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Geometric variants of the Hofer norm

DusAa McDurr!

This note discusses some geometrically defined seminorms on the
group Ham (M, w) of Hamiltonian diffeomorphisms of a closed sym-
plectic manifold (M,w), giving conditions under which they are
nondegenerate and explaining their relation to the Hofer norm.
As a consequence we show that if an element in Ham (M,w) is
sufficiently close to the identity in the C?-topology then it may
be joined to the identity by a path whose Hofer length is mini-
mal among all paths, not just among paths in the same homotopy
class relative to endpoints. Thus, true geodesics always exist for
the Hofer norm. The main step in the proof is to show that a
“weighted” version of the nonsqueezing theorem holds for all fi-
brations over S? generated by sufficiently short loops. Further, an
example is given showing that the Hofer norm may differ from the
sum of the one sided seminorms.

1. Introduction.

This paper considers some foundational questions about seminorms on the
Hamiltonian group that were raised in Polterovich’s lovely book [20]. The
interest of these seminorms lies in their geometric interpretation in terms of
the minimal area, or equivalently curvature, of associated fibered spaces over
the 2-disc D and 2-sphere S2. This allows one to use geometric methods to
find lower bounds for these seminorms and hence also for the usual Hofer
norm. The main question, to which we give only a partial answer, is whether
they are norms.

Our approach gives just one way of measuring the size p™(¢) of “one
side” of a Hamiltonian symplectomorphism ¢ but there are three associated
two sided seminorms, the largest of which is the Hofer norm p. The middle
one, which we shall call py, is more natural from a geometric point of view,
and we shall see that it is always nondegenerate. However we can prove
the nondegeneracy of the smallest one, which is the sum of the one sided
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198 D. McDuff

seminorms pT(¢) + pt(¢~1), only in special cases, for example if M = CP"
or is weakly exact.

Lalonde-McDuff [6] established the nondegeneracy of the Hofer norm
for arbitrary (even open) (M,w) by using the nonsqueezing theorem for
the product (M x S%,w + dx A dy). In order to extend this to the more
general seminorms considered here, we need to understand which nontrivial
symplectic fibrations M — P — S? still have the nonsqueezing property.
As explained in §4 we tackle this question by looking at the modified Seidel
representation:

U : r(Ham (M)) — (QHey (M))*,

where (QHey (M))* denotes the commutative group of multiplicative units
in the even part of the quantum homology ring of M.

In this introduction we first define the seminorms and their geodesics,
then give their geometric interpretation, and finally discuss short loops and
nonsqueezing. A different version of some of these results is being developed
by Oh (see [15]) using the action functional of Floer homology. It would be
very interesting to work out the relation between his new norm and the ones
discussed here. We will assume throughout that (M, w) is a closed connected
symplectic manifold. Further we write Ham = Ham (M, w) for the group of
Hamiltonian symplectomorphisms and Ham = Ham (M, w) for its universal
cover.

1.1. The family of seminorms.

Each Hamiltonian H; : M — R,0 < ¢t < 1, defines a family of vector fields
X; (often called the symplectic gradient) given by?

w(Xt, ) = —dHt

that integrates to a path qb{{, 0 <t <1, in Ham starting at the identity id.

Let
1
Ct = —/ Htw"

ZNote the sign. Since signs are crucial when studying one sided norms, we
have chosen to make the signs consistent with those in Polterovich’s book [20] even
though this is different from our usual conventions.
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be the corresponding set of mean values. We define the positive (resp.
negative) length of H; to be:

Lo = LT(H) = [ (maxeer He(x) — ) dt,

L7(of) = L7(H) = [ (ce—mingen Hy(z)) dt.

These measurements of the length of paths give rise to seminorms on the
groups Ham and Ham as follows. Recall that an element ¢ of Ham is a
homotopy class of paths from id to some element ¢ € Ham .

Definition 1.1. We define 5+ (¢) (resp. 7 (¢)) to be the infimum of

L (¢H) (resp. L7 (¢)) taken over all paths in the homotopy class ¢. The
corresponding seminorms p(¢) on Ham are defined by taking the infimum
of LT over all paths in Ham from id to ¢.3

The seminorms v = p ¥, pi/l_l\ale the property that for all elements g, h
of the appropriate group G = Ham or Ham

v(gh) <wv(g) +v(h), v(g) = v(hgh™1).
Hence the corresponding “distance function”
dy(g,h) = dy(id, hg™") = v(hg™")

is invariant under multiplication from both the left and the right. How-
ever, the seminorms v under present consideration are not symmetric (i.e.,
invariant under taking the inverse), though clearly

@) =p (67", T =F (&)

Correspondingly d, (g, h) need not equal d,(h, g).

These seminorms v are one sided in the sense that they only measure
the size of “half” of Hy, either the part H; — ¢; above the mean, or the part
below. We now discuss several different ways to obtain two sided norms.
By definition these are symmetric, i.e., invariant under taking the inverse,
so that the corresponding pseudometrics will be biinvariant.

The usual Hofer norm p on Ham is given by minimizing* the sum

L(Hy) := LT (Hy) + L7 (Hy);

3By using suitable reparametrizations, it is not hard to see that one gets the same
seminorms if one defines L (H;) (resp. L™ (H;)) to be the maximum of H;(z) —¢;
(resp. ¢ — Hy(z)) over all ¢, z: see Polterovich [19].

4By slight abuse of language we often use the word “minimizing” in situations
when the minimum (or more properly infimum) is not attained.
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we write p for the associated seminorm on Ham. Thus p(¢) is the infimum
of L1 (H;)+ L (Hy) over all paths in the homotopy class ¢, while p(¢) is its
infimum over all paths from ¢d to ¢. Clearly,

po)=p0""),  ple)=pl¢™).

Although p is known to be a norm for all M (cf [6]), it is not clear whether
p is always a norm. Its null set

null (p) = {6 : p(¢) = 0}

is a normal subgroup, and so must lie in the kernel 7 (Ham ) of the covering
map Ham — Ham.® It is conceivable that null (p) is nonempty for some
M. For example, there might be nontrivial elements of 7;(Ham (M,w))
that are supported in a Darboux chart. Such elements lie in null (p) since
the size of their generating Hamiltonian can be made arbitrarily small by a
suitable conformally symplectic conjugation. They do not exist when when
dim(M) < 4 since the group of compactly supported symplectomorphisms
of Euclidean space is contractible in these dimensions. However, they might
exist in higher dimensions. In any case, p descends to a norm on the quotient
group Ham /null (p).

We will also consider the two sided seminorm on Ham given by the sum
pT +p~. It is easy to see that

pl) =P (d) +p(9)-

In principle, there could be strict inequality here since the one sided semi-
norms 5t (¢) and 5 (¢) could well be realized by different minimizing se-
quences of Hamiltonians. However we have so far found no example to
illustrate this possibility.® Sometimes we will write p; instead of p* + 5.

There are two possible ways to obtain a related seminorm on Ham ; one
may either consider the sum p™ + p~ or consider the seminorm p; on Ham
induced by p+ +p , viz:

ps =inf{p () + 75 ($) : ¢ lifts ¢}.

®Recall that Ham (M) is a simple group when M is closed. Thus a symmet-
ric, conjugation invariant seminorm on Ham (M) must be either nondegenerate or
everywhere zero.

In [4] Entov considers the seminorm max(p ™, p ). This is clearly equivalent
to pT + p~, and it is easy to check that it has the same geodesics.
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Both p* + p~ and py are symmetric. Further
P (@) + 0 (8) < pp(d) < p(9)-

Polterovich asked in [20] whether the seminorm p* + p~ must always be
a norm, and indeed whether it always equals p. The proof given in [7] that
p is a norm adapts almost immediately to show that p; is always a norm.
However, the question for p* +p~ is much more difficult and revolves around
properties of 71 (Ham ) and the quantum homology of M that are discussed
in more detail in §1.4. We have only succeeded in showing that it is a norm
in special cases, some of which are mentioned in the next result. Recall that
(M,w) is said to be weakly exact if w vanishes on the image Hj (M, Z) of
7T2(M) in HQ(M, Z)

Theorem 1.2.
(i) py is a norm for all closed M.

(i) p* +p~ is a norm if M is weakly exact or M = CP™.

(iii) There is a symplectic form w on the one point blow up M, of Ccp?
such that p™ + p~ is a norm on Ham (M,,w) that is distinct from py
and hence also from p.

We also show that p* + p~ is a norm whenever there are no asymmetric
short loops in the sense of Definition 1.14 below. Other conditions under
which p*t+p~ is a norm are given later. For example, it would suffice that the
nonsqueezing theorem hold for all [A\] € m(Ham (M,w)): see Corollary 1.7
and Lemma 1.16. The example in (iii) is discussed in more detail in §1.5.

The question of whether one sided seminorms such as p* are nondegen-
erate seems intractable. Since the corresponding null set is a conjugation
invariant semigroup rather than a normal subgroup, the simplicity of the
group Ham (M, w) is now of no help: to prove nondegeneracy one must find
a lower bound for p* (@) for every element ¢ € Ham (M, w), a task beyond
the reach of the techniques used here.

Remark 1.3 (Noncompact manifolds). The above definitions are gen-
eralizations of notions first introduced for Euclidean space (R?",wq). More
generally, given any noncompact manifold (M,w) (without boundary) let
Ham ¢(M,w) be the group of compactly supported Hamiltonian symplec-
tomorphisms and consider Hamiltonians H with compact support. Then
set

LH(H) = / max(Hy) dt, L (Hy) = — / min(H,) dt,
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and use these length measurements to define seminorms just as before.
Clearly, in this case there are elements ¢ # id such that p*(¢) = 0, for
example the time 1 map of a nonzero function H; with H; < 0. One can
recover a situation more like the closed case by restricting attention to the
subgroup Ham §(M,w) generated by compactly supported Hamiltonians of
zero mean. This subgroup, the kernel of the Calabi homomorphism, is sim-
ple just as in the closed case, and even in the case M = R?" it is not yet
known whether the seminorms p* are nondegenerate on it.

On the other hand a few of the questions considered here are more
tractable when M = R?". For example, the sum p*+p~ is always nondegen-
erate. This was first proved by Viterbo [24] who used generating functions
to construct a section ¢ — c¢(¢) of the action spectrum bundle with the
property that

0<c(g) <pt(p)+p(¢), when ¢ #id.

It also follows from our arguments since the fact that the elements of
71 (Ham ¢(R?™ | wp)) have representatives with arbitrarily short Hofer length
implies that p™ + p~ = py: see §1.4. However, it is still unknown whether
the two norms p™ + p~ and p must always agree, even when M = R? or
R*. Note also that when M is Euclidean space there are several other pos-
sible one sided seminorms arising from various selectors and it is not clear
that p* are the most interesting ones to consider. For further discussion see
Polterovich [20] and Schwarz [21].

1.2. Results on Geodesics.

We now describe our results on geodesics. It is possible to define geodesics
as critical points of a suitable length functional: see [20, 7]. However the
lack of smoothness of this functional causes some problems. We will take
a different approach that nevertheless gives rise to the same geodesics. We
write G to denote one of the groups Ham , Ham .

Observe that the seminorms under consideration are of two kinds. If v
is one of pT, p, p* and p then v(g) is the infimum of an appropriate length
functional £, over all paths in G from id to g, while the value of the other
seminorms py,ps and pT + p~ at an element g depend on minimizing the
functionals £* on two possibly different paths. If v is one of the three latter
seminorms we set £, = L.

Definition 1.4. Let (v,£,) be one of the pairs defined above. A path
{gt}tclap) in G is said to be v-minimizing if it achieves the minimum of
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Ly, e, if
U(gb9q Y) = du(gasgp) = Lo ({g:})-

When defining geodesics, it is convenient to restrict attention to paths {g:}
that are regular in the sense that their generating vector field ¢; is never
zero. We then say that a regular path {g;}c[q 4 is a v-geodesic from g, to
gp if there is € > 0 such that for all ¢y € [a, b] each path

[a,b] N [to,to+e] > G : t— gtg;Ol
is v-minimizing.

It follows immediately that any p; or (p* + p~)-geodesic is also a p-
geodesic. Observe also this definition is somewhat stronger than is usual in
this context (cf. [7, 20]) since it requires that short pieces of v-geodesics
minimize £, among all paths with the given endpoints rather than simply
among the homotopic paths. Though natural, it was not used previously for
the group G = Ham (M) because it was not known whether there always are
paths satisfying this stronger condition. This is the problem of “short loops”
that is discussed in §1.4. The main new step in the proof of Theorem 1.6
below is to get around this difficulty.

Before stating it, we recall some ideas from Bialy—Polterovich [2] and
Lalonde-McDuff [7]. A path v = {¢; };c[q in Ham that is generated by the

Hamiltonian H; is said to have a fixed maximum (minimum) if there is
a point xg € M such that

Hy(z) < (>) H¢(zg), forall x € M, tE€la,b].

It is said to have a fixed maximum (minimum) at each moment if there
is € > 0 such that each subpath {¢t¢t‘01 Helapinito,to+<) has a fixed maximum
(minimum). It was shown in [2] that a path v in Ham ¢(R?") is a p-geodesic
if and only if it has both a fixed maximum and a fixed minimum at each
moment. The result proved in [7] for general M can be stated in our current

language as follows:” a path v in Ham (M,w) is a p-geodesic if and only if

"The papers Lalonde-McDuff [7] were written before it was understood how
to define Gromov—Witten invariants on arbitrary symplectic manifolds. There-
fore, many of the results in part II have unnecessary restrictions. In particular,
in Theorems 1.3 (i) and 1.4 and in Propositions 1.14 and 1.19 (i) one can remove
the hypothesis that M has dimension < 4 or is semi-monotone since the proofs are
based on the fact that quasicylinders Q = (M x D2, Q) have the nonsqueezing prop-
erty. The result we now quote from [7] incorporates these improvements. All the
details of its proof (besides the construction of general Gromov—Witten invariants)
occur in [7]: see §3 below. Oh gives a new proof in [15].
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it has both a fixed maximum and a fixed minimum at each moment. This
generalizes to the one sided seminorms on Ham as follows.

