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Abstract. We introduce a simple, self-dual, rational, and C2-cofinite
vertex operator algebra of CFT-type associated with a Zk-code for k ≥ 2. Our

argument is based on the Zk-symmetry among the simple current modules for
the parafermion vertex operator algebra K(sl2, k). We show that it is naturally
realized as the commutant of a certain subalgebra in a lattice vertex operator
algebra. Furthermore, we construct all the irreducible modules inside a module

for the lattice vertex operator algebra.

1. Introduction.

The parafermion vertex operator algebraK(g, k) associated with a finite dimensional

simple Lie algebra g and a positive integer k is by definition the commutant of the

Heisenberg vertex operator algebra generated by the Cartan subalgebra of g in Lĝ(k, 0),

where Lĝ(k, 0) is the simple affine vertex operator algebra associated with the affine

Kac–Moody Lie algebra ĝ at level k. In the case where g = sl2 and k ≥ 2, K(sl2, k)

is isomorphic to a minimal series principal W -algebra of type A which is a simple, self-

dual, rational, and C2-cofinite vertex operator algebra of CFT-type [2], and has exactly

k simple currents M j , j ∈ Zk, with Zk-symmetry. That is, those simple currents form

a cyclic group of order k with respect to the fusion product, M i ⊠M0 M j = M i+j for

i, j ∈ Zk with M0 = K(sl2, k).

In this article we introduce a vertex operator algebra MD associated with a Zk-code

D of lenght ℓ. Here, a Zk-code D is an additive subgroup of (Zk)
ℓ. For each codeword

ξ = (ξ1, . . . , ξℓ) ∈ D, we associate the tensor product Mξ = Mξ1 ⊗ · · · ⊗Mξℓ of simple

current K(sl2, k)-modules Mξr , 1 ≤ r ≤ ℓ. Then the direct sum

MD =
⊕
ξ∈D

Mξ

has a structure of an abelian intertwining algebra [14, Theorem 4.1]. Furthermore,

MD becomes a vertex operator algebra if each Mξ has integral conformal weight [14,

Theorem 4.2]. Being a D-graded simple current exrension of M0 = K(sl2, k)
⊗ℓ, the

vertex operator algebra MD is simple, self-dual, rational, C2-cofinite, and of CFT-type

with central charge 2ℓ(k − 1)/(k + 2) (Theorem 7.3). Such a construction of MD was

initiated in [35] for the case k = 2, and the properties of the vertex operator algebra

MD for k = 2 have been studied extensively, see [6], [31], [36], [37] and the references
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therein. The vertex operator algebra MD for k = 3 was constructed by a slightly different

method in [23], and its irreducible modules were studied in [25].

We realize the vertex operator algebra MD inside a vertex operator algebra VΓD

associated with a certain positive definite even lattice ΓD. Moreover, every irreducible

MD-module is explicitly described inside a module for the lattice vertex operator algebra

VΓD
.

More precisely, consider the lattice vertex operator algebra V√
2Ak−1

, which is an

extension of the vertex operator algebra K(sl2, k)⊗K(slk, 2). There are cosets N
(j), j ∈

Zk, of
√
2Ak−1 in the dual lattice (

√
2Ak−1)

◦ such that N (i) +N (j) = N (i+j), and VN(j)

contains M j . For ξ = (ξ1, . . . , ξℓ) ∈ D, we consider a coset N(ξ) = N (ξ1) × · · · × N (ξℓ)

of (
√
2Ak−1)

ℓ in ((
√
2Ak−1)

◦)ℓ. The union ΓD of those cosets is a positive definite even

lattice if and only if (ξ|ξ) = 0 for all ξ ∈ D (Lemma 7.1), where ( · | · ) is the standard

inner product on (Zk)
ℓ. Then MD is realized as the commutant of K(slk, 2)

⊗ℓ in the

lattice vertex operator algebra VΓD (Equation (7.4)).

We also consider a necessary and sufficient condition on the code D for which ΓD is

a positive definite odd lattice, and MD is a vertex operator superalgebra.

Using the representation theory of simple current extensions (Section 2.2), we con-

struct all the irreducible MD-modules inside V(ΓD)◦ , where (ΓD)◦ is the dual lattice of

ΓD (Theorems 8.7, 8.9, and 8.10). Any linear character χ of the finite abelian group D

naturally induces an automorphism of the vertex operator algebra MD. We discuss irre-

ducible χ-twisted MD-modules as well. In particular, we obtain the number of inequiv-

alent irreducible χ-twisted MD-modules (Theorem 8.12). We also study the irreducible

MD-modules in the case where MD is a vertex operator superalgebra (Theorem 9.1).

The construction of MD as a commutant of K(slk, 2)
⊗ℓ in the lattice vertex operator

algebra VΓD
was previously discussed in [3]. However, the treatment of the simple current

K(sl2, k)-modules M j in VN(j) , j ∈ Zk, was slightly different, and the method there is not

suitable for all the irreducible K(sl2, k)-modules in V(
√
2Ak−1)◦

. In the present paper, we

use decompositions of certain irreducible V√
2Ak−1

-modules (Proposition 6.3), from which

we know how the irreducible K(sl2, k)-modules appear in V(
√
2Ak−1)◦

(Proposition 6.4),

and it enables us to describe the irreducible MD-modules inside V(ΓD)◦ .

This paper is organized as follows. Section 2 is devoted to preliminaries, where we

recall the representation theory of simple current extensions. In Section 3, we review

the properties of the parafermion vertex operator algebra K(sl2, k) for later use. In Sec-

tions 4, 5, and 6, we describe the cosets of N =
√
2Ak−1 in N◦ = (

√
2Ak−1)

◦, and study

how irreducible K(sl2, k)-modules appear in the irreducible VN -modules. The vertex op-

erator algebra MD is defined in Section 7. In Section 8, we study the irreducible twisted

and untwisted modules for MD, including the classification of irreducible modules, and

realizations of the irreducible modules in V(N◦)ℓ . In Section 9, we discuss the irreducible

MD-modules in the case where MD is a vertex operator superalgebra. Finally, in Sec-

tion 10, we mention some known examples of MD. We calculate the minimal norm of

elements in each coset of N in N◦ in Appendix A.

As to the P (z)-tensor product ⊠P (z) of [19] for a vertex operator algebra V , we only

use it with z = 1. We write ⊠V for ⊠P (1), and call it the fusion product. We also use ⊗
to denote the tensor product of vertex operator algebras and their modules as in [15].
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2. Preliminaries.

In this section, we recall some basic properties of simple current extensions of ver-

tex operator algebras and their irreducible modules. Our notations for vertex operator

algebras and their modules are standard [15], [16], [32].

2.1. Simple current modules.

Let V be a simple, self-dual, rational, and C2-cofinite vertex operator algebra of

CFT-type. Then a fusion product M ⊠V N over V of any V -modules M and N exists

[20], [34]. The fusion product is commutative and associative [18, Theorem 3.7].

We denote by Irr(V ) the set of equivalence classes of irreducible V -modules. Then

M1 ⊠V M2 =
∑

M3∈Irr(V )

dim IV

(
M3

M1 M2

)
M3

for M1,M2 ∈ Irr(V ), where IV
(

M3

M1 M2

)
is the set of all intertwining operators of type(

M3

M1 M2

)
. An irreducible V -module A is called a simple current if A⊠V X is an irreducible

V -module for any X ∈ Irr(V ). A set {Aα | α ∈ D} of simple current V -modules indexed

by a finite abelian group D is said to be D-graded if Aα, α ∈ D, are inequivalent to each

other with A0 = V and Aα ⊠V Aβ = Aα+β , α, β ∈ D. The set Irr(V )sc of equivalence

classes of simple current V -modules is graded by a finite abelian group [31, Corollary 1].

The inverse of A ∈ Irr(V )sc with respect to the fusion product is its contragredient

module A′. The fusion product by A ∈ Irr(V )sc induces a permutation

X 7→ A⊠V X (2.1)

on Irr(V ). For a V -module X, we denote its conformal weight by h(X), which is a

rational number [10, Theorem 11.3]. We define a map bV : Irr(V )sc × Irr(V ) → Q/Z by

bV (A,X) = h(A⊠V X)− h(A)− h(X) + Z (2.2)

for A ∈ Irr(V )sc and X ∈ Irr(V ). The map bV was introduced in [14, Section 3] in the

case where Irr(V )sc = Irr(V ), see also [38, Section 2]. A proof of the following lemma

can be found in [42, Section 2].

Lemma 2.1. Let A, B ∈ Irr(V )sc, and X ∈ Irr(V ).

(1) bV (A⊠V B,X) = bV (A,X) + bV (B,X).

(2) bV (A,B ⊠V X) = bV (A,B) + bV (A,X).

2.2. Representations of simple current extensions.

Let V be a simple, self-dual, rational, and C2-cofinite vertex operator algebra of

CFT-type. Let {V α | α ∈ D} be a D-graded set of simple current V -modules for a finite

abelian group D with V 0 = V and h(V α) ∈ (1/2)Z for all α ∈ D. Then the direct sum

VD =
⊕

α∈D V α has a structure of either a simple vertex operator algebra or a simple
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vertex operator superalgebra which extends the V -module structure on VD [5, Theo-

rem 3.12], see also the references therein. Such a simple vertex operator (super)algebra

structure on VD is unique [12, Proposition 5.3]. The vertex operator (super)algebra VD

is called a D-graded simple current extension of V . In this section, we only consider the

case in which h(V α) ∈ Z for all α ∈ D, and VD is a vertex operator algebra. It is known

that VD is simple, self-dual, rational, C2-cofinite, and of CFT-type [43, Theorem 2.14].

