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Abstract
We consider several models of the damped oscillators in nonrelativistic quantum me-

chanics in a framework of a general approach to the dynamics of the time-dependent
Schrödinger equation with variable quadratic Hamiltonians. The Green functions are
explicitly found in terms of elementary functions and the corresponding gauge trans-
formations are discussed. The factorization technique is applied to the case of a shifted
harmonic oscillator. The time evolution of the expectation values of the energy-related
operators is determined for two models of the quantum damped oscillators under con-
sideration. The classical equations of motion for the damped oscillations are derived for
the corresponding expectation values of the position operator.

2000 MSC: 81Q05, 35C05, 42A38

1 Introduction

We continue an investigation of the one-dimensional Schrödinger equations with variable
quadratic Hamiltonians of the form

i
∂ψ

∂t
= −a(t)

∂2ψ

∂x2
+ b(t)x2ψ − i

(
c(t)x

∂ψ

∂x
+ d(t)ψ

)
, (1.1)

where a(t), b(t), c(t), and d(t) are real-valued functions of time t only; see [8, 9, 22, 23, 25,
34, 35, 36] for a general approach and currently known explicit solutions. Here we discuss
elementary cases related to the models of damped oscillators. The corresponding Green
functions, or Feynman’s propagators, can be found as follows [8, 35]:

ψ = G(x, y, t) =
1√

2πiµ(t)
ei(α(t)x2+β(t)xy+γ(t)y2), (1.2)

where

α(t) =
1

4a(t)
µ′(t)
µ(t)

− d(t)
2a(t)

, (1.3)

β(t) = −h(t)
µ(t)

, h(t) = exp
(
−
∫ t

0

(
c(τ)− 2d(τ)

)
dτ

)
, (1.4)

γ(t) =
a(t)h2(t)
µ(t)µ′(t)

+
d(0)
2a(0)

− 4
∫ t

0

a(τ)σ(τ)h2(τ)(
µ′(τ)

)2 dτ, (1.5)
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and the function µ(t) satisfies the characteristic equation

µ′′ − τ(t)µ′ + 4σ(t)µ = 0 (1.6)

with

τ(t) =
a′

a
− 2c+ 4d, σ(t) = ab− cd+ d2 +

d

2

(
a′

a
− d′

d

)
(1.7)

subject to the initial data

µ(0) = 0, µ′(0) = 2a(0) 6= 0. (1.8)

More details can be found in [8, 35]. The corresponding Hamiltonian structure is discussed
in [9].

The simple harmonic oscillator is of interest in many advanced quantum problems [16, 21,
26, 32]. The forced harmonic oscillator was originally considered by Richard Feynman in his
path integrals approach to the nonrelativistic quantum mechanics [12, 13, 14, 15, 16]; see also
[23]. Its special and limiting cases were discussed by many authors; see [6, 17, 19, 24, 26, 38]
for the simple harmonic oscillator and [1, 7, 18, 27, 31] for the particle in a constant external
field and references therein.

The damped oscillations have been analyzed to a great extent in classical mechanics;
see, for example, [5, 20]. In the present paper we consider the time-dependent Schrödinger
equation

i
∂ψ

∂t
= Hψ (1.9)

with the following non-self-adjoint Hamiltonians

H = H1 =
ω0

2
(
p2 + x2

)
− λpx (1.10)

and

H = H2 =
ω0

2
(
p2 + x2

)
− λxp, (1.11)

where p = −i∂/∂x, as quantum analogs of the damped oscillator. A related self-adjoint
Hamiltonian

H = H0 =
ω0

2
(
p2 + x2

)
− λ

2
(px+ xp) (1.12)

is also analyzed. Although discussion of a quantum damped oscillator is usually missing in the
standard classical textbooks [21, 26, 32] among others, we believe that the models presented
here have a significant value from the pedagogical and mathematical points of view. For
instance, one of these models was crucial for our understanding of a “hidden” symmetry of
the quadratic propagators in [9]. Moreover, our models show that fundamentals of quantum
mechanics, such as evolution of the expectation values of operators and Ehrenfest’s theorem,
can be extended to the case of non-self-adjoint Hamiltonians. This provides, in our opinion,
a somewhat better understanding of the mathematical foundations of quantum mechanics
and can be used in the classroom.

