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Abstract. In this paper it is proved that, when Q is a quiver that admits
some closure, for any algebraically closed field K and any finite dimensional
K-linear representation X of Q, if Ext1KQ(X ,KQ) = 0 then X is projective.

In contrast, we show that if Q is a specific quiver of the type above, then there

is an infinitely generated non-projective KQ-module Mω1 such that, when K
is a countable field, MAℵ1

(Martin’s axiom for ℵ1 many dense sets, which is

a combinatorial axiom in set theory) implies that Ext1KQ(Mω1 ,KQ) = 0.

Introduction.

Bound quiver algebras of finite connected quivers strongly influence research on

representation theory of Artin algebras. Gabriel found a correspondence between finite

dimensional algebras and linear representations of bound quivers ([13], [3, II]), so it fol-

lows that studying modules of finite dimensional algebras is reduced to studying modules

of bound quiver algebras. In this paper, we concentrate on the study of path algebras,

which is one type of bound quiver algebras.

Nakayama conjecture, Tachikawa conjecture, and Auslander–Reiten conjecture are

some major research projects in ring theory that present sufficient conditions for projec-

tive modules. Related to this, it has been known the following result for Artin algebras:

(∗) For any finite dimensional algebra1 Λ over an algebraically closed field of finite global

dimension and any finitely generated Λ-module M , if Ext≥1Λ (M,Λ) = 0, then M is pro-

jective (Theorem 1.2). A typical example of finite dimensional algebras is a path algebra

of a finite acyclic quiver over an algebraically closed field. Since any path algebra of a

quiver over an algebraically closed field is hereditary (even when the quiver is not finite,

see e.g. [14, Subsection 8.2]), that is, its global dimension is not larger than 1, the follow-

ing assertion also holds: For any algebraically closed field K, any finite acyclic quiver Q

and any finitely generated KQ-module M , if Ext1KQ(M,KQ) = 0, then M is projective.

In Theorem 1.10, it is shown that the above assertion is also true for finite dimensional

K-linear representations of some infinite quivers, one of which is the following quiver of

A∞ type, denoted by A←∞:

0 1oo 2oo · · ·oo noo n+ 1oo · · ·oo .
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Let A→∞ be the opposite quiver of A←∞: the set of the vertices of A→∞ is the same as

A←∞, but the arrows are reversed, that is, each arrow in A→∞ is of the form n // n+ 1 .

The category ModKA→∞ of KA→∞-modules is known to be somewhat simple, actually

is pure semisimple, that is, every KA→∞-module is a direct sum of finitely presented

KA→∞-modules [5, Section 2]. In [7, Theorem 3.1], a characterization of projective repre-

sentations of A→∞ over a unital ring is given. The category of representations of A←∞ also

has been studied, for example, a characterization of projective representations of A←∞ over

a field is presented in [4, p.102, Example], and this is extended to such representations

over a unital ring in [8, Section 3].

In this paper, we consider some specific quivers Q, as specified in Theorem 2.11, one

of which is the quiver A←∞ to construct an infinitely generated non-projectiveKQ-module,

which is denoted by Mω1 . To analyze such a KQ-module Mω1 , MAℵ1 (Martin’s axiom

for ℵ1 many dense sets) is used. MAℵ1 is a combinatorial axiom of set theory that can

neither be proved nor refuted from Zermelo–Fraenkel axiomatic set theory ZFC with the

axiom of choice [18], [21]. MAℵ1 is applied in many areas of mathematics to show that

some mathematical statements cannot be refuted from ZFC (see e.g. [12]). One of such

examples is Shelah’s solution of Whitehead problem [20]. Our main result states that

if K is a countable field and MAℵ1 holds, then Ext1KQ(Mω1 ,KQ) = 0 (Theorems 2.4,

2.9 and Theorem 2.11). Therefore, under MAℵ1 and the assumption that K is a count-

able field, the above assertion (∗) fails for quivers Q as in Theorem 2.11 and infinitely

generated KQ-modules. Trlifaj’s construction is used to build such infinitely generated

KQ-modules, which will be presented in Subsection 1.4.

This paper is intended to be fairly self contained, but we will assume some basic

knowledge about ordinals (see e.g. [11, II.1, II.4] and [17, I.7, III.6]). Section 1 provides

necessary knowledge, which includes some facts on path algebras and set theory. Section 2

provides the proof of the main result of this paper.

