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PACKING SYMPLECTIC MANIFOLDS BY HAND

Felix Schlenk

We construct explicit maximal symplectic packings of minimal ratio-
nal and ruled symplectic 4-manifolds by few balls in a very simple way.

1. Introduction

Consider a connected 2n-dimensional symplectic manifold (M, ω) of finite
volume Vol (M, ω) = 1

n!

∫
M ωn, and let B2n(a) be the open ball of radius√

a/π in standard symplectic space
(
R

2n, ω0
)
. Then Vol

(
B2n(a), ω0

)
=

an/n!, as it should be. The k th symplectic packing number pk(M, ω) ∈ ]0, 1]
is defined as

pk(M, ω) = sup
a

k Vol
(
B2n(a), ω0

)

Vol (M, ω)
where the supremum is taken over all those a for which the disjoint union∐k

i=1 B2n(a) of k equal balls symplectically embeds into (M, ω). We refer
to [18] and to [21] for various motivations to determine or estimate these
numbers. If pk(M, ω) < 1, one says that there is a packing obstruction,
and if pk(M, ω) = 1, one says that (M, ω) admits a full packing by k balls.
The first examples of packing obstructions were found by Gromov [10], and
many further packing obstructions and also some exact values of pk were
obtained by McDuff and Polterovich in [18]. Finally, Biran showed in [5, 6]
that

(1) P (M, ω) := inf {k0 ∈ N | pk(M, ω) = 1 for all k ≥ k0} < ∞
for an interesting class of closed symplectic 4-manifolds containing sphere
bundles over a surface and for all closed symplectic 4-manifolds with [ω] ∈
H2(M ; Q).

Besides sporadic results on the first packing number p1 and on packing
numbers for ellipsoids in [14, 23], all known computations of packing num-
bers are contained in [5, 6, 18]. We refer to Biran’s excellent survey [8]
for the methods used, and only mention that in [5, 6, 18] the problem of
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symplectically embedding k equal balls into (M, ω) is first reformulated as
the problem of deforming a symplectic form on the k-fold blow-up of (M, ω)
along a certain family of cohomology classes, and that this problem is then
solved using tools from classical algebraic geometry, Seiberg–Witten–Taubes
theory, and Donaldson’s symplectic submanifold theorem, respectively. As
a consequence, the symplectic packings found are not explicit. For some
of the symplectic manifolds considered in [5, 6, 18] and some values of k,
explicit maximal symplectic packings were constructed by Karshon [11],
Traynor [23], Kruglikov [12], and Maley, Mastrangeli, and Traynor [14].
In this article, we describe a very simple and explicit construction realiz-
ing the packing numbers pk(M, ω) for those symplectic 4-manifolds (M, ω)
and numbers k considered in [11, 12, 14, 23], as well as for some other
closed symplectic 4-manifolds and small values of k. To be more precise, we
construct maximal packings different from those in [11, 12, 14, 23] of the
4-ball and of CP

2 by k ≤ 6 balls and by l2 balls for each l ∈ N, and of the
product of two surfaces of equal area by 2l2 balls. In addition, we construct
maximal packings of S2 × S2 by k ≤ 6 balls for all symplectic structures
and by 7 balls for some symplectic structures, as well as maximal packings
of the non-trivial bundle S2

�S2 by k ≤ 5 balls for all symplectic structures
and by 6 balls for some symplectic structures. In the range of k for which
these constructions fail to give maximal packings, they give a feeling that
the balls in the packings from [5, 6, 18] must be “wild”. Our symplectic
packings are simply obtained via products α1×α2 of suitable area preserving
diffeomorphisms between a disc and a rectangle. Taking n-fold products, we
shall also construct explicit maximal packings of the 2n-ball and CP

n and
of CP

n \RP
n by k ≤ 2n equal balls and explicit full packings of these spaces

by ln, respectively, 2ln equal balls for each l ∈ N in a most simple way.
We finally consider a relative packing problem. A middle-dimensional sub-

manifold L of a symplectic manifold (M, ω) is called Lagrangian if ω vanishes
on TL. Examples are B2n(π) ∩ R

n(x) in B2n(π) and RP
n in CP

n. Given a
connected 2n-dimensional symplectic manifold (M, ω) of finite volume and
a Lagrangian submanifold L of M , we define the k th relative symplectic
packing number pk(M, L, ω) ∈ ]0, 1] as

pk(M, L, ω) = sup
a

k Vol
(
B2n(a), ω0

)

Vol (M, ω)

where now the supremum is taken over all those a for which there exists a
symplectic embedding

∐k
i=1 ϕi :

∐k
i=1 B2n(a) ↪→ (M, ω) such that ϕ−1

i (L) =
B2n(a) ∩ R

n(x). In other words, we allow only for symplectic embeddings
which map B2n(a) ∩ R

n(x) to L and B2n(a) \ R
n(x) to M \ L. For k = 1,

such relative symplectic embeddings were introduced recently by Barraud
and Cornea in [1, 2], see in particular [2, p. 32]. We refer to their work
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for motivations to study p1(M, L, ω). It is not yet clear whether the meth-
ods from [5, 6, 18] can be adopted to study the relative packing numbers
pk(M, L, ω). Notice that one always has

(2) pk(M, L, ω) ≤ pk(M, ω).

We shall only look at the Lagrangian submanifolds B2n(π)∩R
n(x) in B2n(π)

and RP
n in CP

n, and shall notice that our explicit maximal packings of
B2n(π) and CP

n are in fact relative packings for these Lagrangian subman-
ifolds, so that for these examples equality holds in (2).

In Section 2, we collect the packing numbers of interest to us. In Sec-
tion 3, we construct our maximal packings of symplectic 4-manifolds, and
in Section 4, we construct our packings of the 2n-ball and of CP

n \ RP
n.

In Section 5, we verify that our maximal packings of B2n(π) and CP
n are

relative packings for B2n(π) ∩ R
n(x) and RP

n.
Balls will always be endowed with the standard symplectic form ω0 =∑n
i=1 dxi ∧ dyi. Since the packing numbers pk

(
B2n(a), ω0

)
do not depend

on a, we shall usually pack the unit ball B2n :=
(
B2n(π), ω0

)
.

2. Packing numbers

In this section, we list the known packing numbers of interest to us and
compute pk for the nontrivial sphere bundles over Riemann surfaces for
k ≤ 7.

2.1. The packing numbers of the 4-ball and CP
2. Let ωSF be the

unique U(3)-invariant Kähler form on CP
2 whose integral over CP

1 equals 1.
According to a result of Taubes [22], every symplectic form on CP

2 is dif-
feomorphic to a ωSF for some a > 0. In view of the symplectomorphism
(3)
(
B4(π), ω0

)
→
(
CP

2 \ CP
1, π ωSF

)
, z = (z1, z2) �→

[
z1 : z2 :

√
1 − |z|2

]

further discussed in [19, Example 7.14] we have pk

(
B4
)

≤ pk

(
CP

2
)

for all
k. It is shown in [18, Remark 2.1.E] that in fact

(4) pk(B4) = pk(CP
2) for all k.

A complete list of these packing numbers was obtained in [5] (see Table 1).

k 1 2 3 4 5 6 7 8 ≥ 9

pk 1 1
2

3
4 1 20

25
24
25

63
64

288
289 1

Table 1. pk

(
B4
)

= pk

(
CP

2
)
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Explicit maximal packings were found by Karshon [11] for k ≤ 3 and by
Traynor [23] for k ≤ 6 and k = l2 (l ∈ N). We will give even simpler
maximal packings for these values of k in Section 3.2.