The paper is organized as follows. In Section 2 we derive the propagators for the models
of the damped oscillator (1.10) and (1.11) following the method of [8]. The corresponding
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gauge transformations are discussed in Section 3. The next section is concerned with the
separation of the variables for related model of a “shifted” linear harmonic oscillator (1.12).
The factorization technique is applied to this oscillator in Section 5. The time evolution of the
expectation values of the energy-related operators is determined for these quantum damped
oscillators in Section 6. The classical equations for the damped oscillations are derived for
the expectation values of the position operator in the next section. One more model of the
damped oscillator with a variable quadratic Hamiltonian is introduced in Section 8. The last
section contains some remarks on the momentum representation.

2 The first two models

For the time-dependent Schrödinger equation

i
∂ψ

∂t
=
ω0

2

(
− ∂2ψ

∂x2
+ x2ψ

)
+ iλ

(
x
∂ψ

∂x
+ ψ

)
(2.1)

with a = b = ω0/2 and c = d = −λ, the characteristic equation (1.6) takes the form of the
classical equation of motion for the damped oscillator [5, 20]:

µ′′ + 2λµ′ + ω2
0µ = 0, (2.2)

whose suitable solution is

µ =
ω0

ω
e−λt sinωt, ω =

√
ω2

0 − λ2 > 0. (2.3)

The corresponding propagator is given by

G(x, y, t) =

√
ωeλt

2πiω0 sinωt
exp

(
iω

2ω0 sinωt
((
x2 + y2

)
cosωt− 2xy

))
× exp

(
iλ

2ω0

(
x2 − y2

))
.

(2.4)

Indeed, directly from (1.3)–(1.4),

α(t) =
ω cosωt+ λ sinωt

2ω0 sinωt
, β(t) = − ω

ω0 sinωt
. (2.5)

The integral in (1.5) can be evaluated with the help of a familiar antiderivative∫
dt

(A cos t+B sin t)2
=

sin t
A(A cos t+B sin t)

+ C. (2.6)

It gives

γ(t) =
ω cosωt− λ sinωt

2ω0 sinωt
(2.7)

with the help of the identity

ω2 − ω2
0 sin2 ωt = ω2 cos2 ωt− λ2 sin2 ωt (2.8)
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and the propagator (2.4) is verified. A “hidden” symmetry of this propagator is discussed in
[9].

The time-evolution of the squared norm of the wave function is given by∥∥ψ(x, t)
∥∥2 =

∫ ∞
−∞

∣∣ψ(x, t)
∣∣2 dx = eλt

∥∥ψ(x, 0)
∥∥2
. (2.9)

It is derived in Section 6 among other things. We have discussed here the case ω2
0 > λ2. Two

more cases, when ω2
0 = λ2 and ω2

0 < λ2, are similar and the details are left to the reader.
In a similar fashion, the time-dependent Schrödinger equation of the form

i
∂ψ

∂t
=
ω0

2

(
− ∂2ψ

∂x2
+ x2ψ

)
+ iλx

∂ψ

∂x
, (2.10)

with a = b = ω0/2 and c = −λ, d = 0, has the characteristic equation

µ′′ − 2λµ′ + ω2
0µ = 0 (2.11)

with the solution

µ =
ω0

ω
eλt sinωt, ω =

√
ω2

0 − λ2 > 0. (2.12)

The corresponding propagator is given by

G(x, y, t) =

√
ωe−λt

2πiω0 sinωt
exp

(
iω

2ω0 sinωt
((
x2 + y2

)
cosωt− 2xy

))
× exp

(
iλ

2ω0

(
x2 − y2

)) (2.13)

and the evolution of the squared norm is∥∥ψ(x, t)
∥∥2 = e−λt

∥∥ψ(x, 0)
∥∥2
. (2.14)