We recall the representation theory of VD from [24], [43]. As to the notion of a

g-twisted module for a vertex operator algebra with respect to its automorphism g, we

adopt the definition in [10]. Thus a g-twisted module in [43] means a g−1-twisted module

in this paper.

Let D∗ = Hom(D,C×) be the character group of D. For χ ∈ D∗, a scalar multipli-

cation by χ(α) on V α, α ∈ D, is an automorphism of the vertex operator algebra VD.

That is, D∗ naturally acts on VD, and we can regard D∗ as a subgroup of AutVD. Let M

be a χ-twisted VD-module for χ ∈ D∗. We say M is D-graded if there is a decomposition

M =
⊕

α∈D Mα as a V -module such that 0 ̸= V α ·Mβ ⊂ Mα+β for α, β ∈ D, where we

set V α · S = span{a(n)v | a ∈ V α, v ∈ S, n ∈ Q} for a subset S of M .

We consider the action of D on Irr(V ) in (2.1). Let Irr(V ) =
∪

i∈I Oi be the D-orbit

decomposition. Using the map bV in (2.2), we define a map χX : D → C× by

χX(α) = exp(2π
√
−1 bV (V

α, X))

for X ∈ Irr(V ). The map χX is a linear character of D by (1) of Lemma 2.1. For a

D-orbit Oi, (2) of Lemma 2.1 implies that χX is independent of the choice of X ∈ Oi,

as h(V α) ∈ Z for all α ∈ D. Thus χX is uniquely determined by Oi, so we can write χi

for χX .

We summarize [24, Theorem 4.4] and [43, Lemma 2.11, Theorems 2.14, 2.19, 3.2,

3.3] as follows.

Theorem 2.2. Let VD be a D-graded simple current extension of V , and let X ∈
Irr(V ).

(1) There exists a unique structure of a D-graded χX-twisted VD-module on the space

VD ⊠V X =
⊕

α∈D V α ⊠V X which contains V 0 ⊠V X ∼= X as a V -submodule.

(2) If M =
⊕

α∈D Mα is a D-graded χX-twisted VD-module such that X ⊂ Mα as

a V -submodule for some α ∈ D, then VD ·X is isomorphic to the D-graded χX-twisted

VD-module VD ⊠V X in the assertion (1), where VD · X = span{a(n)v | a ∈ VD, v ∈
X,n ∈ Q} ⊂ M .

(3) Let σ ∈ AutVD such that σ is the identity on V . Assume that there is a σ-twisted

VD-module containing X as a V -submodule. Then σ = χX , and there exists a surjective

VD-homomorphism from VD ⊠V X onto VD ·X.

For a D-orbit Oi in Irr(V ), the structure of a D-graded χX -twisted VD-module on

the space VD⊠V X in (1) of the above theorem is independent of the choice ofX ∈ Oi, and

it is uniquely determined by Oi. The χX -twisted VD-module VD ⊠V X is not necessarily

irreducible. The assertion (3) of the above theorem implies that VD ·X is isomorphic to

a direct summand of VD ⊠V X.
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Since any irreducible χ-twisted VD-module for χ ∈ D∗ is isomorphic to a direct

summand of the χX -twisted VD-module VD ⊠V X with χ = χX for some X ∈ Irr(V )

by Theorem 2.2, the study of χ-twisted VD-modules is reduced to the study of the χX -

twisted VD-module VD ⊠V X.

Let DX = {α ∈ D | V α ⊠V X ∼= X} be the stabilizer of X ∈ Irr(V ) for the action

of D on Irr(V ) in (2.1). For a D-orbit Oi, the stabilizer DX is independent of the choice

of X ∈ Oi, and it is uniquely determined by Oi. Hence we can write Di for DX .

In the case where DX = 0, the following assertion holds [39, Proposition 3.8].

Proposition 2.3. If DX = 0, then VD ⊠V X is an irreducible χX-twisted VD-

module.

If DX is non-trivial, then the χX -twisted VD-module VD ⊠V X is reducible, and we

need to take some 2-cocycles ofDX into account to obtain its irreducible decomposition as

discussed in [24], [43]. Let X ∈ Irr(V ), and assume that DX ̸= 0. We consider the DX -

graded simple current extension VDX
=

⊕
α∈DX

V α of V . Set Vβ+DX
=

⊕
α∈β+DX

V α

for a coset β + DX ∈ D/DX . Then VD =
⊕

β+DX∈D/DX
Vβ+DX is a D/DX -graded

simple current extension of VDX
. Note that VDX

⊠V X ∼= X⊕|DX | as V -modules. Set

Q = HomV (X,VDX ⊠V X). Then dimQ = |DX |, and we have a canonical isomorphism

VDX
⊠V X ∼= X ⊗Q. (2.3)

It is shown in [24, Theorem 3.10] and [43, Theorems 2.14, 2.19] that there exists

a 2-cocycle ϵ ∈ Z2(DX ,C×) such that the space Q carries a structure of a module

for a twisted group algebra Cϵ[DX ] associated with ϵ [22, Chapter 2]. Indeed, Q is

isomorphic to the regular representation of Cϵ[DX ]. If R is a Cϵ[DX ]-submodule of Q,

then the subspace X ⊗R of X ⊗Q in (2.3) is a VDX -submodule of VDX ⊠V X. Thus the

irreducible decomposition of VDX
⊠V X as a VDX

-module is obtained by the irreducible

decomposition of Q as a Cϵ[DX ]-module.

Let T be an irreducible VDX
-submodule of VDX

⊠V X. Then T is also a direct sum

of some copies of X as a V -module, and Vβ+DX
⊠V T , β+DX ∈ D/DX , are inequivalent

irreducible VDX -modules. Hence the χX -twisted VD-module VD ⊠VDX
T is irreducible

by Proposition 2.3. The χX -twisted VD-module structure of VD ⊠VDX
T is uniquely

determined by T . Therefore, the irreducible decomposition of VD ⊠V X as a χX -twisted

VD-module is in one-to-one correspondence with the irreducible decomposition of Q in

(2.3) as a Cϵ[DX ]-module.

The determination of the 2-cocycle ϵ requires more information on the associativity

constraints of the fusion products of V -modules [24], [43]. However, we will only deal

with the case where DX can be regarded as a binary code in this paper. So we make the

following assumption on DX .

Hypothesis 2.4. (1) M0 is a simple, self-dual, rational, and C2-cofinite vertex

operator algebra of CFT-type.

(2) M1 is a self-dual simple current M0-module such that the Z2-graded simple

current extensionM0⊕M1 ofM0 is either a simple vertex operator algebra with h(M1) ∈
Z or a simple vertex operator superalgebra with h(M1) ∈ Z+ 1/2.
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(3) For any irreducible M0-module P , the direct sum P 0 ⊕ P 1 with P 0 = P and

P 1 = M1 ⊠M0 P has a unique structure of a Z2-graded either untwisted or Z2-twisted

M0 ⊕M1-module.

(4) V = (M0)⊗n for some n > 0.

(5) X ∈ Irr(V ) with DX ̸= 0. Moreover, DX has a structure of a binary code of

length n, and V α ∼= Mα1 ⊗ · · · ⊗Mαn for α = (α1, . . . , αn) ∈ DX . In particular,

VDX
=

⊕
α=(α1,...,αn)∈DX

Mα1 ⊗ · · · ⊗Mαn ⊂ (M0 ⊕M1)⊗n

as an extension of V = (M0)⊗n.

Suppose VDX satisfies Hypothesis 2.4. Under this assumption, we can describe the

2-cocycle ϵ ∈ Z2(DX ,C×) explicitly. We divide our argument into two cases.

Case 1. Suppose M0 ⊕M1 is a simple vertex operator algebra with h(M1) ∈ Z.
By (3) of Hypothesis 2.4, the 2-cocycle ϵ ∈ Z2(DX ,C×) is cohomologous to a 2-

coboundary by [22, Chapter 2, Corollary 2.5]. Hence Q is the regular representation

of an ordinary group algebra C[DX ], so that Q is a direct sum of |DX | inequivalent
irreducible C[DX ]-modules. Therefore, VDX ⊠V X decomposes into a direct sum of |DX |
inequivalent irreducible VDX

-submodules. By considering VD as a D/DX -graded simple

current extension of VDX
, we see that the irreducible decomposition of VD ⊠V X as a

χX -twisted VD-module is as follows.

Proposition 2.5. Suppose DX ̸= 0 and VDX satisfies Hypothesis 2.4. Suppose

further that M0 ⊕M1 in (2) of Hypothesis 2.4 is a simple vertex operator algebra with

h(M1) ∈ Z. Then the irreducible decomposition of the χX-twisted VD-module VD ⊠V X

is given as

VD ⊠V X =

|DX |⊕
j=1

U j ,

where U j, 1 ≤ j ≤ |DX |, are inequivalent irreducible χX-twisted VD-modules. Further-

more, U j ∼=
⊕

W∈Oi
W as V -modules, where Oi is the D-orbit in Irr(V ) containing X.