Proposition 1.5. Let v = {¢t}1c[a be a path in Ham (M).

(i) A lift of v to Ham is a geodesic with respect to p+ (resp. p~) if and
only if v has a fized mazimum (resp. minimum) at each moment;

(ii) A lft of v to Ham is a geodesic with respect to pT + p~ if and only
if v has both a fived maximum and o fized minimum at each moment.

It is much harder to get results on Ham (M). Here is our main result.

Theorem 1.6. Let v = {¢t}sc(qp) be a path in Ham (M).

(i) Ifv is one of the norms p or py on Ham (M), then v is a v-geodesic if
and only if it has both a fized mazimum and a fized minimum at each
moment.

(i) If M = CP™ or is weakly exact, the same result holds withv = pT+p~.

Corollary 1.7. ps is nondegenerate for all M, while p* + p~ is nondegen-
erate when M satisfies the conditions in (i) above.

Proof. Because Ham (M) is a simple group, a symmetric conjugation invari-
ant seminorm v on Ham (M) is either identically zero or is nondegenerate.
But in the former case every path in Ham would be a geodesic. Hence, the
existence of nongeodesic paths implies that v is nondegenerate. [l

The proof of the above theorem finds lower bounds for v(¢) when ¢ is
close to the identity by using the geometric characterization of the semi-
norms given in §1.3 and suitable extensions of the nonsqueezing theorem.
Further, we generalize [2, 7] by proving the following local flatness result for
a neighborhood of id in Ham (M,w). Recall that Ham (M,w) is the kernel
of a surjective homomorphism

Flux: Sympo(M,w) — H'(M,R)/T,,

where the flux group I',, is finitely generated but is not known to be discrete
in all cases. Hence the most we can say in general is that Ham (M, w) sits
inside the identity component Symp o as the leaf of a foliation. Therefore,
we do not use the topology on Ham induced from Symp( but instead use



Geometric variants... 205

the topology on Ham induced from the C2-topology on the Lie algebra of
Hamiltonian functions with zero mean. Thus a neighborhood of the identity
consists of all time 1-maps of Hamiltonian flows generated by Hamiltonians
H,; that are sufficiently small in the C? topology.

Proposition 1.8. There is a path connected neighborhood N C Ham (M)
of the identity in the C2-topology such that any element ¢ € N can be joined
to the identity by a path that minimizes both p and py. In particular, these
two norms agree on N'. Moreover, (N, p) is isometric to a neighborhood of
{0} in a normed vector space.

One can also look for longer length minimizing paths starting from id.
Note that one cannot reach an arbitrary ¢ € Ham (M) by such a path: an
example is given in [7] IT of an element in Ham (S?) that cannot be reached
by any p-minimizing path. Moreover, since (p™ + p~)-geodesics are the
same as p-geodesics (when they exist), any path that minimizes p* + p~
also minimizes p. Hence elements 7 with 0 # p*(7) + p (1) < p(7) as in
Theorem 1.2(iii) cannot be reached by (p* + p~)-minimizing paths.®

The following result is a mild extension of work by Entov [4] and McDuff-
Slimowitz [13]. (See also Oh [15] where the result is generalized to some time
dependent paths.) We will say that a time independent Hamiltonian H is
slow if neither its flow nor the linearized flows at its critical points have
nonconstant contractible periodic orbits of period < 1.

Proposition 1.9. Let H be a slow Hamiltonian. Then the path qStH, 0<t<

1 minimizes both p~ and p and hence also minimizes p on Ham (M). Ifin
addition (M,w) is weakly exact, this path minimizes all the norms p* +p~—,
pg and p on Ham (M).

1.3. Geometric interpretations of the seminorms.

Consider a smooth fibration 7 : P — B with fiber M, where B is either 52
or the 2-disc D. Here we consider S? to be the union D, UD_ of two copies
of D, with the same orientation as D;. We denote the equator D, N D_
by 0, oriented as the boundary of D, and choose some point * on 0 as the
base point of S?. Similarly, B = D is provided with a basepoint #* lying

8In fact, such an element 7 cannot be reached even by a (p* + p~)-minimizing
sequence +; of paths, i.e. such that p*(7) + p~(7) is the limit of £*(v;) + L™ (7;).
Similarly, if there were an element ¢ such that ps(¢) # p(¢) then it could not be
reached by a ps-minimizing sequence of paths.
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on 0 = 0D. In both cases, we assume that the fiber over * has a chosen
identification with M.

In this paper we will be considering triples (P, m,2) where 7 : P — Bis a
fibration as above and (2 is a normalized w-compatible symplectic form on P.
m-compatibility means that the restriction wj of € to the fiber M, = m~1(b)
is nondegenerate for each b € B, and the normalization condition is that
ws = w. For short we will write (P, (2) instead of the triple (P, 7, ), and
will use the words “w-compatible” instead of “normalized m-compatible.”

In §2.2 we will describe in more detail the geometric structure that is
induced by €2 on the fibration 7w : P — B. The most important point is that
) defines a connection on 7w whose horizontal distribution is {2-orthogonal
to the fibers. If a is any path in B then 7~!(«a) is a hypersurface in P whose
characteristic foliation consists of the horizontal lifts of a, and it is not hard
to check that the resulting holonomy is Hamiltonian round every contractible
loop. Because B is simply connected, it follows that the structural group of
7 can be reduced to Ham (M, w). Further, m can be symplectically trivialized
over each disc D by parallel translation along a suitable set of rays. This
means that there is a fiber preserving mapping

d:1m YD) = MxD, ®|y =idy

such that the pushforward ®.() restricts to the same form w on each fiber
M x pt. The fibration (P,2) — S? is said to be symplectically trivial® if
such a map exists from P to M x S2.

Definition 1.10. The monodromy ¢ = ¢(P) € Ham (M) of a fibration
(P,Q2) — B is defined to be the monodromy of the connection determined
by Q around the based loop (9,x*). Using the trivialization of P over 0
provided by B itself if B = D or by D, if B = S%, one gets a well defined

lift ¢ of ¢ to Ham. Sometimes we will write P (resp. Py) for a fibration
(P,Q2) — B with monodromy $ (resp. ¢).

The next definition describes various different area measurements.
Definition 1.11. The area of a fibration (P,2) — B is defined to be:

vol (P, ) [, it
PQ) = = .
area (P, ) vol (M,w) (n+1) [},w"

Further:

9The words “symplectically trivial” mean “trivial as a symplectic fibration.” In
the present context, this implies triviality as a Hamiltonian fibration.
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(i) @t () (resp. at(¢)) is the infimum of area (P,Q) taken over all w-
compatible symplectic forms {2 on the fibration P — D with mon-

odromy ¢ (resp. ¢).

(i) @() (resp. a¢(¢)) is the infimum of area (P,(2) taken over all sym-
plectically trivial fibrations (P,Q) — S? with monodromy ¢ (resp.

¢)-

(iii) a(¢) is the infimum of area (P, ) taken over all fibrations (P, ) — S?
with monodromy ¢.

(iv) @ (9) =a* (¢ ) and a () =a*(¢7})
It is easy to see that a®(¢) (resp. af(¢)) is the infimum of at(g)

(resp. a(¢)) over all lifts ¢ of ¢ to Ham. The following lemma amplifies
Polterovich’s results in [18].

Proposition 1.12.

(i) pt(d) =at(9);
(i) p™(p) +p (¢) = a();
(ii)) ps(¢) = as(4).

This is proved in §2.2. We have here interpreted our seminorms in terms
of area since this is what our methods estimate. However, as is clear from the
proof of the above Proposition, these area measurements are equivalent to
suitable measurements of curvature: see Polterovich’s remarks about K-area
in [16, 18] and also Entov [4].

The Hofer norm also has a geometric interpretation: p(¢) is the infi-
mum of area(Py, ) taken over all fibrations (Py,(2) for which there is a
symplectomorphism

B : (P, Q) —» (M x S*,w+a)

that is the identity on the fiber over the base point and takes the hypersur-
face 7 1(8) lying over the equator to a specially situated hypersurface 'y
in the product. (The precise condition on I' is described at the end of §2.2.
Note that ® need not preserve the given fibered structure on Py.) Even if
we ignore the condition on I'y, we may be minimizing over a smaller set
than in the definition of ay, since it is not clear whether every w-compatible
form on the trivial fibration M x §% — §? is symplectomorphic to a product
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form. ;jFrom a geometric point of view the minimizing sets used to define
a(¢) and af(¢) are much more natural than that used to define the Hofer
norm. Thus p* + p~ and p; are the seminorms with the most geometric
meaning. We consider py to be the geometric analog of the Hofer norm and
hence have called it p; where f denotes “fibered.” Correspondingly we will

sometimes write py instead of p ™ + p~ for its lift to Ham.

Finally, let us consider the case when 5 is a lift of i¢d; in other words, (;
is a homotopy class [A] of loops in Ham. Above we have measured p* ([)])
by means of the area of a fibration over D with boundary monodromy [A].
On the other hand, the natural geometric object associated to a loop is a
fibration over S constructed by using the loop A as a clutching function:

Py = (D} x M) U, (D% x M),

where!?
A (2wt ) — (27t Ae(T)) 4

By fixing an identification of the fiber of Py at the basepoint * € 0D,
with M, we can normalize the loop A = {\;} by requiring that A\, = id.
It is not hard to see that the symplectic form on the fibers has a closed
extension to Py precisely when A is homotopic to a loop in Ham (M, w). Thus
there is a bijective correspondence between classes [\] € m(Ham (M,w)) and
Hamiltonian fibrations Py with one fiber identified with M. Hence, the most
obvious geometric way to measure the size of [\] is to take the minimum
area of w-compatible forms € on this fibration Py — S2. The next lemma
says that this gives nothing new.

Lemma 1.13. For each [A\] € mi(Ham), pT([\]) is the infimum of
area(Py,2), where Q ranges over all w-compatible forms on the fibration
P\ — S? constructed above.

Observe here that even though Py — S2 is a fibration over the closed
manifold S? the corresponding area measure is the one sided seminorm
pT([\]). One way to understand this is to consider Py as made by glu-
ing together two fibrations, the first (P1, ) — D4 with monodromy A and
area > pT([A]) and the second (P_,§2) — D_ with trivial monodromy and
hence arbitrarily small area.

0Note the direction of this attaching map: this is a different convention from [10,
11] though the same as [20].
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1.4. Short loops and the Nonsqueezing theorem.

Though one can find lower bounds for the seminorms g, 5+ on Ham by the
methods of [7, 4, 13] it is usually more difficult to find lower bounds on
Ham. There is one lower bound for p(¢) that is independent of the path
from ¢d to ¢, namely the energy—capacity inequality:

Let B = ¢(B*™(r)) be a symplectically embedded ball in (M,w)
of radius r. If $(B) N B =0, then p(¢) > mr?/2.

This was proved for R?" by Hofer [5] (without the constant 1/2), and for
any symplectic manifold in [6]. It follows immediately that p is a norm.
However, this inequality does not hold for p *: one can find counterexamples
by adapting the construction in Eliashberg—Polterovich [3] that shows the
degeneracy of the LP-metrics for p < oo. B

The paper [7] IT proposes another way to get lower bounds for p(¢) in
the case when ¢ is C2-close to id. The idea is to define the “graph” I'y of
a Hamiltonian isotopy and to embed symplectic balls B*"2(¢) of radius
both “under” and “over” this graph. If ¢; is sufficiently C2-close to the id
and has fixed extrema, one can construct such embeddings with

71'82 = L(th)

A simple argument using the nonsqueezing theorem then implies that the
path {#:}¢cpo,1) in Ham (M) minimizes p. (This argument is explained in
more detail in §3 below.)

As remarked in [7], in order to go from here to estimates on the group
Ham we need to understand the short loops. More precisely, given a
seminorm v on Ham (M) define

4y m(Ham (M, w)) — [0, 00)

to be the restriction of 7 to the subgroup 7 (Ham ) C Ham . To simplify the
notation, we will denote its value on the homotopy class [A] of a loop A in
Ham by ¢3(\). Further, we define r;(M) to be the minimum of the positive
values of ¢;. If ¢;(\) = 0 for all [A] then we set r3(M) = oo. For short, we
will write

(= r* for fy,ry; when v =p= .

Further, we define rq(M) to be the supremum of § > 0 such that

(6 (\)<bor (N <) = (£-(A)=0=1r"()).)
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Thus r4(M) = 0 if there is a sequence of loops A; in Ham (M) such that
¢~ (\;) = 0 while inf; £7();) > 0. In particular, r,(M) = 0 if there is a loop
A such that £7(A\) = 0 while £7()\) > 0.

Definition 1.14. The manifold M is said to have v-short loops if 0 is not
an isolated point in the image of ¢, or equivalently if r5(M) = 0. It is said
to have asymmetric short loops if 7,(M) = 0.

The next lemma shows that U-geodesics in Ham descend to v-geodesics
in Ham when there are no (asymmetric) short loops.

Lemma 1.15.

(i) Let (v,v) be one of the pairs (p,p),(pf,ps). Suppose that the path
has v-length < r3(M)/2 and minimizes v in Ham (M). Then it is
v-minimizing in Ham (M).

(ii) If (7,v) = (pg, p" +p~) the same statement holds with (M) replaced
by rq(M).

Proof. (1) We know that v minimizes £ among all homotopic paths and need
to see that it minimizes £ among all paths with the same endpoints. If not,
there is another shorter path 4 with the same endpoints. Then A = (—7)*~y
is a loop with length

L(A) < L(y) + L(—) < ra(M).