The solution of the Cauchy initial value problem

i
∂ψ

∂t
= Hψ, ψ(x, 0) = χ(x) (2.15)

for our models (2.1) and (2.10) is given by the superposition principle in an integral form

ψ(x, t) =
∫ ∞
−∞

G(x, y, t)χ(y) dy (2.16)

for a suitable initial function χ on R; a rigorous proof is given in [35].

3 The gauge transformations

The time-dependent Schrödinger equation

i
∂ψ

∂t
=
(
ω0

2
(p−A)2 + U + (p−A)V +W (p−A)

)
ψ, (3.1)



Damped oscillators in quantum mechanics 5

where p = i−1∂/∂x is the linear momentum operator and A = A(x, t), U = U(x, t), V =
V (x, t), W = W (x, t) are real-valued functions, with the help of the gauge transformation

ψ = e−if(x,t)ψ̃ (3.2)

can be transformed into a similar form

i
∂ψ̃

∂t
=
(
ω0

2
(p− Ã)2 + Ũ + (p− Ã)Ṽ + W̃ (p− Ã)

)
ψ̃ (3.3)

with the new vector and scalar potentials given by

Ã = A+
∂f

∂x
, Ũ = U − ∂f

∂t
, Ṽ = V, W̃ = W. (3.4)

Here we consider the one-dimensional case only and may think of f as being an arbitrary
complex-valued differentiable function. Also, the Hamiltonian in the right-hand side of equa-
tion (3.1) is not assumed to be self-adjoint; see [21, 26] for discussion of the traditional case,
when V = W ≡ 0.

An interesting special case of the gauge transformation related to this paper is given by

A = 0, U =
ω0

2
x2, V = −λx, W = 0, f =

iλt

2
, (3.5)

Ã = 0, Ũ =
ω0

2
x2 − iλ

2
, Ṽ = −λx, W̃ = 0, (3.6)

when the new Hamiltonian is

H̃ =
ω0

2
(p− Ã)2 + Ũ + pṼ =

ω0

2

(
− ∂2

∂x2
+ x2

)
+ i

λ

2

(
2x

∂

∂x
+ 1
)
, (3.7)

and equation (2.1) takes the form

i
∂ψ

∂t
=
ω0

2

(
− ∂2ψ

∂x2
+ x2ψ

)
+ i

λ

2

(
2x
∂ψ

∂x
+ ψ

)
. (3.8)

The corresponding Green function is given by

G(x, y, t) =
√

ω

2πiω0 sinωt
exp

(
iω

2ω0 sinωt
((
x2 + y2

)
cosωt− 2xy

))
× exp

(
iλ

2ω0

(
x2 − y2

))
, ω =

√
ω2

0 − λ2 > 0,
(3.9)

and the norm of the wave function is conserved with time. This can be established once again
directly from our equations (1.2)–(1.8). We leave the details to the reader. A traditional
method of separation of the variables and using the Mehler formula for Hermite polynomials
is discussed in the next section. The factorization technique is applied to this Hamiltonian
in Section 5.

Equation (3.8), in turn, admits another local gauge transformation:

A = 0, U =
ω0

2
x2, V = W = −λx

2
, f = −λx

2

2ω0
, (3.10)

Ã = −λx
ω0
, Ũ =

ω0

2
x2, Ṽ = W̃ = −λx

2
(3.11)
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and the Hamiltonian becomes

H̃ =
ω0

2
(p− Ã)2 + Ũ + (p− Ã)Ṽ + W̃ (p− Ã)

=
ω0

2

(
p+

λx

ω0

)2

+
ω0

2
x2

+
(
p+

λx

ω0

)(
− λx

ω0

)
+
(
− λx

ω0

)(
p+

λx

ω0

)
=
ω0

2
p2 +

ω2
0 − λ2

2ω0
x2.