1. Preliminaries.

Throughout this paper, a ring R means a ring with enough idempotents (hence

R may not be unital), and an R-module means right R-module. For a ring R, ModR

denotes the category of the R-modules, and modR denotes the category of the finitely

generated R-modules. For an R-module M and a subset X of M , ⟨X⟩R denotes the

R-submodule of the module M generated by X. For an R-module M and R-submodules

Ni, i ∈ I, of M ,
∑

i∈I Ni denotes the R-submodule that is the R-linear span of the set∪
i∈I Ni.

We follow the notation of outer direct sums in [11, I.2]. For a family {Mi : i ∈ I}
of modules, the product module

∏
i∈I Mi is the module whose underling set is the set

of functions f with domain I such that for each i ∈ I, f(i) belongs to the set Mi, and

the operations are defined coordinate-wise. For a member f of the product
∏

i∈I Mi, the

support supp(f) of f is defined by the set

{i ∈ I : f(i) ̸= 0Mi} .

The outer direct sum
⊕

i∈I Mi of a family {Mi : i ∈ I} of modules is the submodule of
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the product module
∏

i∈I Mi which consists of the members of the set
∏

i∈I Mi whose

supports are finite.

We adopt ordinals as the von Neumann ordinals, that is, an ordinal α means the set

of ordinals less than α. So for ordinals α and β, α is less than β if and only if α ∈ β. ω

is the set of all finite ordinals (non-negative integers), ω1 is the least uncountable ordinal

(which is a cardinal). Lim denotes the class of all limit ordinals.

The following is a well-known equivalence about projectivity.

Theorem 1.1 (e.g. [1, Propositions 17.1, 17.2]). For a ring R (with enough idem-

potents) and an R-module P , the following statements are equivalent.

(1) For every R-epimorphism f from an R-module M onto an R-module N and every

R-homomorphism g from P into N , there exists an R-homomorphism h from P into

M such that g = f ◦ h.

(2) Every R-epimorphism from an R-module onto P splits, that is, it is right invertible.

(3) The functor HomR(P,−) within the category ModR is exact, that is, for every R-

module M , Ext1R(P,M) = 0.

(4) P is isomorphic to a direct summand of a free R-module.

1.1. Path algebras and quiver representations.

This subsection is devoted to the basics of representation theory of rings. The readers

can skip this subsection if they are familiar with path algebras and quiver representations.

Quivers, path algebras, and linear representations of quivers are some basic concepts

of representation theory of Artin algebras. Our notation and terminology are fairly

standard, see e.g. [2], [3]. In the next paragraphs, we refer to [3, Chapters II–III] for

definitions, notation, and terminology.

A quiver denotes a directed graph. Any quiver Q consists of a pair of a set Q0 of

vertices and a set Q1 of arrows. Each arrow a is equipped with its source s(a) and its

target t(a). A quiver Q = (Q0, Q1) is called finite if both Q0 and Q1 are finite sets. A

path of the quiver Q is a finite sequence a0a1 · · · an of arrows of the quiver Q such that,

for each i with 0 ≤ i < n, the target of the arrow ai coincides with the source of the

arrow ai+1. The path a0a1 · · · an has length n + 1. For each vertex v of the quiver Q,

we agree to associate with it a path of length 0, called the trivial path or the stationary

path at the vertex v, which is denoted by ev. A cycle is a non-trivial path whose source

and target coincide. A quiver is called acyclic if there are no cycles in the quiver. For a

quiver Q, Q denotes the underlying graph of Q that is obtained from Q by forgetting the

orientation of the arrows, and a quiver Q is called connected if the graph Q is a connected

graph. For a field K and a quiver Q, the path algebra KQ of the quiver Q over the field

K is the K-algebra whose underlying set is the K-vector space whose basis is the set

of all the paths of the quiver Q (which includes all the stationary paths) such that the

product of two paths a0a1 · · · am−1 and b0b1 · · · bn−1 is defined as follows:

a0a1 · · · am−1 · b0b1 · · · bn−1 =

a0a1 · · · am−1b0b1 · · · bn−1 if t(am−1) = s(b0)

0KQ otherwise.
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The product of basic elements is extended to arbitrary elements of KQ by distributivity.

We note that, for any field K and a quiver Q with Q0 finite, KQ also has an identity,

which is of the form
∑

v∈Q0
ev. However, for any quiver Q with infinitely many vertices,

KQ does not have an identity. We recall that any path algebra KQ of a quiver Q over an

algebraically closed field K is hereditary even when a quiver Q is not finite (see e.g. [14,

Subsection 8.2]), that is, its global dimension is not larger than 1.