2.2. The packing numbers of ruled symplectic 4-manifolds. Denote
by Σg the closed orientable surface of genus g. There are exactly two ori-
entable S2-bundles with base Σg, namely the trivial bundle π : Σg×S2 → Σg

and the nontrivial bundle π : Σg � S2 → Σg, see [19, Lemma 6.9]. Such a
manifold M is called a ruled surface. A symplectic form ω on a ruled surface
is called compatible with the given ruling π if it restricts on each fibre to
a symplectic form. Such a symplectic manifold is then called a ruled sym-
plectic 4-manifold. It is known that every symplectic structure on a ruled
surface is diffeomorphic to a form compatible with the given ruling π via
a diffeomorphism which acts trivially on homology, and that two cohomo-
logous symplectic forms compatible with the same ruling are isotopic [13].
A symplectic form ω on a ruled surface M is thus determined up to dif-
feomorphism by the class [ω] ∈ H2(M ; R). In order to describe the set
of cohomology classes realized by (compatible) forms on M , we fix an ori-
entation of Σg and an orientation of the fibres of the given ruled surface
M . These orientations determine an orientation of M in a natural way,
see below. We say that a compatible symplectic form ω is admissible if
its restriction to each fibre induces the given orientation and if ω induces
the natural orientation on M . Notice that every symplectic form on M is
diffeomorphic to an admissible form for a suitable choice of orientations of
Σg and the fibres.

Consider first the trivial bundle Σg×S2. The two classes B = [Σg×pt] and
F = [ pt × S2] form a basis of H2(M ; Z). Here, and henceforth, we identify
homology and cohomology via Poincaré duality. The natural orientation of
Σg × S2 is such that B · F = 1. A cohomology class C = bB + aF can be
represented by an admissible form if and only if C · F > 0 and C · C > 0,
i.e.,

a > 0 and b > 0,

standard representatives being split forms. We write Σg(a) × S2(b) for this
ruled symplectic 4-manifold.

In case of the nontrivial bundle Σg � S2, a basis of H2(Σg � S2; Z) is
given by {A, F}, where A is the class of a section with self-intersection
number −1 and F is the fibre class. The homology classes of sections of
Σg � S2 of self-intersection number k are Ak = A + k+1

2 F with k odd. The
natural orientation of Σg � S2 is such that Ak · F = A · F = 1 for all k. Set
B = A+F/2. Then {B, F} is a basis of H2(Σg�S2; R) with B ·B = F ·F = 0
and B · F = 1. As for the trivial bundle, the necessary condition for a
cohomology class bB + aF to be representable by an admissible form is
a > 0 and b > 0. It turns out that this condition is sufficient only if g ≥ 1.
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A cohomology class bB + aF can be represented by an admissible form if
and only if

a > b/2 > 0 if g = 0,

a > 0 and b > 0 if g ≥ 1,

see [19, Theorem 6.11]. We write (Σg � S2, ωab) for this ruled symplectic
4-manifold. A “standard Kähler form” in the class [ωab] is explicitly con-
structed in [16, Section 3] and [19, Exercise 6.14]. When constructing our
explicit symplectic packings, it will always be clear which symplectic form
in [ωab] is chosen.

We begin with the trivial sphere bundle over the sphere.

Proposition 2.1. Assume that a ≥ b. Abbreviate pk = pk(S2(a) × S2(b)),
and denote by 	x
 the minimal integer which is greater than or equal to x.
Then

pk =
k

2
b

a
if
⌈

k

2

⌉
b

a
≤ 1.

Moreover,

p1 =
b

2a
, p2 =

b

a
, p3 =

3
2ab

{

b,
a + b

3

}2

on
]

0,
1
2
, 1
]

,

p4 =
4
3
p3, p5 =

5
2ab

{

b,
a + 2b

5

}2

on
]

0,
1
3
, 1
]

,

p6 =
3
ab

{

b,
a + 2b

5
,
2a + 2b

7

}2

on
]

0,
1
3
,
3
4
, 1
]

,

p7 =
7

2ab

{

b,
a + 3b

7
,
3a + 4b

13
,
4a + 4b

15

}2

on
]

0,
1
4
,

8
11

,
7
8
, 1
]

.

In particular, for k ≤ 7 we have pk(S2(a)×S2(b)) = 1 exactly for the values
(k = 2, b

a = 1), (k = 4, b
a = 1

2), (k = 6, b
a = 1

3), (k = 6, b
a = 3

4) and
(k = 7, b

a = 7
8).

We explain our notation by an example: p3 = 3
2abb

2 if 0 < b
a ≤ 1

2 and
p3 = 3

2ab

(
a+b
3

)2
if 1

2 ≤ b
a ≤ 1.

In Section 3.3.1, we will construct explicit maximal packings of the sym-
plectic manifold S2(a) × S2(b) for all k with

⌈
k
2

⌉
b
a ≤ 1, for k ≤ 6 and

0 < b ≤ a arbitrary, and for k = 7 and 0 < b
a ≤ 3

5 , as well as explicit full
packings for k = 2ml2 if a = mb (l, m ∈ N). These explicit packings will
give to the above quantities a transparent geometric meaning.

The following corollary slightly refines Corollary 5.B of [5].

Corollary 2.2. We have max
(
2
a

b
, 8
)

≤ P (S2(a) × S2(b)) ≤ 8
a

b
except possibly for b

a = 7
8 , in which case P (S2(a) × S2(b)) ∈ {7, 8, 9}. For

S2(1) × S2(1) we thus have the following table:
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k 1 2 3 4 5 6 7 ≥ 8

pk
1
2 1 2

3
8
9

9
10

48
49

224
225 1

Table 2. pk(S2(1) × S2(1))

Proposition 2.3. Assume that a > b
2 > 0. Abbreviate pk = pk(S2

�S2, ωab),
and set 〈k〉 = k if k is odd and 〈k〉 = k + 1 if k is even. Then

pk =
k

2
b

a
if

〈k〉
2

b

a
≤ 1.

Moreover,

p1 =
b

2a
, p2 =

1
ab

{

b,
2a + b

4

}2

on
]

0,
2
3
, 2
[

,

p3 =
3
2
p2, p4 =

2
ab

{

b,
2a + 3b

8

}2

on
]

0,
2
5
, 2
[

,

p5 =
5

2ab

{

b,
2a + 3b

8
,
2a + b

5

}2

on
]

0,
2
5
,
6
7
, 2
[

,

p6 =
3
ab

{

b,
2a + 5b

12
,
2a + 2b

7
,
2a + b

5

}2

on
]

0,
2
7
,
10
11

,
4
3
, 2
[

,

p7 =
7

2ab

{

b,
2a + 5b

12
,
6a + 9b

28
,
4a + 4b

15
,
4a + 3b

13
,
6a + 3b

16

}2

on
]

0,
2
7
,
1
2
,
22
23

,
8
7
,
14
9

, 2
[

.

In particular, for k ≤ 7, we have pk(S2
� S2, ωab) = 1 exactly for the val-

ues (k = 3, b
a = 2

3), (k = 5, b
a = 2

5), (k = 6, b
a = 4

3), (k = 7, b
a = 2

7),
(k = 7, b

a = 8
7) and (k = 7, b

a = 14
9 ).

In Section 3.3.2, we will construct explicit maximal packings of the sym-
plectic manifold (S2

� S2, ωab) for all k with 〈k〉
2

b
a ≤ 1, for k ≤ 5 and

0 < b
2 < a arbitrary, and for k = 6 and b

a ∈ ]0, 2
3 ] ∪ [43 , 2[. Moreover, given

ωab with b
a = 2l

2m−l for some l, m ∈ N with m > l, we will construct explicit
full packings of (S2

� S2, ωab) by l(2m − l) balls.