(3.12)

As a result, equation (3.8) takes the form of equation for the harmonic oscillator:

i
∂ψ

∂t
=
ω0

2

(
− ∂2ψ

∂x2
+
ω2

ω2
0

x2ψ

)
, ω2 = ω2

0 − λ2 > 0 (3.13)

and can be solved, once again, by the traditional method of separation of the variables or
by the factorization technique.

4 Separation of variables for a shifted harmonic oscillator

We will refer to the case (3.8) as one of a shifted linear harmonic oscillator. The Ansatz

ψ(x, t) = e−iEtϕ(x) (4.1)

in the time-dependent Schrödinger equation results in the stationary Schrödinger equation

Hϕ = Eϕ (4.2)

with the Hamiltonian (3.7). The last equation, namely,

−ϕ′′ + x2ϕ+
iλ

ω0
(2xϕ′ + ϕ) =

2E
ω0
ϕ, (4.3)

with the help of the substitution

ϕ = exp
(
iλx2

2ω0

)
u(x) (4.4)

is reduced to the equation

−u′′ + ω2

ω2
0

x2u =
2E
ω0
u. (4.5)

The change of the variable

u(x) = v(ξ), x = ξ

√
ω0

ω
(4.6)

gives us the stationary Schrödinger equation for the simple harmonic oscillator [21, 26, 29, 32]:

v′′ +
(
2ε− ξ2

)
v = 0 (4.7)
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with ε = E/ω, whose eigenfunctions are given in terms of the Hermite polynomials

vn = Cne
−ξ2/2Hn(ξ), (4.8)

and the corresponding eigenvalues are

εn = n+
1
2
, En = ω

(
n+

1
2

)
(n = 0, 1, 2, . . .). (4.9)

Thus the normalized wave functions of our shifted oscillator (3.8) are given by

ψn(x, t) = e−iω(n+1/2)tϕn(x), (4.10)

where

ϕn(x) = Cn exp
(
iλx2

2ω0

)
e−ξ

2/2Hn(ξ), ξ = x

√
ω

ω0
(4.11)

and ∣∣Cn∣∣2 =
√

ω

ω0

1√
π2nn!

(4.12)

in view of the orthogonality relation∫ ∞
−∞

ϕ∗n(x)ϕm(x) dx = δnm. (4.13)

We use the star for complex conjugate.
Solution of the initial value problem (2.15) can be found by the superposition principle

in the form

ψ(x, t) =
∞∑
n=0

cn ψn(x, t), (4.14)

where

ψ(x, 0) = χ(x) =
∞∑
n=0

cn ϕn(x) (4.15)

and

cn =
∫ ∞
−∞

ϕ∗n(y)χ(y) dy (4.16)

in view of the orthogonality property (4.13). Substituting (4.16) into (4.14) and changing
the order of the summation and integration, one gets

ψ(x, t) =
∫ ∞
−∞

G(x, y, t)χ(y) dy, (4.17)

where the Green function is given as the eigenfunction expansion:

G(x, y, t) =
∞∑
n=0

e−iω(n+1/2)tϕn(x)ϕ∗n(y). (4.18)

This infinite series is summable with the help of the Poisson kernel for the Hermite polyno-
mials (Mehler’s formula) [30]:

∞∑
n=0

Hn(x)Hn(y)
2nn!

rn =
1√

1− r2
exp

(
2xyr −

(
x2 + y2

)
r2

1− r2

)
, |r| < 1. (4.19)

The result is given, of course, by equation (3.9).
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5 The factorization method for shifted harmonic oscillator