Case 2. Suppose M0⊕M1 is a simple vertex operator superalgebra with h(M1) ∈
Z + 1/2. In this case, DX is an even binary code, as the conformal weight of V α ∼=
Mα1 ⊗ · · · ⊗Mαn is an integer for α = (α1, . . . , αn) ∈ DX . By (3) of Hypothesis 2.4, we

can find the 2-cocycle ϵ inside Z2(DX , {±1}) which satisfies

ϵ(α, α) = (−1)wt(α)/2, ϵ(α, β)ϵ(β, α) = (−1)(α|β) (2.4)

for α, β ∈ DX , where wt(α) is the Hamming weight of α, and ( · | · ) is the standard inner

product on (Z2)
n [31, Section 4.1], see also [35], [36]. The conditions above uniquely

determine the class of ϵ in H2(DX , {±1}) [16, Proposition 5.3.3].

It is shown in [16, Theorem 5.5.1] that each irreducible representation of Cϵ[DX ] is

induced from an irreducible representation of its maximal commutative subalgebra, and
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the equivalence classes of irreducible Cϵ[DX ]-modules are distinguished by their central

characters. Let D⊥
X = {α ∈ (Z2)

n | (α|DX) = 0} be the dual code of the binary code

DX , and let E be a maximal self-orthogonal subcode of DX . It follows from (2.4) that

the center of Cϵ[DX ] is Cϵ[DX ∩D⊥
X ], and Cϵ[E] is a maximal commutative subalgebra of

Cϵ[DX ]. Since Cϵ[DX ∩D⊥
X ] ∼= C[DX ∩D⊥

X ] is an ordinary group algebra, the number of

inequivalent irreducible representations of Cϵ[DX ] is equal to that of C[DX ∩D⊥
X ], which

coincides with the order |DX ∩D⊥
X | of DX ∩D⊥

X . Each irreducible Cϵ[DX ]-module has

dimension [DX : E] = [E : DX ∩D⊥
X ], namely, [DX : DX ∩D⊥

X ]1/2 [16, Theorem 5.5.1].

Since the space Q in (2.3) is isomorphic to the regular representation of Cϵ[DX ], the

irreducible decomposition of VD ⊠V X as a χX -twisted VD-module is as follows.

Proposition 2.6. Suppose DX ̸= 0 and VDX satisfies Hypothesis 2.4. Suppose

further that M0 ⊕M1 in (2) of Hypothesis 2.4 is a simple vertex operator superalgebra

with h(M1) ∈ Z+ 1/2. Then the irreducible decomposition of the χX-twisted VD-module

VD ⊠V X is given as

VD ⊠V X =

|DX∩D⊥
X |⊕

j=1

(U j)⊕m,

where m = [DX : DX ∩D⊥
X ]1/2, and U j, 1 ≤ j ≤ |DX ∩D⊥

X |, are inequivalent irreducible

χX-twisted VD-modules. Furthermore, U j ∼=
⊕

W∈Oi
W⊕m as V -modules, where Oi is

the D-orbit in Irr(V ) containing X.

3. Parafermion vertex operator algebra K(sl2, k).

In this section, we recall the properties of the parafermion vertex operator algebra

K(sl2, k) for 2 ≤ k ∈ Z. If k = 2, then K(sl2, 2) is isomorphic to the Virasoro vertex

operator algebra L(1/2, 0) of central charge 1/2. So we assume that k ≥ 3 for the rest of

this section.

Let {h, e, f} be a standard Chevalley basis of the Lie algebra sl2. Let Lŝl2
(k, 0) be

the simple affine vertex operator algebra associated with ŝl2 and level k. Then K(sl2, k)

is defined to be the commutant of the Heisenberg vertex operator algebra generated by

h(−1)1 in Lŝl2
(k, 0) [7], [8], [9].

We follow the notaions in [8, Section 4]. Let L = Zα1+· · ·+Zαk with ⟨αi, αj⟩ = 2δi,j
and γ = α1 + · · · + αk. Let H, E, and F ∈ VL be as in [8, Section 4]. Then the

component operators H(n), E(n), F(n), n ∈ Z, give a level k representation of ŝl2 under

the correspondence h(n) ↔ H(n), e(n) ↔ E(n), f(n) ↔ F(n), and the subalgebra V aff of

the vertex operator algebra VL
∼= Lŝl2

(1, 0)⊗k generated by H, E, and F is isomorphic

to Lŝl2
(k, 0). We identify V aff with Lŝl2

(k, 0). We also identify H(n), E(n), and F(n) with

h(n), e(n), and f(n), respectively. Let

M j = {v ∈ Lŝl2
(k, 0) | H(n)v = −2jδn,0v for n ≥ 0}.

Then M0 = K(sl2, k), and Lŝl2
(k, 0) =

⊕k−1
j=0 M

j ⊗ VZγ−jγ/k as M0 ⊗ VZγ-modules [8,

Lemma 4.2]. The index j of M j can be considered to be modulo k.
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Let L◦ = (1/2)L be the dual lattice of L, and let vi, 0 ≤ i ≤ k, and vi,j , 0 ≤ j ≤ i,

be as in [8, Section 4]. Then the V aff -submodule V aff · vi of VL◦ generated by vi is

isomorphic to an irreducible Lŝl2
(k, 0)-module Lŝl2

(k, i) with top level span{vi,j | 0 ≤
j ≤ i} of conformal weight i(i+ 2)/4(k + 2) [17], [32, Section 6.2]. Let

M i,j = {v ∈ V aff · vi | H(n)v = (i− 2j)δn,0v for n ≥ 0}

for 0 ≤ i ≤ k, 0 ≤ j ≤ k − 1. Then

Lŝl2
(k, i) =

k−1⊕
j=0

M i,j ⊗ VZγ+(i−2j)γ/2k (3.1)

as M0 ⊗ VZγ-modules [8, Lemma 4.3]. The index j of M i,j can be considered to be

modulo k. Note that M0,j = M j .

The −1 isometry of the lattice L lifts to an automorphism θ of the vertex operator

algebra VL of order 2. Actually, θ(H) = −H, θ(E) = F , and θ(F ) = E.

We summarize the properties of M0 = K(sl2, k) [1], [2], [7], [8], [13].

(1) M0 is a simple, self-dual, rational, and C2-cofinite vertex operator algebra of

CFT-type with central charge 2(k − 1)/(k + 2).

(2) chM0 = 1 + q2 + 2q3 + · · · .
(3) M0 is generated by its conformal vector ω and a primary vector W 3 of weight 3.

(4) The automorphism group AutM0 of M0 is generated by θ, and θ(W 3) = −W 3.

(5) The irreducible M0-modules M i,j ’s are not always inequivalent. In fact,

M i,j ∼= Mk−i,j−i, 0 ≤ i ≤ k, 0 ≤ j ≤ k − 1. (3.2)

(6) M i,j , 0 ≤ j < i ≤ k, form a complete set of representatives of the equivalence

classes of irreducible M0-modules.

(7) The top level of M i,j is a one dimensional space Cvi,j , and its weight is

h(M i,j) =
1

2k(k + 2)

(
k(i− 2j)− (i− 2j)2 + 2k(i− j + 1)j

)
(3.3)

for 0 ≤ j ≤ i ≤ k. Note that (3.3) is valid even when j = i. Any irreducible M0-module

except for M0 itself has positive conformal weight.

(8) The automorphism θ of M0 induces a permutation M i,j 7→ M i,j ◦ θ ∼= M i,i−j

on the irreducible M0-modules for 0 ≤ i ≤ k, 0 ≤ j ≤ k − 1.

(9) M j , 0 ≤ j ≤ k − 1, are the simple currents with h(M j) = j(k − j)/k, and

M j′ ⊠M0 M i,j = M i,j+j′ , 0 ≤ i ≤ k, 0 ≤ j, j′ ≤ k − 1. (3.4)

The following lemma is a consequence of (3.2) and (3.4).

Lemma 3.1. M j′ ⊠M0 M i,j ∼= M i,j if and only if j′ = 0, or k is even and j′ = i =

k/2.

Let
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N = {α ∈ L | ⟨α, γ⟩ = 0}.

Then M0 = ComV aff (VZγ) ⊂ ComVL
(VZγ) = VN . The commutant of V aff in VL is

isomorphic to the parafermion vertex operator algebra K(slk, 2) [26]. We denote it by

T . Thus T = ComVL
(V aff) = ComVN

(M0) ∼= K(slk, 2).

4. Cosets N(j, a) of N in N◦.

We keep the notations in Section 3. In this section, we describe the cosets of N in

its dual lattice N◦. For a = (a1, . . . , ak) ∈ {0, 1}k, set δa = (1/2)
∑k

p=1 apαp. Then

L◦ =
∪

a∈{0,1}k(L+ δa) is the coset decomposition of L◦ by L. Let βp = αp −αp+1, 1 ≤
p ≤ k− 1, so {β1, . . . , βk−1} is a Z-basis of N . Set R = N ⊕Zγ. Then R ⊂ L ⊂ L◦ ⊂ R◦

with R◦ = N◦ ⊕ (Zγ)◦ and (Zγ)◦ = Zγ/2k. Let

λk =
1

2k
(β1 + 2β2 + · · ·+ (k − 1)βk−1) =

1

2k
γ − 1

2
αk.

