K with respect to we, are nondegenerate and lie in the
critical fibers of f: o f, while the vector field

Yeou(t,z) = Jyi — YO(t, x),
YOt ) = J(XO, + coXf + (X0) " (t,2))
is a negative pseudo-gradient for the action functional Azg 5 defined on the

space of contractible 7-periodic loops in E. The superscript €y indicates, as
usual, the fact that the Hamiltonian vector fields and the symplectic action
are computed with respect to the form we,.

Remark 6.3 (Uniform upper bound for ¢€). The rescaling parameter e
is allowed to vary in some interval |0, ¢y] with €y small enough in order to
ensure nondegeneracy and taming for w. = 7% + €€). The only other point
where we use the rescaling 2 ~» €€ is in the proof of the pseudo-gradient
property for loops contained in F in Proposition 5.8, where one might need
to further diminish the constant €y, depending on ||G|g||c1. Since the latter
quantity can be uniformly bounded independently of the choice of h, we
conclude that we can construct an admissible cofinal family of Hamiltonians
K admitting a uniform constant e.

Given a Hamiltonian K and a parameter 0 < € < ¢y as in Remark 6.3, we
define the space of regular vertical almost complex structures and Hamil-
tonian perturbations

(j;/ert % HT)reg(e’K) C ijert % /HT(N)

as consisting of pairs (Jy, H) € JY" x H.(N) such that, for every finite
energy solution u : R x S — E of the equation

(6.5) us + Jup =Y ou,
the linearized operator
D : W'P(R x St w*TE) — LP(R x St u*T*E),
€ s VEE 4 J(W)VEE + VT (1) - g — VEY (1)

is surjective. The connection V¢ is the Levi-Civita connection associated to
the metric defined by we and J = Jy & J g .
Notation. Given a map u: R x S — E, we denote its projection by

V=TmTou.
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Given Jy € JY' we denote by JY''(Jy) the space of vertical almost
complex structures which coincide with Jy outside a compact set.

Remark 6.4 (Geometric property of the pseudo-gradient equation).
The fundamental property of equation (6.5) is that the projected solutions
v = 7 o u satisfy the equation

vs + Jp(v)vy = eVJBf(v),

for which transversality is ensured by Theorem 6.1. This geometric property
plays a crucial role not only in the construction of the spectral sequence, but
also in the proof of transversality within the class of split almost complex
structures of the type Jy ® jg

The aim of this section is to prove the following result.

Theorem 6.5 (Split transversality). Let K, € be as above and Jy €
jvert
vert,
a) There exist a positive constant €(K) €]0, eg] and an open neighborhood
O of (Jvo, Ho) in JY" (Jy,0) X H+(N) such that the operator

FS . W'Y (R x SLv*TB) — LP(R x SL,v*T'B),

FS,T(é—) = T (D’IGL,’T ’ g)
is surjective for any finite energy solution u of (6.5) with 0 < e < ¢(K)
and (Jy,H) € O;
b) For every 0 < € < ¢(K), the set (T x H,)"™8(e, K) N O is dense
and of second Baire category in O.

Remark 6.6 (On the parameter ¢(K)). The parameter ¢(K) depends
actually on the asymptotic slope of K. Indeed, it will be appearant from the
proof that e(K) depends on the C°-bound for solutions of us + Ju; = Y¢ou
through the use of Lemma 6.7 below. These bounds, in turn, depend via
Lemma 4.16 on the maximal difference between the actions of two closed
orbits, i.e., on the asymptotic slope of K.

Proof. Let O be a neighborhood of (Jy,9, Hyg) such that the following hold
for (Jy,H) € O:

e the almost complex structures J = Jy @ J g are tamed by we, 0 <
€ < €p;

e finite energy solutions of us + Ju; = Y€ o u admit a common uniform
C%bound for 0 < € < ¢y. This can be achieved as a consequence of
the following two observations which slightly generalize the proof of
Theorem 4.6. First, it is clear that, for ¢ > 0 fixed, one can allow
the almost complex structure to slightly vary inside a compact set.
Secondly, as € > 0 varies, the vertical part of the vector field Y¢
remains unchanged, whereas the horizontal part is rescaled by ¢, so
that assumptions (4.21-4.23) in Definition 4.4 are still satisfied. [
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Lemma 6.7. There exist constants c(€), 0 < € < ey with c(¢) — 0, ¢ — 0
such that, for any finite energy solution u of equation (6.5) with (Jy,H) €
O, we have

117 = Doll| < c(e).

Proof. The Levi-Civita connection V associated to a metric (-,-) can be
expressed as follows:

1
By applying the above formula to the connection V¢ associated to the (time-

dependent) metric ge(v, w) = 3 (we(v, Jw)+we(w, Jv)) one sees that, for any

~

two vector fields X € X(F) and Y € X(B), we have
(VEX)" — Vym X,
(VV)! — VaxY, €—0,

where V is the Levi—-Civita connection on B corresponding to the metric
95(-,-) = B(-, Jp-). The convergence is uniform on every compact set. More

precisely, for any compact set K C E , we have

(6.8) I(VEX)" = VymXllgs < 16 KX lor(g) Y llco
(6.9) I(VEY)" = Ve xY g, < erle, ONXleoggo 1Y ller,

with ¢1(e, K) — 0, ¢ — 0. Similarly, we have
(6.10) (V5 )"~ Ty T8l < cale NIV llooga)-

with ca2(e, ) — 0, ¢ — 0. The estimates (6.8-6.10), together with the
explicit form of the operators involved and the existence of the uniform C°-
bound on solutions of Floer’s equation (6.5) for (Jy, H) € O and 0 < € < ¢,
imply the conclusion. U

Lemma 6.8. The operators D,, where v runs over all Floer (time-
independent) trajectories on B corresponding to f and Jp, admit uniformly
bounded right inverses.

Proof. This is a reformulation of the gluing theorem for Floer trajectories
in the transverse case (see, for example, [26] for the latter). The key step in
the gluing construction is to prove that the linearized operator is surjective
along preglued curves and that it admits a right inverse which is uniformly
bounded for large enough values of the gluing parameter. This implies that
one can find uniformly bounded right inverses for the operator D, when v
belongs to a small neighborhood of the boundary of the moduli space of
trajectories. Such a uniform bound can clearly be found on the remaining



326 A. OANCEA

relatively compact set contained in the interior of the moduli space of tra-
jectories, and gives the existence of uniformly bounded right inverses for D,
for any choice of v. O

We prove now assertion (a) in the theorem. Let C' be the uniform upper
bound provided by Lemma 6.8 and choose €(K) small enough so that the
constant ¢(e) in Lemma 6.7 satisfies c(e) < 1/2C for 0 < € < ¢(K). Given
a finite energy solution u, let @, be a right inverse for D,, v = 7 o u such
that ||Qy]| < C. Then

[F Qv —1d|| = [ Fy 7 Qv — D@y <1/2,

hence the operator Fy @, is invertible and the norm of its inverse is <
2. Then QI,(F;TQI,)’1 is a right inverse for Fy = of norm < 2C, and in
particular Fy . is surjective.

We prove now assertion (b). We follow the proof of Theorem 5.1 in [12] —
in particular, it is enough to obtain the conclusion when 7" (Jy o) x H,(N)
is endowed with the C*-topology, ¢ > 1.

We fix 0 < € < ¢(K). The key step is to prove that, for any 7-periodic
orbits 27, 2" of K, the universal moduli space

M(ZE77"L‘+7O) = {('LL, JV,H) : 8Jv@jg7Y6u = 0}

is a Banach manifold. The universal moduli space is naturally the zero set
of the section

F:BxO—E, f(u,JV,H)zaJVGngYeu.