It is worth applying the well-known factorization technique (see, e.g., [2, 3, 4, 10, 26]) to the
Hamiltonian (3.7). The corresponding ladder operators can be found in the forms

a = (α+ iβ)x+ γ
∂

∂x
, (5.1)

a† = (α− iβ)x− γ ∂
∂x
, (5.2)

where α, β, and γ are real numbers to be determined as follows. One gets

aa†ψ = (α2 + β2)x2ψ + (α− iβ)γψ − 2iβγx
∂ψ

∂x
− γ2∂

2ψ

∂x2
, (5.3)

a†aψ = (α2 + β2)x2ψ − (α+ iβ)γψ − 2iβγx
∂ψ

∂x
− γ2∂

2ψ

∂x2
, (5.4)

whence(
aa† − a†a

)
ψ = 2αγψ (5.5)

and

1
2
(
aa† + a†a

)
ψ = −γ2∂

2ψ

∂x2
+
(
α2 + β2

)
x2ψ − iβγ

(
2x
∂ψ

∂x
+ ψ

)
. (5.6)

The canonical commutation relation occurs and the Hamiltonian (3.7) takes the standard
form

H =
ω

2
(
aa† + a†a

)
, (5.7)

if

2αγ = 1, ω
(
α2 + β2

)
= ωγ2 =

1
2
ω0, ωβγ = −1

2
λ. (5.8)

The relation ω2
0 = ω2 +λ2, which defines the new oscillator frequency, holds. As a result, the

explicit form of the annihilation and creation operators is given by

√
2a =

(√
ω

ω0
− iλ
√
ω0ω

)
x+

√
ω0

ω

∂

∂x
, (5.9)

√
2a† =

(√
ω

ω0
+

iλ
√
ω0ω

)
x−

√
ω0

ω

∂

∂x
. (5.10)

The special case λ = 0 and ω = ω0 gives a traditional form of these operators.
The oscillator spectrum (4.9) and the corresponding stationary wave functions (4.11) can

be obtained now in a standard way by using the Heisenberg-Weyl algebra of the rasing and
lowering operators. In addition, the n-dimensional oscillator wave functions form a basis of
the irreducible unitary representation of the Lie algebra of the noncompact group SU(1, 1)
corresponding to the discrete positive series Dj+; see [25, 28, 33]. Our operators (5.9)–(5.10)
allow us to extend these group-theoretical properties for the case of the shifted oscillators.
We leave the details to the reader.
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6 Dynamics of energy-related expectation values

The expectation value of an operator A in quantum mechanics is given by the formula

〈A〉 =
∫ ∞
−∞

ψ∗(x, t)A(t)ψ(x, t) dx, (6.1)

where the wave function satisfies the time-dependent Schrödinger equation

i
∂ψ

∂t
= Hψ. (6.2)

The time derivative of this expectation value can be written as

i
d

dt
〈A〉 = i

〈
∂A

∂t

〉
+
〈
AH −H†A

〉
, (6.3)

where H† is the Hermitian adjoint of the Hamiltonian operator H. Our formula is a simple
extension of the well-known expression [21, 26, 32] to the case of a non-self-adjoint Hamilto-
nian.

We apply formula (6.3) to the Hamiltonian

H =
ω0

2
(
p2 + x2

)
− λpx, p = −i ∂

∂x
(6.4)

in equation (2.1). A few examples will follow. In the case of the identity operator A = 1, one
gets

AH −H†A = λ(xp− px) = iλ (6.5)

by the Heisenberg commutation relation

[x, p] = xp− px = i. (6.6)

As a result,

d

dt
‖ψ‖2 = λ‖ψ‖2, (6.7)

and time evolution of the squared norm of the wave function for our model of the damped
quantum oscillator is given by equation (2.9).

In a similar fashion, if A = H, then

H2 −H†H =
(
H −H†

)
H = iλH, (6.8)

and

d

dt
〈H〉 = λ〈H〉, 〈H〉 = 〈H〉0eλt. (6.9)

Moreover,

d

dt

〈
Hn
〉

= λ
〈
Hn
〉
,
〈
Hn
〉

=
〈
Hn
〉
0
eλt

(
n = 0, 1, 2, . . .