Then ⟨βp, λk⟩ = δp,k−1, 1 ≤ p ≤ k − 1, and ⟨λk, λk⟩ = 1/2− 1/2k. The following lemma

holds.

Lemma 4.1. (1) {β2/2, . . . , βk−1/2, λk} is a Z-basis of N◦.

(2) The coset decomposition of N◦ by N is given as

N◦ =
∪

0≤i≤2k−1
d2,...,dk−1∈{0,1}

(N + d2β2/2 + · · ·+ dk−1βk−1/2 + iλk).

(3) N◦/N ∼= Zk−2
2 × Z2k.

We consider another Z-basis of N◦. Let

λp = λk − 1

2
βp − · · · − 1

2
βk−1 =

1

2k
γ − 1

2
αp, 1 ≤ p ≤ k − 1.

Then λp ∈ N◦ and 2λp ≡ 2λk (mod N). Note that

λ1 + · · ·+ λk = 0. (4.1)

Lemma 4.1 implies the next lemma.

Lemma 4.2. (1) {λ2, . . . , λk−1, λk} is a Z-basis of N◦.

(2) The coset decomposition of N◦ by N is given as

N◦ =
∪

0≤i≤2k−1
d2,...,dk−1∈{0,1}

(
N + d2λ2 + · · ·+ dk−1λk−1 + iλk

)
.

The coset decomposition of L by R is given as
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L =
k−1∪
j=0

(
R− jαk

)
=

k−1∪
j=0

(
R+ 2jλk − j

k
γ
)
, (4.2)

and L/R ∼= Zk. Moreover, the coset decomposition of R◦ by L◦ is given as

R◦ =
k−1∪
j=0

(
L◦ − j

2k
γ
)
,

and R◦/L◦ ∼= Zk.

For a = (a1, . . . , ak) ∈ {0, 1}k, the support supp(a) is the set of p, 1 ≤ p ≤ k, for

which ap ̸= 0, and the Hamming weight wt(a) is the number of nonzero entries ap. Then

δa = −
k∑

p=1

apλp +
wt(a)

2k
γ.

For a = (a1, . . . , ak) ∈ {0, 1}k, let

N(j,a) = N −
k∑

p=1

apλp + 2jλk, 0 ≤ j ≤ k − 1. (4.3)

Since 2kλk ∈ N , we can consider j to be modulo k. We have

N(j,a) +N(j′,a′) = N(j + j′ − (wt(a) + wt(a′)− wt(a+ a′))/2,a+ a′),

where a+a′ is the sum of a and a′ as elements of (Z2)
k, that is, the symmetric difference

as subsets of {0, 1}k. By the definition of λp, we also have

N(j,a) = N +
1

2

k∑
p=1

apαp − jαk +
2j − wt(a)

2k
γ. (4.4)

Since 2λk − γ/k = −αk, this equation implies that

R+ δa + 2jλk − j

k
γ = N(j,a) +

(
Zγ +

wt(a)− 2j

2k
γ
)

as subsets of R◦ = N◦ ⊕ (Zγ)◦. Hence it follows from (4.2) that

L+ δa =
k−1∪
j=0

(
N(j,a) +

(
Zγ +

wt(a)− 2j

2k
γ
))

. (4.5)

Lemma 4.3. (1) For 0 ≤ j, j′ ≤ k − 1 and a,a′ ∈ {0, 1}k, we have N(j,a) =

N(j′,a′) if and only if one of the following conditions holds.

(i) j ≡ j′ (mod k) and a = a′.

(ii) j′ ≡ j − wt(a) (mod k) and a+ a′ = (1, . . . , 1).

(2) N(j,a), 0 ≤ j ≤ k − 1, a ∈ {0, 1}k with j < wt(a), are the distinct cosets of N

in N◦.
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Proof. Clearly, N(j,a) = N(j′,a′) if the condition (i) holds. Suppose the con-

dition (ii) holds. Then N(j,a) = N(j′,a′) by (4.1) and (4.3). Set i = wt(a) and

i′ = wt(a′), and assume that j < i. Then 0 ≤ j < i ≤ k and 0 ≤ i′ ≤ j′ < k. The

number of pairs (j,a) with 0 ≤ j ≤ k− 1 and a ∈ {0, 1}k is 2kk. Since |N◦/N | = 2k−1k,

we see that N(j,a) = N(j′,a′) only if j, j′, a, and a′ satisfy the conditions (i) or (ii).

Hence the assertions (1) and (2) hold. □

Remark 4.4. In Case (ii) of Lemma 4.3 (1), we have (wt(a′) − 2j′) − (wt(a) −
2j) ≡ k (mod 2k). This agrees with the fact that N(j,a) + (Zγ + (wt(a) − 2j)γ/2k),

0 ≤ j ≤ k − 1, a ∈ {0, 1}k, in (4.5) are the distinct cosets of R in L◦.

The next lemma also holds.

Lemma 4.5. The −1 isometry N◦ → N◦ ; α 7→ −α transforms N(j,a) into

N(wt(a)− j,a).

5. Decomposition of VN(j,a).

We keep the notations in Sections 3 and 4. In this section, we study a decomposition

of the irreducible VN -module VN(j,a) as a direct sum of irreducible modules for a tensor

product of k − 1 Virasoro vertex operator algebras and M0. Let

cm = 1− 6

(m+ 2)(m+ 3)

for m = 1, 2, . . . , and let

hm
r,s =

(r(m+ 3)− s(m+ 2))2 − 1

4(m+ 2)(m+ 3)

for 1 ≤ r ≤ m + 1, 1 ≤ s ≤ m + 2. Then hm
r,s = hm

m+2−r,m+3−s, and L(cm, hm
r,s),

1 ≤ s ≤ r ≤ m + 1, form a complete set of representatives of the equivalence classes of

irreducible modules for the Virasoro vertex operator algebra L(cm, 0) [41]. We denote

the conformal vector of L(cm, 0) by ωm.

Recall that ω is the conformal vector of M0. Let ωT be the conformal vector of

T = ComVN
(M0). Then the conformal vector ωN = ωT + ω of VN is a sum of mutually

orthogonal Virasoro vectors ω1, . . . , ωk−1, and ω [11], [29] with ωT = ω1 + · · · + ωk−1.

The vector ωm generates L(cm, 0), so T ⊃ L(c1, 0) ⊗ · · · ⊗ L(ck−1, 0). The following

decomposition is known [21], [27], [40].

Lemma 5.1. For a = (a1, . . . , ak) ∈ {0, 1}k,

VL+δa =
⊕

0≤is≤s
is≡bs (mod 2)

1≤s≤k

L(c1, h
1
i1+1,i2+1)⊗ · · · ⊗ L(ck−1, h

k−1
ik−1+1,ik+1)⊗ Lŝl2

(k, ik)

as L(c1, 0)⊗ · · · ⊗ L(ck−1, 0)⊗ Lŝl2
(k, 0)-modules, where bs =

∑s
p=1 ap.



196

196 T. Arakawa, H. Yamada and H. Yamauchi

Combining the decomposition (3.1) with Lemma 5.1, we have

VL+δa =
k−1⊕
j=0

( ⊕
0≤is≤s

is≡bs (mod 2)
1≤s≤k

L(c1, h
1
i1+1,i2+1)⊗ · · · ⊗ L(ck−1, h

k−1
ik−1+1,ik+1)

⊗M ik,j ⊗ VZγ+(ik−2j)γ/2k

)
(5.1)

as L(c1, 0)⊗ · · · ⊗ L(ck−1, 0)⊗M0 ⊗ VZγ-modules.

Since bk = wt(a), (4.5) implies that

VL+δa =
k−1⊕
j=0

VN(j,a) ⊗ VZγ+(bk−2j)γ/2k (5.2)

as VN ⊗ VZγ-modules.

As VZγ-modules, VZγ+(bk−2j)γ/2k
∼= VZγ+(ik−2q)γ/2k if and only if q ≡ j+(ik − bk)/2

(mod k). Here, note that ik on the right hand side of (5.1) satisfies ik ≡ bk (mod 2).

Comparing (5.1) and (5.2), we have the following theorem, see [28, Proposition 3.4].

Theorem 5.2. For 0 ≤ j ≤ k − 1 and a = (a1, . . . , ak) ∈ {0, 1}k, the irreducible

VN -module VN(j,a) decomposes as a direct sum

VN(j,a) =
⊕

0≤is≤s
is≡bs (mod 2)

1≤s≤k

L(c1, h
1
i1+1,i2+1)⊗ · · · ⊗ L(ck−1, h

k−1
ik−1+1,ik+1)⊗M ik,j+(ik−bk)/2

(5.3)

of irreducible L(c1, 0)⊗ · · · ⊗ L(ck−1, 0)⊗M0-modules, where bs =
∑s

p=1 ap.

The next remark is a restatement of [28, Proposition 3.5].

Remark 5.3. N(j,a) = N(j′,a′) for j′, a′ in Case (ii) of Lemma 4.3 (1) cor-

responds to the following properties of the highest weights hm
p,q for L(cm, 0) and the

irreducible modules M i,j for K(sl2, k).

(1) hm
p,q = hm

m+2−p,m+3−q for 1 ≤ p ≤ m+ 1, 1 ≤ q ≤ m+ 2.

(2) M i,j ∼= Mk−i,j−i as K(sl2, k)-modules for 0 ≤ i ≤ k, j ∈ Zk.