Here B = B(z~,z™) is the space of continuous maps u : R x SL — E which
are locally of class WP and which converge to 2, 1 as s — 00 with a
suitable exponential decay condition at infinity [12], while £ is the Banach
bundle whose fiber at (u, Jv, H) is Lp(u*TE).

We need to prove that F is transverse to the zero section of £. We
denote by m the vertical projection T{(y, s, 1),00€ — E(u, sy, m)- The vertical
differential

DF(u,Jy,H) =modF(u,Jv,H)
is given at a solution u of (6.5) by

(611)  DF(u,Jy, H) (€ 2Z,h) = Dy + Zy(u) Jyul™ + X),_

« ué}}orlz

Here ¢ € T,B = WY (u*TE) and h € TyH,(N) = H,(N). The tangent
vector Z € Ty, J¥(Jy) is a C*-map St x TE — TE which has compact
support in E and satisfies

JyZy + ZyJh =0, Q(Zw,w) + Qv, Zyw) =0, v,w € Vert.
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Let us explain the term X, _, . in (6.11). We need to study the change in

5 ~ ~H
aJV@fg,Ye u=us+ (Jy ® Jg)w —(Jy @ Jg)(XV +eX5 )

as we replace H by H + h. By (6.3), we obtain

H+h

~ o ~ ~H
(v Jg™) X = (v Jg™) (X — Xay,)

~. = H
= —JVXth+(JV ®©Jg) Xy +JthXf _XhJBXf
~y. —H
= (@ JE) Xy = Xny,x,
and

(vedf™ o = (Jvedf) w+JvXn,, — X, .-

Since Jpmyuy —eJp Xy = myug, we infer that the variation in the direction
h of O

Jv®jg7Y6U 1S

50 -h= JvXp + X5
On the other hand, 7,u; vanishes because the projected trajectories on the
base are time-independent, hence 60 - h = X R -

We need to show that DF is onto for any (u, Jy, H) € M(z~,2%,0). The
operator D, is Fredholm and the same holds for DF. In particular im (DF)
is closed and, in order to prove surjectivity, it is enough to prove that DF
has a dense range. Equivalently, we have to show that the annihilator

A={ne L''TE): / /R 0 DF (s y H) (6 2o ds de = 096, 2,1)

Tk Ut TxUsg

is zero, where 1/p+ 1/q = 1. For n € A, we must have

(6.12) //<n, Dy&)dsdt =0,
(6.13) / / (n, Zy(u) Jyul)ds dt =0,
(6.14) [y dsde =0

for all ¢ € WhP(uw*TE), Z € Ty, T¥(Jvp), h € H,(N). Condition (6.12)
states that n is a weak solution of D;n = 0, where D} is the formal adjoint
of D,, which is obtained by formally replacing in D,, the term V, with —V.
Elliptic regularity implies that 7 is of class C* and is a strong solution of
D;n = 0, while unique continuation (see [12]) ensures that it is enough to
show that 7 vanishes on an open set in order to obtain global vanishing.
We denote n = n" 4+ 7V the decomposition of 7 into horizontal and vertical
parts with respect to the splitting TE = Vert ® Vert™2. In general, the
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(tlme dependent) decomposition of a vector X with respect to the splitting
TE = Vert @ Hory is denoted X = XVvert 4 Xhoriz,

We first show that n¥ = 0 on some open set U. The special form of our
Floer equation separates nonconstant trajectories u in two classes: those
entirely contained in a fiber, and those satisfying m,us = vs # 0 running
from one fiber to another.

Let u be a nonconstant trajectory contained in a fiber. One of the fun-
damental results of [12] states that the set

R(u) = {(s,t) € RxSL : uy(s,t) # 0, u(s,t) # 25 (t), u(s, t) ¢ u(R—{s},t)}

of regular points is open and dense in R x S!. We claim that n¥ = 0 on
R(u), hence by density " = 0. Assume by contradiction that this is not the
case and n"(s,t) # 0 for some (s,t) € R(u), hence on a small neighborhood
of (s,t). Because u! = us = u¥"* we can choose, according to [12], a

time-dependent tangent vector Z; such that ffRXSi (n, Zi(u) Jyul®®)y > 0,
contradicting (6.13).

Let now u be a nonconstant trajectory running from one fiber to another.
In this case, we have R(u) = R x SL. We distinguish two situations: either
u crosses IV, or not. In the second case, the part of u projecting onto
B\ U, U; must live in {S > 1}, and we deduce the existence of a point
(s,t) such that u(s,t) € E\ N and u}*%(s,t) = u¥(s,t) # 0. Then we
can use again condition (6.13) in order to show that n¥ has to vanish in a
neighborhood U of (s,t). In the first case, we use (6.14) in order to show
that n¥ vanishes on U = v~ !(imu NintN). By contradiction, let (s,t) be
a point where nV(s,t) # 0. We know that m,us = vs # 0, hence we can
choose a time-dependent tangent vector h with support in N such that
ffRXS% (1, Xnyr,u,) > 0, contradicting (6.14).

Let us now prove that n® also vanishes on some nonempty openset V C U,
knowing that 1V vanishes on U. Let 3 : R x S — R be a positive smooth
function supported in U which is not identically zero. We claim that n"
vanishes on the open set {z € U : ((z) > 0}. By contradiction, let us
assume that this is not the case. The projection 7.(3n) = m.(Bn") is an
(s,t)-dependent vector field along v = m,u, supported in U (note that v
may as well be constant, but this does not interfere with the argument). We
have seen that the operator Fy . = m. 0 D, o is surjective, hence there
exists &€ € WP (v*TB) such that (D, - £)* = Bn". We now use " =0 on U
in order to obtain

[0 ] [ o= forond

which is a contradiction with (6.12).
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We have therefore proved that n vanishes on a nonempty open set V' C
R x SL. By unique continuation, n vanishes identically on R x Sl and this
finishes the proof of Theorem 6.5. O

7. The spectral sequence

7.1. General formalism. We recall some relevant notions concerning spec-
tral sequences in order to fix notation, and we refer to [1, 21] for details. For
our purposes, a spectral sequence is a sequence of bigraded differential mod-
ules (EX? d,.) associated to a graded differential complex (C' = EB;QOC’“, 0)
endowed with a filtration

ck=rCcF>FRCF> .- D F,CFoo.

Saying that F,C, p > 0 defines a filtration means that 9(F,C*) C F,C*+1,
where we assume that the differential 0 has degree +1. The differential d,
has bidegree (r,—r + 1). The main feature of a spectral sequence is that
E,1 = H(E;.d,), r > 0, with Ef'? = F,CP*1/F,,;CP*1. Within the
above setup, the groups EF? stabilize and the limit EL? satisfies ER! =
F,HPY4/F, 1 HP*4 for some filtration F, H*, p > 0 on the cohomology H =
H(C,0). Spectral sequences are functorial in the sense that a morphism
of filtered complexes induces a morphism between the associated spectral
sequences.

Example 7.1. We assume C* = @;L:OC’I’,“ and 0 =0y + 01+ - -+ + Op, with
O : C;f — C]];ITI. We denote C), = @kzoqf and F,C* = @4>,C*, so that
F,C* defines a filtration. We then have F5? = CH? and
E1 = @PH(CP’ (90),
di([op]) = [O1ap] € H(Cp11,00), o] € H(Cp, D).

More generally, let D, = 0y + 01 +--- + 0p, ¥ > 0. An element o, € C),
defines a class in FE, if and only if there exist Bp4; € Cppy, 1 <@ <1 —1
such that D,_1ap + Dy—28,11 + -+ - + DofBp+r—1 = 0, and the differential d,
acts as

drlop| = [Orap + Op—10p+1 + -+ - + 01 Bpr—1]

= [Drap + Dr1fBpt1+ -+ Dlﬂp—i—r—l]-

7.2. Morse homology and local systems of coefficients.

7.2.1. Morse homology with values in a local system of coeffi-
cients. The formalism of local coefficients for singular or cellular homology
was introduced by Steenrod [30]. This is our main reference for this sec-
tion, together with McCleary [21]. The adaptation to Morse homology is
straightforward but, to our knowledge, has not appeared previously in the
literature.