Corollary 2.4. max
(
2
a

b
, 8
)

≤ P (S2
� S2, ωab) ≤

{ 8a
b if b ≤ a

8ab
(2a−b)2 if b ≥ a

except possibly for b
a ∈ {2

7 , 8
7 , 14

9 }, in which case the lower bound for
the number P

(
S2

� S2, ωab

)
is 7. For (S2

� S2, ω11) we thus have
the following table:
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k 1 2 3 4 5 6 7 ≥ 8

pk
1
2

9
16

27
32

25
32

9
10

48
49

14
15 1

Table 3. pk(S2
� S2, ω11)

Proposition 2.5. Let g ≥ 1 and let a > 0 and b > 0. Then

pk(Σg(a) × S2(b)) = pk(Σg � S2, ωab) = min
{

1,
k

2
b

a

}

.

In particular, P (Σg(a) × S2(b)) = P (Σg � S2, ωab) =
⌈

2a

b

⌉

.

In Section 3.3.3, we will construct explicit maximal packings of the
symplectic manifolds Σg(a)×S2(b) and (Σg�S2, ωab) for all k with

⌈
k
2

⌉
b
a ≤ 1

and explicit full packings for k = 2ml2, if a = mb or b = ma (l, m ∈ N).

2.3. The packing numbers of the 2n-ball and of CP
n \ RP

n . As in
dimension 4, we denote by ωSF the unique U(n + 1)-invariant Kähler form
on CP

n whose integral over CP
1 equals 1. The symplectomorphism (3) gen-

eralizes to the symplectomorphism
(
B2n(π), ω0

)
→
(
CP

n \ CP
n−1, π ωSF

)

defined by

(5) z = (z1, . . . , zn) �→
[
z1 : · · · : zn :

√
1 − |z|2

]
,

and pk

(
B2n
)

= pk (CP
n, ωSF ) for all k, see [18, Remark 2.1.E]. While the

packing numbers pk

(
B4
)

= pk

(
CP

2
)

are listed in Table 1 above, for n ≥ 3
the only known results are

pk

(
B2n
)

= pk (CP
n) =

k

2n
for 2 ≤ k ≤ 2n,(6)

pln
(
B2n
)

= pln (CP
n) = 1 for all l ∈ N,(7)

see [10] and [18, Corollary 1.5.C and 1.6.B]. We shall realize these packing
numbers in Section 4.1 by very simple explicit packings.

Let RP
n ⊂ CP

n be the n-dimensional real projective space embed-
ded in the usual way (as the fixed point set of the canonical conjugation
of CP

n). Biran proved in [7] that p1 (CP
n \ RP

n) = 1/2n. Therefore,
pk (CP

n \ RP
n) ≤ k/2n for all k ≤ 2n. In view of the symplectomor-

phism (5), the “pierced ball” B2n(π) \ R
n(x) in

(
R

2n, ω0
)

symplectically
embeds into (CP

n \ RP
n, π ωSF ). In Section 4.2, we shall construct explicit

full packings of B2n(π) \ R
n(x) by 2ln equal balls for all l ∈ N. It follows
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that

pk

(
B2n \ R

n(x)
)

= pk (CP
n \ RP

n) =
k

2n
for 1 ≤ k ≤ 2n,(8)

p2ln

(
B2n \ R

n(x)
)

= p2ln (CP
n \ RP

n) = 1 for all l ∈ N.(9)

Remark 2.6. For n = 2, Biran’s work provides more information. It is
shown in [7] that

(
CP

2 \ RP
2, ωSF

)
is symplectomorphic to a symplectic

disc bundle over the smooth quadric S2 ∼= Σ =
{
z2
1 + z2

2 + z2
3 = 0
}

such
that Σ has area 2 and the fibres have area 1/2. According to [6], this
disc bundle can be compactified in a symplectic way to an S2-bundle over
Σ whose packing numbers agree (up to ε). Since Σ · Σ = 4, this is the
trivial S2-bundle over S2, and the symplectic form in question is the one of
S2(1) × S2

(1
2

)
. Proposition 2.1 and Corollary 2.2 thus yield Table 4 and

8 ≤ P
(
CP

2 \ RP
2
)

≤ 16.

k 1 2 3 4 5 6 7

pk
1
4

1
2

3
4 1 20

25
24
25

25
28

Table 4. pk

(
CP

2 \ RP
2
)

for k ≤ 7

Comparing with Table 1, we see that pk

(
CP

2 \ RP
2
)

= pk

(
CP

2
)

except for
k ∈ {1, 7} and possibly for k ∈ {8, . . . , 15}. Notice that

B4(π) \ R
2(x) =

(
CP

2 \ RP
2) \
(
CP

1 \ RP
1) .

In view of Remark 2.1.E in [18], it is thus plausible that pk

(
B4 \ R

2(x)
)

=
pk

(
CP

2 \ RP
2
)

for all k. The identities (8) and (9) verify this for k ≤ 4 and
k = 4l. �

In the remainder of this section, we prove Propositions 2.1, 2.3, and 2.5
and Corollaries 2.2 and 2.4. We assume the reader to be familiar with [5].
Set N = CP

2, let L = [CP
1] be the positive generator of H2(N ; Z), let Ñk

be the complex blow-up of CP
2 at k points and let D1, . . . , Dk be the classes

of the exceptional divisors.

Proof of Proposition 2.1. Fix 0 < b ≤ a and set pk = pk(S2(a) × S2(b)).
Biran [5, Theorem 6.1.A] showed that for any k ∈ N,

(10) pk = min

{

1,
k

2ab
inf
(

an1 + bn2

2n1 + 2n2 − 1

)2
}

where the infimum is taken over all n1, n2 ∈ N0 := N ∪ {0} for which the
system of Diophantine equations

(11.k)
2n1n2 =

∑k
i=1 m2

i − 1

2n1 + 2n2 =
∑k

i=1 mi + 1

}
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has a solution (m1, . . . , mk) ∈ N
k
0. It is easy to see that the only solutions

of (11.1) are (n1 = 0, n2 = 1, m1 = 1) and (n1 = 1, n2 = 0, m1 = 1),
which yields p1 = b

2a . This implies that pk ≤ k
2

b
a for all 0 < b ≤ a and all

k, and that the reverse inequality holds true whenever
⌈

k
2

⌉
b
a ≤ 1 will be

shown in Section 3.3.1. In order to compute pk for 2 ≤ k ≤ 7, let M̃k be the
complex blow-up of S2 × S2 at k points and let E1, . . . , Ek be the classes of
the exceptional divisors. Recall that we chose the basis of H2(S2 × S2; Z)
to be {B = [S2 × pt], F = pt × S2]}. The solutions of (11.k) correspond to
the exceptional elements E = n1B + n2F −

∑k
i=1 miEi ∈ H2(M̃k; Z) with

n1, n2, m1, . . . , mk ≥ 0.
Observe now that for k ≥ 1, M̃k is diffeomorphic to Ñk+1 via a diffeomor-

phism under which the classes L, D1, D2, D3, . . . , Dk+1 correspond to the
classes B + F − E1, B − E1, F − E1, E2, . . . , Ek, respectively, cf. Figure 7
below. The exceptional elements in H2(Ñk+1; Z) for k ≤ 7 are listed in [9,
p. 35]. The values pk for 2 ≤ k ≤ 7 are now obtained by evaluating this list
in (10). �

Proof of Corollary 2.2. The estimates 2a
b ≤ P (S2(a) × S2(b)) ≤ 8a

b are
proved in [5, Corollary B.5]. The claim now follows from the last statement
in Proposition 2.1. �

Proof of Proposition 2.3. Fix a > b
2 > 0 and set M = S2

� S2 and pk =
pk(M, ωab). With α = a − b

2 and β = b the condition a > b
2 > 0 becomes

α > 0 and β > 0. Recall that ωab = bB + aF = βA + (α + β)F , where
{A, F} is a basis of H2(M ; Z) with A ·A = −1, A ·F = 1, and F ·F = 0. Let
Θ: M̃k → M be the complex blow-up of M at k points and let E1, . . . , Ek

be the classes of the exceptional divisors. The first Chern class of M is
c1 = 2A+3F , so that the first Chern class of M̃k is c̃1 = 2A+3F −

∑k
i=1 Ei.