We note that for a given a ∈ {0, 1}k, the L(c1, 0)⊗ · · · ⊗ L(ck−1, 0)-modules

L(c1, h
1
i1+1,i2+1)⊗ · · · ⊗ L(ck−1, h

k−1
ik−1+1,ik+1),

0 ≤ is ≤ s, is ≡ bs (mod 2), 1 ≤ s ≤ k, in (5.3) are inequivalent to each other.

6. Irreducible K(sl2, k)-modules in VN(j,a).

In this section, we discuss how irreducible K(sl2, k)-modules M i,j appear on the

right hand side of (5.3). Since hs
p,q = 0 if and only if (p, q) = (1, 1) or (s+ 1, s+ 2), the

following lemma holds.
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Lemma 6.1. Let 1 ≤ m < k. Then for a1, . . . , am+1 ∈ {0, 1} and 0 ≤ is ≤ s,

1 ≤ s ≤ m+1, the two conditions is ≡ bs (mod 2), 1 ≤ s ≤ m+1, and hs
is+1,is+1+1 = 0,

1 ≤ s ≤ m, hold only if (i) as = 0 and is = 0, 1 ≤ s ≤ m+ 1, or (ii) as = 1 and is = s,

1 ≤ s ≤ m+ 1.

For an arbitrarily given a1 ∈ {0, 1}, each coset of N in N◦ is uniquely expressed

as N(j,a), j ∈ Zk, a = (a1, a2, . . . , ak), a2, . . . , ak ∈ {0, 1} by Lemma 4.3. For the rest

of this section, we take a1 = 0. For simplicity of notation, we omit 1 ⊗ · · · ⊗ 1 in an

equation as

{v ∈ VN | ωs
(1)v = 0, 1 ≤ s ≤ k − 1} = 1⊗ · · · ⊗ 1⊗M0.

The following two propositions are clear from Theorem 5.2 and Lemma 6.1.

Proposition 6.2. For j ∈ Zk, we have

{v ∈ VN(j,(0,...,0)) | ωs
(1)v = 0, 1 ≤ s ≤ k − 1} = M j .

Proposition 6.3. For j ∈ Zk and d ∈ {0, 1}, we have

{v ∈ VN(j,(0,...,0,d)) | ωs
(1)v = 0, 1 ≤ s ≤ k − 2}

=
⊕

0≤i≤k
i≡d (mod 2)

L(ck−1, h
k−1
1,i+1)⊗M i,j+(i−d)/2. (6.1)

The next proposition is a consequence of (3.2).

Proposition 6.4. Let d ∈ {0, 1}.
(1) If k is odd, then M i,j+(i−d)/2, j ∈ Zk, 0 ≤ i ≤ k, i ≡ d (mod 2), are inequivalent

to each other, and they are the k(k+1)/2 inequivalent irreducible modules M i,j, 0 ≤ j <

i ≤ k.

(2) If k is even, then M i,j+(i−d)/2, j ∈ Zk, 0 ≤ i ≤ k, i ≡ d (mod 2), cover twice

the set of inequivalent irreducible modules M i,j, 0 ≤ j < i ≤ k with i ≡ d (mod 2).

There are k(k + 2)/4 (resp. k2/4) inequivalent irreducible modules M i,j, 0 ≤ j < i ≤ k

with i ≡ 0 (mod 2) (resp. i ≡ 1 (mod 2)). Moreover, for a fixed j ∈ Zk, the irreducible

modules M i,j+(i−d)/2, 0 ≤ i ≤ k, i ≡ d (mod 2), are inequivalent to each other.

7. ΓD and MD for a Zk-code D.

In this section, we define a vertex operator algebra or a vertex operator superalgebra

MD for a Zk-code D. The arguments are essentially the same as in Section 3 of [3].

Let ℓ be a fixed positive integer. A Zk-code of length ℓ means an additive subgroup

of (Zk)
ℓ. We denote by ( · | · ) the standard inner product (ξ|η) = ξ1η1 + · · ·+ ξℓηℓ ∈ Zk

for ξ = (ξ1, . . . , ξℓ), η = (η1, . . . , ηℓ) ∈ (Zk)
ℓ.

For simplicity of notation, set N (j) = N(j, (0, . . . , 0)) = N + 2jλk, j ∈ Zk. We

consider a coset N(ξ) of N ℓ in (N◦)ℓ defined by
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N(ξ) = {(x1, . . . , xℓ) | xr ∈ N (ξr), 1 ≤ r ≤ ℓ} ⊂ (N◦)ℓ (7.1)

for ξ = (ξ1, . . . , ξℓ) ∈ (Zk)
ℓ. Since ⟨α, β⟩ ∈ −2ij/k + 2Z for α ∈ N (i), β ∈ N (j), we have

⟨α, β⟩ ∈ −2

k
(ξ|η) + 2Z for α ∈ N(ξ), β ∈ N(η). (7.2)

Let D be a Zk-code of length ℓ. We consider two cases.

Case A: (ξ|ξ) = 0 for all ξ ∈ D.

Case B: k is even, (ξ|η) ∈ {0, k/2} for all ξ, η ∈ D, and (ξ|ξ) = k/2 for some ξ ∈ D.

Let

ΓD =
∪
ξ∈D

N(ξ) ⊂ (N◦)ℓ, (7.3)

which is a sublattice of (N◦)ℓ, as N(ξ)+N(η) = N(ξ+η) and D is an additive subgroup

of (Zk)
ℓ. The following lemma holds by (7.2).

Lemma 7.1. (1) ΓD is a positive definite even lattice if and only if D is in Case A.

(2) ΓD is a positive definite odd lattice if and only if k is even and D is in Case B.

If D is in Case A, then VΓD
is a vertex operator algebra. If k is even and D is in

Case B, we set

D0 = {ξ ∈ D | (ξ|ξ) = 0}, D1 = {ξ ∈ D | (ξ|ξ) = k/2}.

We also set ΓDp =
∪

ξ∈Dp N(ξ), p = 0, 1. Then D0 is a subgroup of the additive group

D of index two, and D = D0 ∪ D1 is the coset decomposition of D by D0. Moreover,

ΓDp = {α ∈ ΓD | ⟨α, α⟩ ∈ p + 2Z}, p = 0, 1, and ΓD = ΓD0 ∪ ΓD1 with ΓD0 an even

sublattice. We have that VΓD = VΓD0 ⊕ VΓD1 is a vertex operator superalgebra.

It follows from (7.1) that VN(ξ) = VN(ξ1) ⊗ · · · ⊗ VN(ξℓ) ⊂ (VN◦)ℓ. We also have

VΓD =
⊕

ξ∈D VN(ξ) by (7.3). Let

Mξ = {v ∈ VN(ξ) | (ωT⊗ℓ)(1)v = 0},

where ωT⊗ℓ is the conformal vector of the vertex operator subalgebra T⊗ℓ of (VN )⊗ℓ.

Then Mξ = Mξ1 ⊗ · · · ⊗Mξℓ for ξ = (ξ1, . . . , ξℓ) ∈ (Zk)
ℓ by Proposition 6.2, which is a

simple current for M0 = (M0)⊗ℓ with 0 = (0, . . . , 0) the zero codeword. Since u(n)v ∈
VN(ξ+η) for u ∈ VN(ξ), v ∈ VN(η), n ∈ Z, we have u(n)v ∈ Mξ+η for u ∈ Mξ, v ∈ Mη,

n ∈ Z. Thus Mξ ⊠M0 Mη = Mξ+η for ξ, η ∈ (Zk)
ℓ, and Irr(M0)sc = {Mξ | ξ ∈ (Zk)

ℓ} is

(Zk)
ℓ-graded. The top level of Mξ is one dimensional with h(Mξ) =

(∑ℓ
r=1 ξr

)
− (ξ|ξ)/k,

as h(M j) = j − j2/k, where ξr and (ξ|ξ) are considered to be nonnegative integers.

We have the next proposition by the properties of M0 = K(sl2, k) in Section 3.

Proposition 7.2. M0 = (M0)⊗ℓ is a simple, self-dual, rational, and C2-cofinite

vertex operator algebra of CFT-type with central charge 2ℓ(k−1)/(k+2). Any irreducible

M0-module except for M0 itself has positive conformal weight.
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Let MD be the commutant of T⊗ℓ in VΓD
. Then

MD = {v ∈ VΓD
| (ωT⊗ℓ)(1)v = 0} =

⊕
ξ∈D

Mξ, (7.4)

which is a D-graded simple current extension of M0. The following theorem holds.

Theorem 7.3. (1) If D is in Case A, then MD is a simple, self-dual, rational, and

C2-cofinite vertex operator algebra of CFT-type with central charge 2ℓ(k − 1)/(k + 2).

(2) If k is even and D is in Case B, then MD = MD0 ⊕ MD1 is a simple vertex

operator superalgebra, whose even part MD0 and odd part MD1 are given by MDp =⊕
ξ∈Dp Mξ, p = 0, 1, and h(MD1) ∈ Z+ 1/2.

8. Irreducible MD-modules: Case A.

Let k ≥ 2, and let D be a Zk-code of length ℓ satisfying the condition of Case A

in Section 7, that is, (ξ|ξ) = 0 for all ξ ∈ D. In this section, we classify the irreducible

χ-twisted MD-modules for χ ∈ D∗. We construct all irreducible untwisted MD-modules

inside V(ΓD)◦ as well.