330 A. OANCEA

Definition 7.2. Let R be a ring and M be an R-module. A local system of
coefficients with fiber M on a topological space B consists of the following
data:

(1) one copy M, of M for each x € B, called the fiber at x;
(2) a family of isomorphisms (®,, : M0 = Ma(l))aeP(B)’ where P(B)
is the set of continuous paths in B, such that:
e if a ~ 3 are homotopic with fixed endpoints, then &, = ®g;
o if a, 5 € P(B) satisfy a(1) = 8(0), then ®,.53 = P, 0 .
We call ®,, the parallel transport along a.

Remarks.

1. Isomorphism classes of local systems of coefficients on a manifold
are in one-to-one correspondence with isomorphism classes of locally
constant sheaves.

2. If B is simply-connected, then all local systems having the same fiber
are isomorphic. More generally, the choice of a basepoint g € B and
of a collection of paths connecting xg to x € B, x # xg, determines
a one-to-one correspondence between local systems with fiber M and
representations (B, xg) — Aut(M,,). We call the representation
associated to a local system S the monodromy representation of S. It
is well defined up to conjugation by an element of Aut(My,).

We define the cohomology groups of B with values in the local system S,
denoted by H*(B;S), as the cohomology groups of B with values in the
associated locally constant sheaf S, and we refer to [30] for a description in
terms of singular cochains with coefficients.

Example 7.3 (Second term in the Leray—Serre spectral sequence).
Let F — E — B be a locally trivial fibration. For any ¢ > 0, we define
a local system HI(F,0F) with fiber HY(F,0F) as follows. The fiber at

x € Bis HY(F,,0F,). For a path a contained in a contractible open set

U C B, we define @, = iz(l)iz(o)_l, where F,, e 7 1(U) A Fy are

the inclusions, inducing isomorphisms in cohomology. This isomorphism
is independent of U as long as the latter is contractible. For a path a €
P(B), we consider a subdivision 0 = tp < t] < -+ < ty < tny1 = 1
such that a; = aly, 4., is contained in a contractible open set and define
by =Py 0Py 0 0P,,. If Bis closed, the second term of the Leray—
Serre spectral sequence [ gEPY = HPTI(E OF) is

LsEY? ~ HP(B; HI(F,0F)).
We define now Morse cohomology of a closed manifold B with coefficients

in a local system S. Let f : B — R be a Morse function and Y be a
Morse—-Smale negative pseudo-gradient vector field. Pick an orientation of
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the unstable manifolds of Y and define the cohomological Morse complex
with values in S as

CH(B;Y,S) = &y M,,

z € Crit(f)
indMorse(x) =k

with differential 9 : C¥ — C**+1 given by

) amen= Y (X mertm) )

indmMorse (y):k+1 VEM(yyﬁ)

Here z € Crit(f), m € M, indmorse(x) = k and ny is the sign which is
associated to the trajectory 7. The fundamental identity 02 = 0 is proved
by the usual gluing argument, taking into account that the cancelling pairs of
trajectories form the boundary of a two-disc and therefore parallel transport
is the same along the two “half-circles” forming its boundary. Similarly, one
shows by a continuation argument that the resulting cohomology groups,
denoted by H*(B;Y,S), do not depend on the choice of Morse function, nor
on the choice of pseudo-gradient vector field.

Any proof showing that Morse cohomology with constant coefficients is
isomorphic to singular cohomology carries over to the case of locally con-
stant coefficients. The approach that is most convenient for us is also the
most geometric and uses cellular cohomology H¢.(B;S) as an intermediate
device. Given a CW-decomposition of B, let B¥ be the k-skeleton and define
the cellular complex by Cell*(B;S) = H*(B*, B¥~1;S) with differential

aCell . Hk(Bk,Bk_l;S) N Hk+1(Bk+1,Bk;S)

given by the connecting homomorphism in the long exact sequence of the
triple (B**!, Bk Bk=1). Tt is shown in [24, Appendix A.4] that we have a
canonical isomorphism H*(Cell*(B;S),dcen) ~ H*(B;S) if S is constant,
but the proof carries over verbatim to an arbitrary local system.

The connection with Morse homology is realized by expressing the cellular
differential in an alternative way, using the incidence numbers of the cells ef
of the CW-decomposition. Let mf be the center of the cell ef . Each choice
of orientation of the cells determines an isomorphism Cellk(B i S) > @, Mk
b k) '

and incidence numbers [e : . The differential Ocg) is then equal to

)

(7.2) aceu(mi) = Z[ef : 6?+1](I)¢j(mi), m; € Mx?’
J

+1

where ®;; is parallel transport along a path from :cf to xf contained in

;?H. In order for parallel transport to be independent of the
path, it is enough that the closure of e;?

the closure of e

*1 be simply-connected. This can
0

fail only if £ = 0 and the endpoints of 6]1 coincide with some e;, in which
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case the term [e? : ejl-]@ij(mi) has to be replaced by <eg)(<I>jj'(mz) —®;:(m;)).
Here @;‘; is the path running from 37? to le and having the same/the opposite
orientation as 6]1, and (e¥) is the sign (orientation) of €. We refer to [3,
IV.10] for a proof of (7.2) in the case where S is constant, which carries over
verbatim to the case of an arbitrary local system.

We now use the fact proved by Laudenbach [20] that if the vector field
Y is equal near its zeroes to the negative gradient of a quadratic form with
respect to the Euclidean metric, then its unstable manifolds provide a CW-
decomposition of B. It then follows directly from the definitions that

W@ Wiy = S .
YEM(y,z)
In particular, once an orientation of the unstable manifolds has been chosen,
the Morse complex (C*(B;Y,S), 0) is canonically identified with the cellular
complex (Cell*(B;S), cen), and we have canonical isomorphisms
H*(B;Y,S) ~ Hio(B; S) ~ H*(B; S).

7.2.2. Local subsystems and extensions. The motivation for introduc-
ing local subsystems is that parallel transport is defined in the Floer setting
only along certain paths in B. The question arises whether such a system
of isomorphisms can be extended to a local system, and if yes, in how many
non-isomorphic ways. The notion of a local subsystem is a convenient way
to organize the available data.

Definition 7.4. Let R be a ring and M an R-module. A local subsystem
with fiber M on the topological space B consists of the following data.

1) a subset C C B and one copy M, of M for each z € C,

2) a subset P C P(B) such that

if « € P, then «(0), (1) € C;

for any x € C, the constant path z(-) = = belongs to P;

a € P if and only if a1 € P;

if o, 3 € P and a(1) = 5(0), then a - 5 € P;

3) a family of isomorphisms ® = (‘Da : Mooy = Ma(l))aep such that
e if a ~ 3 are homotopic in B with fixed endpoints, then ®, = ®g;
o if a, 5 € P and (1) = §(0), then ®,.3 = Pgo D,,.

Definition 7.5. We call the pair Supp(S) = (C,P) the support of the local
subsystem S = (C, P, ®).

The connected component S(xzg) = (C(xo), P(x0), P(x0)) of xzo in S is
defined as

C(zg) ={r € C:3FaeP,a(0) =x0,a(l) =z},
P(xg) ={a e P:a0),a(l) € C(xo)},
D(xg) ={ Py : x € P(xp)}.
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We say that S has connected support if C(x¢) = C for some (and hence
for any) xg € C.