Let E = n1A + n2F −
∑k

i=1 miEi be an exceptional element in H2(M̃k; Z)
with m1, . . . , mk ≥ 0, that is, (n1, n2, m1, . . . , mk) ∈ Z

2 × N
k
0 is a solution of

the system of Diophantine equations

(12.k)
n1(2n2 − n1) =

k∑

i=1
m2

i − 1

n1 + 2n2 =
k∑

i=1
mi + 1

⎫
⎪⎪⎬

⎪⎪⎭
.

Suppose that ω̃ab is a symplectic form on M̃k such that [ω̃ab] = [Θ∗ωab] −
ε
∑k

i=1 Ei. We claim that for ε > 0 small enough, ω̃ab(c̃1 + E) > 0. Indeed,
since m1, . . . , mk ≥ 0, (12.k) implies that n1, n2 ≥ 0. Hence

ω̃ab(c̃1 + E) = α(2 + n1) + β(3 + n2) − ε

k∑

i=1

(1 + mi)

is positive for ε small enough.
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It now follows exactly as in the proof of Theorem 6.1.A in [5] that for any
k ∈ N,

(11) pk = min

{

1,
k

β(2α + β)
inf
(

αn1 + βn2

n1 + 2n2 − 1

)2
}

where the infimum is taken over all n1, n2 ∈ N0 for which (12.k) has a
solution (m1, . . . , mk) ∈ N

k
0.

Observe now that for k ≥ 0, M̃k is diffeomorphic to Ñk+1 via a diffeo-
morphism under which the classes L, D1, D2, . . . , Dk+1 correspond to the
classes A+F , A, E1, . . . , Ek, respectively, see [19, Example 7.4]. Evaluating
the list in [9] in (11) we obtain

p1 =
β

2α + β
, p2 =

2
β(2α + β)

{

β,
α + β

2

}2

on ]0, 1,∞[,

p3 =
3
2
p2, p4 =

4
β(2α + β)

{

β,
α + 2β

4

}2

on
]

0,
1
2
,∞
[

,

p5 =
5

β(2α + β)

{

β,
α + 2β

4
,
2α + 2β

5

}2

on
]

0,
1
2
,
3
2
,∞
[

,

p6 =
6

β(2α + β)

{

β,
α + 3β

6
,
2α + 3β

7
,
2α + 2β

5

}2

on
]

0,
1
3
,
5
3
, 4,∞
[

,

p7 =
7

β(2α + β)

{

β,
α + 3β

6
,
3α + 6β

14
,
4α + 6β

15
,
4α + 5β

13
,
3α + 3β

8

}2

on
]

0,
1
3
,
2
3
,
11
6

,
8
3
, 7,∞
[

.

Replacing α by a− b
2 and β by b, we finally obtain the values pk for 1 ≤ k ≤ 7

as stated in Proposition 2.3. The identity p1 = b
2a implies that pk ≤ k

2
b
a for

all 0 < b
2 < a and all k. That the reverse inequality holds true whenever

〈k〉
2

b
a ≤ 1 will be shown in Section 3.3.2. �

Proof of Corollary 2.4. Since p1 = b
2a , we have that P (S2

� S2, ωab) ≥ 2a
b ,

and the last statement in Proposition 2.3 shows that P (S2
� S2, ωab) ≥ 8 if

b
a /∈ {2

7 , 8
7 , 14

9 } and P (S2
� S2, ωab) ≥ 7 if b

a ∈ {2
7 , 8

7 , 14
9 }. Next, set

dαβ = inf
αn1 + βn2

n1 + 2n2 − 1

where the infimum is taken over all nonnegative solutions n1, n2, m1, . . . , mk

of (12.k). We claim that dαβ ≥ min{α, β
2 }. Indeed, (12.k) has no solution for

n1 = n2 = 0. Moreover, if m1 = · · · = mk = 0, then n1 = 1 and n2 = 0, and
the corresponding quotient is infinite. We may thus assume that 2n2 ≥ n1.
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It is easy to see that for all (n1, n2) ∈ N
2
0 \ {(0, 0)} with 2n2 ≥ n1,

αn1 + βn2

n1 + 2n2 − 1
> min

{

α,
β

2

}

.

Therefore,

pk ≥ min

{

1,
k

β(2α + β)
min
(

α,
β

2

)2
}

,

and so

P (M, ωab) ≤
{

4(2α+β)
β if β ≤ 2α

β(2α+β)
α2 if β ≥ 2α

Replacing α by a − b
2 and β by b the claim follows. �

Proof of Proposition 2.5. The statement for Σg(a) × S2(b) was proved in
[5, Theorem 6.1.A]. So, let (M, ωab) = (Σg �S2, ωab). We think of M as the
projectivization P(L1 ⊕ C) π−→ Σg of the complex rank two bundle L1 ⊕ C

over Σg, where L1 is a holomorphic line bundle of Chern index 1, and we
endow P(L1 ⊕ C) with its canonical complex structure Jcan. Let (M̃k, J̃can)
be the complex blow-up of (P(L1 ⊕ C), Jcan) at k generic points and let ω̃ab

be a blow-up of ωab. Finally, denote by Ek the set of homology classes of M̃k

which can be represented by ω̃ab-symplectic exceptional spheres. We claim
that

Ek(M̃k, ω̃ab) = {E1, . . . , Ek, F − E1, . . . , F − Ek},

where E1, . . . , Ek are the classes of the exceptional divisors and where F ∈
H2(M ; Z) ⊂ H2(M̃k; Z) is the fibre class. The analogous statement for
Σg(a)×S2(b) was proved by Biran [5], in the proof of his Corollary 5.C. His
argument immediately applies to the twisted bundle and is repeated here
for the sake of its beauty.

So, let E = n1A + n2F −
∑k

i=1 miEi ∈ Ek. Let J (ω̃ab) be the space of
ω̃ab-tamed almost complex structures on M̃k and let JE ⊂ J (ω̃ab) be the
subset of those J for which there exist J-holomorphic E-spheres. It is known
[4, Chapter V, proof of Lemma 2.C.2] that JE contains a path-connected
set which is open and dense in J (ω̃ab). Let {J̃t}0≤t≤1 be a smooth path
in J (ω̃ab) with {J̃t}0≤t<1 ⊂ JE and J̃1 = J̃can. Gromov’s compactness
theorem now shows that there exists a connected (but possibly cusp) J̃can-
holomorphic E-curve C = C1 ∪ · · · ∪ Cn with g(Cj) = 0 for all j.