For a quiver Q = (Q0, Q1) and a field K, a K-linear representation of the quiver

Q is a system X = ⟨Xv,Xa : v ∈ Q0, a ∈ Q1⟩ such that, for each vertex v ∈ Q0, Xv is

a K-vector space and, for each arrow a ∈ Q1, Xa is a K-linear map from the K-vector

space Xs(a) into the K-vector space Xt(a). A K-linear representation is called finite

dimensional if each Xv, v ∈ Q0, is a finite dimensional K-vector space. For two K-linear

representations X and Y, a morphism from X into Y is a tuple φ = ⟨φv : v ∈ Q0⟩ such
that, for each v ∈ Q0, φv is a K-linear map from the K-vector space Xv into the K-vector

space Yv and, for each arrow a ∈ Q1, the following diagram commutes:

Xs(a)
Xa //

φs(a)

��

Xt(a)

φt(a)

��
Ys(a)

Ya // Yt(a) .

RepKQ denotes the category of the K-linear representations of a quiver Q over a field

K, and repKQ denotes the category of the finite dimensional K-linear representations X
of Q over K. In [3], these are defined for finite quivers, however, we adopt them for all

quivers.

There is a correspondence between KQ-modules and K-linear representation of Q

(see e.g. [3, Theorem III. 1.6]). For a KQ-module M , define the K-linear representation

F (M) of Q such that, for each v ∈ Q0, F (M)v :=Mev = {mev : m ∈M}, and, for each
a ∈ Q1, F (M)a is the K-homomorphism from F (M)s(a) into F (M)t(a) such that, for

each x ∈ F (M)s(a), F (M)a(x) = xa. For a K-linear representation X of Q, define the

KQ-module G(X ) whose underlying set is the direct sum
⊕

v∈Q0
Xv such that, for each

element m =
∑

v∈Q0
xv of

⊕
v∈Q0

Xv (in this notation, for all but finitely many v ∈ Q0,

xv is the zero of Xv), w ∈ Q0 and a ∈ Q1, mew := xw and ma := Xa(mes(a)), and the

product by any arbitrary element of KQ is extended by distributivity. We notice that,

for every K-linear representation X of Q, F (G(X )) = X , and, for every KQ-module M ,

if M =
∑

m∈M mKQ then G(F (M)) = M . Therefore, if Q is a finite connected quiver,

then the category ModKQ is equivalent to the category RepKQ by the functors F and G

[3, Theorem III. 1.6] and, for any finite acyclic quiver Q, modKQ is equivalent to repKQ

[3, Theorem III. 1.7].

1.2. Path algebras of infinite quivers.

Throughout this subsection, F denotes the canonical functor from ModKQ to

RepKQ, and G denotes the canonical functor from RepKQ to ModKQ, for a field K

and a quiver Q, as in the last paragraph of the previous subsection. The following the-

orem gives a sufficient condition for finitely generated projective modules over a finite

dimensional algebra. For example, the following is mentioned without proof in the proof
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of [19, Theorem 4.7].

Theorem 1.2 (folklore). Suppose that Λ is a finite dimensional algebra over an

algebraically closed field K with finite global dimension. Then for any finitely generated

Λ-module M , if Ext≥1Λ (M,Λ) = 0 then M is projective.

Proof. Suppose that M is a finitely generated Λ-module and Ext≥1Λ (M,Λ) = 0.

The point of the proof is to show that, for any finitely generated projective Λ-module P ,

Ext≥1Λ (M,P ) = 0. To see this, let P ′ be a complementary direct summand of P such

that P ⊕P ′ is isomorphic to a direct sum Λn of finitely many copies of Λ. Then for each

integer k ≥ 1,

ExtkΛ(M,Λn) =
(
ExtkΛ(M,Λ)

)n
= 0,

and

ExtkΛ(M,Λn) = ExtkΛ(M,P )⊕ ExtkΛ(M,P ′).

Therefore, ExtkΛ(M,P ) = 0. Hence Ext≥1Λ (M,P ) = 0.