8.1. Linear characters of D.

Let

P (i, j) = k(i− 2j)− (i− 2j)2 + 2k(i− j + 1)j.

Then h(M i,j) = P (i, j)/2k(k + 2) for 0 ≤ j ≤ i ≤ k by (3.3). In the case where

0 ≤ i ≤ j < k, we have h(M i,j) = P (k − i, j − i)/2k(k + 2) by (3.2). We calculate the

values of the map bM0 : Irr(M0)sc × Irr(M0) → Q/Z defined by

bM0(Mp,M i,j) = h(Mp ⊠M0 M i,j)− h(Mp)− h(M i,j) + Z,

where Mp ⊠M0 M i,j = M i,j+p by (3.4). If 0 ≤ j < i ≤ k, then 0 ≤ j < j + 1 ≤ i ≤ k,

and

P (i, j + 1)− P (i, j) = 2(k + 2)(i− 2j − 1),

whereas if 0 ≤ i ≤ j < k, then 0 ≤ j − i < j + 1− i ≤ k − i ≤ k, and

P (k − i, j + 1− i)− P (k − i, j − i) = 2(k + 2)(i− 2j + k − 1).

In both cases, we have bM0(M1,M i,j) = (i− 2j)/k + Z. Thus

bM0(Mp,M i,j) =
p(i− 2j)

k
+ Z (8.1)

for 0 ≤ i ≤ k, 0 ≤ j < k, and 0 ≤ p < k by Lemma 2.1.

For µ = (µ1, . . . , µℓ) with 0 ≤ µr ≤ k, 1 ≤ r ≤ ℓ, and ν = (ν1, . . . , νℓ) ∈ (Zk)
ℓ, let

Mµ,ν = Mµ1,ν1 ⊗ · · · ⊗Mµℓ,νℓ .
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Then M0,ξ = Mξ and

Irr(M0) = {Mµ,ν | µ = (µ1, . . . , µℓ), ν = (ν1, . . . , νℓ), 0 ≤ νr < µr ≤ k, 1 ≤ r ≤ ℓ}.
(8.2)

It follows from (3.4) that

Mξ ⊠M0 Mµ,ν = Mµ,ν+ξ. (8.3)

Let bM0 : Irr(M0)sc × Irr(M0) → Q/Z be a map defined by

bM0(Mξ,Mµ,ν) = h(Mξ ⊠M0 Mµ,ν)− h(Mξ)− h(Mµ,ν) + Z

for µ = (µ1, . . . , µℓ) with 0 ≤ µr ≤ k, 1 ≤ r ≤ ℓ, ν = (ν1, . . . , νℓ) ∈ (Zk)
ℓ, and

ξ = (ξ1, . . . , ξℓ) ∈ (Zk)
ℓ. Then (8.1) implies that

bM0(Mξ,Mµ,ν) =

ℓ∑
r=1

ξr(µr − 2νr)

k
+ Z. (8.4)

Although µr is an integer between 0 and k, we can treat µr modulo k on the right

hand side of (8.4). Then (8.4) is written as

bM0(Mξ,Mµ,ν) =
1

k
(ξ|µ− 2ν) + Z, (8.5)

where ( · | · ) is the standard inner product on (Zk)
ℓ. In particular,

bM0(Mξ,Mη) = −2

k
(ξ|η) + Z. (8.6)

Lemma 8.1. Let ξ, η, ν ∈ (Zk)
ℓ, and let µ = (µ1, . . . , µℓ) with 0 ≤ µr ≤ k, 1 ≤ r ≤ ℓ.

(1) bM0(Mξ,Mη) = 0 if ξ, η ∈ D.

(2) bM0(Mξ+η,Mµ,ν) = bM0(Mξ,Mµ,ν) + bM0(Mη,Mµ,ν).

(3) bM0(Mξ,Mµ,ν+η) = bM0(Mξ,Mη) + bM0(Mξ,Mµ,ν).

Proof. Suppose ξ, η ∈ D. Then ξ+η ∈ D, so (ξ+η|ξ+η) = 0 by our assumption

on D. Since (ξ|ξ) = (η|η) = 0, we have 2(ξ|η) = 0. Thus the assertion (1) holds by (8.6).

The assertions (2) and (3) are clear from (8.5), see also Lemma 2.1. □

For η ∈ (Zk)
ℓ, let χ(η) be a linear character of the abelian group (Zk)

ℓ given by

χ(η) : (Zk)
ℓ → C×; ξ 7→ exp(2π

√
−1(ξ|η)/k).

Then (Zk)
ℓ → Hom((Zk)

ℓ,C×); η 7→ χ(η) is a group isomorphism. The linear character

χMµ,ν ∈ D∗ is the restriction χ(µ− 2ν)|D of χ(µ− 2ν) to D by (8.5). That is,

χMµ,ν (ξ) = exp(2π
√
−1bM0(Mξ,Mµ,ν)) = exp(2π

√
−1(ξ|µ− 2ν)/k). (8.7)

Let D⊥ = {η ∈ (Zk)
ℓ | (D|η) = 0}. Then |D||D⊥| = |(Zk)

ℓ|, as ( · | · ) is a non-

degenerate bilinear form.
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Lemma 8.2. (1) The map (Zk)
ℓ → D∗ ; η 7→ χ(η)|D is a surjective group homo-

morphism with kernel D⊥.

(2) For any χ ∈ D∗, there exists Mµ,0 ∈ Irr(M0) such that χ = χMµ,0 .

(3) χMµ,ν = 1; the principal character of D if and only if µ− 2ν ∈ D⊥.

(4) χMµ,ν = χMµ′,ν′ if and only if µ− 2ν ≡ µ′ − 2ν′ (mod D⊥).

Proof. Non-degeneracy of the bilinear form ( · | · ) implies the assertions (1) and

(2). The assertions (3) and (4) are consequences of (8.7) and the definition of D⊥. □

8.2. Irreducible M0-modules in V(N◦)ℓ .

Let

N(η, δ) = {(x1, . . . , xℓ) | xr ∈ N(ηr, (0, . . . , 0, dr)), 1 ≤ r ≤ ℓ} ⊂ (N◦)ℓ

for η = (η1, . . . , ηℓ) ∈ (Zk)
ℓ and δ = (d1, . . . , dℓ) ∈ {0, 1}ℓ.

Proposition 8.3. (1) Let η = (η1, . . . , ηℓ) ∈ (Zk)
ℓ and δ = (d1, . . . , dℓ) ∈ {0, 1}ℓ.

Assume that µ = (µ1, . . . , µℓ) with 0 ≤ µr ≤ k, 1 ≤ r ≤ ℓ, and ν = (ν1, . . . , νℓ) ∈ (Zk)
ℓ

satisfy the conditions

µr ≡ dr (mod 2), νr = ηr +
µr − dr

2
, 1 ≤ r ≤ ℓ. (8.8)

Then VN(η,δ) contains the irreducible M0-module Mµ,ν .

(2) Any irreducible M0-module is contained in VN(η,δ) for some η and δ. If k is odd,

then we can choose δ to be δ = (0, . . . , 0).

Proof. The assertions (1) and (2) hold by Propositions 6.3 and 6.4. □

Lemma 8.4. Let ξ, η ∈ (Zk)
ℓ and δ ∈ {0, 1}ℓ. Then ⟨x, y⟩ ∈ (ξ|δ − 2η)/k + Z for

x ∈ N(ξ) and y ∈ N(η, δ).

Proof. Since ⟨x, y⟩ ∈ p(d−2j)/k+Z for x ∈ N (p) and y ∈ N(j, (0, . . . , 0, d)), the

assertion holds. □

Proposition 8.5. Let µ = (µ1, . . . , µℓ) with 0 ≤ µr ≤ k, 1 ≤ r ≤ ℓ, and let

ν = (ν1, . . . , νℓ) ∈ (Zk)
ℓ. Take η ∈ (Zk)

ℓ and δ ∈ {0, 1}ℓ such that the conditions (8.8)

hold. Then bM0(Mξ,Mµ,ν) = 0 for all ξ ∈ D if and only if N(η, δ) ⊂ (ΓD)◦.

Proof. Since µr − 2νr = dr − 2ηr by (8.8), the assertion holds by (8.5) and

Lemma 8.4. □

8.3. Irreducible twisted MD-modules in V(N◦)ℓ .

Let X ∈ Irr(M0). Then X = Mµ,ν for some µ and ν by (8.2). Take η and δ

such that the conditions (8.8) hold. Then VN(η,δ) contains Mµ,ν as an M0-submodule

by Proposition 8.3. Since Mξ ⊂ VN(ξ), and since N(ξ) + N(η, δ) = N(ξ + η, δ), it

follows that VN(ξ+η,δ) contains Mξ ⊠M0 Mµ,ν . For fixed η and δ, the cosets N(ξ + η, δ),

ξ ∈ D, of N ℓ in (N◦)ℓ are all distinct. Hence the χMµ,ν -twisted MD-module MD ·Mµ,ν

generated by Mµ,ν in V(N◦)ℓ is isomorphic to MD ⊠M0 Mµ,ν by (2) of Theorem 2.2.
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Furthermore, if χMµ,ν (ξ) = 1 for all ξ ∈ D, then N(η, δ) ⊂ (ΓD)◦ by Proposition 8.5, so

MD ·Mµ,ν ⊂ V(ΓD)◦ . Therefore, the following theorem holds.