The fundamental group 71 (S, xo) of S at ¢ is defined as the set of homo-
topy classes in B relative to xy of based loops in P(zp). Multiplication is
given by the catenation of loops.

Given two local subsystems § = (C,P,®) and &' = (C', P, ®’), we say
that S’ is an ewstension of S, and write S < &’ if C c C’, P C P’ and
o C P

Every local subsystem gives rise to a representation
XS.zo ¢ T1(S, 20) — Aut(My,).

Given § < &', we have an obvious inclusion (S, xo) — m(S’, z9) which
fits into the commutative diagram

XS,(EO

(S, o) Aut(Mz,)

\ XS/,GCO

1 (8/7 xO)

In view of the fact that local systems are in one-to-one correspondence
with representations 71 (B,z9) — Aut(My,), the following statement is
tautological.

Proposition 7.6. Let S be a local subsystem having connected support.
FEach extension of S to a local system corresponds to one and only one
factorization

XS,zO

™1 (87 l'())

Aut(My,)

7T1(Bv .%'(])

We see in particular that if a local subsystem S with connected support
is such that the inclusion 71 (S, xo) < 71 (B, x) is an isomorphism, then S
admits a unique extension to a local system.

7.3. Filtered Floer complexes. We construct in this section filtered Floer
complexes using appropriate Hamiltonians, pseudo-gradient vector fields and
almost complex structures.

Let f : B — R be a C?-small Morse function, let Jp be a time-
independent almost complex structure on B and assume that the gradient
V7B f is Morse-Smale and is equal to the gradient of a quadratic form with
respect to the Euclidean metric near Crit(f). This last condition ensures
by [20] that the unstable manifolds of —V/2 f define a CW-decomposition
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of B. By Theorem 6.1, there exists 7 > 0 such that all solutions of Floer’s
equation

us + Jpup = JBXf

with period less than 7 are time-independent and cut the defining equation
transversally. We note the fact that upon multiplying the function f by a
constant ¢ > 0, the corresponding 7 transforms as 7 — 7/c. As the function
f gets multiplied in the sequel by constants 0 < ¢ < 1, the bound 7 > 0 can
be taken uniform with respect to c.

The constructions in Sections 5 and 6 provide a bound ¢y > 0, sequences
0<e, <e¢andc, >0, v eN, as well as sequences of 7-periodic Hamiltoni-
ans K, split almost complex structures .J,, and vector fields Y5, 0 < e < ¢y,
such that

(A) The 7-periodic orbits of €K,, 0 < € < ¢ are nondegenerate and
located in the fibers lying over the critical points of f;

(B) The constant 7-periodic orbits of €K, are critical points of K, the
vector field Y, 0 < € < ¢, is a negative pseudo-gradient for K, on
E and Y is equal to the gradient of a quadratic form with respect to
the Euclidean metric near Crit(K,);

(C) The vector field

Yi(x)=Jyz—Y ox

defined on contractible 7-periodic loops in Eis a strong pseudo-
gradient for the action functional A¢ for 0 < e < €p;
(D) For 0 < € < ¢, the T-periodic solutions of Floer’s equation

(73) Us + Juut = Y;(t’ U(S, t))

cut the equation transversally. The resulting Floer complexes are
denoted

FC*(e,v) = FC*(Yy, Jy);
(E) Solutions of (7.3) project on gradient trajectories of ec, f. We denote
C*(e,v) = C*(B; —ec, VB f);

(F) The Hamiltonians K, form a cofinal sequence.

Statements (A) and (C) follow from Proposition 5.8. Property (B) is
realized by choosing the perturbations f; in Section 5.2 quadratic near their
critical points. Statement (D) follows from Theorem 6.5 and by noticing
that the perturbations of almost complex structures can be taken trivial
near the critical points of K, so that property (B) is preserved. State-
ment (E) follows from the special form of the vector fields Y,¢. Property (F)
is realized by choosing a cofinal “stem sequence” h, in order to construct
the Hamiltonians K, .
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Remark 7.7 (Rescaling). Cofinality does not depend on the rescaling
Q ~~ €€}, because the coordinate S depends only on the vertical vector field
Z, which remains unchanged. On the other hand, the action of the orbits
corresponding to closed characteristics gets multiplied by a factor € under
the rescaling 2 ~~ €€).

Remark 7.8 (Parameters ¢, — 0 are unavoidable). The use of the
constants €, cannot be avoided because of transversality issues, and more
precisely because of Lemma 6.7. The constants ¢, have more of a formal
role, mainly in order to ensure K, < K,/ for v </ (cf. Section 5.2).

Let R be a ring and —oo < a < b < oo such that 7a,7b ¢ Spec(0F). We
define

(7.4) FyCligay(e:v) = P R(a) € FCf, 4(e,v).
a € P(Ky)
Afg, (@) € [ea, €b]
—~icz(m(a)) > p

Here P(K,) denotes the set of m-periodic orbits of K.
Proposition 7.9. Formula (7.4) defines a filtration, i.e.,
a(FPC[IZQ,eb] (E’ V)) - FkaJrl (E? V)'

[ea,eb]
Proof. For a € P(K,) such that A, (a) € [ea,eb] and —icz(m(a)) > p,
we have

oo} = ) #(M(8.0)/B) (5).

B+ —icz(B) +icz(a) =1
Af, (B) € [ea, eb]

For each orbit 3 appearing in the above sum, there exists a solution of
Floer’s equation us + Jyu; = Y,£(¢,u(s,t)) running from S to «. It follows
that v = mow is a solution of the equation vs + Jpvy = ec, Jp X ¢(v) running
from 7(83) to m(a). By transversality, we must have indyorse(7(5); f) >
indpjorse (7(); f), with equality if and only if v is constant i.e., u is entirely
contained in the critical fiber lying over the point 7(3) = m(«). Equivalently,

we get —icz(m(6)) > —icz(m(a)) > p. O
The filtration (7.4) defines a spectral sequence

(7.5) EP(e,v,a,b)

such that

EP9(e,v,a,b) = FHIT, (e,v).

lea,e
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7.4. The terms E; and Es. The filtered complex F’ C’[ }(e v) falls under
the formalism of Example 7.1. The proof of Proposition 7 9 shows that the
component 0y of the differential is given by the Floer differential in the
fibers, hence

(76) @ @ FH[ea eb](Epi? JV|EPZ,7 EKV‘Epi’ EQ)a

pi €Crit(f)
—icz(pi)=p

and d1 E1 — E1 acts by

Ll = X #MEa/mE)

—icz(a)=k —icz(B)=k+1

—icz(m(a))=p —icz(7(8))=p+1

Here the representative « of the cohomology class is an R-linear combination
of periodic orbits a; with —icz(a;) = k and lying in the same fiber over a
critical point of index p, while #(M((, «)/R) represents, for some 3 with
—icz(B) = k + 1, the extension by linearity in the second argument of the
quantity #(M(f, as)/R).