Let d be the projective dimension pdM of M . Since Λ has finite global dimension,

0 ≤ d <∞. Assume, towards a contradiction, that d ≥ 1. Let the sequence

0 // Pd
fd // Pd−1

fd−1 //
((QQ

· · · · · · · · ·
f1 // P0

f0 // M // 0

Ωd−1M
((PPP

PP

0

be a projective resolution of M of length d such that each Pi is finitely generated, where

Ωd−1M is the (d − 1)-th syzygy of M . Since pdM = d, the projective dimension of

the Λ-module Ωd−1M is exactly 1, in particular, Ωd−1M is not projective. Applying

HomΛ(−, Pd) to the short exact sequence 0 → Pd → Pd−1 → Ωd−1M → 0, we obtain the

following exact sequence

0 // HomΛ(Ω
d−1M,Pd) //

HomΛ(Pd−1, Pd)
HomΛ(fd,Pd) // HomΛ(Pd, Pd) // Ext1Λ(Ω

d−1M,Pd) .

Since Pd is a finitely generated projective Λ-module,

Ext1Λ(Ω
d−1M,Pd) = ExtdΛ(M,Pd) = 0.

Thus HomΛ(fd, Pd) is surjective. So there exists a homomorphism gd from Pd−1 into

Pd such that the composition gd ◦ fd is the identity on Pd. Therefore the short exact

sequence 0 → Pd → Pd−1 → Ωd−1M → 0 splits, and hence Ωd−1M is a direct summand

of the projective module Pd−1, which is a contradiction. □

Definition 1.3. For a ring R and a subclass M of ModR, we define the assertion
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PR(M) that means that, for any M ∈ M, if Ext≥1R (M,R) = 0 then M is projective.

Remark 1.4. For any Noetherian ring Λ with finite global dimension and any

finitely generated Λ-module M , there is a projective precover of M which is finitely

generated. So the above proof works for any Noetherian ring of finite global dimension.

Therefore, for any Noetherian ring Λ of finite global dimension, PΛ(modΛ).

It is known that any path algebraKQ over an algebraically closed fieldK, even when

the quiver Q is not finite, is hereditary, that is, its global dimension is not larger than 1

(see e.g. [14, Subsection 8.2]). So any path algebra over an algebraically closed field is

an algebra with finite global dimension. Therefore Theorem 1.2 implies the following.

Corollary 1.5. Suppose that K is an algebraically closed field and Q is a finite

acyclic quiver. Then PKQ(modKQ). In particular, for any finitely generated KQ-module

M , if Ext1KQ(M,KQ) = 0 then M is projective.

Remark 1.6. A finite quiver of the form

◦
◦

◦

◦◦

◦

◦ %%

��

��
SS

EE
33

is called a cyclic quiver. Since the path algebra of a cyclic quiver Q over an algebraically

closed field K is Noetherian with finite global dimension, it follows from Remark 1.4 that

PKQ(modKQ).

We can extend the above corollary to some infinite quivers. To introduce such

infinite quivers explicitly, we define the following notions.

Definition 1.7. 1. A quiver P = (P0, P1) is called a subquiver of a quiver Q =

(Q0, Q1) if P0 and P1 are subsets of Q0 and Q1 respectively (hence, for any a ∈ P1, s(a)

and t(a) belong to P0).

2. For a quiver Q, a subquiver P of Q, a field K and a K-linear representation X of Q,

the K-linear representation X ↾ P of the quiver P is called the restricted representation

of X by P if for every v ∈ P0 and a ∈ P1, (X ↾ P )v = Xv and (X ↾ P )a = Xa.

3. For a quiver Q = (Q0, Q1) and a subset P ′0 of Q0, the closure of P ′0 under Q is the

subquiver P ′0
Q
=
((
P ′0

Q
)
0
,
(
P ′0

Q
)
1

)
of the quiver Q such that

(
P ′0

Q
)
0
:= {v ∈ Q0 : there exists a path from a member of P ′0

to the vertex v through the quiver Q}

and
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P ′0

Q
)
1
:=
{
a ∈ Q1 : s(a) ∈

(
P ′0

Q
)
0

}
.

A subquiver P of a quiver Q is called a closed subquiver of Q if P is a closure of some

subset of Q0 under Q. A subquiver P of a quiver Q is called a finite closed subquiver of

Q if P is a closed subquiver of Q and it is also a finite quiver.