Hence it has zero length. This means that we can compose 7' with an
arbitrarily v-short loop homotopic to A to obtain a path that is homotopic
to v but shorter than it. This contradiction proves the lemma.

In case (ii) essentially the same argument works. Now we may only
assume that 7' reduces one of the seminorms g+, say 5. Then

PN =p (=) =p (=) *7) S LT+ L (V) < ra(M).

Hence both p*(\) and p()\) are 0 and the argument proceeds as before.
|

In the general case, when there are (asymmetric) short loops, we establish
the existence of geodesics in Ham (M) by generalizing the nonsqueezing
theorem to nontrivial fibrations.
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As in §1.3 consider a fibration (P,Q2) — B where B = D or S?. We
will say that the nonsqueezing theorem holds for (P, Q) if area(P,2)
constrains the radius of any embedded symplectic ball B2"*2(r) in (P,Q)
by the inequality

mr? < area (P, Q).

For example, if (P, ) is the product (M x D,w+«), where « is an area form
on D, then (P,Q) has area equal to [, o, so that this reduces to the usual
nonsqueezing theorem. Similarly, we say that the nonsqueezing theorem
holds for the loop A if it holds for the corresponding fibration (Py,) — 52
where €2 is any w-compatible symplectic form on Pj.

The following result is proved in §3.

Lemma 1.16.

(1) Suppose that there is € > 0 such that the nonsqueezing theorem holds
for all loops X € mi(Ham (M, w)) with pf([A]) < €, and let (v,v) be one
of the pairs (p, p), (pf,pf). Then there is a C%-neighborhood N of id
in Ham (M, w) such that every v-minimizing path in N also minimizes
V.

(i) The same statement holds for the pair (V,v) = (pf, p™ + p~) provided
that the nonsqueezing theorem holds for all loops A with either £~ ()
or £t(\) < e.

Using ideas from [10, 11] and Seidel [23] we show in §4.3 that the hy-
pothesis in (i) above holds for all spherically rational symplectic manifolds
(M,w). For such a manifold, the index of rationality (M) is the small-
est positive number ¢ such that [w](A) € ¢Z for all A € Hy(M,Z). In the
weakly exact case, we set q(M) = oo.

Proposition 1.17. If (M,w) is a spherically rational symplectic manifold
with index of rationality (M), the nonsqueezing theorem holds for all loops
A in Ham (M, w) with py(X) < q(M)/2.

For general manifolds (M, w) we establish the existence of p-geodesics by
using a suitable modification of Lemma 1.16. Here the relevant quantity is
the minimum size of a class B for which there is a nontrivial Gromov—Witten
invariant nys(a,b,c; B). Here nontrivial means that B # 0, and a,b, ¢ can
be any elements in H,(M). Thus we set

h = h(M) = min{w(B) > 0: some ny(a,b,c;B) # 0},
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so that A = oo if all nontrivial Gromov—Witten invariants vanish. Note that
h > 0 for all (M,w): standard compactness results imply that for each k
there are only finitely many classes B with w(B) < & that can be represented
by a J-holomorphic curve for generic J, and it is only such classes that give
rise to nonzero invariants.

Proposition 1.18. Suppose that X is a loop in m (Ham (M),w)) such that
(E(N\) < h(M)/2. Then there is k € R with || < max(£~(\),£1()\)) such
that the radii of all symplectically embedded balls in (Pyy, ) are constrained
by the inequalities

nr? < area(Py,Q) +k, wr?<area(P_y,Q)— k.
In particular, if ££(\) = 0 then the nonsqueezing theorem holds for £\.

We call the above property weighted nonsqueezing. For the proof
see §4.4.

Corollary 1.19. Let (v,v) be one of the pairs (p, p), (pg, py). Suppose that

—

the path v has v-length < h(M)/4 and minimizes U in Ham (M). Then it
is v-minimizing in Ham (M).

The hypothesis that just one of £*(\),¢ (\) is small does not seem to
give useful information towards proving the nonsqueezing theorem. There-
fore, to understand the (p* + p~)-geodesics we use the following result.
Here we have written ¢; for the first Chern class of (T'M, J), where J is any
w-tame almost complex structure on M.

Proposition 1.20.

(i) If M is weakly exact the nonsqueezing theorem holds for all loops X in
Ham (M).

(ii) The same statement holds if c; vanishes on ma(M) and all 3-point
Gromov—Witten invariants nys(a, b, c; B) vanish.

(iii) If M = CP™ the nonsqueezing theorem holds for the (n+ 1)st multiple
(n+ 1)[\] of each loop A.

These are sample results; our methods could doubtless be used to find
other manifolds for which the nonsqueezing theorem holds for all loops.
However, as is clear from Lemma 1.16 above, this is more than is needed to
show that (p* + p~)-geodesics exist. There certainly are fibrations (such as
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the nontrivial S2-bundle over S? with suitable Q) for which the nonsqueezing
theorem does not hold. Also the nonsqueezing theorem may well fail for
general fibrations (P,{2) — D with nontrivial boundary monodromy. (See
Remark 4.14 for further discussion on this point.)

1.5. Calculating the seminorm p* + p .

This section describes the example mentioned in Theorem 1.2 (iii) with
p(®) # pt(é) + p~(¢). In the case considered here, the path that gives the
minimum of p~ is not homotopic to the one that minimizes pt.xT/herefore,
the example does not show that the norms p and p* + p~ on Ham (M) are
different. (The latter question appears much more delicate: see §2.2.)

Proposition 1.21. Suppose that {$t}:c(0,1] i a loop A in Ham (M) gener-
ated by a function Hy : M — R with LT (H) # L (H). Suppose further
that

L) = r(M) = inf{3(A) : A(N) > 0, [\] € i (Ham)}.

Then, if T = @3 is the halfway point of this loop, that is if L{Hi}iepor)) =
L({Ht}err)s
p(r) > p* (1) +p~ (7).

Proof. There are two natural paths to 7, namely 3~ given by {¢;}c(o,r) and
Bt given by {¢1+}ecjo,1—17- Without loss of generality we may suppose that
q= L™ (H) < LT(H) = p. Hence

q=L (H)=L (B )+ LB <L(B)+L (BT =p.
(This holds because the direction of BT is the opposite of ¢;.) Thus

p(T)+p (1) S LT(BT)+LT(BT) =q.

On the other hand, A, by hypothesis, is an £-minimizing representative of its
homotopy class. This implies that both paths 37 and 3~ minimize £ in their
homotopy class. Further, since these paths have length precisely £()\)/2 =
(p+ q)/2, any shorter path 3’ from id to 7 would create a nonconstant loop
N = (=B7T) * 4’ in Ham (M) with length < L(X). If £5([X]) = 0, then we
could alter 3’ by an arbitrarily short path to be homotopic to 8% which
contradicts the minimality of £(87). On the other hand, if £5([\']) > 0 then
we must have (5([N']) > r5(M) = L()). Hence the paths 8 must achieve
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the minimum of p, and

p(r)=@+q)/2>q>p (T)+p (7).
0

In order to apply this argument to the norm p; instead of p we need
to start with a loop A whose length minimizes py over 71(Ham ) and that
reaches the halfway mark with respect to both £~ and £T at the same time.
The latter condition is most easily achieved if H; is time independent, i.e.,
if A\ is given by a circle action. Therefore, we have the following corollary.

Corollary 1.22. Suppose that a Hamiltonian H with L~ (H) # L1 (H) gen-
erates a circle action A = {¢pf'} and let 7 = qﬁ{%. Then if L(A) minimizes
py over mi(Ham)

p(1) = pg(T) > p™ (1) +p~ (7).

The above results are easy. Note that they imply that the norms p (or
ps) and pT + p~ take different values on all elements sufficiently close to T
in the C?-topology.

The next result is harder.

Proposition 1.23. There is a symplectic manifold (M,w) and a loop X in
Ham (M, w) that satisfies the conditions of Corollary 1.22.

The main problem is to find a loop A whose length minimizes py. It is
shown in McDuff-Slimowitz [13] that any semifree action of a circle achieves
the minimum of p in its homotopy class. However, it is much more com-
plicated to estimate the lengths of all other loops. For this we will apply a
method due to Seidel [22, 23] that uses the representation of m (Ham (M))
on the quantum homology of M.

There are few manifolds for which m;(Ham (M)) is known. The easiest
manifold to try would be S?. But this does not work because the Hamil-
tonian for the generating loop of 71 (Ham (S?)) = 71(SO (3)) is symmetric.
Therefore, following Polterovich [17], we will work out an explicit example
on the one point blowup M, of CP2. We think of this as the region

{(21,22) € C? : a® < |z1)® + |22? < 1}

with boundaries collapsed along the Hopf flow. Abreu—McDuff [1] show that
m1(Ham (M,)) = Z for all 0 < a < 1, with generator given by the rotation

a:  (z1,22) — (672“”21,22), 0<t<1.
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However the S'-action that satisfies the hypothesis in Corollary 1.22 is

A (z1,22) = (6727”.75751, e*%itzQ), 0<t<1.
which is homotopic to 2a. Thus 7(z1,22) = (—=z1, —22). We will show that
the hypotheses are satisfied for all a. Details are in §5.

Organization of the paper. §2 proves Proposition 1.12 about the ge-
ometric interpretations the the seminorms. §3 discusses geodesics. The
results here are based on the results in §4 about the nonsqueezing theorem.
Finally, §5 contains the calculations on the one point blow up of CP? needed
to prove Theorem 1.2(iii).

Acknowledgements. I wish to thank Seidel for giving me a preliminary
version of [23], Polterovich for some useful comments, Haydee Herrera and
GuangCun Lu for pointing out some misprints in an earlier version of this
paper, and Harvard University and the Courant Institute for providing a
congenial atmosphere in which to work.

2. The geometric interpretation of p*.

Our arguments are based on the geometric approach to estimating the Hofer
norm proposed in [7] II. We will begin by reminding the reader of some
definitions and notation from that paper. Throughout we will assume that
w is normalized so that [, w" = n!

2.1. The regions over and under the graph.

In this section, unless explicit mention is made to the contrary we will assume
that H; is positively normalized in the following sense.

We want to arrange that the function

t — min(t) = ;Iél]\I} Hy(x)

is nonnegative and has arbitrarily small integral. If the function min(¢) is
smooth, we simply replace H; by H; —min(t). This will be the case if H; has
a fixed minimum. In general, we replace H; by H; — m(t) where m(t) is a
smooth function that is everywhere < min(¢) and is such that min(t) —m(t)
has arbitrarily small integral.

Finally we reparametrize so that H; = 0 for ¢ near 0, 1. It is easy to see
that this can be done without changing £*(H;). In particular, every time
independent Hamiltonian H may be replaced by one of the form 3(t)H that
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satisfies the above condition and has the same length and time 1-map as
before.
We denote the graph 'y of H; by

Ty = {(z,t, Hi(z))} € M x [0,1] x R.

For some small € > 0 choose a smooth function p/(t) : [0,1] — [—2¢,0] such
that

1
A(mmﬂ—mw—uﬁnﬁ:a

(This is possible provided that m(t) is properly chosen.) A thickening of
the region under 'y is

Ry (e) = {(z,t,h) |4/ (t) < h < Hy(z)} € M x [0,1] x R.

Note that if ' is suitably chosen so that its graph is tangent to the lines
t = 0,1 we may arrange that R (¢) is a manifold with corners. (Recall that
H; =0 for ¢ near 0,1.)

Similarly, we can define Rj;(¢) to be a slight thickening of the region
above I'g:

R}(e) = {(z,t,h) | Hy(z) <h < pp(t)} C M x [0,1] x R

where pp(t) is chosen so that

1
prr(£) > ma Fy () = max(), /O (1 (t) — max(t))dt = .

We define
Ru(2¢) = Ry(e) URJ(e) € M x [0,1] x R,
and equip Ry(e), Rj(¢), and Ry (2e) with the product symplectic form
Qo = w+ a where a = dt A dh. In particular, for any Hamiltonian Hy,
(Ru(2¢),8p) is symplectomorphic to the product (M x D(a),o) where
D(a) denotes the 2-disc D? with area a = L(H) + 2¢.
Clearly, there is a projection 7 : Ry (¢) — D with fibers of the form

7 1(b) = {(z, ty, he(x)) : z € M,b € D}.

Thus both spaces (R%(¢), Q) fiber over the 2-disc. Further, if X; is the
symplectic gradient of H,

L(Xt + 8t)(w + dt A dh) = —dHt + dh
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vanishes on I'y. Therefore the monodromy along I'y in the direction of
increasing ¢ is simply given by the flow ¢f. We can smooth the corners
of the regions le;( ) so that the boundary monodromy is trivial except
along I'y. Therefore, the boundary monodromy when taken in the direction
corresponding to increasing ¢ is the element qb in Ham . We have chosen here
to orient the ambient space M x [0,1] X R in such a way that ¢ increases
(resp. decreases) as one goes positively round the boundary of R};(¢) (resp.
R (€)). (Here the boundary is oriented so that if one puts the outwards
normal vector in front of a positively oriented basis for the boundary one
gets a positively oriented basis for the ambient space.) Hence the boundary
monodromy of (R} (e), o) is ¢ while that of (Ry(g),80) is L.

Finally, consider two Hamiltonians H; and K; on M such that (b{l = ¢{( .
There is a map g : 'y — 'k defined by

glz,t,h) = (¢7 o (1) (@), t, h— H(z) + K(¢;" o (") (x))) -

The above formula defines a symplectomorphism of (M x [0, 1] x R, Qp) and
so we use it to attach R}, to R}g to form the space!!

(Ri,1(2€), Q) = (Rje () Ug Ryz(€), Qo).

We assume that the functions p’ and pp are chosen so that R m(2e) is
a smooth manifold with boundary. Note that )¢ has trivial monodromy
round this boundary. Identifying this boundary to a point, we get a fibered
space (Pk m(2¢),) — S2.