)
, (6.10)

which unifies both of the previous cases.
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Now we choose A = p2, A = x2 and A = px + xp, respectively, in order to obtain the
following system:

d

dt

〈
p2
〉

= 3λ
〈
p2
〉
− ω0〈px+ xp〉,

d

dt

〈
x2
〉

= −λ
〈
x2
〉

+ ω0〈px+ xp〉,

d

dt

〈
px+ xp

〉
= 2ω0

(〈
p2
〉
−
〈
x2
〉)

+ λ〈px+ xp〉.

(6.11)

Indeed,

p2H −H†p2 =
ω0

2
[
p2, x2

]
+ λ
[
x, p3

]
= 3iλp2 − iω0(px+ xp), (6.12)

x2H −H†x2 =
ω0

2
[
x2, p2

]
− λx[x, p]x = iω0(px+ xp)− iλx2, (6.13)

and

(px+ xp)H −H†(px+ xp)

=
ω0

2
([
p, x3

]
+
[
x, p3

])
+
ω0

2
(
p[x, p]p− x[x, p]x

)
+ λ

(
(xp)2 − (px)2

)
= 2iω0

(
p2 − x2

)
+ iλ(px+ xp),

(6.14)

which results in (6.11).
The system can be solved explicitly, thus providing the complete dynamics of these ex-

pectation values. The eigenvalues are given by r0 = λ, r± = λ± 2iω and the corresponding
linearly independent eigenvectors are

x0 =

ω0

ω0

2λ

 , x± =

 (λ± iω)2

ω2
0

2ω0(λ± iω)

 (6.15)

with the determinant∣∣∣∣∣∣∣
ω0 (λ+ iω)2 (λ− iω)2

ω0 ω2
0 ω2

0

2λ 2ω0(λ+ iω) 2ω0(λ− iω)

∣∣∣∣∣∣∣ = −8iω2
0ω

3 6= 0. (6.16)

The general solution of the system (6.11) can be obtained in a complex form
〈
p2
〉〈

x2
〉

〈px+ xp〉

 = C0e
λt

ω0

ω0

2λ

+ C+e
(λ+2iω)t

 (λ+ iω)2

ω2
0

2ω0(λ+ iω)


+ C−e

(λ−2iω)t

 (λ− iω)2

ω2
0

2ω0(λ− iω)

 ,

(6.17)



Damped oscillators in quantum mechanics 11

where C0 and C± are constants. The corresponding solution of the initial value problem is
given by

〈
p2
〉〈

x2
〉

〈px+ xp〉

 =
1

2ω2

(
ω0

(〈
p2
〉
0

+
〈
x2
〉
0

)
− λ〈px+ xp〉0

)
eλt

ω0

ω0

2λ


+

1
2ω2

(
λ

ω0
〈px+ xp〉0 +

ω2 − λ2

ω2
0

〈
x2
〉
0
−
〈
p2
〉
0

)

× eλt


(
λ2 − ω2

)
cos 2ωt− 2λω sin 2ωt
ω2

0 cos 2ωt
2λω0 cos 2ωt− 2ω0ω sin 2ωt


+

1
2ω0ω

(
〈px+ xp〉0 −

2λ
ω0

〈
x2
〉
0

)
× eλt

2λω cos 2ωt+
(
λ2 − ω2

)
sin 2ωt

ω2
0 sin 2ωt

2ω0ω cos 2ωt+ 2λω0 sin 2ωt

 .

(6.18)

The mechanical energy operator E can be conveniently introduced as the Hamiltonian of
our shifted linear harmonic oscillator (3.7):

E = H0 =
ω0

2
(
p2 + x2

)
− λ

2
(px+ xp), (6.19)

so that

H = H0 + i
λ

2
. (6.20)

Then

d

dt
〈E〉 =

ω0

2

(
d

dt

〈
p2
〉

+
d

dt

〈
x2
〉)
− λ

2
d

dt
〈px+ xp〉

= λ

〈
ω0

2
(
p2 + x2

)
− λ

2
(px+ xp)

〉 (6.21)

with the help of our system (6.11). Therefore,

d

dt
〈E〉 = λ〈E〉, 〈E〉 = 〈E〉0eλt (6.22)

for the expectation value of the mechanical energy of the damped oscillator under consider-
ation.