Theorem 8.6. Let X ∈ Irr(M0).

(1) V(N◦)ℓ contains a χX-twisted MD-module isomorphic to MD ⊠M0 X.

(2) If χX = 1, then V(ΓD)◦ contains an untwisted MD-module isomorphic to

MD ⊠M0 X.

Let W be an irreducible χ-twisted MD-module for χ ∈ D∗, and let X be an irre-

ducible M0-submodule of W . Then W is isomorphic to a direct summand of MD ⊠M0 X

with χ = χX by (3) of Theorem 2.2. Thus Theorem 8.6 implies the following theorem.

Theorem 8.7. (1) V(N◦)ℓ contains any irreducible χ-twisted MD-module for

χ ∈ D∗.

(2) V(ΓD)◦ contains any irreducible untwisted MD-module.

Let Irr(M0) =
∪

i∈I Oi be the D-orbit decomposition of Irr(M0) for the action of D

on Irr(M0) in (8.3), and let DMµ,ν = {ξ ∈ D | Mξ ⊠M0 Mµ,ν
∼= Mµ,ν} be the stabilizer

of Mµ,ν . Lemma 3.1 implies the following lemma.

Lemma 8.8. Mξ ⊠M0 Mµ,ν
∼= Mµ,ν as M0-modules for some ξ ̸= 0 if and only if

k is even, ξ = (ξ1, . . . , ξℓ) ∈ {0, k/2}ℓ, and µr = k/2 for 1 ≤ r ≤ ℓ such that ξr = k/2.

The next theorem is a restatement of Proposition 2.3.

Theorem 8.9. Let X ∈ Irr(M0). If DX = 0, then MD ⊠M0 X is an irreducible

χX-twisted MD-module.

Now, suppose DX ̸= 0. Then k is even and DX ⊂ {0, k/2}ℓ by Lemma 8.8. In

order to apply the results in Section 2.2, we recall the previous arguments for a special

case where the Zk-code is of length one consisting of two codewords (0) and (k/2). Let

C = {(0), (k/2)} be such a Zk-code. Then ΓC = N ∪ N (k/2) with N (k/2) = N + kλk,

and MC = M0 ⊕ Mk/2 is a Z2-graded simple current extension of M0 by the self-dual

simple current M0-module Mk/2 with h(Mk/2) = k/4.

If k ≡ 0 (mod 4), then (k/2)2 ≡ 0 (mod k). Hence the Zk-code C is in Case A

in Section 7, and MC is a simple vertex operator algebra with h(Mk/2) ∈ Z. If k ≡ 2

(mod 4), then (k/2)2 ≡ k/2 (mod k). Hence C is in Case B in Section 7, and MC is

a simple vertex operator superalgebra with h(Mk/2) ∈ Z + 1/2. In both cases, there

exists a unique structure of a Z2-graded either untwisted or Z2-twisted MC-module on

the space P 0⊕P 1 with P 0 = P and P 1 = Mk/2⊠M0 P for any irreducible M0-module P .

Under the correspondence 0 7→ 0 and k/2 7→ 1, we can regard any additive subgroup

of {0, k/2}ℓ ⊂ (Zk)
ℓ as an additive subgroup of (Z2)

ℓ. In the case where k ≡ 2 (mod 4),

this correspondence is the reduction modulo 2, and it in fact gives an isometry from

({0, k/2}ℓ, ( · | · )) to ((Z2)
ℓ, ( · | · )), where ( · | · ) is the standard inner product on either

(Zk)
ℓ or (Z2)

ℓ. Hence DX ∩D⊥
X in (Zk)

ℓ corresponds to DX ∩D⊥
X in (Z2)

ℓ. Therefore,

we obtain the following theorem by Propositions 2.5 and 2.6.
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Theorem 8.10. Let X ∈ Irr(M0). Suppose k is even and DX ̸= 0.

(1) If k ≡ 0 (mod 4), then the irreducible decomposition of the χX-twisted MD-

module MD ⊠M0 X is given as

MD ⊠M0 X =

|DX |⊕
j=1

U j ,

where U j, 1 ≤ j ≤ |DX |, are inequivalent irreducible χX-twisted MD-modules. Further-

more, U j ∼=
⊕

W∈Oi
W as M0-modules, where Oi is the D-orbit in Irr(M0) containing X.

(2) If k ≡ 2 (mod 4), then the irreducible decomposition of the χX-twisted

MD-module MD ⊠M0 X is given as

MD ⊠M0 X =

|DX∩D⊥
X |⊕

j=1

(U j)⊕m,

where m = [DX : DX ∩D⊥
X ]1/2, and U j, 1 ≤ j ≤ |DX ∩D⊥

X |, are inequivalent irreducible

χX-twisted MD-modules. Furthermore, U j ∼=
⊕

W∈Oi
W⊕m as M0-modules, where Oi

is the D-orbit in Irr(M0) containing X.

Since any irreducible χ-twisted MD-module for χ ∈ D∗ is isomorphic to a direct

summand of the χX -twisted MD-module MD⊠M0X with χ = χX for some X ∈ Irr(M0),

we obtain a classification of all the irreducible χ-twisted MD-modules for any χ ∈ D∗ by

Theorems 8.9 and 8.10.

As mentioned in Section 2.2, we can write χi for χX , and Di for DX if X belongs

to a D-orbit Oi in Irr(M0). Let I(χ) = {i ∈ I | χi = χ}. Then I =
∪

χ∈D∗ I(χ). The

next lemma follows from (2) of Lemma 8.2.

Lemma 8.11. I(χ) ̸= ∅ for any χ ∈ D∗.

Theorems 8.9 and 8.10 imply the next theorem.

Theorem 8.12. The number of inequivalent irreducible χ-twisted MD-modules for

χ ∈ D∗ is given as follows.

|I(χ)| if k is odd,

|I(χ)0|+
∑

i∈I(χ)1

|Di| if k ≡ 0 (mod 4),

|I(χ)0|+
∑

i∈I(χ)1

|Di ∩D⊥
i | if k ≡ 2 (mod 4),

where I(χ)0 = {i ∈ I(χ) | Di = 0} and I(χ)1 = I(χ) \ I(χ)0.
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9. Irreducible MD-modules: Case B.

Let k ≥ 2, and let D be a Zk-code of length ℓ satisfying the conditions of Case B in

Section 7, that is, k is even, (ξ|η) ∈ {0, k/2} for all ξ, η ∈ D, and (ξ|ξ) = k/2 for some

ξ ∈ D. Let D0 and D1 be as in Section 7. In this section, we construct all irreducible

MD-modules inside V(ΓD0 )◦ .

Since D0 is a Zk-code of length ℓ in Case A, we can apply the results in Section 8 to

the vertex operator algebra MD0 . Let P ∈ Irr(MD0). Then P is isomorphic to a direct

summand of MD0 ⊠M0 Mµ,ν for some Mµ,ν ∈ Irr(M0). Moreover, there are η ∈ (Zk)
ℓ and

δ ∈ {0, 1}ℓ such that N(η, δ) ⊂ (ΓD0)◦ and VN(η,δ) contains Mµ,ν as an M0-submodule.

For simplicity of notation, we identify P with an irreducible direct summand of

MD0 ⊠M0 Mµ,ν isomorphic to P . Then P is a submodule of the MD0 -module MD0 ⊠M0

Mµ,ν , and the MD-module MD · P generated by P is isomorphic to MD ⊠MD0 P . Thus

MD · P = P ⊕ Q as MD0 -modules, where Q is an irreducible MD0-module isomorphic

to MD1 ⊠MD0 P . Since ΓD ⊂ (ΓD)◦ ⊂ (ΓD0)◦, and since Mµ,ν ⊂ V(ΓD0 )◦ , we have

MD · P ⊂ V(ΓD0 )◦ .

If P and Q are inequivalent as MD0 -modules, then there is a unique MD-module

structure on P ⊕Q which extends the MD0 -module structure. If P and Q are equivalent

as MD0 -modules, then P ⊕ Q is the direct sum of two inequivalent irreducible MD-

modules, both of which are isomorphic to P as MD0 -modules, see [33, Proposition 5.2].

Any irreducible MD-module is obtained in this way. Therefore, the following theorem

holds.

Theorem 9.1. V(ΓD0 )◦ contains any irreducible MD-module.

10. Examples.

The vertex operator algebra MD was previously studied for some small k. The first

one is the case k = 2, where M0 is the Virasoro vertex operator algebra L(1/2, 0) of

central charge 1/2, and its simple currents are M0 and M1 = L(1/2, 1/2). The next one

is the case k = 3, where M0 is L(4/5, 0)⊕L(4/5, 3), and there are three simple currents.

These cases were discussed in [35] and [23], respectively.

In the case k = 4, we have M0 = V +√
6Z and M2 = V −√

6Z. So MD = V√
6Z for ℓ = 1

and D = {(0), (2)}. The case k = 5 with ℓ = 2 and D = {(00), (12), (24), (31), (43)}, and
the case k = 9 with ℓ = 1 and D = {(0), (3), (6)} were considered in Sections 3.5 and 3.9

of [30], respectively.