In [7] II we only considered the case when the loop A = ¢X o (¢f)~!
is contractible in Ham (M,w), in which case we showed that the fibration
(Pk.m(2¢),Q) — S? is symplectically trivial. (Such fibered spaces were
called quasicylinders.) In general, we identify Px r(2¢) with the space Py,
where A = {¢X o (¢/7)71(2)} and so think of Qg as a form on the fibration
P)\ — 52.

2.2. The area as norm.

We begin with a few words about fibrations of the form (P,2) — B. Even
though we are only interested in the cases B = D? or S2, it is worthwhile
to understand the geometric structure imposed by the symplectic form €.
As pointed out earlier, P — B inherits the structure of a Hamiltonian

U This definition is slightly different from that in [7] II to take account of the
changed signs.
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fibration, i.e. its structural group may be reduced to Ham (M ). Conversely,
it is shown in [8] and in Ch. 6 of [12] that if a smooth fibration = : P — B
with closed fiber M has structural group Ham (M,w) then the family of
symplectic forms wy on the fibers always has a closed extension. Moreover,
if B itself is a symplectic manifold, we may assume that this extension is
itself a symplectic form . (The case B = S? is discussed in [22, 10].) We
claim:

the choice of such a form § on a Hamiltonian fibration w: P —
B with B = D or S? is equivalent to the choice of a pair (T, a)
where I' is a connection on w with Hamiltonian holonomy and «
is an area form on B.

To see this, first suppose that M — P — B is a fibration with structural
group Ham (M,w). One can always provide it with a connection I" with
Hamiltonian holonomy, and then use the construction of Guillemin-Lerman—
Sternberg to find a closed 2-form 7r that extends the given forms on the
fibers and induces the given connection I'. This form 7 is called the coupling
form and is unique (at least for closed bases) if one requires that the integral
over the fiber of the class [r]"*! is 0 € H%(B), where 2n = dim M. When
B = S? this is equivalent to the condition

(1) [r]" ™ =0 € H™2(P).

(If B = D uniqueness is given by a relative version of this condition. For
more detail see the proof of Lemma 2.2 below.) Further, because M is
compact one can obtain a symplectic extension Qp of the forms wp on the
fibers by adding to 7 the pullback of a suitable area form on B. Hence the
data (I, ) does give rise to a symplectic extension {2 = Qr of the forms w.
Note that Qr still induces the connection I' on P — B. Hence, if we start
from 2 and let I' be the corresponding connection, both €2 and the coupling
form 77 induce the same connection. Since the uniqueness condition for 7
is cohomological, it is satisfied by some form of the type @ — 7*(«). Hence
Q) may be written as
Q=m+7"(a)

where 71 is the coupling form for the connection I' defined by Q and «
is an area form on B. This proves the claim. (For more details, see for
example [16, 12, §].)

Lemma 2.1. If Q = + 7*(a) as above, then

area (P, Q) — / a.

B
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Proof. This follows immediately from condition (1) above and the normal-
ization condition [w" = n! O

We next explain Polterovich’s ideas from [18, 20] that give geometric
interpretations of the seminorms 5. Recall from Definition 1.11 that

@ (¢) = infarea(P,Q), @ (¢)=a" ("),
where the infimum is taken over all w-compatible fibered spaces (P, Q) — D
with boundary monodromy equal to ¢. A simple calculation shows that

area (R};(e),Q) = LT(H) +¢e, area (Ry(c),Q) =L (H) +e.
Therefore,

at(@) < p(¢), @ (o) <P ()
The following result combines Polterovich [16]§3.3 and [18]§3.3. We give a
proof here partly because he considers loops rather than paths and partly
because we simplify his argument by avoiding the use of K-area.

Lemma 2.2. a7 (¢) =p(§) and @ (¢) =5 (¢).

Proof. By symmetry it suffices to prove the former result, which will follow
if we show that B B
at(¢) > p7(9)

Suppose to the contrary that we are given a fibration (P,2) — D with
area < p(¢) and monodromy ¢. By Moser’s theorem we may isotop
so that it is a product in some neighborhood m~!(N) of the base fiber M..
Identify the base D with the unit square K = {0 < z,y < 1} taking N
to a neighborhood of 'K = 0K — {1} x (0,1), and then identify P with
K x M by parallel translating along the lines {(z,y) : x € [0,1]}. In these
coordinates, the form 2 may be written as

Q=w+dyF Ndy+ L'dz A dy

where F', L' are suitable functions on K x M and dj; denotes the fiberwise
exterior derivative. Because (2 is a product near 7 }(8'K), dyy F' = 0 there
and L' reduces to a function of z,y only. By subtracting a suitable function
¢(z,y) from F' we can arrange that F' = F’ — ¢(z,y) has zero mean on each
fiber 7=!(z,y) and then write L' + 0,c(x,y) as —L + a(x,y) where L also
has zero fiberwise means. Thus

(2) Q=w+dyF Ndy — Ldx A dy + a(z,y)dz A dy,
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where both F and L vanish near 7~!(8’K) and have zero fiberwise means.
Since 2 is symplectic it must be positive on the 2-dimensional distribution
Hor. Hence we must have —L(z,y, z) + a(z,y) > 0 for all z,y € K,z € M.
Moreover, it is easy to see that area (P,Q) = [ a(z,y)dz A dy. Hence

(3) max L(z,y,z)dz ANdy < /a(:v, y) dx A dy = area (P, ().
zE

We claim that —L is the curvature of the induced connection Qr. To

see this, consider the vector fields X = 0,,Y = 8, — sgrad F on P that are

the horizontal lifts of 8m,8y.12 It is easy to check that their commutator
[X,Y] = XY — YX is vertical and that

[X,Y] = —sgrad (0, F) = sgrad L

on each fiber 7~!(x,y) as claimed. (In fact, the first three terms in (2) make
up the coupling form 7r.)

Now let f; € Ham (M) be the monodomy of Qp along the path
t — (s,t),t € [0,1]. (This is well defined because all fibers have a natu-
ral identification with M.) The path s — f, is a Hamiltonian isotopy from
the identity to ¢ = f1, and it is easy to see that it is homotopic to the
original path ¢ given by parallel transport along ¢ — [1,¢]. (As an interme-
diate path in the homotopy take the monodromies along ¢ — (s,t),t € [0, T

for s € [0,1] followed by the lift of ¢t € [T,1], to Ham.) Therefore

L1(fs) > pT(¢), and we will derive a contradiction by estimating £1(fs).
To this end, let X* Y be the (partially defined) flows of the vector

fields X,Y on P and set hy; = YtX*. Consider the 2-parameter family of

(partially defined) vector fields v, on P given by
vsy = Oshsy = Y (X) on Imhg,.
In particular vy ;(z,y) is defined when y = 1,5 < z. Since f, = h,1 we are

interested in calculating the vertical part of vs1(s,1,2). Since the points
with y = 1 are in Im h,; for all (s,t) we may write

1
Us,1 = / at (Us,t) dt + VUs,0
0

_ /1 YH([X,Y]) dt + 0.
0

2Here the symplectic gradient sgrad F' is defined by setting w(sgrad F,-) =
—dyrF(-).
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We saw above that [X,Y] = sgrad L. Hence Y([Y, X]) = sgrad (Lo (Y*)™!)
and

1
vs1(s,1,2) = / sgrad (L((Y")7!(s,1,2)) dt + 0,
0
1
= sgrad / L(s,1 —t,(YH7Y(2)) dt + 9,
0

where Y,! denotes the vertical part of Y. Hence the Hamiltonian H that
generates the path fg, s € [0, 1], and has zero mean satisfies the inequality

Hy(z) < / <maxL(s,t, z)) dt < / a(s, t)dt,

ze€M
since L(s,t,2) < a(s,t) by (3). Thus ﬁ*(g) < area P, contrary to hypothe-
sis. [

Using this, we can interpret the seminorms p* + p~ and py in terms of
the fibrations Pk g(¢) — S? considered at the end of §2.1.

Corollary 2.3.

(i) pt(P) + p~(¢) is the minimum of the areas of the fibrations
(Pk,u(e),Q) — S? taken over all € > 0 and all pairs (Hy, Kt) of
Hamiltonians with time 1 map ¢.

(i) pr(@) is the minimum of these areas over the set of pairs that define
homotopic flows.

The proof of Proposition 1.12 is now immediate.

Now let us consider the geometric interpretation of the Hofer norm and
compare it with that for p;. The above corollary implies that p; is the
minimum of the areas of the symplectically trivial fibrations (Rx,#, o) that
contain a hypersurface I'y = I'x with monodromy ¢. The sets Ri y are
constructed as subsets of (M x R?,w +dt A dh) that have trivial monodromy
round the boundary. This means that the flow lines of the characteristic flow
round the boundary are all closed. However, they are not constant in the M
direction, i.e. with respect to the given trivialization of the fibers they go
round the loops t — ¢ o (¢1)~!(x). The Hofer norm, on the other hand,
is the minimum area of the cylinders Ry (2¢) which sit inside (M x R%,w +
dt A dh) as product regions of the form M x Ug. Hence the monodromy of
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its boundary is constant with respect to the given trivialization. Moreover
the hypersurface I'y in Ry (2¢) that has monodromy ¢ is a graph over its
front and back faces (defined by h = pg(t), h = p/(t)). For general M is it
not at all clear that these are the same minimizing sets. Even when M = 52
and we know that (Rg g, () is symplectomorphic to a product subset of
(M x R?,w + dt A dh), it is not obvious that the resulting hypersurfaces in
this subset can be assumed to be graphs over the front and back faces.

Proof of Lemma 1.13. By Proposition 1.12 57 ([A]) is measured by minimiz-
ing the area of fibrations (P,2) — D with boundary monodromy in the class
[A]. Therefore, the result will follow if we set up a correspondence between
this minimizing set and the set of fibrations (Py,Q) — S? with clutching
loop [A].

Given (P,Q) — D with monodromy [A] there is an associated fibration
Q — S? defined by identifying the boundary P to a single fiber via the
characteristic flow. Moreover, since the restriction of Q to P determines
Q near OP, Q descends to ). We therefore get a fibration (Q,€) — S? =
D/dD, with fiber over the base point * = D identified to M. It remains
to observe that the clutching function of this fibration Q@ — S2% is [\] €
71(Ham). Conversely, given such a fibration (Q,) — S? identify (52, *)
with (D/0D,0D) and consider the pullback of @ to D. This will be a
fibration over D with boundary monodromy in the class [A], as required. [

3. Geodesics.

This section contains proofs of the results in §1.2 assuming the results stated
in §1.4 about the nonsqueezing theorem.

Let {#t}scj0,1) be a path generated by a Hamiltonian H; that is pos-
itively normalized as in §2.1. The following easy result was proved

in [7] IT Lemma 3.2. Recall that the capacity of a ball of radius r is 7.

Lemma 3.1. If H; is sufficiently small in the C?-norm and has a fized
mazimum (resp. minimum), then, for all € > 0 it is possible to embed a ball
of capacity L(Hy) in Ry () (resp. Ri(e)).

Lemma 3.2. Suppose that a ball of capacity L(H;) can be embedded in
Ry (e) for all e. Then:

(i) the corresponding path ¢y = ¢ in Ham minimizes pH(d);
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(ii) the path ¢ also minimizes p*(¢) provided that the nonsqueezing the-
orem holds for all loops A € mi(Ham).

Proof. Suppose that K; generates a homotopic path ¢, with 1 = ¢; and that
LT (Ky) < LT (Hyg). Then, the corresponding fibered space (P u(2¢),Q) —
S? has area < L(H;) = L~ (H;) + L1 (H;) provided that e is sufficiently
small. On the other hand it contains a ball of capacity £(H;). But this
contradicts the nonsqueezing theorem for the symplectically trivial bundle
(Pk,u(2¢),Q) — S2. This proves (i). (ii) is also immediate, because the
hypothesis means that we can apply the nonsqueezing theorem to any bundle
of the form (Pg, m(2¢),Q) — S2. a

We now show that paths that minimize p+ must have fixed maxima.

Lemma 3.3. Suppose that H; does not have a fired mazimum. Then the

corresponding path ¢ = (;5{{ in Ham does not minimize pr.

Proof. The analogous result for the two sided norm p was proved in [7]
I Proposition 2.1 by a simple curve shortening procedure. There we con-
structed a perturbation ¥§ such that:

o W5 =Wt =id

o if ¢ = W; o ¢ for all £, then the generating Hamiltonian Hy for ¢§
satisfies the conditions:

e o~
min(Hy) = min(Hy),  max(Hy) < max(H),

where strict inequality holds for the maximum on some interval |t —
t0| < E.

This implies that the two sided length £ is smaller on ¢;. To ensure that
Lt(¢) < LT(¢) it suffices to arrange in addition that

/H,fwn:/Htw":07 te0,1].

Clearly we can arrange that H; has zero mean, and H; will have too as long
as we choose the functions K; that generate the perturbation ¥§ to have
zero mean.
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The K; were constructed as follows. We chose tg < t1 < --- < t so
that N;X; = (), where X; = maxset H;, # M, and then chose a partition
of unity {f;} subordinate to the cover M — N.(Xo), M — X1,..., M — X,
where N, (Xj) is the k-neighborhood of Xj. Fix § > 0 so that

Ni.j2(Xo) C szlﬁfl([& 1]),

and choose functions K; < 0 with support in 5]71([5 /2,1]) that are constant
and < 0 on ﬁ;l([é, 1]). Then define ¥§ as a smoothing of the following path,
where the flow of K; is denoted Pl

e U¢ = id for t < tp — ¢ and then equals ¥l o--- 09k for 0 < s =
t—ty+¢e < 2¢

e U$ is constant when |t — ¢;| > ¢;
e when [t — ;| < ¢ for some j > 0, U7 has the form

(/ll}g)_l\:[ltj*57 where s =1t—1t; +e¢.