The formula for d; becomes transparent if we define the parallel transport
map

(7.7) P (e, v) : FCY(E pis € v) — FCUE pis € V),

@ S M 5p @ a)(B),
—igy" (B)=q
where Pipj € Crit(f) with —icz(p;) > —icz(pi), v € M(pj,pi)
FCY(E,p,, e,v) and FC1 (E p;» € V) are the Floer complexes in the fibers Ep )
E for the restrictions of .J,,, €K, and ). We have denoted

us—i-JuUt:Yzfouv
. . Wou(st) ()VSt
M5 (p; @ Bipi@a) = QuiRxSE— E: lim u(s,) =p; @ 6(),

S—r—

hm u(s, ) =pi @ af)

s—>+00

The notation p; ® a stands for the orbit « in the fiber Epi viewed as an orbit
in F, and p; ® 3 has a similar meaning. It is easy to see that we have

dim M5 (p; ® B,p; ® @) = —idy" (8) + i&5™ ()

regardless of the difference of indices between p; and p;.
We prove in Lemma 7.10 below that ®5"" (¢, v) is a morphism of differ-
ential complexes which induces an isomorphism in homology and preserves
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the action filtration. As a consequence, the differential d; can be rewritten

dl(ev V) : @ FH[taﬁb] (Epi’ € V) — @ FH[ta,eb] (Epiv € V)7

pieCrit(f) pieCrit(f)
@8 pell— Y pe Y neP(n)-[a)
—icz(pj)=—icz(p:)+1 [vleM(p;.pi) /R
Here a € FCf, Eb](E’pi,e,v) is such that Ogper() = 0. We shall more-

over prove in Proposition 7.12 below that there is a unique local system
]:H?ewb] (F,e,v) on B with fiber FH[qCMb] (F,e,v) so that the maps &5
described above are the parallel transport maps with respect to this local
system. It then follows from the definition (7.1) of Morse cohomology with

values in a local system that

(7.9) EP%e,v,a,b) ~ H(Ey,d1) = Hp(B;}"H([]Ga 6b](l:—’\,e,y)).

7.5. The Floer local system. We prove in this section that the parallel
transport maps @gj Pi(¢,v) are chain morphisms which induce isomorphisms
in homology, and moreover they can be incorporated into a uniquely deter-
mined local system on B.

Lemma 7.10. The map ®5" (e,v) in (7.7) is a morphism of differential
complexes:
W00, + 0y, 0 T 0,

where Op,, Op,, are the Floer differentials in the fibers Epw Epj, respectively.
Moreover, it induces an isomorphism in Floer cohomology and preserves the
action filtration on Floer complexes.

Proof. The idea is to identify the moduli spaces M5"(p; ® 3, p; ® ) with
the moduli spaces M(3,a) corresponding to a deformation of the Floer
equations on the fibers Epi, Epj. More precisely, let us choose a symplectic
trivialization

U : Elimy — R x F,
E’y(s) — {8} X F
which, under the projection v(s) —— s and after having chosen iso-
morphisms F ~ Em ~ E’pj, coincides with the trivializations ¥;, ¥; of
Section 5.2 on im y NU;, respectively, on imyNUj. In this trivialization, we
can interpret
K=K L,ow!

as an s-dependent deformation from K, o ¥ . L= o+ +c_ to K,o
\Il;jl = ¢+ X% + c;, where x? is the perturbation described in Section 5.2
and cy are arbitrarily small constants. Writing K = (I/(\'S), s € R, with
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K, St x F — R and considering on {s} x F' the almost complex structure

JYer induced from Eﬁ/(s), the vector field Y takes the form

=5 Jvcrt =5 8
Y;(S,p):v ® 6K8+%7
with V%" the Levi-Civita connection for eQ. We infer that, if « and S
are two periodic orbits of ¢ + x93, the moduli space M5 (pj @ B,pi ® @) is
isomorphic to the moduli space

~ ~ U + Jvertu — VJ;/ert [?
M(/B705;K):{UZRXS71__>F: s T s Ut s |

u(—o00) = 3, u(+00) = «

It is a standard fact in the Floer theory that the count of the elements
of these moduli spaces gives rise to chain morphisms which induce isomor-
phisms in homology. Moreover, parallel transport preserves the filtration by
the action if the constants ci are chosen small enough. O

In the next lemma, we omit the indices € and v to improve readability.

Lemma 7.11. Let z,y,2z € Crit(f) and u € M(z,y), v € M(y,z). Let
v € M(x,z) be such that [y] € M(z,z)/R belongs to a component whose
boundary contains ([u], [v]) € (M(z,y)/R) x (M(y,z)/R). The following
equality holds:

P37 = ¥ o DY

Proof. We first remark that ®3* is independent of ~y as long as [y] varies in
one component of M(z, z)/R. Indeed, components are path connected and
we can choose an embedded path [v,], 7 € [0, 1] between any two given points
[v0] and [71]. A choice of symplectic trivialization of E over U, im v, induces

a homotopy between the homotopies (I?O, i}()) and (IA( 1, )A/l) corresponding to
Yo and ~y; through Lemma 7.10. The corresponding homomorphisms are
then chain homotopic and coincide at the level of homology.
It is therefore enough to prove the claim if [y] lies in the image of the
gluing map
#: K x [Ry, 00o[— M(z,2)/R,

where K is a relatively compact open neighborhood of the point ([u], [v]) in
(M(z,y)/R) x (M(y, z)/R) and Ry > 0 is large enough. The key point, bor-
rowed from the proof of the invariance of Floer homology [26, Lemma 3.11],
is that the rilorphiAsmAq)i’y o ®Y* is induced by the gluing of the two homo-
topies (Ko, Yp), (K1,Y1) into

(Ko, Yo1) :=
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Here R is chosen large enough so that the resulting homotopy is regular.
Ignoring the additive constants as in Lemma 7.10, this homotopy is a defor-
mation of the constant Hamiltonian ¢ + x5,

For R large enough, the image of [y] = #(([u], [v]), R) lies in a contractible
neighborhood U of im «w U im v and we choose a symplectic trivialization of E
over U which extends the trivialization over imu U imv which was implicit
in the construction of (1?01,?01). The morphism ®3° now arises from a
homotopy (IA(W, )/}7) which, in the given trivialization, is also a deformation
of the constant Hamiltonian ¢ + x?J.

As a conclusion, both homotopies induce the identity in the given trivi-
alization, and in particular ®5° = &Y o ®7°. O

In order to incorporate the maps @Zj P “(€,v) in local systems for the vari-
ous values of ¢ € Z, we exhibit local subsystems (C, P, ®9) (cf. Section 7.2.2)
determined by these maps. We recall that we denote by P(B) the space of
continuous paths in B. We define

C = Crit(f), P = (negative gradient trajectories off)cyit(f)»

where, for R C P(B) and C' C B, the notation (R)¢ stands for the minimal
subset of P(B) which contains P and which satisfies condition (2) of Defi-
nition 7.4. In our case, P consists of chains of negative gradient trajectories
of f and their inverses. We define

o4 = ((I)a : Fquea,eb](Ea(O)’ €, V) — FH[qea,eb](Ea(l)’ €, V))aep

on the generators of P by
o, = @3(_00)’7(+°°)(e, v), - negative gradient trajectory of f.

The next result is of a topological nature, although its statement involves
Floer homology groups. The transition to Floer homology is realized through
a repeated use of Lemma 7.11.

Proposition 7.12. a) For any q € Z and —oco < a < b < oo, the
triple (C, P, ®9) defines a local subsystem with fiber FH[qea ) (F,e,v),
denoted by

ﬂﬁea,eb} (F7 67 V)a
b) If B is connected, the support of the above local system is connected,;
c) For any po € Crit(f), the canonical inclusion
1 (FHL, 4y (Fe,v),0) = m1(B, po)
s an isomorphism.

Remark 7.13 (Truncated Floer local system). Assertion (c) implies
together with Proposition 7.6 that, for each ¢ € Z, there is a unique local
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system on B extending ﬂ&a ) (ﬁ ,€,v). We call it the truncated Floer local
system and denote it by

]-‘H?ea’eb} (F,e,v).

Proof of Proposition 7.12. Our proof crucially uses Lemma 7.11, as well
as the assumption that the unstable manifolds of —VYB f provide a CW-
decomposition of B (cf. Section 7.3). We denote the k-skeleton by

BF = U W(x).
indmorse (%) <k

(a) We have to prove that parallel transport along a loop a € P which
is null-homotopic in B is trivial. Let a = g1 - - - vyn, where ~; is a trajec-
tory of £V f running from p; to p;+1 and pg = py+1. By adding a chain
70+ MeNy -+ Mo running from po to a local minimum of f, we can assume
that indyorse(po) = 0. We are interested in the monodromy along « as
an automorphism of FH* (Epo). By successively applying Lemma 7.11 and
deforming the v;’s to the boundary of M(p;, p;), we can assume that all tra-
jectories y; are of index 1. We can moreover cancel pairs v;vi+1, ¢ # 0, N,

which are of the form nn~!.