The case of the second Hamiltonian,

H =
ω0

2
(
p2 + x2

)
− λxp = H0 − i

λ

2
, (6.23)

which is the Hermitian adjoint of the Hamiltonian (6.4), is similar. Here

Hn+1 −H†Hn =
(
H −H†

)
Hn = λ[p, x]Hn = −iλHn



12 R. Cordero-Soto, E. Suazo, and S. K. Suslov

and

d

dt

〈
Hn
〉

= −λ
〈
Hn
〉
,
〈
Hn
〉

=
〈
Hn
〉
0
e−λt (n = 0, 1, 2, . . .). (6.24)

Moreover,

p2H −H†p2 =
ω0

2
[
p2, x2

]
+ λp[x, p]p = iλp2 − iω0(px+ xp), (6.25)

x2H −H†x2 =
ω0

2
[
x2, p2

]
+ λ
[
p, x3

]
= −3iλx2 + iω0(px+ xp), (6.26)

(px+ xp)H −H†(px+ xp) =
ω0

2
([
p, x3

]
+
[
x, p3

])
+
ω0

2
(
p[x, p]p− x[x, p]x

)
− λ
(
(xp)2 − (px)2

)
= 2iω0

(
p2 − x2

)
− iλ(px+ xp),

(6.27)

and the corresponding system has the form

d

dt

〈
p2
〉

= λ
〈
p2
〉
− ω0〈px+ xp〉,

d

dt

〈
x2
〉

= −3λ
〈
x2
〉

+ ω0〈px+ xp〉,

d

dt
〈px+ xp〉 = 2ω0

(〈
p2
〉
−
〈
x2
〉)
− λ〈px+ xp〉.

(6.28)

The change p ↔ x, λ → −λ, ω0 → −ω0 transforms formally this system back into (6.11).
This observation allows us to obtain solution of the initial value problem from the previous
solution given by (6.18). For the mechanical energy operator E introduced by equation (6.19),
one gets

d

dt
〈E〉 = −λ〈E〉, 〈E〉 = 〈E〉0e−λt (6.29)

with the help of (6.28).
The case of a general variable quadratic Hamiltonian of the form

H = a(t)p2 + b(t)x2 + c(t)px+ d(t)xp, (6.30)

where a(t), b(t), c(t), d(t) are real-valued functions of time only, is considered in a similar
fashion. One gets

Hn+1 −H†Hn =
(
H −H†

)
Hn = (c− d)[p, x]Hn = i(d− c)Hn (6.31)

and

d

dt

〈
Hn
〉

=
〈
∂Hn

∂t

〉
+
(
d(t)− c(t)

)〈
Hn
〉
. (6.32)

The cases n = 0 and n = 1 result in

〈1〉 = 〈1〉0 exp
(∫ t

0

(
d(τ)− c(τ)

)
dτ

)
(6.33)
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and

d

dt
〈H〉 =

〈
∂H

∂t

〉
+
(
d(t)− c(t)

)
〈H〉, (6.34)

respectively.
Moreover,

p2H −H†p2 = b
[
p2, x2

]
+ c
[
p3, x

]
+ dp[p, x]p = −i(3c+ d)p2 − 2ib(px+ xp), (6.35)

x2H −H†x2 = a
[
x2, p2

]
+ cx[x, p]x+ d

[
x3, p

]
= i(3d+ c)x2 + 2ia(px+ xp), (6.36)

(px+ xp)H −H†(px+ xp) = a
([
x, p3

]
+ p[x, p]p

)
+ b
([
p, x3

]
+ x[p, x]x)

+ (c− d)
(
(px)2 − (xp)2

)
= 4iap2 − 4ibx2 − i(c− d)(px+ xp),

(6.37)

and the corresponding system has the form

d

dt

〈
p2
〉

= −(3c+ d)
〈
p2
〉
− 2b〈px+ xp〉,

d

dt

〈
x2
〉

= (c+ 3d)
〈
x2
〉

+ 2a〈px+ xp〉,

d

dt
〈px+ xp〉 = 4a

〈
p2
〉
− 4b

〈
x2
〉

+ (d− c)〈px+ xp〉.