It is not hard to see that this satisfies all the requirements for small
enough e. In particular, because ;- Kj;(z) < 0for z € N,(Xo), max Hi <
max H; for |t — to| < e. (Details are in [7] I.)

In the present situation, we need to allow each K; to be positive some-
where so that it can have zero mean. If M — N, /Q(Xj U Xo) is nonempty
for small , then there is no problem; the argument goes through as before
if K; is small and positive on such a set. Conceivably, we have to choose
some of the X; so that M = Xo U X; in order to achieve that ﬂfZOXj = 0.
In this case the frontier of X lies entirely in X;. So there must be an open
set U; C XN X that lies outside some other Xj. So for each such j we let
K; be positive in this open set U; and make K}, sufficiently negative in U;
to compensate. [l

Corollary 3.4. Proposition 1.5 holds.

Proof. Tt follows from Lemmas 3.1, 3.2 above that a sufficiently short piece
7 of any path with a fixed maximum (resp. minimum) minimizes p* (resp.
p ). Conversely, if a path does not have a fixed maximum it cannot mini-
mize p . O
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Proof of Lemma 1.16. To prove (i) we have to show that there is some
C?-neighborhood of id in Ham such that every 7-minimizing path v in N/
actually minimizes v, where (v,v) is (p, p) or (pf, ps). Clearly, it suffices to
prove this for paths that start at id.

In both cases, we know from Lemma 3.3 above that v = {¢f} has fixed
extrema. Therefore, by Lemma 3.1 we may choose N so that a ball of
capacity £(7) embeds in R3;(0) for all § > 0. We may also choose A so that
L(y) = p(v) < /2. We claim that such v must minimize both p and py.
We will carry out the argument for p; since it is slightly more complicated.

Suppose that v does not minimize py. Then there are paths ¢t:t from id
to ¢ = ¢f1 generated by Kt:t such that

LK) +L(K) < L(y) = LT(Hy) + L (Hy).
Therefore at least one of the following inequalities must hold:
LYKS) < LY(Hy),  L7(Kp) < L7(Hy),

say the former. Note that the two functions K, and K, may be differ-
ent. (In the case of p they would be the same.) However, because we are
dealing with the norm py rather than p™ + p~ the paths g = B* that they
generate are homotopic. Hence the fibrations Pg+ p, Py - correspond to
loops A, —A that are mutual inverses, where A =  * (—7y). Note also that
for suitably small §

5 (IN) < area (Pyr 1 (8), ) < £(7) < £/2,

while

P +2 ([A)
area (Py+ (9),Q0) + area (Py k- (3),20)
LH)+ LK)+ L (K, ) +26

pr((A])

IA A

Therefore by hypothesis the nonsqueezing theorem holds for +A. Hence
(Pi+ 1 (6),80) cannot contain a ball of capacity £(v). This contradiction
shows that v must minimize py. Hence (i) holds. The proof of (ii) is similar:
compare Lemma 1.15. O

Proof of Theorem 1.6. When (M,w) is spherically rational (i) follows from
Proposition 1.5 by Lemma 1.16 and Proposition 1.17. For the general case
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see §4.4. The statement in (ii) about weakly exact M also follows by a
similar argument since, by Proposition 1.20, the nonsqueezing theorem now
holds for all loops. Therefore, it remains to consider the case M = CP".

Let {¢t}:c(0,1] be a path in Ham (CP™) with a fixed maximum and min-
imum. We must show that sufficiently short pieces of it minimize p™ + p~.
In the following we denote by H; * K; the Hamiltonian H; + K; o (¢ff)~!
that generates the composite ¢! o ¢X. Further we write m = n + 1.

First choose € so that each piece

Ya = {¢a+t¢;1}t€[a,a+e]

is generated by a Hamiltonian H;* for which the m-fold composite
(Hi)™ = Hi - x HY

satisfies the conditions of Lemma 3.1. Since H} has fixed extrema,
L((H)™) = mL(Ya)-

Therefore for each 7, a ball of capacity mL(+,) can be embedded in R?EHE)W.

If some such piece v, does not minimize £*(7,), then there is a shorter

path 4/ with the same endpoints generated by some K;. Let A be the loop
v % (—7,) and consider the fibration

(Pmxs @) = (P (2ym), Qo) — S

The nonsqueezing theorem holds for this fibration by Proposition 1.20. On
the other hand it has area strictly less than m£L(7y,) while containing em-
bedded balls of this capacity, a contradiction. A similar argument applies if
L~ is not minimized. Hence result. O

Proof of Proposition 1.8. This states that there is a C2-neighborhood N
of id on which the two norms py and p agree. It is shown in [7] II Propo-
sition 5.11 that we may suppose that every ¢ € N is generated by some
Hamiltonian H; with a fixed maximum and minimum. Moreover, the length
of this path is given by a Banach space norm. If in addition H; is suffi-
ciently C2-small we may apply the arguments above to conclude that the
path minimizes both p and py. O

Remark 3.5. Here is an explicit description for the size of this neighbor-
hood N. First, to get an explicit choice of generating Hamiltonian H; for
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each ¢ € N, choose an identification of a neighborhood of the diagonal in
M x M with the zero section in T*M. Secondly, to get uniform bounds
for the embedded balls of Lemma 3.1, we can argue as follows. Choose for
some £ > 0 a family of symplectic embeddings ¢, : B**(¢) — M such that
tz(0) = z for all x € M. This family should have uniformly bounded second
derivatives, though it need not depend smoothly (or even continuously) on
x. It can be constructed from a finite covering of M by Darboux charts
B?™(r;) — M chosen so that the images of the subballs B**(r; — ¢) also
cover M. Then, we require L(H;) < e. Further, for each H; there must
be at least one fixed maximum z* and one fixed minimum z~ such that
the functions H; o ¢+ have sufficiently small C?-norm for the embedding
techniques of [7] II to work. Finally, we need £(H;) < h/4 in order for
Corollary 1.19 to hold.

Proof of Proposition 1.9. The first statement is proved in [13]. Although
that paper only mentions the usual Hofer norm, the capacity—area inequality
proved there shows that {¢ }o<t<; minimizes both p = and p~. (Argue as
in Lemma 4.13 above using [13] Proposition 2.4.)

To prove the next statement it suffices to show that if M is weakly
exact then all the norms p* + p~, py and p are minimized as well. To do
this we simply have to show that the arguments in [13] apply when the
fibration (Pk, i, Qo) — S? is not symplectically trivial. However all we used
about this fibration is that there is a section o4 with uy(04) < 0 such that
the Gromov—Witten invariant np([M], [M],pt;o4) is nonzero: see [13] §3.1.
Since this holds for weakly exact M by Lemma 4.13, the result follows. [

Remark 3.6.

(i) The above argument shows that Proposition 1.9 holds for every M for
which all loops A have good sections of positive weight in the sense of
Definition 4.6 below. It was based on [13] but one could equally use
Entov [4].

(ii) The proof of Theorem 1.6(ii) for CP™ also applies to any manifold
M that is not spherically monotone'? and such that i (Ham (M)) is
finite, or more generally has finite image under the representation ¥
defined below. See Remark 4.14(i).

13(M,w) is said to be spherically monotone if there is x such that ¢; — k[w]
vanishes on all classes in my(M).
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4. Quantum homology and the nonsqueezing theorem.

In [11] Proposition 1.1 we established the nonsqueezing theorem for some
fibrations P, — S? by using the modified Seidel representation

U ;i (Ham (M) — (QHey (M, A))*.

Here (QHey (M, A))* denotes the group of units in the even part of the small
quantum homology of M with coefficients in a real Novikov ring A. Since
we use the same approach in this paper, we will begin by recalling some
definitions from [10, 11].

4.1. Preliminaries.

Set ¢; = ¢1(TM) € H*(M,Z). Let A be the Novikov ring of the group H =
HS (M, R)/~ with valuation I, where B ~ B’ if w(B—B') = ¢;(B—B') = 0.
Thus A is the completion of the rational group ring'# of H with elements of

the form
> ase”
BeH

where for each k there are only finitely many nonzero ¢p € Q with w(B) >
—k. Set
QH.(M)=QH.(M,\) =H.(M)®A.

We may define an R grading on QH (M, A) by setting
deg(a ® ) = deg(a) + 2¢1(B),
and can also think of QH,.(M, A) as Z/2Z-graded with
QHey = Hey (M) ® A, QHogq = Hoga(M) ® A.
Recall that the quantum intersection product
axp b e QHipj_on(M), for a € H;(M),b e H;(M)
is defined as follows:

(4) axp b= Z(a*Mb)B@)e_B,
BeH
14Tn [11, 10] we distinguished between the integral version of A which is generated
by the integral elements of 7 and the real Novikov ring that we are now calling A.
It is not necessary to do that here.
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where (a *p b)p € Hyyj_ony2c,(B)(M) is defined by the requirement that
(5) (axp b)p -mr c=np(a,bye;B)  for all ¢ € Ho(M).

Here nys(a,b, c; B) denotes the Gromov—Witten invariant that counts the
number of B-spheres in M meeting the cycles a,b,c € H,(M), and we have
written -57 for the usual intersection pairing on H,(M) = H.(M,Q). Thus
a-p b =0 unless dim(a) + dim(b) = 2n in which case it is the algebraic
number of intersection points of the cycles. The product s is extended to
QH.(M) by linearity over A, and is associative. Moreover, it preserves the
R-grading.

This product *p; gives QH,(M) the structure of a graded commuta-
tive ring with unit 1 = [M]. Further, the invertible elements in QHe, (M)
form a commutative group QHey, (M, A)* that acts on QH, (M) by quantum
multiplication.

Now consider the fibration Py — S? constructed from a loop A as in
§1.3. As noted in [10], the manifold P\ carries two canonical cohomology
classes, the first Chern class of the vertical tangent bundle

Cyert = Cl(TP;\Jert) € HQ(P)\v Z),
and the coupling class uy, i.e. the unique class in H?(Py,RR) such that
Z*(U/\) = [L«.)], U,t\H—l = 0,

where ¢ : M — P, is the obvious inclusion.

The next step is to choose a canonical (generalized) section class!®
ox € Ha(Py,R)/ ~. In the general case, when ¢; and [w| induce linearly
independent homomorphisms Hﬁg (M) — R, o) is defined by the require-
ment that

(6) Cvert(UA) = UA(U)\) = 07

which has a unique solution modulo the given equivalence. We show in [11]
that when M is weakly exact such a class o) still exists and moreover is
integral. (The proof is included in Lemma 4.9 below.) In the remaining
spherically monotone case, we choose o) so that cyeri(oy) = 0.

We then set

(7) TN => ap®e?
BeH

5By section class, we mean one that projects onto the positive generator of
H,(5%,7).
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where, for all ¢ € H.(M),
(8) ap -y ¢ = np, ([M],[M],¢;ox = B).

Note that ¥(\) belongs to the strictly commutative part QHe, of QH,(M).
Moreover deg(¥ (X)) = 2n because cyere(oy) = 0. It is shown in [11] (using
ideas from [22, 10]) that for all [A1], [A2] € m1(Ham (M))

\I/()\l + )\2) = ‘1/()\1) * ‘1/()\2), ‘1/(0) =1,

where 0 denotes the constant loop. Therefore ¥(\) is invertible for all A and
we get a representation'®

U : my(Ham (M, w)) — (QHey (M, A))".

Since all w-compatible forms are deformation equivalent, ¥ is independent
of the choice of (2.

This is a mild reformulation of Seidel’s representation from [22, 23].
Our choice of canonical section class allows us to define ¥ on the group
m1(Ham (M)) itself rather than on the extension considered by Seidel. The
cost is that we have to allow B to range in the real group H rather than in
its integral lattice. For o) might have real coefficients, and if it does, since
we need to sum over classes B such that o) — B is integral, we must allow
B to have real coefficients.

Note also that the fact that ¥(\) # 0 implies that the fibration Py — 52
has a section (which, moreover, can be taken to be symplectic); equivalently,
the loop ¢ — A¢(x) contracts in M for all z € M. This is an easy consequence
of the proof of the Arnold conjecture: see for example [9]§1.3. However, it
can be proved more simply, using only the compactness theorem and not
gluing, by considering the limit of J-holomorphic sections in class [pt x S?]
of the trivial bundle M x §% = P\#P_, as this space degenerates into the
singular union Py Ups P as described in [11] §2.3.2.

4.2. Using V¥ to estimate area.

Consider the fibration m : (Py,2) — S? corresponding to the class [\] €
m1(Ham (M)). Here Q is any w-compatible symplectic form on P = Pj.
Hence, as remarked in §1.3, its cohomology class has the form

[ = ux + 77 ([o)

16 is called p in [11], but we have changed the notation here, for obvious reasons.
Note also that the formula for ¥ has been written using sign conventions for B that
are different from those in [10, 11], to clarify the inequalities considered later.
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where area (Py, Q) = [, c.
Following Seidel, consider the valuation v : QH,(M) — R defined by

9) v (Z ap ® eB> = sup{w(B) : ap # 0}).
BeH

It follows from the definition of the quantum intersection product in (4),
(5) that v(a *b) < v(a) + v(b). As Seidel points out, the following stronger
statement is true. Here we set

h=h(M)=min({w(B) > 0: some ny(a,b,c;B) # 0},

and N denotes the usual intersection product, so that a * b — a N b is the
quantum correction to the usual product. Note that if all the invariants
ny(a, b, c; B) with a,b,c € H, (M) and B # 0 vanish, then i = oo.

Lemma 4.1. For all a,b € QH.(M), v(axb—anb) <v(a)+v(b) —h(M).

Proof. This follows immediately from the definitions. O
Seidel’s results in [23] are based on the following observation.