Claim. There exists a null-homotopic chain oy based at py which consists
of trajectories connecting critical points of index 0 and 1 and which satisfies
o, = ,.

The proof goes by induction over m(a) = max; indyerse(p;). Assume
m(a) > 2. We prove the existence of a null-homotopic chain o based at
po such that m(a/) = m(a) — 1 and &, = ®,. Let us choose p; such
that indyorse(pi) = m(a). We claim that the pair 7;_1; connecting p;_1,
p; and p;+1 can be replaced without affecting parallel transport by a chain
connecting p;—1 and p;11 with intermediate critical points of index at most
m(«) — 1. Moreover, this chain is homotopic to ~;_17; with fixed endpoints,
hence the resulting loop is still null-homotopic. Let us choose a path ~ :
[0,1] — W*(p;) with (0) € im~,;_1, (1) € im~; and which is transverse
in W*(p;) to the manifolds W*"(p;) N W#(q), ¢ € Crit(f). In particular,
there exist points 0 =ty < t; < --- < ty_1 <ty = 1 such that the trajectory
pi,v(t;)[, 1 < j < ¢ —1, lands on a critical point ¢; of index 1 and, for
every t €]tj_1,t;[,1 < j < £, the trajectory [p;,7(t)[ lands on a critical
point m; of index 0 (see Figure 1(A)). The boundaries of the moduli spaces
M(z,y)/R consist of broken trajectories and, together with the existence of
the curve ~, this ensures that the trajectories vi—1, [pi,q;], 1 < j <€ -1,
and ~; can be completed to broken chains which lie pairwise in the boundary
of connected components of spaces M(p;, m)/R, with m a critical point
of index 0. More precisely, there exist index decreasing chains of index 1
trajectories from p;_1 to my and from p;11 to my, denoted B;—1 and 3;,
as well as trajectories [mj,q;], [gj,mj41], 1 < j < £ — 1, such that the
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pairs (¢, Bi—1, pi, 1] - lar, mal), ([pir 4] - a5, M), i @51 - (@541, M),
1<j<€—2,and ([pi,qe-1] - [qe—1, m¢],i - Bi) lie in the boundary of the
same components of M(p;, m;)/R, 1 < j < ¢, respectively. The chain ;17
is now to be replaced by

Bi-1 - H (mj, 4] - [aj, mj1] - B
1<j<t-1
The construction can be repeated until all points of index m(«) are
eliminated.

Claim. We have ®,, = Id.

For any CW-decomposition B = J,~, B*, the group m(B!) is free, the
group 71(B?) is the quotient of m1(B') by the normal subgroup generated
by the boundary cycles of the 2-cells and the map 71 (B?) — 71 (B) induced
by the inclusion B? < B is an isomorphism. In order to prove that par-
allel transport is trivial along the null-homotopic loop ay, we can therefore
assume without loss of generality that «y is the boundary cycle of a 2-cell
W(p), indporse(p) = 2, i.€., we can write

N
a1 = [ ¢] - g5, piva),
j=0
with indmoerse(pj) = 0, indmorse(¢5) = 1, pnv+1 = po. Each ¢; is understood
to be equipped with a trajectory 3; = [p, ¢;] such that

Us= U w“@nw).
J indporse(g)=1

The ordering of the g;’s is such that 3; and 811, 0 < j < N, lie in the
boundary of one same component of M(p,m), indyorse(m) = 0 (see Fig-
ure 1(B)).

A deformation argument based on Lemma 7.11 and entirely similar to
that of Case 1 shows that parallel transport along a; is the same as parallel
transport along the loop

N—-1
[po, qo] - H B Biv1 - law, po] = [po, g0l - By ' B - [an, pol-

§=0
The last loop is the boundary of a component of M(p,py) and, again by
Lemma 7.11, the induced parallel transport is trivial.

(b) Every critical point is connected by a trajectory to a point of index

0. On the other hand, because B is connected and the unstable manifolds
form a CW-decomposition, the 1-skeleton has to be connected and any two
index 0 points are therefore connected by a chain of index 1 trajectories.
This shows that the support of the local system is connected.
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mq m2

(A) (B)
Figure 1. Parallel transport is trivial along null-homotopic loops.

(c) We have to prove surjectivity of the map under study. We use the
fact that the map my(B') — m1(B) is surjective, which means that every
homotopy class in B has a representative which is supported in the 1-skeleton
B! = Uindygoree (p)=1 W*(p). From this, it is easy to find a representative
given by a chain of trajectories connecting points of index 0 and 1. O

7.6. Proof of the main theorems. We prove in this section Theo-
rems A and B stated in the Introduction. We need four Lemmas which

describe the behavior of the homology groups F H[’Z ayeb](eK,,,wE), of the

complexes FC[*EMb] (Y, J,) and of the local systems f?-[‘fmﬁb] (ﬁ, €r) as one

of the parameters € and v varies and the other one is fixed. We choose
—00 < a < b < oo such that 7a, 7h ¢ Spec(OF).

Lemma 7.14. Let v € N be fized. For any 0 < € < € < €y, we have natural
isomorphisms

* vg "
FH[Eaveb} (6K,/, we) — FH[e’a,e’b} (GIKIM we’)

. . 6” 6/ 6/ € 6// €
which satisfy vy, < oy, = 4, %, € < € < €. The Floer complexes are
based on T-periodic orbits and are understood to involve transverse almost
complex structures.

Proof. The periodic orbits involved in the two complexes are the same. Let
us consider a homotopy of Hamiltonians and symplectic forms (e(s) Ky, we(s)),
s € R, from (eK,,w.) to (€ K,,we). The periodic orbits involved in the Floer
complexes remain geometrically the same during the homotopy, but their
action gets multiplied by €(s). As a consequence, the extremities of the
action interval [e(s)a, €(s)b] which interpolates between [ea, €b] and [€'a, €'b]
are not crossed by any periodic orbit. This ensures that the continuation
morphism on Floer homology is bijective [31, Prop. 1.1]. O
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Lemma 7.15. Let v € N be fized. For any 0 < € < € < ¢, there are chain
equivalences of filtered chain complexes
* 1[’;/’6 * /
FC’[ }(Y,f, Jv) FC[g,avg,b] (Y, J,),

ea,eb

which induce in homology the isomorphisms 1/116,/’6 of Lemma 7.14.

Proof. Let us consider a homotopy of pseudo-gradient vector fields and sym-
plectic forms (Y,f(s),we(s)), s € R, between (Y, we) and (Y, we). The
induced chain map is given by a count of solutions of the parametrized
Floer equation u, + Jyu; = Y;, (®) (t,u(s,t)) for some split almost complex
structure J; = J, B ® JY'. The projection v = mowu of such a solution solves
an equation of the form

(7.10) vs + Jpvy = €(s)JpXy.
Since the almost complex structure Jp can be chosen to be regular for (7.10),
the induced chain map preserves the filtration. Note that solutions of (7.10)
are actually reparametrized negative gradient trajectories of f. That the
induced morphism in homology coincides with the map %€ of Lemma 7.14
is the usual directed simple system property of Floer homology.

The chain morphism wﬁl’e admits an inverse up to chain homotopy

obtained by considering the reversed homotopy from (er/,wel) to (Y5, we),
and is therefore a chain equivalence. O

Lemma 7.16. Let v < v/, so that €, < €,. For any 0 < € < €,,, we have

monotonicity morphisms

(7.11) FCt, (Y5, Jy)

[ea,eb]

FC’E*Ga’eb} (Y, J)
which preserve the filtrations.