Let π̃ : M̃k → Σg be the lift of π : M → Σg. Since π is Jcan-holomorphic,
π̃ is J̃can-holomorphic. Let hj : S2 → Cj be a J̃can-holomorphic parametriza-
tion of Cj and let lj : S2 → C be a lift of π̃ ◦ hj to the universal cover of Σg.
By Liouville’s theorem, lj is constant, and so π̃(Cj) is a point. Since this
holds true for all j and since C is connected, π̃(C) is a point too. Hence,
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and since A is the class of a section,

0 = π̃∗ ([C]) = π̃∗(E) = π∗(n1A + n2F ) = n1[Σg],

and so n1 = 0, i.e., E = n2F −
∑k

i=1 miEi. Since the first Chern class
of M̃k is c̃1 = 2A + (3 − 2g)F −

∑k
i=1 Ei, the conditions E · E = −1 and

c̃1(E) = 1 become
∑k

i=1 m2
i = 1 and 2n2 −

∑k
i=1 mi = 1, which implies

E ∈ {E1, . . . , Ek, F − E1, . . . , F − Ek}.
Conversely, Ei is clearly an ω̃ab-symplectic exceptional class, and the

proper transform of the Jcan-fibre passing through the point Θ∗(Ei) is a J̃can-
exceptional rational curve and hence an ω̃ab-symplectic exceptional sphere
in class F − Ei.

Finally, we have that ωab(F ) = b, c1(F ) = 2 and 2 Vol (M, ωab) = 2ab.
Proposition 2.5 now follows from Theorem 6.A in [5]. �

3. Explicit maximal packings in 4 dimensions

In this section, we realize most of the packing numbers computed in the
previous section by explicit symplectic packings. Sometimes, we shall give
two different maximal packings. It is known that for the 4-ball and CP

2 and
for ruled symplectic 4-manifolds, any two packings by k closed balls of equal
size are symplectically isotopic, see [3, 17].

Recall that R
4 is endowed with the symplectic form ω0 = dx1 ∧ dy1 +

dx2 ∧ dy2. We shall often use the Lagrangian splitting R
2(x) × R

2(y) of
R

4. Set �2(1) = ]0, 1[ × ]0, 1[ ⊂ R
2(y). In order to construct our symplectic

packings by balls, we shall construct explicit symplectic embeddings ρi of
a ball B4(a) into products Ui × �2(1), where Ui ⊂ R

2(x) is a domain of
area just larger than the volume a2/2 of B4(a). The domains Ui will look
as in Figure 2 below. Each of the symplectic 4-manifolds (M, ω) we shall
consider contains a domain W such that Vol (W, ω) = Vol (M, ω) and such
that (W, ω) is explicitly symplectomorphic to V ×�2(1), where V is a domain
in R

2(x). In order to construct an explicit symplectic packing of (M, ω) by
k equal balls it will thus suffice to insert k disjoint domains Ui of equal area
as in Figure 2 into V . Summarizing, our explicit symplectic packings will
be of the form

k∐

i=1

B4(a)
∐

ρi−−−→
k∐

i=1

Ui × �2(1)
∐

τi×id−−−−−→ V × �2(1) ∼= W ⊂ (M, ω),

where τi are translations.
In the explicit packings constructed in [11, 12, 14, 23], a ball is viewed

as a product U ×�2(1), where U is an affine image of a simplex and thus in
particular is convex. Our domains Ui need not be convex, and so we have a
larger arsenal of shapes at our disposal.
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3.1. How to map B4(a) to U ×�2(1). Let D(a) be the open disc in R
2

of area a centred at the origin, and let

R(a) =
{
(x, y) ∈ R

2 | 0 < x < a, 0 < y < 1
}

.

Our symplectic embeddings B4(a) ↪→ U × �2(1) ⊂ R
2(x) × R

2(y) will be
obtained from restricting split symplectomorphisms α1×α2 : D(a)×D(a) →
R(a)×R(a) to B4(a). Notice that in dimension 2, an embedding is symplec-
tic if and only if it is area and orientation preserving. In order to explicitly
describe such embeddings, we follow [20] and start with

Definition 3.1. A family L of loops in R(a) is admissible if there exists a
diffeomorphism β : D(a) \ {0} → R(a) \ {p} for some point p ∈ R(a) such
that

(i) concentric circles are mapped to elements of L,
(ii) in a neighbourhood of the origin β is a translation.

Lemma 3.2. Given an admissible family L of loops in R(a), there exists a
symplectomorphism from D(a) to R(a) mapping concentric circles to loops
of L.

We refer to [20] for the elementary proof. Notice that the symplecto-
morphism guaranteed by the lemma is uniquely determined by its image of
the ray {(x, 0) ∈ D(a) | x ≥ 0}. We can thus describe a symplectomorphism
from D(a) to R(a) pointwise by prescribing an admissible family of loops
in R(a) and a smooth line from the centre of L to the boundary of R(a)
meeting each loop exactly once. For the symplectomorphisms D(a) → R(a)
described in Figure 1, we have chosen this line to be a segment at height

Figure 1. Symplectomorphisms D(a) → R(a).
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y = 1
2 from the centre of L to the right boundary. Consider first the symplec-

tomorphism α represented by (α) in Figure 1. The image of the restriction
of α × α to B4(a) is contained in the product U × �2(1) ⊂ R

2(x) × R
2(y),

where U is a small neighbourhood of the simplex [αα] of width a shown in
Figure 2. In order to see this, we first notice that B4(a) is the union of
slices

∐
{z1} × D(a − π|z1|2) with z1 ∈ D(a), as well as the union of slices∐

D(a−π|z2|2)×{z2} with z2 ∈ D(a), where z1 = (x1, y1) and z2 = (x2, y2).
In view of the definition of α, it follows that (α × α)(B4(a)) is contained in
and close to a set U × �2(1) ⊂ R

2(x) × R
2(y). To see that U is close to the

simplex [αα], notice that for z ∈ D(a) the x-coordinate of α(z) is almost
confined to the interval

[
0, π|z|2

]
. We, therefore, find a small ε > 0 such

that for each (z1, z2) ∈ B4(a),

x1
(
(α × α)(z1, z2)

)
+ x2
(
(α × α)(z1, z2)

)
= x1

(
α(z1)
)

+ x2
(
α(z2)
)

≤ π|z1|2 + ε + π|z2|2 + ε

< a + 2ε.

Since for every neighbourhood U of [αα] we can choose the map α such that
(α × α)

(
B4(a)
)

is contained in U × �2(1), we shall work with the simplex
[αα] instead of U . The bar in the notation α used in Figure 1 and Figure 2
indicates that α is the mirror of α. Figure 2 shows the x1-x2-shadows of
the image of B4(a) under some other products of the symplectomorphisms
in Figure 1 and of their mirrors. We invite the reader to create further
shadows.

Figure 2. Some x1-x2-shadows.

Remark 3.3. Besides being explicit, the 4-dimensional symplectic packings
constructed in [11, 23] and in this section have yet another advantage over
the packings found in [5, 6, 18]. The symplectic packings of (M, ω) by k balls
obtained from the method in [5, 6, 18] are maximal in the following sense.
For every ε > 0 there exists a symplectic embedding ϕε :

∐k
i=1 B2n(a) ↪→

(M, ω) such that

(12)
Vol (Im ϕε, ω)

Vol (M, ω)
≥ pk(M, ω) − ε.

Karshon’s symplectic packings of
(
CP

2, ωSF

)
by 2 and 3 balls B4

(
π
2

)
given

by the map (3) and compositions of this map with coordinate permutations
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fill exactly 1
2 and 3

4 of
(
CP

2, ωSF

)
. Similarly, the 4-dimensional packings in

[23] and in this section are maximal in the following sense.

There exists a symplectic embedding ϕ :
∐k

i=1 B4(a) ↪→ (M, ω) such that

(13)
Vol (Im ϕ, ω)
Vol (M, ω)

= pk(M, ω).

Moreover, ϕ is explicit in the following sense. The image
∐k

i=1 ϕ
(
B4(a)
)

of
ϕ is known, and given a′ < a one can construct ϕ such that its restriction
to
∐k

i=1 B4(a′) is given pointwise.