Proposition 4.2 (Seidel). Suppose that (M,w) is not spherically mono-
tone. Then, for each loop \ in Ham (M)

area(Py,Q) > ov(¥(X)).

Proof. Since [w] and ¢; are linearly independent on Hj (M) we may define
U using a section oy that satisfies (6). Let ¥(\) = Y.z ap ® eB. Then by
definition ap is derived from a count of J-holomorphic curves in (Py,2) in
the class o0y — B. If ap # 0 then this moduli space cannot be empty. Hence

0<[Q(ox—B) = m*([a])(on) - w(B)
= fsza—w(B)
= area(Py,) — w(B),

as required. [l

Corollary 4.3. In these circumstances £(\) > v(¥()\)).
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Proof. Since £T(\) = pT([A]), this follows by combining Lemma 1.13 with
Proposition 4.2. [l

We will apply this in §5 to calculate the lengths of loops. Note that the
above argument applies when ¥ is normalized using o for which uy (o) = 0:
the value of cyere(0) is irrelevant here. Hence it can apply in the spherically
monotone case when |[w] = key on ma(M) for k # 0.

Remark 4.4. Another closely related way of getting an estimate in the
monotone case when [w] = kc; for k > 0 was observed by Polterovich in [17]
Thm 2.A. He defined a homomorphism I : 7 (Ham (M,w)) — R as follows:
for each A choose a section class aﬁ\ in Py such that cveﬁ(a’)‘) = 0 and then
set

I(A) = un(}).
A dimension count shows that the only section classes o that contribute to

U(A) have cyert(0) < 0. Hence, given any such o and any symplectic form
Q) on P,\7

0 < Qo) = area (Py,Q2) +ux(o)
= area (Py, ) +uy(oy + B) < area (Py,Q) + I()),

since uy(B) = kci(B) for £ > 0 is nonpositive. Therefore, since I(—\) =
_I(A)a

pf(A) = inf(area (Py,Q)) + inf(area (P_y,Q)) > |[I(N)|.

)
This estimate is weaker than the previous one if ¢;(B) < 0. However,
because I is a homomorphism, one immediately finds pf(kX) > k|I())]. See
also [23].

4.3. The nonsqueezing theorem.

Let QH (M) denote the set

QH(M)=qze Y H(M)®ACQH(M)

1<2n—2

We first give a simple criterion for the nonsqueezing theorem to hold. Recall
from above that every fibration Py — S? admits a generalized section class
o on which the coupling class uy vanishes, except possibly when (M, w) is
weakly exact and ¢; does not vanish on Hy (M).



Geometric variants... 233

Lemma 4.5. Suppose that (Py,Q) — S? admits a generalized section class
ox on which uy vanishes, and that the corresponding element () has the
form

YN =1®up+z,

where x € QH (M) and p =" qg e® has some nonzero coefficient qg with
w(B) > 0. Then the nonsqueezing theorem holds for (P, ).

Proof. The hypotheses imply that np([M], [M],pt;on — B) = g # 0. Since
this invariant counts perturbed J-holomorphic stable maps in class oy — B
through an arbitrary point, it follows that there is such a curve through
every point in P. Since the perturbation can be taken arbitrarily small,
it follows from Gromov’s compactness theorem that there has to be some
J-holomorphic stable map in this class through every point in P. Hence
the usual arguments (cf [6], for example) imply that the radius r of any
embedded ball satisfies the inequality:

7r? < [Q](ox — B) < [Q](0y) = area (Py, Q).
The result follows. O

It will be convenient to make the following definition.

Definition 4.6. We say that the fibration (P, Q) — S? with fiber M has a
good section of weight « if there is a class 04 € Ha(P) such that

(i) np([M], [M],pt;04) # 0;
(ii) u(o4) = —k where u is the coupling class.
Note that x could be positive or negative.

The previous lemma shows that any fibration with a good section of
weight 0 has the nonsqueezing property. More generally, the same argument
proves the following weighted nonsqueezing property.

Lemma 4.7. Suppose that (Py,Q) has a good section of weight k. Then the
radius r of an embedded ball in (P,) is constrained by the inequality:

mr? < area (P,Q) — k.

In particular, if ¥ is defined relative to a section class o) on which wu)
vanishes, we may take k to be the mazimum of w(B) where g # 0 in the
expression for ¥(\).
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It is not hard to find conditions under which ¥(\) = 1® pu + =, where
@ # 0. The tricky point is to find ways of estimating the maximal weight
of a good section. In this subsection we will describe situations in which
there is a good section of weight 0 so that the nonsqueezing theorem holds,
leaving the discussion of the more general case to §4.4.

To find good sections of weight 0, we can use arguments in [11] that give
conditions under which the (usual) cohomology ring H*(P) splits. The idea
is the following.

Suppose that for some A € Hy(M) we can define a map s4 : H (M) —
H, 2(P) such that

(10)  sa(pt) =ox—A, sala)N[M]=a, sa(anbd)=sa(a)Nsa(b),
for all a,b € H,(M). Then the Poincaré dual map
r: H* (M) — H*(P), aw~ PDp(sa(PD p(e)))

is a ring homomorphism such that ¢* o r = id, where ¢ : M — P is the
inclusion. In particular, 7([w]) = uy, since r([w])™*! = 0 and u, is the
unique extension of w such that u;”rl = 0. Further,

PD p(uy) = s4(PD p[w]™) = sa(pt)/n! = (or — A)/nl.

Hence uy(oy —A) = 0. Since uy(ox) = 0 by construction, we have w(A) =0
as required. Thus

Lemma 4.8. Suppose that there is a splitting sa : Hi.(M) — Hiy2(P)
satisfying (10). Then (P,Q) has a good section o4 := o\ — A of weight 0.

There are two ways to construct such a splitting s4. First suppose that
there is an {2-tame almost complex structure J on (P,€2) such that the
moduli space My of J-holomorphic curves of class 04 = o) — A is compact
(where we assume them to be parametrized as sections) and of dimension
2n. Then, there are evaluation maps

6:MJ><S2—)P, eg: My—>M

of equal degree q. If ¢ # 0 we define

(11) o4 Ha(M)— Horo(P): a — ée*(eb(a)x[sa]),
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where (eg)' : Hi(M) — H,(M) is the homology transfer (defined as the
Poincaré dual PD y( o e} o PD j; of the pullback in cohomology.) More
generally, if all we know is that the invariant

np([M],[M],pt;oa) = qa # 0,
we define s4(a) to be the unique class in H,(P) such that

sa(@)-p o= —np(a,[Mviox).  ve H(P)

(Here, as elsewhere, H, denotes rational homology.)

The next lemma describes situations in which s4 satisfies the conditions
n (10). Statement (i) is due to Seidel'” and suffices to prove all our main
results, including Proposition 1.17 and Theorem 1.6. We include the proof
because it is completely elementary, even though one could equally well
argue using the other parts of the lemma below. Note that (ii) is a corrected
version of [11] Proposition 3.4(i).'® Asin [11], the letters a, b, c denote either
elements of H,(M) or their images in H,(P), and u,v,w denote general
elements in H(P). Also B € Hy(M,Z)/~ =H.

Lemma 4.9. With notation as above,
(12) sa(a)N[M]=ua, sa(land)=sa(a)Nsa(b), forall a,b € H.(M)
under each of the following conditions:

(1) sa is defined as above from a compact moduli space M := M.

(ii) The only nonzero Gromov-Witten invariants of the form np([M], a,v;
o4 — B), with w(B) > 0 have B = 0.

(iii) The 3-point invariants nps(a,b,c; B), B # 0, vanish and np([M], [M],
pt;oa — B) =0 when w(B) > 0.

(iv) All 3-point vertical invariants np(u,v,w; B), B € Ha(M)—{0}, in P
vanish, as do all 4-point invariants nys(a,b,c,d; B), B # 0, in M.

Proof. (i) It is slightly easier to prove the cohomological version of (i). How-
ever, we phrase the argument in homology to make this argument closer to
the proof of (ii)—(iv).

17Private communication.
18Tn the preprint version of [11], Proposition 3.4 is numbered as 3.21.
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If e: X — Y is any map between two closed manifolds of the same
dimension, then the homology transfer
e:H,(Y) = H.(X): aw PDx(e*(PDya))

has the following properties:

(a) elvnw) = é(w)ne(w),
(b) ex(v)Nw = e.(vne(w)),
©  e)w = vocw),
(d) exe' (v) = (dege)v,

Further, if eg : M — M,e : M x §? — P are as above, it is not hard to
check that

(e) e'(v) N [M] = eg(v N [M]).
Thus, by (11)
sala)N[M] = %e* (cbla) x [8%]) N a]
= ~eu (ebla) x o)
1

= p (e0)xep(a) = a.

It remains to prove the second half of condition (12). In view of (a) above,
this would be obvious if e, respected the cap product. Since this is not the
case, we must use a different approach.

Let us write e'(sa(a)) = [ap x S%] + t(a1) where a; € H,(M) and ¢ :
H.(M) = H,(M x §?) is induced by the inclusion. It follows easily from
(e) above that ag = ej(a). Hence, by (d), (eg)«(a1) = 0. By (c), this means
that a; - ej(b) = 0 for all b. Hence

gsa(b)-sala) = ex(leg(d) x 5%) - sa(a)
= [eg(b) x S°] - (ao x [S°] + u(a1))
= ar-ey(b) =0

for all a,b. Again using s4(a) N [M] = a, we have that
sa(a) Nsa(b) =sa(and) + o(z)
for some z € H,(M). Further z = 0 if and only if

(sala)Nsa(b)) -psalc) =uv(z) psalc)=x-pc=0
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for all c. But, as above,

gsa(c) -p (sa(a) Nsa(b))
= leg(e) x 87 (e (sa(a)) N € (s4(0)))
= leg(e) x 57 ([ed(@) x S7 N ufbr) + uar) N [ed(b) x S7)

=ej(cna)-by £+ ef(cnb)-ar
=0.

This completes the proof of (i). a

The proofs of (ii), (iii) and (iv) can be found in [11]; (iv) is Propo-
sition 3.4, while (ii) is a corrected form of Proposition 3.5 (i). We have
added the extra assumption that there are no nonzero invariants of the form
np(v, [M],a;04 — B) with B # 0 in order for the proofs of [11] Lemmas
3.10 and 3.11 to hold. (iii) is a slightly more general version of [11] Propo-
sition 3.5 (ii). We now allow invariants of the form np([M], [M], pt;oca — B)
with w(B) < 0 to be nonzero. But clearly these do not contribute to the
sums considered in [11] Lemmas 3.9, 3.10, 3.11. O

Corollary 4.10. Consider a fibration (Py,Q) — S? such that np([M],
[M],pt;o4) # 0 for some class o4 € Ho(P). If one of the conditions in
Lemma 4.9 also holds then o4 is a good section of weight 0 in (P, ).

Proof. This holds by Lemma 4.8. Observe that the conclusion holds even
when we cannot assume that uy(cy) = 0 since we prove in all cases that
U)\(O' A) = 0. [l

With these preliminaries, we are now ready to prove Proposition 1.17.
In view of Lemma 4.5 it is an immediate consequence of the next result.
Here

A_:{,U.EAI,U,ZQ()eo—FZquC, W(C) <07 qCEQa (IO#O}

Proposition 4.11. Suppose that (M,w) is spherically rational with index
of rationality ¢(M) and let X be a loop in Ham (M,w). If £T(X) +£7(\) <
q(M) then ¥(\) and ¥(—\) both have the form 1 ® p + x with p € A~
x € QH(M). In particular, they both have a good section of weight 0.
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Proof. We will assume that M is not weakly exact since this case is dealt
with in Lemma 4.13. Hence we can choose o so that uy(oy) = 0.

Choose ¢ > 0 so that £7()\) +£7()\) < ¢(M) — 2¢. By Proposition 1.12,
there is a w-compatible symplectic form Q) on Py with area < £T()\) + ¢,
and a similar form Q_) on P_) with area < £~ () +¢.

Write

¥(A) = Z 1® qge® +z, T(-A)= Z 1® ¢y e +a'
BeH B'eH

where g, 4}y € Q and z,2' € QH*. Note first that for all e (resp. eB')
that occur in W(\) (resp. ¥(—A)) with nonzero coefficient,

w(B) < LT (A) +¢, w(B) <L~ (A\) +e.

This holds from the definition of the coefficients via Gromov—Witten invari-

ants np([M], [M],c; A) where A = o) — B (resp. 0_)— B), and the fact that

2y (resp. £2_)) must have positive integral on A: see equations (7), (8).
Next apply the valuation v in (9) to the identity

T() % T(=A) = T(0) = 1.

We claim that at least one of ¥()\), ¥(—\) has a term 1 ® gge? with qp #
0,w(B) > 0. For otherwise the product = * =’ must contain the term 1 ® e°
with a nonzero coefficient. Because this term appears in z x 2’ — z Nz’ we
find from Lemma 4.1 that

v(¥(A)) +v(¥(=A)) — (M)
EFA) + €7 (M) +2e —q(M) <0,

a contradiction.
Therefore, replacing A by —\ if necessary we may suppose that

T\ =1Q pe? +z

where x € QH(M),0 < w(A) < ¢(M) — ¢, and p € A~. The lemma will
follow if we show that w(A) = 0.

To do this, consider the class 04 = o), — A as above. In view of Corol-
lary 4.10 it suffices to prove the following claim.