Proposition 1.8. Suppose that K is a field, Q is a quiver, X is a K-linear

representation of Q such that Ext1KQ(G(X ),KQ) = 0, and P is a closed subquiver of

Q. Then Ext1KP (G(X ↾ P ),KP ) = 0.

Proof. Let S be the functor from the category RepKQ into the category RepKP

such that, for each K-linear representation Y of Q, S(Y) := Y ↾ P , and let T be the

functor from RepKP into RepKQ such that, for each K-linear representation Z of P ,

T (Z) is the K-linear representation of Q such that T (Z)v := Zv for every v ∈ P0, T (Z)v
is the trivial K-vector space for every v ∈ Q0 \ P0, T (Z)a := Za for every a ∈ P1, and

T (Z)a is the unique K-linear map from the trivial K-vector space T (Z)s(a) into the

K-vector space T (Z)t(a) for every a ∈ Q1 \ P1. We notice that both S and T are exact

functors, and the functor T is a right adjoint of the restricted functor S. Moreover, since

P is a closed subquiver of Q, T is well-defined, that is, the above T (Z) is certainly a

K-representation of Q. We also notice that the composition S ◦T is the identity functor

over RepKP , and

KP =
⊕
v∈P0

evKP =
⊕
v∈P0

evKQ,

which implies that T (F (KP )) is a direct summand of F (KQ). Note that G(T (F (KP )))

is justKP as aKQ-module, so it follows from our assumption that Ext1KQ(G(X ),KP ) =

0.

Ext1KQ(G(X ),KP ) = 0 means that any short exact sequence of K-linear represen-

tations of Q of the form

0 // T (F (KP )) // E
φ // X // 0

splits. We note that in such a short exact sequence, for any v ∈ Q0 \P0, Ev = Xv and φv

is an automorphism of Xv (because T (F (KP ))v is the trivial K-vector space). So, for

any short exact sequence of K-linear representations of P of the form

L′ : 0 // F (KP ) // E ′ // X ↾ P // 0 ,

there exists a short exact sequence of K-linear representations of Q of the form

L : 0 // T (F (KP )) // E // X // 0

such that S(L) = L′. Therefore, it follows that any short exact sequence of K-linear

representations of P of the form
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0 // F (KP ) // E ′ // X ↾ P // 0

splits, which is equivalent to say that Ext1KP (G(X ↾ P ),KP ) = 0. □

Proposition 1.9. Suppose that K is a field, Q is an acyclic quiver that contains

the quiver

v0 v1oo v2oo · · ·oo vnoo vn+1
oo · · ·oo

as a subquiver, and X is a finite dimensional K-linear representation of Q such that, for

each n ∈ ω, Xvn ̸= {0K}, and X ↾ {vn}
Q
is a direct sum of finitely many copies of the cor-

responding K-linear representation F (evnKQ) of evnKQ. Then Ext1KQ(G(X ),KQ) ̸= 0.

In [9, Definition 3.5], some type of quivers is defined, which is called rooted. It is true

that a quiver Q is rooted if and only if Q does not contain the quiver A←∞ as a subquiver

[9, Proposition 3.6]. So a quiver that satisfies the assumption of the proposition is not

rooted. For example, let Q be the following quiver

w0

��

w1

��

w2

��

w3

��

w4

��
v0 v1oo v2oo v3oo v4oo · · ·oo

and let P := {vn : n ∈ ω}
Q
. Then the quiver Q is a non-rooted quiver, and the quiver

P is different from Q, in fact, P0 = {vn : n ∈ ω}. For another example, let Q be the

following quiver

w1 w2 w3 w4

v0 v1oo

OO

v2oo

OOOO

v3oo

OO

v4oo

OOOO

· · ·oo

and let P := {vn : n ∈ ω}
Q
. Then the quiver P is equal to the quiver Q in this case, and

P0 \ {vn : n ∈ ω} = {wn : n ∈ ω}.

Proof. Let P := {vn : n ∈ ω}
Q
. By Proposition 1.8, it suffices to show that

Ext1KP (G(X ↾ P ),KP ) ̸= 0. Since

KP =

(⊕
n∈ω

evnKP

)
⊕

 ⊕
v∈P0\{vn:n∈ω}

evKP


and

Ext1KQ(M,N0 ⊕N1) = Ext1KQ(M,N0)⊕ Ext1KQ(M,N1)

in general, it suffices to show that Ext1KP (G(X ↾ P ),
⊕

n∈ω evnKP ) ̸= 0.