Let k = 6 with ℓ = 1 and D = {(0), (3)}. Then

MD = M0 ⊕M3 ∼= LNS(5/4, 0)⊕ LNS(5/4, 3),

where LNS(c, 0) is the simple Neveu–Schwarz algebra of central charge c, and LNS(c, h)

is its irreducible highest weight module with highest weight h, see [3, Section 4], [44].

In fact, let v be an weight 3/2 element of M3 such that v(2)v = (5/6)1. Then Ln =

ω(n+1) and Gn−1/2 = v(n), n ∈ Z, satisfy the relations for the Neveu–Schwarz algebra of

central charge 5/4. Thus the subalgebra generated by ω and v in VΓD is isomorphic to

LNS(5/4, 0). Moreover, the weight 3 primary vector W 3 of M0 is a highest weight vector

for LNS(5/4, 0).
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Let k = 8 with ℓ = 1 and D = {(0), (2), (4), (6)}. Then

MD = M0 ⊕M2 ⊕M4 ⊕M6 ∼= LNS(7/10, 0)⊗ LNS(7/10, 0)

is a simple vertex operator superalgebra, where

LNS(7/10, 0) ∼= L(7/10, 0)⊕ L(7/10, 3/2).

The even part of MD is

M0 ⊕M4 ∼=
(
L(7/10, 0)⊗ L(7/10, 0)

)
⊕
(
L(7/10, 3/2)⊗ L(7/10, 3/2)

)
,

see [4, Theorems 4.14, 4.15], [30, Section 3.7].

Appendix. Minimal norm of elements in N(j, a).

In this appendix, we calculate the minimal norm of elements in the coset N(j,a) of

N in N◦ defined in (4.3). Let Ω = {1, 2, . . . , k}, and let αS =
∑

p∈S αp for a subset S of Ω.

Theorem A.1. Let a ∈ {0, 1}k and 0 ≤ j ≤ k−1. Set I = supp(a) and i = wt(a).

(1) If j < i, then

(i) min{⟨µ, µ⟩ | µ ∈ N(j,a)} = (ki− (i− 2j)2)/2k,

(ii) For µ ∈ N(j,a), the norm ⟨µ, µ⟩ is minimal if and only if

µ =
1

2
αI − αJ +

2j − i

2k
γ

for some J ⊂ I with |J | = j. There are
(
i
j

)
such µ’s.

(2) If j ≥ i, then

(i) min{⟨µ, µ⟩ | µ ∈ N(j,a)} = (k(k − i)− (k + i− 2j)2)/2k,

(ii) For µ ∈ N(j,a), the norm ⟨µ, µ⟩ is minimal if and only if

µ =
1

2
αI − αJ +

2j − i

2k
γ

for some I ⊂ J ⊂ Ω with |J | = j. There are
(
k−i
j−i

)
such µ’s.

Proof. Any permutation on {α1, . . . , αk} induces an isometry on Q ⊗Z L. The

isometry fixes γ and leaves L invariant. Since λp = γ/2k−αp/2 and 2λp ≡ 2λk (mod N),

1 ≤ p ≤ k, we may assume that I = {1, . . . , i}, that is, ap = 1 for p ≤ i, and ap = 0 for

p ≥ i+ 1 in (4.3).

Let d = (2j − i)/2k. Since αp ≡ αq (mod N), 1 ≤ p, q ≤ k, and since any element

of N is of the form c1α1 + · · ·+ ckαk for some c1, . . . , ck ∈ Z with c1 + · · ·+ ck = 0, we

see from (4.4) that any element µ ∈ N(j,a) is of the form
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µ =
1

2
(α1 + · · ·+ αi)− c1α1 − · · · − ckαk + dγ

=
i∑

p=1

(d+ 1/2− cp)αp +
k∑

q=i+1

(d− cq)αq

for some c1, . . . , ck ∈ Z with c1 + · · ·+ ck = j. Our concern is the minimum of

⟨µ, µ⟩/2 =

i∑
p=1

(d+ 1/2− cp)
2 +

k∑
q=i+1

(d− cq)
2 (A.1)

for c1, . . . , ck ∈ Z with c1 + · · ·+ ck = j.

We first show the assertion (1). Assume that 0 ≤ j < i ≤ k. Then −1/2 ≤ d < 1/2.

If d = −1/2, then i = k and j = 0. In this case, we have N(j,a) = N . Clearly,

min{⟨µ, µ⟩ | µ ∈ N} = 0, and ⟨µ, µ⟩ = 0 only if µ = 0. Hence the assertion (1) holds in

the case d = −1/2.

If d = 0, then i = 2j, and (A.1) reduces to ⟨µ, µ⟩/2 =
∑i

p=1(1/2−cp)
2+

∑k
q=i+1 cq

2.

We see that (1/2 − cp)
2 is 1/4 if cp = 0, 1, and 9/4 if cp = −1, 2. Moreover, cq

2 is 0

if cq = 0, and 1 if cq = ±1. Hence the minimum of ⟨µ, µ⟩/2 for c1, . . . , ck ∈ Z with

c1 + · · · + ck = j is attained only when j of c1, . . . , ci are 1, the remaining i − j of

c1, . . . , ci are 0, and cq = 0 for i+ 1 ≤ q ≤ k. The minimum of ⟨µ, µ⟩/2 is i/4. Thus the

assertion (1) holds in the case d = 0.

If −1/2 < d < 0, then 0 < d+1/2 < 1/2. In this case, (d+1/2− cp)
2 belongs to one

of the four open intervals (0, 1/4), (1/4, 1), (1, 9/4), or (9/4, 4) according as cp = 0, 1, −1,

or 2, respectively. Moreover, (d− cq)
2 belongs to one of the four open intervals (0, 1/4),

(1/4, 1), (1, 9/4), or (9/4, 4) according as cq = 0, −1, 1, or −2, respectively. Hence the

minimum of (A.1) for c1, . . . , ck ∈ Z with c1 + · · · + cj = j is attained only when j of

c1, . . . , ci are 1, the remaining i− j of c1, . . . , ci are 0, and cq = 0 for i+ 1 ≤ q ≤ k. The

minimum of (A.1) is

(d− 1/2)2j + (d+ 1/2)2(i− j) + d2(k − i) = i/4− (i− 2j)2/4k.

Thus the assertion (1) holds in the case −1/2 < d < 0.

If 0 < d < 1/2, then 1/2 < d + 1/2 < 1. In this case, (d + 1/2 − cp)
2 belongs to

one of the four open intervals (0, 1/4), (1/4, 1), (1, 9/4), or (9/4, 4) according as cp = 1,

0, 2, or −1, respectively. Moreover, (d − cq)
2 belongs to one of the four open intervals

(0, 1/4), (1/4, 1), (1, 9/4), or (9/4, 4) according as cq = 0, 1, −1, or 2, respectively. Hence

the minimum of (A.1) for c1, . . . , ck ∈ Z with c1 + · · · + ck = j is attained only when j

of c1, . . . , ci are 1, the remaining i − j of c1, . . . , ci are 0, and cq = 0 for i + 1 ≤ q ≤ k.

Thus the assertion (1) holds in the case 0 < d < 1/2. We have shown that (1) holds for

all 0 ≤ j < i ≤ k.

Next, we show the assertion (2). Assume that j ≥ i. We use Lemma 4.3. Let

a′p = 1 − ap, 1 ≤ p ≤ k, a′ = (a′1, . . . , a
′
k), and I ′ = supp(a′). Then I ∪ I ′ = Ω and

I ∩ I ′ = ∅. Let i′ = wt(a′) and j′ = j − i. Then i′ = k − i and 0 ≤ j′ < i′ ≤ k. The

assertion (1) for N(j′,a′) implies that

(i)′ min{⟨µ, µ⟩ | µ ∈ N(j′,a′)} = (ki′ − (i′ − 2j′)2)/2k,
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(ii)′ For µ ∈ N(j′,a′), the norm ⟨µ, µ⟩ is minimal if and only if

µ =
1

2
αI′ − αJ′ +

2j′ − i′

2k
γ (A.2)

for some J ′ ⊂ I ′ with |J ′| = j′. There are
(
i′

j′

)
such µ’s.

Since αI′ = γ−αI , and since 2j′− i′ = 2j− i− k, the element µ of (A.2) is equal to

µ = −1

2
αI − αJ ′ +

2j − i

2k
γ.

The set {J ⊂ Ω | I ⊂ J, |J | = j} is in one-to-one correspondence with the set

{J ′ ⊂ Ω − I | |J ′| = j − i} by J 7→ J − I and J ′ 7→ J ′ ∪ I. Let J = J ′ ∪ I. Then

αJ = αJ ′ + αI , as J
′ ∩ I = ∅. Thus the assertion (2) holds. □
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[33] H. Li, Extension of vertex operator algebras by a self-dual simple module, J. Algebra, 187 (1997),

236–267.

[34] H. Li, An analogue of the Hom functor and a generalized nuclear democracy theorem, Duke Math.

J., 93 (1998), 73–114.

[35] M. Miyamoto, Binary codes and vertex operator (super)algebras, J. Algebra, 181 (1996), 207–222.

[36] M. Miyamoto, Representation theory of code vertex operator algebra, J. Algebra, 201 (1998),

115–150.

[37] M. Miyamoto, A new construction of the moonshine vertex operator algebras over the real number

field, Ann. of Math., 159 (2004), 535–596.
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