Claim. There is an 2-tame J on P such that the moduli space M of
unparametrized J-holomorphic curves in (P,Q) of class 04 is a compact
manifold of dimension 2n.
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Proof of Claim. We first show that M s is compact for all fibered J. (Recall
that an almost complex structure J on a symplectically fibered space P —
52 is called fibered if each fiber is J-holomorphic.) If not, there is a sequence
of o 4-curves that converges to a stable map. One component of this stable
map will be a section and the others will each lie entirely in a fiber. There
must be at least one bubble in a fiber, which will use up a minimum of ¢(M)
in energy. Since

[Q](04) =€ +w(4) < q(M)

this is impossible. Next observe that the curves in M ; are all embedded so
that they can be regularized by choosing a generic J. It is not hard to see
that this can be chosen to be fibered: compare Lemma 4.3 of [11].1° Alterna-
tively, use the compactness theorem again to conclude that M is compact
for every J that is sufficiently close to a fibered J, and then choose a regular
one from among these. This proves the claim and hence the Proposition. [J

Remark 4.12. Using [11] Proposition 3.4 one can conclude from the
above argument that if (M,w) is spherically rational then whenever [A] €
m1(Ham (M)) and its inverse [—\] have sufficiently p-short representatives
they are in the kernel of the homomorphisms I. and I, in [10, 11]. Moreover
the rational cohomology rings H*(Py) and H*(P_)) split as products.

Further extensions of the proof of Proposition 4.11 are discussed in §4.4.
We end this section by proving Proposition 1.20.

Lemma 4.13.

(i) When ¢y =0 on ma(M) and all 3-point Gromov-Witten invariants on
M wanish, every fibration (P,Q) — S% has a good section of weight 0.

(ii) The same statement holds if (M,w) is weakly ezact.

(iii) If M = CP™ the (n+ 1)st multiple (n+1)[A] of each loop A\ has a good
section of weight 0.

Proof. (i) Assume first that ¢; vanishes on m2(A) but w does not, and choose
o’ so that uy (o) = 0. We claim that cyer¢(0)) must also be zero. For cyery
takes the same value on all section classes o) — B, and since at least one

9Lemma 4.9 in the preprint.
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invariant np([M], [M], a; 0 — B) # 0 this value must be < 0. On the other
hand

Cvert(o':\) + Cvert(o'l_)\) = Cvert(o's\#o-’—/\) =0,
since the concatenation o\#o’ , is the canonical section in the product
M x S?: see [10]. Hence cyert(y) = 0 so that o} = o, and ¥(\) = 1® p for
some p € A. Therefore, there are classes B so that np([M], [M],pt;on—B) #
0 and we choose A from among them so that w(A) is a maximum. This

means that condition (iii) in Lemma 4.9 holds. Therefore the result follows
from Corollary 4.10. O

To prove (ii), suppose that (M,w) is weakly exact. We said before that
by the results of [11] we may choose o) so that both classes cyert and uy
vanish on it. For the sake of completeness, we will give this argument now.
Suppose first that c; vanishes on H5 (M) as well. Then there is only one
section class (up to equivalence) and we call it o). The argument in (i) above
shows that cyer+ must vanish on this class. Further, the moduli space My
of curves in this class must be compact (since there are no J-holomorphic
curves in M). Hence uy(oy) = 0 as well. Since ¥(A) = ¢l # 0 the result
follows.

When ¢; # 0 on H2S(M), we choose o) so that cyert(0y) = 0. As in
(i), we choose A so that w(A) is maximal among the classes B for which
np([M], [M],pt;on—B) # 0. The argument then continues either as in (i) or
as in the proof of Proposition 4.11. In particular, it shows that uy(c4) = 0.

|

When M = CP", we again choose oy so that cyer¢e(0r) = 0, so there
is no control over uy(cy). Because ¢i(L) = n + 1, where L = [CP!], and
—n < ¢yert(ox — B) < 0 whenever

(13) TLP([M],[M],C;O'A—B)#O, CEH*(M)a

there can be at most one class B = rL with nonzero invariant. Hence
¥()) has the form a ® "L, where a € Ho,(CP™) is homogeneous. Since
deg ¥(\) = 2n we must have r(n + 1) = n — k. Therefore

T((n+1)A) =a"V @M =q1, ¢eQ- {0},

since the hyperplane class b € QHy,,—2(CP™) satisfies the relation p(nt1) =
1®e L and a = ¢'b"F. Therefore, if Q — S denotes the fibration corre-
sponding to the loop (n + 1),

nQ([M]v [M], pt; U(n+1))\) #0.
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Again using the fact that c1(L) = n + 1 and taking 04 = 0(;,1)x, We find
that condition (ii) in Lemma 4.9 holds. Hence u(,;1)x(0(n+1)2) = 0 and the
result follows. Observe that in this case condition (i) in Lemma 4.9 also
holds for generic J on P since for each k > 1 the moduli space of curves in
P of class 04 — kL must vanish for reasons of dimension. O

Remark 4.14.

(1)

(i)

The above argument about CP™ applies to any manifold M for which
U(m(Ham)) is a finite subgroup of QHe,(M)*. Here we should as-
sume that M is not spherically monotone so that we always have
ux(ox) = 0. This was unnecessary for M = CP™ since ¢i(L) is so
large.

Lemma 4.7 shows that there is some nonsqueezing inequality for any
fibration (Py, ) — S? that has good sections, i.e., has ¥()\) = 1®u+x
for some p # 0. One cannot say anything for general fibrations Py —
S? unless the embedded ball is disjoint from one fiber. In the latter
case, one can make Py symplectically trivial by taking the fiber sum
with Py, and deduce that the radius r of any symplectic ball in (Pj, §2)
that misses a fiber is constrained by the inequality

7r? < area (Py, Q) + £ (\).

More generally, as suggested by Polterovich,?° one can consider non-
squeezing for fibrations

(Pg, Q) — D

with nontrivial boundary monodromy qz Completing these to symplec-
tically trivial fibrations over S? by adding a fibration with boundary
monodromy $—17 one finds that the radius r of any symplectic ball in
(Pg, ) satisfies

7r? < area (P5,Q) + 5 ().

Further, if the nonsqueezing theorem holds for all loops in Ham (M),
one has the inequality

mr? < area (Py, Q) + p ().

20Private communication.
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4.4. Weighted nonsqueezing and geodesics.

In this section we prove Proposition 1.18 and Corollary 1.19, and hence
complete the proof of Theorem 1.6.

Proof of Proposition 1.18. By hypothesis there are fibrations (Pxyy, {2) with
area < h/2. Apply the valuation v in (9) to the identity

T) % T(=A) = T(0) = 1,

as in the proof of Proposition 4.11. As there, because area (P, 2) < i/2,
the product  * 2’ cannot contain the term 1® e® with a nonzero coefficient.
Therefore for A’ equal to at least one of A or —\, ¥()\') has a term ¢pl® e?
with gg # 0 and 0 < w(B) < area (Py,2).
Set
e(N)=max{w(B):qg #0 in T(\)}, XN ==\

The equation ¥(A) * ¥(—A) = 1 implies that e(A\) = —e(—A). Moreover, by
Lemma 4.7, the radius r of any embedded ball in (Py/, Q) satisfies

7r? < area (Py, Q) — e(\).
Hence we may take e = —¢(\). O

Remark 4.15. The above argument uses only the first half of the proof
of Proposition 4.11 since it is not clear what hypothesis would guarantee
that the Claim holds, i.e. that an appropriate moduli space of sections
is compact. Although for each individual w-tame J the minimum energy
R(M,J) of a nontrivial J-holomorphic bubble is positive, the minimum of
R(M,J) over all such J will not in general be strictly positive since any
symplectically embedded 2-sphere is J-holomorphic for some tame J. We
cannot restrict ourselves to a compact set of J since we must consider all
loops A in 71 (Ham ), each of which gives rise to some 2-parameter family
of J on the fibers of Py. One might also try to establish nonsqueezing by
using Lemma 4.9 (iv). For this one would need a constant i > 0 such that
all vertical Gromov—Witten invariants np(u,v,w; B) vanish, where u,v,w
are arbitrary elements in H,(Py) and 0 < w(B) < h. Again, because we
are considering the Gromov—Witten invariants of an arbitrary fibration Py
rather than those of a compact manifold, it is not clear that such A exists.
Therefore, our present methods do not suffice to show that the nonsqueezing
theorem holds for all p-short loops.
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Proof of Corollary 1.19. If (v,v) is one of the pairs (p, p), (p¢, pf), we must

—~—

show that if a path v has v-length < i(M)/4 and minimizes v in Ham (M),
it is v-minimizing in Ham (M).

As in the proof of Lemma 1.16 we will carry out the argument for the
pair (p¢, pf). Suppose that v does not minimize p;. Then there are paths
d)ti from id to ¢ = 1! generated by Kti and ¢ > 0 such that

LHES) + L7(K) = £(7) =6 < L(7) = LT (Hy) + L7 (Hy).
As before, we may assume that:
LYK =LY (H) -8 < L£T(Hy), L (K;7)=L (H) -6+,

for some ¢’ > 0. Let A = 3 % (—v) as before so that P+ g = P\, Py - =
P_,. Then for small ¢

area (Py(),Q) = L(y)—9d8+¢e < L(y) < h/4,
area (P_»(g),Q0) = L(y)—0+0d +e<2L(y) < h/2.

By Proposition 1.18 there is k with |k| < h/2 such that embedded balls
satisfy

7r? < area(Py(¢),Q) + k, 7r? < area(P_y(g),Q) — k.

But, by construction, both (Py(g),2) and (P_x(g),2) contain embedded
balls of capacity mr? = L(y) > area (Py(¢),(2). Hence x > 0. Further,

L(y) < area(P\(£),Q)+rk = L(y)—0+ec+k
L(y) < area(P (£),Q)—k = L(y)—6+§+¢e—k.

Adding, we find 0 < —J 4 2¢. Since ¢ is positive and € can be arbitrarily
small, this is impossible. Hence result. [l

5. Estimating lengths of loops.
Let M, be the one point blow-up of CP?. We may think of this as the region
{(z1,22) € C?: a? < |z > + |2 < 1}

with boundaries collapsed along the Hopf flow, and give it the corresponding
symplectic form w,. We are considering the action

(z1,22) — (672””21, 672“”@), 0<t<1.
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It is not hard to check that its normalized Hamiltonian is

2(1 — ab)

H=n(c—|al*—|nl?), c= 31— db);

Since max H = m(c—a?) and —min H = m(1—c), we find max H > — min H
whenever a? < 1. (A similar example was given in Example 1.C in [17].)

The next task is to calculate QH.(M,). This ring is generated over A by
elements p = pt, the exceptional divisor F, the fiber class F' = L — E and
the fundamental class [M,]. (Here L = [CP'].) The quantum multiplication
has 1 = [M,] as a unit, and is derived from the following nontrivial Gromov—
Witten invariants:

n(A17A27A3;E) ==+1 where Az = F or F.

One finds

pxp = (E+F)e ¥  Exp = Foel

pxF = 1®e P, ExE = —p+EQeP+ilpe”
ExF = p—EQeF FxF = E®eF.

We will be particularly interested in the element Q = F ® e?/21F/4_ since,

as we shall see, this is the part of ¥(«) that is independent of the choice of
symplectic form w,. Note that

Q*Q:Q2:E®6F/2, Q_1:p®63F/4+E/2,
where the multiplication is *. Recall that v is defined by:

v (Z ap ®eB) = sup{w(B) : ap # 0}.

BeH

Lemma 5.1. v(QF) +v(Q%) > w(F) for all k > 1.

Proof. First consider v(Q™*),k > 1. The first few terms are

1 peSF/ATE/,
3 _ Foef/AER g/t B2
4

-4 = peel + 1
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We claim that for all m > 1 and 1 <17 <4,

(14) v(@Q M) 2 0(Q ).
To see this note that multiplication by p has the effect:

P E F 1

N
E+F F 1 p

Since all coefficients are positive, no terms can cancel. The p-term in Q%
contributes to the p-term in Q~*+4) with unchanged valuation via the cycle
p— E— F i+ 1+ p. Similarly, the F-term in Q™% contributes to the
F-term in Q% with unchanged valuation. Hence result.

Next consider Q¥, k > 0. The first few terms are

Q = F®el/2tr/A
Q? = E®ef?,
Q¥ = p@SF/ATE/2 _ | g 3F/AE/2

= pRel+E®el~F 41,
Q% = p®SF/AE2 g SFIABE2 | g oB2HF/4 g F/4-E/2,

O
=~
|

Thus the lemma holds for 1 <7 < 4 by inspection. We will write
Q" =p@Mp+E@Mp+F®Np+ 1@ A1,

where A\ . € A, and ). = 0 for £ < 0, and will prove that for all m > 1

V(Aivam,z) 2 v(Aip), i=2,3
V(Arpamr) > v(ALR),
V(Adram1) = v(Ag)-

In view of (14), this will prove the lemma.
Multiplying by F' has the following effect:

P E F 1
N
1 p—~FE E F

The term in F in QF comes either from the term in E in Q*~' or from the
term in F in Q*~!. The latter contribution traces directly back to the term
in F in QF* via multiplication by the term 1 in Q*. Hence its valuation
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is v(Ak—4,r), while the valuation of the former term is v(Ay—1,r) + w(F/4 —
E/2). Hence

U()\k,E) = max{v()\k,47E), 'U()‘kfl,E) + w(F/4 — E/Q)}

Therefore v(Ag g) > v(Ag—4,) provided that no terms cancel. Cancellations
could theoretically occur since the transition F +— E occurs with a — sign;
however we claim that they do not. To see this, it suffices to look at the
terms that contribute to Aoj4p, g. Since Q? is a multiple of E each term
that involves E in Q?T™ must involve some number of the period 4 cycle
E+— p+— 1+— F — FE interspersed with some £ — —F transitions. But
there must always be an even number of these transitions if we are to arrive
back at E after 4m multiplications. Therefore all the contributions to the
E term in Q?>T*™ occur with positive sign. This shows that the coefficients
Ak,e have the claimed behavior. Similar arguments prove the statements
about the other coefficients. O

Our next aim is to calculate ¥(«). This depends on wg, since wy(E) =
a?,wa(F) = 1—a?. The case when w,(F —2FE) = 1—3a? = 0 is special, since
in this case w, is a multiple of ¢1, i.e. (M, w,) is monotone. We will see that
when 3a? # 1 then ¥, = Qe®F'—2E) for an appropriate constant §. Since
c1(F—2E) = 0 the constant 6 = §(a) is determined by the requirement that
uq(0q) = 0. In fact, the exact value of § is irrelevant for our main argument
since we just need to estimate £1(ka) + 1 (—ka): see Corollary 5.4 below.