Proof. We recall that
Yy = DX, + Xeeys + (X)), Yo =Ju(XG,, + Xee, s + (X&g,,)")-

The key point is to deform Y to Y}, through a deformation which is “good”
in the sense of Definition 4.20. This will be achieved by catenating three
good deformations obtained from the following data:

e a linear interpolation between Y7 and J, X§, ;

e an increasing homotopy h(s,S) between h, and h,, through convex
Hamiltonians which are linear of slope Apax(s) for S > 1;

e a linear interpolation between JZ,/XE,W and Y.

First, each of the two linear interpolations defines a strong pseudo-
gradient for each value of the deforming parameter s € R and, moreover,
the strong pseudo-gradient inequality is satisfied with a uniform constant
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by Proposition 5.8. As a consequence, the two interpolations define good
deformations in the sense of Definition 4.20. Secondly, any choice of inter-
polation between J, and J,, defines a genuine gradient deformation from
V7h, to V7 h,, and in particular a good deformation in the sense of
Definition 4.20, with uniform constant equal to 1 in the pseudo-gradient
inequality. By catenation, we obtain a good deformation from Y to Y,
which moreover satisfies the strong pseudo-gradient inequality with a uni-
form constant.

Arguing as in Section 6, one can show that transversality can be achieved
by a generic choice of homotopies of vertical almost complex structures and
time-dependent horizontal distributions. The trajectories of the Floer equa-
tion on F project on solutions of the equation

(7.12) vs + Jpuy = €ec(s)Jp Xy

on the base, for some smooth function ¢ : R — [0, co[ which is nonzero near
+o00. Since the almost complex structure Jp can be chosen to be regular
for (7.12), the corresponding monotonicity morphisms preserve the filtra-
tions. Note that solutions of (7.12) are actually reparametrized negative
gradient lines of f. O

Lemma 7.17. (a) Letv € N and q € Z be fized. For any0 < e < € < ¢,, the

filtered chain equivalences wf,l’e induce natural isomorphisms of local systems

FHL, gy (60) —2 s FHL (€ 0).

(b) Let ¢ € Z and v < V', so that €, < €,. For any 0 < € < €., the
monotonicity morphisms o}, . induce morphisms of local systems

o€

fH([Iea’Eb] (e,0") i

/

f?-[?ea’eb] (e,v).

Proof. (a) The filtered chain equivalence wf,/’e of Lemma 7.15 induces an
isomorphism of spectral sequences

¥y EP9(e,v,a,b) — EP( v, a,b), r>1.

The terms FE7 are direct sums of stalks of the corresponding local systems,
and we need to show that parallel transport commutes with 1. We recall
from Lemma 7.10 that, in a suitable trivialization, the parallel transport
map is induced by a deformation of the Floer equation. On the other hand,
it follows from the proof of Lemma 7.15 that the isomorphism ) is induced
by deforming the Floer equation in each fiber Ep, p € Crit(f). The composi-
tions ®(¢’, v) o1 and ¢ o ®(e,v) are therefore induced by two deformations



FIBERED SYMPLECTIC COHOMOLOGY AND SPECTRAL SEQUENCES 345

of the Floer equation having the same endpoints, and as such coincide at
the level of homology.
(b) Let us denote by

Oy :Ef’q<671//7a7b)—)Ef’q(e,]/7a,’b), 712 1
the map of spectral sequences induced by o7}, ,. We need to show that
P(e,v) 001 = 010 D(, V),

and the argument is entirely similar to the one given at (a). The only
difference is that ¢ is not an isomorphism anymore, and this is reflected in
the weaker statement we need to prove, namely the existence of a morphism
of local systems, rather than the existence of an isomorphism. O

Remark 7.18 (Floer local system). As a consequence of Lemma 7.17,
we define the Floer local system

FHL (F) =lm FHL | (e, v),

where the inverse limit is considered with respect to the maps

FHie aem (6 V) e FH ey (o), v SV

[Eu/av [51/0/751/17

Proof of Theorem A. We first show the existence of the requested spectral
sequence. Let us consider the following diagram of chain complexes:

FC[*Gla,ﬂb] (7 J1) <o FC[*Elaxlbl(ElKQ’wel) <o FC[*Gla,ﬂb] (€1K5,wer ) <
A A
Fc[tzaﬁwb] (Y1€2’ N) <— Fc[tw,@b] (YQGQ’JQ) < FC[*ezaA,Qb] (€2K3,wep) <

T !
Fc[t;;a,egb](ylssv']l) < Fc[t;;a,egb] (Y;S,JQ) -~ FCE;aaYeSb](Y;:;,JQ;) <

! T

The vertical arrows induce in cohomology the isomorphisms 1&5’5, 0<e<
€ < €g, of Lemmas 7.14 and 7.15. Moreover, the ones drawn with continuous
lines preserve the filtrations given by (7.4).

The horizontal arrows are given by monotonicity morphisms, and the ones
drawn with continuous lines preserve the filtrations by Lemma 7.16.

By naturality of the continuation and monotonicity morphisms in Floer
homology, the above diagram commutes up to chain homotopy, and therefore
commutes in homology.
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Let us denote
FC*(v,a,b) = FC'. (Yyv, Jo).

[eva,eub]

According to the diagram there are filtered chain morphisms
FC*(v,a,b) +— FC*(V;a,b), v <V
which induce morphisms between the associated spectral sequences (7.5)
EP(v,a,b) +— EP(V a,b).

We claim that
EP9(a,b) = 1i£1 EPY(v,a,b)
14

is a spectral sequence which converges to F'H, [’Zoa cob] (Weg)-

In order to show that EI(a,b) is a spectral sequence, we need to show
that every exact sequence

0 —imd? """ ) —— ker &P (v) —= EX (v) —0

remains exact in the inverse limit. This is the point where we need to use
field coefficients. In this situation, the inverse limit is an exact functor if all
terms involved in the inverse systems are finite dimensional vector spaces
[8, Theorem VIIL5.7], which is the case in our setting.
The limit of the spectral sequence Ej%(a,b) is lim FH (Yiv,Jy)
14

[euaaeub]

by definition. Since the vertical arrows in the diagram induce canonical
isomorphisms in homology, we obtain canonical isomorphisms

FH}? (Yo", Jv) = FH (1 Ky, we,)

[eva,eub]

and therefore

I}EI FH[tz,a,eyb] (YVGV7 JV) = l}in FH[za,qb](elKV?wel) = FH[Za,elb} (wﬁl)'
v v

The last equality holds by definition. On the other hand, we have F H{®

€1a,e1b
(Wey) =~ FH o (wey) by the deformation invariance Theorem 4.251, anc}i
the claim is proved.
The spectral sequences EF(a,b) are functorial with respect to the trun-
cation of the action morphisms since all the intermediate complexes and
maps involved in the construction have this property.

The definition of EY(a,b) and that of F ’H‘[]a y(£) given in Remark 7.18

directly imply that
EPa,b) = HP(B; FH(F)).

The last assertion of the theorem states that the spectral sequence

~

EP(a,b), r > 2 and the local system f?-[?a ) (F) are canonical, i.e., they do

not depend on the various choices involved (the almost complex structures,
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the horizontal distribution used to lift Xy, the function f, the perturbations
G, etc.) This is proved by the continuation method in Floer homology, i.e.,
by considering suitable s-dependent interpolating families. The key point is
that all constructions can be performed so that the resulting morphisms pre-
serve the filtrations, thus inducing isomorphisms between the corresponding
spectral sequences. A glimpse of this phenomenon has already appeared in
Lemmas 7.15 and 7.16 and we omit further details. O

In the proof that follows the notation 0=, 0" stands for a small enough
negative, respectively, positive number.