Indeed, choose a sequence a′ < aj ↗ a. The packings in [23] and our
packings ϕ(aj) :

∐k
i=1 B4(aj) ↪→ (M, ω) can be chosen such that

Im ϕ(aj) ⊂ Im ϕ(aj+1) for all j.

The claim now follows from a result of McDuff [15], stating that two sym-
plectic embeddings of a closed ball into a larger ball are isotopic via a sym-
plectic isotopy of the larger ball.

3.2. Maximal packings of the 4-ball and CP
2. In view of the symplec-

tomorphism (3) and the identity (4) we only need to construct packings of
the 4-ball. Consider the standard simplex

�2(π) = {0 < x1, x2 | x1 + x2 < π} ⊂ R
2(x).

For each ε > 0, a symplectic embedding of �2(π) × �2(1) into B4(π + ε)
can be obtained via the product of the inverse of a map (α) as described
in Figure 1. As noticed in [23], an explicit symplectomorphism from
�2(π) × �2(1) to B4(π) is given by the “inverse symplectic polar coor-
dinates”

(x1, x2, y1, y2) �→
(√

x1

π
cos 2πy1,

√
x2

π
cos 2πy2,

√
x1

π
sin 2πy1,

√
x2

π
sin 2πy2

)

.

In view of the discussion at the beginning of this section, we are left with
packing the simplex �2(π) with translates of domains of equal area as in
Figure 2. It follows from Table 1 that any k of the embeddings in Figure 3(a)
yield a maximal packing of B4 by k balls, k = 2, 3, 4, and that any k of
the embeddings in Figure 3(b) yield a maximal packing by k = 5, 6 balls.
Figure 3(c) shows a full packing by 9 balls.

Explicit maximal packings of B4 by k ≤ 6 balls were first constructed by
Traynor in [23]. Her packings by 5 or 6 balls are constructed by a Lagrangian
folding method. Neither Traynor’s nor our packing method nor their com-
bination can realize the packing numbers p7

(
B4
)

= 63
64 and p8

(
B4
)

= 288
289 ,

but they only fill 7
9 and 8

9 of the 4-ball by 7 and 8 equal balls, respectively.

Question 3.4. Is there an explicit embedding of 7 or 8 equal balls into the
4-ball filling more than 7

9 and 8
9 of the volume?
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Figure 3. Maximal packings of B4 for k ≤ 6 and k = l2.

3.3. Maximal packings of ruled symplectic 4-manifolds. Given a
ruled symplectic 4-manifold (M, ωab), let ck(a, b) be the supremum of those
A for which

∐k
i=1 B2n(A) symplectically embeds into (M, ωab), so that

(14) pk(M, ωab) =
k c2

k(a, b)
2 Vol (M, ωab)

.

We shall write c instead of ck(a, b) if (M, ωab) and k are clear from the
context.

3.3.1. Maximal packings of S2(a) × S2(b). As in Proposition 2.1, we
assume that a ≥ b. Represent the symplectic structure of S2(a) × S2(b) by
a split form. Using Lemma 3.2 we symplectically identify S2(a) \ pt with
]0, a[×]0, 1[ and S2(b) \ pt with ]0, b[×]0, 1[. Then

�(a, b) × �2(1) = S2(a) × S2(b) \
{
S2(a) × pt ∪ pt × S2(b)

}
.

Besides for k ∈ {6, 7}, we will construct the explicit maximal packings
promised after Proposition 2.1 by constructing packings of �(a, b) × �2(1)
which realize the packing numbers of S2(a) × S2(b) computed in Propo-
sition 2.1 and hence are maximal. (It is, in fact, known that all packing
numbers of �(a, b)×�2(1) and S2(a)×S2(b) agree, see [18, Remark 2.1.E]).

To construct explicit maximal packings for all k with
⌈

k
2

⌉
b
a ≤ 1 is a trivial

matter. Figure 4 shows a maximal packing by 1 and 2, respectively, 5 and
6 balls.

Assume now that k = 3, 4 and b
a ≥ 1

2 . Figure 5 shows maximal packings
of S2(a) × S2(b) by k balls for b

a = 1
2 , b

a = 3
4 , and b

a = 1. For b
a > 1

2 , the
(x1, x2)-coordinates of the vertices of the “upper left ball” are

(0, c), (a − c, b), (c, c), (a − c, b − c),

where c = a+b
3 . As in most of the subsequent figures, the three pictures in

Figure 5 should be seen as moments of a movie starting at b
a = 1

2 and ending
at b

a = 1. Each ball in this movie moves in a smooth way.
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Figure 4. Maximal packings of S2(a) × S2(b) by k balls,⌈
k
2

⌉
b
a ≤ 1.

Figure 5. Maximal packings of S2(a) × S2(b) by 3 and 4
balls, b

a ≥ 1
2 .

Next, let k = 5 and b
a ≥ 1

3 . In order to construct a smooth family
of maximal packings of S2(a) × S2(b) by 5 balls, we think of the maximal
packing for b

a = 1
3 rather as in Figure 6 than as in Figure 4(a). The x1-width

of all balls is a+2b
5 , and the “upper left ball” has 5 vertices for 1

3 < b
a ≤ 3

4
and 7 vertices for b

a > 3
4 .

For k ∈ {6, 7}, we cannot realize the packing numbers pk

(
S2(a) × S2(b)

)

by directly packing rectangles as for k ≤ 4. We shall instead construct
certain maximal packings of CP

2 which correspond to maximal packings
of S2(a) × S2(b). As noticed in [5], the correspondence between symplec-
tic packings and the symplectic blow-up operation and the diffeomorphism
mentioned in the proof of Proposition 2.1 imply

Lemma 3.5. Packing S2(a)×S2(b) by k equal balls
∐k

i=1 B4(c) corresponds
to packing

(
CP

2, (a + b − c)ωSF

)
by the disjoint union of the k + 1 balls

B4(a − c)
∐

B4(b − c)
∐k−1

i=1 B4(c).

In order to make this correspondence plausible, we choose b
a = 2

3 and
c = c6(a, b) = a+2b

5 , and we think of
(
CP

2, (a + b − c)ωSF

)
as the simplex

of width a + b − c and of S2(a) × S2(b) as the rectangle of width a and
length b. As Figure 7 illustrates, the space obtained by removing a ball
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Figure 6. Maximal packings of S2(a) × S2(b) by 5 balls, b
a ≥ 1

3 .

B4(c) from S2(a)×S2(b) coincides with the space obtained by removing the
balls B4(a − c)

∐
B4(b − c) from

(
CP

2, (a + b − c)ωSF

)
.

Figure 7.
(
CP

2, (a + b − c)ωSF

)
\ B4(a − c)

∐
B4(b − c) =

S2(a) × S2(b) \ B4(c).

Figures 8, 9, and 10 describe explicit packings of
(
CP

2, (a + b − c)ωSF

)

by balls B4(a − c)
∐

B4(b − c)
∐k−1

i=1 B4(c) for k ∈ {6, 7} and c as in Propo-
sition 2.1. The lower left triangle represents B4(a − c) and the black ”ball”
represents B4(b − c).
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Figure 8. Maximal packings of S2(a) × S2(b) by 6 balls,
1
3 ≤ b

a ≤ 3
4 .

Figure 9. Maximal packings of S2(a) × S2(b) by 6 balls,
3
4 ≤ b

a ≤ 1.