It turns out to be easier first to calculate ¥(\) where A = 2.2

Lemma 5.2. If 1 — 3a® # 0 then

(1—a?)?
12(1 4+ a?)(1 — 3a?)’

U(\) = E@ XF2E)FF2 0 yyhere § =

Proof. Since the circle action (z1,22) + (e 2™21,e 2™ 2y) preserves the
fibers of the projection M, — S?, the space Py fibers over S? x §? with
fiber S2. Let us denote the generators of Hz(S? x S?) by A = [S? x pt],0 =
[pt x S?]. Here we are thinking that the original fibration 7 : Py — S? is
the composite with projection pra to the second factor, so that lifts of o to
P, correspond to sections of the original fibration 7. It is then not hard to

see that the fibration over S2? x S2 has the form

71 : P(L®C) - §% x §?

2L A simpler way of doing these calculations is developed in [14].
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where ¢1(L) = A+ o. Further, this fibration has an obvious complex struc-
ture J as well as two natural J-holomorphic sections, Z_ with normal bundle
L~' and Z, with normal bundle L. Note that M, = 7, *(S% x pt). Moreover
the class of the exceptional divisor E in M, is represented by the intersection
Z_ N M,. To check this, recall that Py is made from the region RE above
the graph of H by collapsing the boundary 'y to a single fiber. Moreover,
the set of points Fi,,x where the Hamiltonian H takes its maximum is pre-
cisely the exceptional divisor, while the corresponding set Fi,i, where H is a
minimum is a complex line. It is not hard to see that in this realization the
sections Z; and Z_ corrrespond to the intersection of RIJ; with the slices
Fiin X [0,1] x R and Fiphax X [0,1] X R, respectively, where Z corresponds
to Fin because this slice has larger volume (with respect to Q%)

A dimension count shows that the only section classes o) + B that con-
tribute to W(\) are those with vertical Chern class cyert < 0. Let o denote a
lift to Z_ of the sphere [pt x S?], Then cyet(0—) = —1, and so the only classes
that could contribute () are o and o_ + E. Since cyere(oc- + E) = 0,
this class would contribute with coefficient

np, ([M,], [My],pt;o_ + E).

But this invariant is zero since all the J-holomorphic sections in class 0 + FE
lie in Z_ = S? x 52 and so do not meet an arbitrary point. (This follows
by positivity of intersections since Z_ is holomorphic and has “negative”
normal bundle.) For similar reasons, the J-holomorphic sections in class o_
also lie in Z_ and it is not hard to see that

np, ([M], [My],c;0-) =E - c.
It remains to calculate the canonical section class o). We claim that
ox=o0_+F/2+2(F — 2E)

for the ¢ given above. First observe that, as in [11] Example 3.1, the
cohomology ring H*(Py) is generated by the vertical Chern class v of
7 : P — S% x S? together with the pullbacks U1, 2 via mp of the two
obvious generators of H?(S? x S?). Thus

m(E) =1, v(E)= -1, m(F)=pa(F) =0, v(F)=2.

Clearly p? = 0. It is also not hard to see that v? = 2ujus. (As

in [11] Example 3.1, look at the Poincaré duals.) The vertical Chern
class cyere for Py — S? takes the value 1 on E and so is v + 2u1. But
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p1(o—) = 0. Therefore cyert(o— + F/2) = 0. Since cyert(F — 2E) = 0 and
ur(F — 2E) = wy(F — 2E) # 0 when 3a? # 1, o, must have the stated form
for some ¢. Now observe that

1—a? 1+a?

Uy =5 v+ 5 M1+ Ep2,

and use the fact that u3 = 0 to conclude e = —(1 —a?)?/6(1 + a?). Further,
because uy(0y) = 0 we must have € = 2§(3a® — 1), as required.
Finally, the fact that o_ = o) — F/2 — 26(F — 2E) implies

\I/(A) — E ® eF/Q—i—Q(S(F—QE)

as claimed. (Compare Seidel [22], where a similar calculation is made for
M, = 5% x §2)) O

Proposition 5.3. If 3a2 # 1, then ¥(a) = +F @ eP/2HF/4+0(F-2E) ypere
0 is as before.

Proof. We show that ¥(«) has the form E ® Ag + F ® A, i.e., that the
coefficients of p and 1 vanish. The desired result then follows by an easy
calculation, using our knowledge of (¥(a))2.

The action

e—27rz0

(21,22) — ( Z1,22)

permutes the lines through (0,0) € C2?. Hence its action on M, is the lift of
an action o* on the base S? of the obvious fibration M, — S2. It is easy to
see that a* is a rotation with two fixed points, one corresponding to the line
z1 = 0 (whose points are all fixed) and the other corresponding to z2 = 0.
Hence the fibration 7 : P, — S? factors as

P, 3 P,.335%

where P« is a one point blow up of S? and m; : P, — P, is a fibration with
fiber S2. All these spaces have natural complex structures that are preserved
by these maps. Further there are two natural sections Z1 of m; given by the
restricting the action « to the two canonical sections of M, — S? (the images
of the two boundary components of the region {a® < |z1|> + |z2|*> < 1}.)
The fibration my : Py — S? has two natural sections given by the two
fixed lines in M,. The exceptional divisor £* in P,, corresponds to the line



Geometric variants... 249

z1 = 0 which is pointwise fixed by «, while the other section L* has self
intersection +1. It follows that the fibration

7wy H(By) — §?

is holomorphically trivial: it has the form S? — P, — S? where 7 is the
induced action on the line z; = 0. On the other hand the fibration = :
T 1(L*) — 52 is nontrivial, and its total space is the one point blow up of
CP?. Indeed given any other line L € P,x, the total space 7] '(L) is also
the one point blow up of CP? with exceptional divisor Z_ N (m)~1(L).

Now observe that the coefficient of p in ¥(«) is nonzero only if there is a
nonzero invariant of the form np_ ([M.], [M.],[M.];0). Hence cyert(0) = —2
and o is represented (for generic J on P,) by isolated curves. The natural
complex structure on J, may not be regular for o. Nevertheless, since it is a
limit of generic structures, Gromov compactness implies that it would have
to contain some holomorphic representative of o which would be a section
S together perhaps with some bubbles in the fibers. Since each fiberwise
bubble has positive Chern class, this means that cyer(S) < —2. But such
a section S does not exist. It would have to project to a section Sy of
7y : Pyr — S%2. We cannot have Sy = E, since the only lifts of E, to P,
have cyert = —1. Thus S would have to be a line L in P,«, and, because
cvert(L) = 1, S would have to have self intersection —3 in 7, 1(52). This is
impossible since, as we saw above, 7 1(52) is the blow up of CP2.

A similar argument shows that the coefficient of 1 in ¥(«) must van-
ish. Otherwise there would be a section class o in P, with cyert = 0 with
holomorphic representatives through every point « € P,. Again these rep-
resentatives would have to be the union of a section S’ together with some
fiberwise bubbles. Hence if 71 (z) ¢ E,, S’ would have to project to a line L
in Py+. Such a line has one lift to a curve with cyery = 0, namely Wfl(L)ﬂZ,,
but such a lift does not exist through an arbitrary point. O

Corollary 5.4. r5(My,wa) = r5,(Ms,we) = w(F) = m(1 - a?).

Proof. m1(Ham (M,,w)) is isomorphic to Z with generator «. It follows from
Corollary 4.3 and Lemma 5.1 that when 3a% # 1

Flka) > Fplka) = p*(ka)+ 5t (—ka)
> ,U(lekJ(F—2E))+U(Q—ke—k5(F—2E))

= v(Q") +v(Q ") > w(F),
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where the second equality holds because the terms involving § cancel. But
the loop 2« is generated by the Hamiltonian

H =m(c—|z| - |23))

which has length 7(1 — a?) = w(F). Hence result.

This conclusion is still valid when 3a? = 1 since the inequality p(ka) >
w(F) still holds. Because it is uniform one can prove this by continuity
in a: the set of a for which this inequality does not hold must be open.
Alternatively, one can argue using the remarks after Corollary 4.3. O

Proof of Proposition 1.23. The above corollary shows that the loop 2 on
(M, w,) satisfies all the required conditions. O

Remark 5.5.

(i) It follows from [13, 4] that the circle action generated by K = —r|z?|
is also a p-minimizing representative of its homotopy class a. Thus

lila) =7 > £5(2a) =n(1—a?).

(ii) It is also interesting to try to understand the asymptotic growth of the
loops +a by calculating the limits of the one sided measures £ (ka)/k
as k — too for all values of a < 1. Polterovich showed in [17] that
in the monotone case ¢ (ka)/k > |I(p)] = 1/18 when k > 1 and
I is as in Remark 4.4, but his method gave nothing for k¥ — —oo.
Our methods extend his result for the case £ — oo to all values of
a, but also have no information about the limit as k — —oo. To see
this, note first that w(6(F — 2E)) > 0 for all a. The arguments in
Lemma 5.1 show that v(Q*) is bounded as k — oo when 3a% > 1
and grows as kw(F/4 — E/2)/3 for 3a* < 1. (This growth comes from
the cycle p — F' +— 1 — p that increases valuation by w(F/4 — E/2).)
Since w(F/4 — E/2)/3 < w(6(F — 2F)) for all a, v(¥(—ka)) - —o0
as k — oo. Thus we get no information on ¢*(—ka). On the other
hand, v(Q*) is either bounded, or, if 3a® < 1, grows as a multiple of
w(F/4 — E/2). Hence

(T (ka)/k > v(¥(ka))/k — oo as k— oo

for all a. See Polterovich [20] for a further discussion of this question.



[1]

2]

3]

[10]

[11]

[12]

[13]

Geometric variants... 251

References.

M. Abreu and D. McDuff, Topology of symplectomorphism groups of
rational ruled surfaces, Journ. of Amer. Math. Soc., 13, (2000) 971-
1009.

M. Bialy and L. Polterovich, Geodesics of Hofer’s metric on the group
of Hamiltonian diffeomorphisms, Duke J. Math., 76 (1994), 273-292.

Y. Eliashberg and L. Polterovich, Bi-invariant metrics on the group of
Hamiltonian diffeomorphisms, International Journal of Mathematics, 4
(1993), 727-38.

M. Entov, K-area, Hofer metric and geometry of conjugacy classes in
Lie groups, SG/0009111, to appear in Invent. Math.

H. Hofer, On the topological properties of symplectic maps, Proceedings
of the Royal Society of Edinburgh, 115 (1990), 25-38.

F. Lalonde and D. McDuff, The geometry of symplectic energy, Annals
of Mathematics, 141 (1995), 349-371.

F. Lalonde and D. McDuff, Hofer’s L*°-geometry: energy and stability
of Hamiltonian flows, parts I and II, Invent. Math., 122 (1995), 1-33
and 35-69.

F. Lalonde and D McDuff, Symplectic structures on fiber bundles,
SG/0010275, to appear in Topology.

F. Lalonde, D. McDuff and L. Polterovich, On the Fluz conjectures,
CRM Proceedings and Lecture Notes, 15 (1998), 69-85.

F. Lalonde, D. McDuff and L. Polterovich, Topological rigidity of Hamil-
tonian loops and quantum homology, Invent. Math., 135 (1999), 369-
385.

D. McDuff, Quantum homology of Fibrations over S?, International
Journal of Mathematics, 11 (2000), 665-721.

D. McDuff and D. Salamon, Introduction to Symplectic Topology, 2nd
edition, OUP, Oxford, UK, 1998.

D. McDuff and J. Slimowitz, Hofer-Zehnder capacity and length mini-
mizing Hamiltonian paths, SG/0101085, Geom. Topol., 5 (2001), 799-
830.



252

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

D. McDuff
D. McDuff and S. Tolman, Topological properties of Hamiltonian circle
actions, in preparation.

Yong-Geun Oh, Chain level Floer theory and Hofer’s geometry of the
Hamiltonian diffeomorphism group, SG/0104243,.

L. Polterovich, Gromov’s K-area and symplectic rigidity, Geometric and
Functional Analysis, 6 (1996), 726-39.

L. Polterovich, Hamiltonian loops and Arnold’s principle, Amer. Math.
Soc. Transl. (2), 180 (1997), 181-187.

L. Polterovich, Symplectic aspects of the first eigenvalue, Journ. fur die
Riene und angew. Math., 502 (1998), 1-17.

L. Polterovich, Hofer’s diameter and Lagrangian intersections, Intern.
Math. Res. Notices, 4 (1998), 217-223.

L. Polterovich, The Geometry of the group of symplectomorphisms,
Birkh&auser, 2001.

M. Schwarz, On the action spectrum for closed symplectially aspherical
manifolds, Pacific Journ. Math., 193 (2000), 419-461.

P. Seidel, 71 of symplectic automorphism groups and invertibles in quan-
tum cohomology rings, Geom. and Funct. Anal., 7 (1997), 1046-1095.

P. Seidel, On the length of Hamiltonian loops, preprint, 1997.

C. Viterbo, Symplectic topology as the geometry of generating functions,
Mathematische Annalen, 292 (1992), 685-710.

STATE UNIVERSITY OF NEW YORK
STONY BROOK, NY 11794-3651
E-mail address: dusa@math.sunysb.edu

RECEIVED MARCH 12, 2001 AND REVISED JANUARY 5, 2002.