Proof of Theorem B. Let us recall from Section 5.2 that, given v € N, the
Hamiltonian K, and the vector field Y are of the form

K, =h, + Cuf+ oy + Gy, er = JV(Xhu + GCV)/ZJ; + X;u + Xéu),

where ¢, is a C?-small time-independent perturbation of h, + ¢, f supported
in £\ {1—- g < S5 <1} for some 6 > 0, and G, is a small time-dependent
perturbation supported in an arbitrarily small neighborhood of E. We use
the notation K, = h, + ¢, f + ¢, and Ei_(5/4 = E\ {1 — % < S <1}

Let us choose p > 0 smaller than min(Spec(OF)). A deformation argu-
ment shows that, as v € N varies, the spectral sequences EF%(v,0™, )
are canonically isomorphic at the page » = 1, and therefore at all pages
r > 1. Tt is thus enough to prove that EFY(v,07,u) is canonically iso-
morphic to the Leray—Serre spectral sequence under the assumption that
the maximal slope of h, is smaller than min(Spec(0F)). This implies
both assertions of Theorem B, namely the isomorphism of local systems
FHI }(ﬁ ) =~ H**4(F,0F) and the isomorphism of spectral sequences

[0—,0+
EPY07,01) = s Ep PR > 2,
We claim that, for a choice of v as above, the complex F CE‘E), 6#](e, V)

coincides with the Morse complex of Y for 0 < € <'¢, if ¢, |, | and |G, | are
small enough. Note that Y is a pseudo-gradient for the Morse function K,
on E. To prove the claim, we must show that Floer trajectories connecting
critical points of K, are independent of time. Since the Hamiltonian K,
is C?-small on Ei_(s/4) and E is symplectically aspherical, it is enough to
show that these Floer trajectories are contained in E1_5/4). Let us argue by
contradiction and assume that this is false. Then we find an € > 0, sequences
cn = 0, |on] — 0, |Gn| — 0 and t, € St, n > 1, as well as a sequence u, of
maps solving the equation dsuy,, + J,0iuy, = Y,5 o u, for

Y= J,(Xp, +ecn X+ XY, + X5 ),

n

+

satisfying un(s,-) — 2%, s — o0, for some distinct points z+ € Crit(K,),

as well as
un(0,t) & E1_(5/4)-
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The uniform pseudo-gradient property for Y, = Jl,% — Y? provides a uni-
form bound on the energy E(u,) for all n, whereas a uniform C°-bound on
the sequence u,, follows from Theorem 4.6. By Floer—-Gromov compactness,
we obtain in the limit a nonconstant map w satisfying u; + Jous = J, X4,
and u(s,-) — y* for two distinct points y* € Ei_(5/4), and such that
u(0,t) ¢ Ey_(5/4) for some t € S'. Since h, = h,(S), we can apply the
maximum principle as in [31, Lemma 1.8] and show that u cannot have a
local maximum in 0F X [1 — (§/4), 00] (see also Remark 4.17). The map u
must therefore be entirely contained in Ey_(s/4), a contradiction.

Using the notation EX?(v,a,b) for the spectral sequence associated to the
filtered complex F'C} }(Ylf”, J,), we must prove that we have a canonical

leva,end
isomorphism of spectral sequences

(7.13) EPU(v, 07, pu) ~ ETPRTa

At this point, we need to recall the construction of the Leray—Serre spectral
sequence using cellular homology, as defined in Section 7.2.1. Assume one
has CW-decompositions of £ and B with the property that the projection
of a cell € in E is a cell w(eF) in B. The cellular complex

Cell*(E) = @ Z(ek)

is then naturally filtered by
(7.14) F, Cel(E)= €  Z(eh),

dim 7(ef)>p

and the spectral sequence associated to this filtration is g £29. This is pre-
cisely the definition given in [21] tailored to the setup of cellular cohomology.

The isomorphism (7.13) follows now from the fact that the underlying
filtered complexes are isomorphic. Indeed, the complex F C’[*€ Va@b](Y,f“, Ju)
was shown to coincide with the Morse complex, the latter is tautologically
identified with the cellular complex on E by our standing assumption on
the behavior of K, near its critical points (cf. Section 7.3), and the fil-
tration (7.4) on the Morse complex tautologically coincides with the filtra-
tion (7.14) on the cellular complex due to our standing assumption on the
behavior of f near its critical points. The shift in the grading comes from
the fact that the Floer complex is graded by minus the Conley—Zehnder
index instead of the Morse index. O

8. Appendix A. On Symplectic Forms and the Taming Property

Proposition A.1. Let wy, wo be symplectic forms on a manifold B. Let
J(B,wi) C J-(B,wi) be the contractible sets of almost complex structures
which are compatible with, respectively tamed by w;, 1 = 1, 2.
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Assume J(B,w1) C Jr(B,ws). Then w1 = fwy for some strictly posi-
tive function f on B, and in particular J(B,w1) = J(B,w2), J-(B,w1) =
Jr(B,wsy). If dim B > 4, then f is constant on every component of B.

Remark A.2. The assumption J(B,wi) C J-(B,ws) is satisfied for exam-
ple if 7(B,w1) C J(B,ws), or J(B,wi) C J-(B,w2).

Proof. We can work fiberwise in each tangent space and, without loss of
generality, assume that w; and wsy are linear symplectic forms in R?”. We
denote J(w;) = J(R®*",w;), i = 1,2. The statement is obvious for n = 1
and we assume n > 2. Fix v,w € R?" which are noncollinear. We claim
that wi(v,w) = 0 if and only if wa(v,w) = 0. Assume first wi(v,w) = 0.
There exists J € J(w1) such that V = Sp(v, Jv) and W = Sp(w, Jw) are
orthogonal with respect to w;. Let T'= Sp(v, Jv,w, Jw). By hypothesis, the
space V is symplectic for wy and its orthogonal V1«2 in T, denoted V', is a
complement of V' and therefore generated by w+av+bJv and Jw+cv+dJv,
where a, b, c,d € R are suitable constants. We show that a =b=c=d =0.
Assume for example d # 0. We have w (v, Jw+cv+dJv) = d-w; (v, Jv) # 0.
There exists therefore J € J(w1) such that Jw + cv + dJv = sign(d) - J'v.
Then wa(v, Jw + cv + dJv) = sign(d) - wa(v, J'v) # 0, which contradicts the
definition of V’/. One proves in the same way that a = b = ¢ = 0. Assume
now that wa(v,w) = 0. If w (v, w) # 0, there exists J € J(w1) such that w =
sign(wi (v, w)) - Ju, hence wa (v, w) = +wa(v, Jv) # 0, a contradiction. One
can easily see now that we also have wj (v, w) > 0 if and only if wa (v, w) > 0.

Let now ey, f1,...,en, fn be a symplectic basis for wy, i.e., w1 = > " erA

=11
fF. The above implies that we = > Aiel A fF, Ay > 0. We show that
all the \; are equal: for 1 < 4,5 < n, we have wi(e; + ¢€j, fi — fj) = 0,
hence 0 = wa(e; + €j, fi — fj) = A\i — Aj. Therefore, w1 = Awz, A > 0 and
J(w1) = T (w2), Tr(w1) = Tr(wo).

We can now write w; = fws, with f : B — R* smooth. Assume
dim B > 4. By closedness we get df A ws = 0. Assume df is not identically
zero, i.e., there exist € B and X € T, B such that df;(X) > 0. The germ
of ¥ = f~1(f(x)) at = is a smooth hypersurface of dimension > 3, on which
A = txwo is nonzero. The form ws is nondegenerate on ker A and this implies

(df Awa)z # 0, a contradiction. O
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