From these packings, one obtains explicit packings of S2(a)×S2(b) as fol-
lows. First symplectically blow-up

(
CP

2, (a + b − c)ωSF

)
twice by removing

the balls B4(a − c) and B4(b − c) and collapsing the remaining boundary
spheres to exceptional spheres in homology classes D1 and D2. The resulting

Figure 10. Maximal packings of S2(a) × S2(b) by 7 balls,
1
4 ≤ b

a ≤ 3
5 .
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Figure 11. A full packing of S2(2b) × S2(b) by 16 balls.

manifold, which is symplectomorphic to S2(a)×S2(b) blown up at one point
with weight c, still contains the k − 1 explicitly embedded balls B4(c), and
according to [5, Theorem 4.1.A] the exceptional sphere in class L−D1 −D2
can be symplectically blown down with weight c to yield the k th ball B4(c)
in S2(a) × S2(b).

Finally, the construction of full packings of S2(mb) × S2(b) by 2ml2 balls
(l, m ∈ N) is also straightforward. Figure 11 shows such a packing for
l = m = 2.

3.3.2. Maximal packings of (S2
� S2,ωab). In order to describe our

maximal packings of
(
S2

� S2, ωab

)
, it will be convenient to work with

the parameters α = a − b
2 , β = b, so that α > 0, β > 0, and

ωab = βA + (α + β)F . We recall that S2
� S2 is diffeomorphic to the

blow-up Ñ1 of CP
2 at one point via a diffeomorphism under which L, D1

correspond to A + F , A. We can therefore view
(
S2

� S2, ωab

)
as Ñ1

endowed with the symplectic form in class (α + β)L − αD1 obtained by
symplectically blowing up

(
CP

2, (α + β)ωSF

)
with weight α. Since sym-

plectically blowing up with weight α corresponds to removing a ball B4(α)
and collapsing the remaining boundary sphere to an exceptional sphere in
class D1, we can think of this symplectic manifold as the truncated sim-
plex obtained by removing the simplex of width α from the simplex of
width α + β.

Denote by �x� the integer part of x ≥ 0. In the parameters α and β,
the packings promised after Proposition 2.3 are explicit maximal packings
of (S2

� S2, ωab) for all k with �k
2�β

α ≤ 1, for k ≤ 5 and α, β > 0 arbitrary,
and for k = 6 and β

α ∈ ]0, 1] ∪ [4,∞[. Moreover, given ωab with β
α = l

m−l
for some l, m ∈ N with m > l, we will construct explicit full packings of
(S2

� S2, ωab) by l(2m − l) balls.
We abbreviate ck = ck(a, b) = ck(S2

� S2, ωab). Using the identity
2 Vol
(
S2

� S2, ωab

)
= β(2α + β) and (14) we read off from the list in the
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proof of Proposition 2.3 that

c1 = β, c2 = c3 =
{

β,
α + β

2

}

on ]0, 1,∞[,

c4 =
{

β,
α + 2β

4

}

on
]

0,
1
2
,∞
[

,

c5 =
{

β,
α + 2β

4
,
2α + 2β

5

}

on
]

0,
1
2
,
3
2
,∞
[

,

c6 =
{

β,
α + 3β

6
,
2α + 3β

7
,
2α + 2β

5

}

on
]

0,
1
3
,
5
3
, 4,∞
[

.

To construct packings with pk = k β
2α+β for all k with �k

2�β
α ≤ 1 is very

easy. Figure 12(a) shows a maximal packing by 1 ball, and Figures 12(b1)
and (b2) show maximal packings by 4 and 5 balls for β

α = 1
2 and β

α < 1
2 ,

respectively. Figure 13 shows maximal packings for k = 2, 3 and β
α ≥ 1.

Figure 12. Maximal packings of (S2
� S2, ωab) by k balls,

�k
2�β

α ≤ 1.

Figure 13. Maximal packings of (S2
� S2, ωab) by 2 and 3

balls, β
α ≥ 1.
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Figure 14. Maximal packings of (S2
� S2, ωab) by 4 and 5

balls, 1
2 ≤ β

α ≤ 3
2 .

Also our maximal packings by 4 balls are easy to understand (Figure 14
and Figure 15(a)): 2 c4 = β + α

2 just means that the two middle grey balls
touch each other. As long as β

α ≤ 3
2 , there is enough room for a fifth (black)

ball between these two balls. If β
α > 3

2 , there is enough space for a fifth
ball if and only if the capacity c of the balls satisfies 2c + c

2 ≤ α + β; hence
c5 = 2α+2β

5 (Figures 15(b1) and (b2)).

Figure 15. Maximal packings of (S2
� S2, ωab) by 4 and 5

balls, β
α ≥ 3

2 .

Let now k = 6. Figure 16 shows maximal packings for 1
3 ≤ β

α ≤ 1. For
β
α > 1

3 , the vertices of the “lower middle ball” are

(α+β−2c6, c6),
(

α + β

2
,
α + β

2

)

, (α+β−c6, c6),
(

α + β

2
,
α + β

2
− c6

)

.

Maximal packings for β
α ≥ 4 are illustrated in Figure 17.

Remark 3.6. It is not a coincidence that we were not able to construct
maximal packings of

(
S2

� S2, ωab

)
by 6 balls for all ratios β

α > 0. Indeed,
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Figure 16. Maximal packings of (S2
� S2, ωab) by 6 balls,

1
3 ≤ β

α ≤ 1.

Figure 17. Maximal packings of (S2
� S2, ωab) by 6 balls,

β
α ≥ 4.

a maximal packing of
(
S2

� S2, ωab

)
by 6 equal balls for β

α = 5
3 corresponds

to a maximal packing of the 4-ball by 7 equal balls. �

Finally, suppose that β
α = l

m−l for some l, m ∈ N with m > l. We can
then fill (S2

� S2, ωab) by l(2m − l) balls by decomposing S2
� S2 into l

shells and filling the i th shell with 2m + 1 − 2i balls (see Figure 18, where
l = 2 and m = 4).

3.3.3. Maximal packings of Σg (a) × S2(b) and
(
Σg � S2,ωab

)
for

g ≥ 1. Fix a > 0 and b > 0. We represent the symplectic structure of
Σg(a) × S2(b) by a split form. Removing a wedge of 2g loops from Σ(a)
and a point from S2(b), we see that Σg(a) × S2(b) contains �(a, b) × �2(1).
The explicit construction of the “standard Kähler form” in class [ωab] given
in [16, Section 3] and [19, Exercise 6.14] shows that also

(
Σg � S2, ωab

)

endowed with this standard form contains �(a, b) × �2(1). The explicit
maximal packings promised after Proposition 2.5 can thus be constructed
as for S2(a) × S2(b), see Figures 4 and 11.
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Figure 18. A full packing of (S2
� S2, ωab),

β
α = 1, by 12 balls.

3.4. Maximal packings of 4-dimensional ellipsoids. Some explicit
maximal packings of 4-dimensional ellipsoids were found in [14, 23]. Our
embedding method can be used to recover their packing results. We refer
the interested reader to Section 4.5 of [21].

4. Explicit maximal packings of the 2n-ball and of CP
n \ RP

n

In dimensions 2n ≥ 6, only few maximal symplectic packings by equal balls
are presently known. We refer to Section 5 of [21] for an overview. In this
section, we provide explicit maximal packings of B2n and CP

n by k ≤ 2n

and k = ln balls and of B2n \ R
n(x) and CP

n \ RP
n by k ≤ 2n and k = 2ln

balls.

4.1. Maximal packings of the 2n-ball and CP
n . Recall that for n ≥ 3

the known packing numbers of B2n and (CP
n, ωSF ) are given by (6) and

(7). An explicit maximal packing of CP
n by k ≤ n + 1 balls was found by

Karshon in [11], and explicit full packings of B2n by ln balls for each l ∈ N

were given by Traynor in [23]. Taking l = 2, any k balls of such a packing
yield a maximal packing by k balls. The following different construction
of an explicit full packing of B2n by ln equal balls is mentioned in [23,
Remark 5.13]. Set

�n(a) =

{

0 < x1, . . . , xn

∣
∣
∣
∣
∣

n∑

i=1

xi

a
< 1

}

⊂ R
n(x),

�n(a) = {0 < yi < a, 1 ≤ i ≤ n} ⊂ R
n(y).