(6.38)

We have used the familiar identities

[x, p] = i, (xp)2 − (px)2 = i(px+ xp), (6.39)[
x2, p2

]
= 2i(px+ xp),

[
x, p3

]
= 3ip2,

[
x3, p

]
= 3ix2 (6.40)

once again.

7 A relation with the classical damped oscillations

Application of formula (6.3) to the position x and momentum p operators allows to modify
the Ehrenfest theorem [11, 26, 32] for the models of damped oscillators under consideration.
For the Hamiltonian (6.4), one gets

xH −H†x =
ω0

2
[
x, p2

]
= iω0p, (7.1)

pH −H†p =
ω0

2
[
p, x2

]
+ λ
[
x, p2

]
= −iω0x+ 2iλp (7.2)

and

d

dt
〈x〉 = ω0〈p〉,

d

dt
〈p〉 = −ω0〈x〉+ 2λ〈p〉. (7.3)

Elimination of the expectation value 〈p〉 from this system results in

d2

dt2
〈x〉 − 2λ

d

dt
〈x〉+ ω2

0〈x〉 = 0, (7.4)

which is a classical equation of motion for a damped oscillator [5, 20].
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For the second Hamiltonian (6.23), we obtain

d

dt
〈x〉 = ω0〈p〉 − 2λ〈x〉, d

dt
〈p〉 = −ω0〈x〉, (7.5)

which gives

d2

dt2
〈x〉+ 2λ

d

dt
〈x〉+ ω2

0〈x〉 = 0 (7.6)

in a similar fashion.
Finally, our model of the shifted harmonic oscillator (3.8), when the Hamiltonian is given

by (6.19), results in

d2

dt2
〈x〉+

(
ω2

0 − λ2
)
〈x〉 = 0. (7.7)

We leave the details to the reader.

8 The third model

For the time-dependent Schrödinger equation with variable quadratic Hamiltonian:

i
∂ψ

∂t
=
ω0

2

(
− e−2λt∂

2ψ

∂x2
+ e2λtx2ψ

)
, (8.1)

where a = (ω0/2)e−2λt, b = (ω0/2)e2λt and c = d = 0, the characteristic equation takes the
form (2.2) with the same solution (2.3). The corresponding propagator has the form (1.2)
with

α(t) =
ω cosωt− λ sinωt

2ω0 sinωt
e2λt, (8.2)

β(t) = − ω

ω0 sinωt
eλt, (8.3)

γ(t) =
ω cosωt+ λ sinωt

2ω0 sinωt
. (8.4)

This can be derived directly from equations (1.2)–(1.8) with the help of identity (2.8). We
leave the details to the reader. It is worth noting that equation (8.1) can be obtained by
introducing a variable unit of length x→ xeλt in the Hamiltonian of the linear oscillator.

9 Momentum representation

The time-dependent Schrödinger equations for the damped oscillators are also solved in the
momentum representation. One can easily verify that under the Fourier transform our first
Hamiltonian (6.4) takes the form of the second Hamiltonian (6.23) with λ → −λ and vice
versa (see, e.g., [9] for more details). Moreover, the inverses of the corresponding time evolu-
tion operators are obtained by the time reversal. Therefore, all identities of the commutative
evolution diagram introduced in [9] for the modified oscillators are also valid for the quantum
damped oscillators under consideration. We leave further details to the reader.
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