We see as in Section 3.1 that we can think of B2n(a) as �n(a) × �n(1). An
explicit symplectomorphism �n(a) × �n(1) → B2n(a) ⊂ R

n(x) × R
n(y) is
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given by the “inverse symplectic polar coordinates”

(x1, . . . , xn, y1, . . . , yn) �→
(√

x1

π
cos 2πy1, . . . ,

√
xn

π
cos 2πyn,

√
x1

π
sin 2πy1, . . . ,

√
xn

π
sin 2πyn

)

.

In particular, we can think of B2n
(

π
l

)
as �n

(
π
l

)
× �n(1) and of B2n(π) as

�n(π)×�n(1). The matrix diag
[
l, . . . , l, 1

l , . . . ,
1
l

]
∈ Sp(n; R) maps �n(π

l )×
�n(1) to �n (π)×�n(1

l ). It is clear how to insert ln copies of �n (π)×�n(1
l )

into �n (π)×�n (1). Yet another full packing of B2n by ln balls is described
in Section 5.

4.2. Maximal packings of B2n \R
n (x ) and CP

n\RP
n . Let �n(1) =

�n(1) \ (1/2, . . . , 1/2) be the cube �n(1) without its centre. The inverse
symplectic polar coordinates embed �n(π) × �n(1) into B2n(π) \ R

n(x).
Recall now that we can think of B2n

(
π
2l

)
as �n

(
π
2l

)
× �n(1), which is

symplectomorphic to �n(π) × �n
( 1

2l

)
. It is clear how to insert 2ln copies

of this set into �n(π) × �n(1).

Remark 4.1. Karshon’s explicit packing of (CP
n, ωSF ) by k ≤ n + 1 balls

is maximal in the sense of (14). Since in dimensions ≥ 6, it is not yet known
whether the space of symplectic embeddings of a closed ball into a larger
ball is connected, all other explicit (and nonexplicit) maximal symplectic
packings known in dimensions ≥ 6 are maximal only in the sense of (15).

5. Relative maximal packings of
(
B2n ,B2n ∩ R

n(x )
)

and
(CP

n , RP
n)

In Section 3, we have constructed explicit maximal packings of B4 and CP
2

by k ≤ 6 and k = l2 balls. In this section, we verify that these packings are
relative packings for the Lagrangian submanifolds B4 ∩ R

2(x) and RP
2. We

shall also construct explicit maximal packings of B2n and CP
n, 2n ≥ 6, by

k ≤ 2n and k = ln balls which are relative packings for B2n ∩ R
n(x) and

RP
n. For these n and k, we thus find

pk(B2n, B2n ∩ R
n(x)) = pk(B2n) and pk (CP

n, RP
n) = pk (CP

n) .

Since the symplectomorphism (4) maps B2n ∩ R
n(x) to RP

n and since
pk(B2n) = pk(CP

n), we only need to consider
(
B2n, B2n ∩ R

n(x)
)
.

To begin with, we note that pk

(
B2, B2 ∩ R(x)

)
= 1 for all k ≥ 1. This

follows from an appropriate version of Lemma 3.2.
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Let now n = 2. We recall that our explicit maximal packings of B4 were
of the form

k∐

i=1

B4(a)
∐

ρi−−−→
k∐

i=1

Ui × �2(1)
∐

τi×id−−−−−→ �2(π) × �2(1) σ−→ B4(π),

where each Ui is a (neighbourhood of an) x1-x2-shadow as in Figure 2, the
τi are translations, and σ is given by inverse symplectic polar coordinates
as in Section 3.2. If we choose the symplectomorphisms D(a) → R(a)
constructed in Section 3.1 and described by drawings as in Figure 1 in such
a way that concentric circles are mapped to curves symmetric to the axis
{y = 1/2}, then the set D(a)∩R(x) = {(x, y) ∈ D(a) | y = 0} is mapped into
(0, a) × {1/2}. A map ρi obtained by restricting the product of two such
symplectomorphisms to B4(a), therefore, maps B4(a)∩R

2(x) into Ui ×{∗},
where ∗ = (1/2, 1/2) ∈ R

2(y). Since σ maps �2(π) × {∗} to R
n(x), we

indeed obtain relative symplectic packings of
(
B4, B4 ∩ R

2(x)
)
.

The maximal packing of B2n by ln balls constructed in Section 4.1 does
not provide a relative packing of

(
B2n, B2n ∩ R

n(x)
)
. In order to describe

a relative packing, we denote by �n(a) the interior of the dual to the cube
�n(a) ⊂ R

n(x), i.e., the interior of the convex hull of the midpoints of the
2n faces of �n(a). Two translates of �2(a) appear in Figure 3(b), and �3(a)
is the regular octahedron of height a. Consider now the symplectomorphism
µ : D2(a) → R(a) described by Figure 19. To be precise, we require that the
centre of D(a) is mapped to the centre (a/2, 1/2) of R(a), that the segment{
(x, 0) | 0 ≤ x <

√
a/π
}

is mapped to the segment {(x, 1/2) | a/2 ≤ x < a},
and that concentric circles are mapped to curves which are symmetric to
both axes {x = a/2} and {y = 1/2}. With this choice of µ, the n-fold pro-
duct µ × · · · × µ maps B2n(a) to a set contained in and close to U × �n(1),
where U is an arbitrarily small neighbourhood of �n(a). Moreover, µ×· · ·×µ
maps B2n(a) ∩ R

n(x) into U × {∗}, where ∗ = (1/2, . . . , 1/2). Conversely,
the inverse of µ×· · ·×µ provides a symplectic embedding of �n(a)×�n(1)
into an arbitrarily small neighbourhood of B2n(a), which maps �n(a)×{∗}
to R

n(x). We can thus think of B2n
(

π
l

)
as �n

(
π
l

)
× �n(1) and of B2n(π)

Figure 19. The symplectomorphism µ : D(a) → R(a).
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as �n(π) × �n(1). It is clear how to insert ln copies of �n
(

π
l

)
× �n(1) into

�n(π) × �n(1) such that �n
(

π
l

)
× {∗} is mapped to �n(π) × {∗}.
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[9] M. Demazure, Surfaces de del Pezzo II–V, in Séminaire sur les Singularités des
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[17] D. McDuff, From symplectic deformation to isotopy, Topics in symplectic 4-
manifolds (Irvine, CA, 1996), 85–99, First Int. Press Lect. Ser., I, Internat. Press,
Cambridge, MA, 1998.

[18] D. McDuff and L. Polterovich, Symplectic packings and algebraic geometry,
Invent. math. 115 (1994), 405–429.



340 F. SCHLENK

[19] D. McDuff and D. Salamon, Introduction to Symplectic Topology, Oxford Math.
Monographs, 2nd ed., The Clarendon Press, Oxford University Press, New York,
1998.

[20] F. Schlenk, Symplectic embeddings of ellipsoids, Israel J. Math. 138 (2003), 215–
252.

[21] F. Schlenk, Packing symplectic manifolds by hand, math.SG/0409568.

[22] C. Taubes, SW ⇒ Gr: From the Seiberg-Witten equations to pseudo-holomorphic
curves, J. Amer. Math. Soc. 9 (1996), 845–918.

[23] L. Traynor, Symplectic packing constructions, J. Diff. Geom. 42 (1995), 411–429.
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