For each n ∈ ω, let
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dn := max
i∈ω

|{p : p is a path from vi to vn on P}| ,

when such maximum exists as a finite number, or dn := ∞ otherwise. Notice that, for

each n ∈ ω, the dimension of the K-vector space F (evnKQ)v0 is equal the number of

paths from vn to v0. So, if infinitely many dn were larger than 1, then the dimension

of Xv0 had to be infinite. Thus, for all but finitely many n ∈ ω, dn = 1. Therefore,

without loss of generality we may assume that, for every n ∈ ω, dn = 1. Hence there is

a d ∈ ω \ {0} such that, for any n ∈ ω,

X ↾ {vn}
P
=
⊕
d

F (evnKP ),

where the last term is the outer direct sum of d many copies of F (evnKP ). (Notice that

d is the dimension of Xvn .) For each n ∈ ω, let an be the unique arrow from vn+1 to vn,

and, for each v ∈ P0, let

m(v) := min {m ∈ ω : there is a path from vm to v} .

Then, for any v ∈ P0 and n ≥ m(v), any path from vn to v is of the form an−1 · · · am(v)p
′,

for some path p′ from vm(v) to v in P . Thus

X ↾ P =
⊕
d

X 0,

where X 0 is the K-linear representation of P such that: for each v ∈ P0, X 0
v is the

K-vector space whose basis is the set of all paths from vm(v) to v; for each n ∈ ω, X 0
an

is the K-linear map from X 0
vn+1

onto X 0
vn such that X 0

an
(evn+1) = evn ; and, for each

a ∈ P1 \ {an : n ∈ ω}, X 0
a is the K-linear map from X 0

s(a) onto X 0
t(a) such that, for each

path p from vm(s(a)) to s(a), X 0
a (p) := pa. Since

Ext1KP

(⊕
i∈I

Mi,KP

)
=
∏
i∈I

Ext1KP (Mi,KP )

in general, it suffices to show that Ext1KP (G(X 0),
⊕

n∈ω evnKP ) ̸= 0.

To see this, let π be the canonical KP -epimorphism from
⊕

n∈ω evnKP onto G(X 0)

such that, for each n ∈ ω, π(evn) := evn , and, for each v ∈ P0 and each path p in P ending

in v of the form p = an−1 · · · am(v)p
′, π(p) := p′. Then Ker(π) is the KP -submodule of⊕

n∈ω evnKP which is generated by the set

{evm − an · · · am : m,n ∈ ω,m ≤ n} .

Applying HomKP (−,KP ) to the exact sequence

0 // Ker(π)
idKer(π) //

⊕
n∈ω

evnKP // G(X 0) // 0 ,
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we obtain the exact sequence

0 // HomKP (G(X 0),KP ) //

HomKP

(⊕
n∈ω

evnKP,KP

)
HomKP (idKer(π),KP )

// HomKP (Ker(π),KP ) .

Then

Ext1KP

(
G(X 0),

⊕
n∈ω

evnKP

)
= HomKP (Ker(π),KP )

/
Im(HomKP (idKer(π),KP )).

For each non-stationary path bn · · · b0 of P , we fix the notation bi · · · b0 by induction

on i ≤ n in such a way that

b0 · · · b0 := b0

and, for i ≤ n,

bi+1 · · · b0 := bi+1bi · · · b0.

For each m,n ∈ ω with m ≤ n, define

φ(evm − an · · · am) :=

n−m∑
i=0

am+i · · · am.

Then, for each l,m, n ∈ ω with l < m ≤ n,

φ(evm − an · · · am)am−1 · · · al =

(
n−m∑
i=0

am+i · · · am

)
am−1 · · · al

=

(
n−l∑
i=0

al+i · · · al

)
−

(
m−1−l∑
i=0

al+i · · · al

)

= φ(evl
− an · · · al)− φ(evl

− am−1 · · · al)

and

(evm − an · · · am)am−1 · · · al = am−1 · · · al − an · · · al

= (evl
− an · · · al)− (evl

− am−1 · · · al) .

Thus, we can extend φ to a KP -homomorphism from Ker(π) into KP . To finish the

proof, it is sufficient to show that φ is not in Im(HomKP (idKer(π),KP )).

Assume it is, and let ψ ∈ HomKP (
⊕

n∈ω evnKP,KP ) be such that

φ = HomKP (idKer(π),KP )(ψ) = ψ ↾ Ker(π).
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For each n ∈ ω,

ψ(ev0)− ψ(evn+2)an+1 · · · a0 = ψ(ev0)− ψ(an+1 · · · a0)

= ψ(ev0 − an+1 · · · a0)

=
n+1∑
i=0

ai · · · a0.

Therefore, for every n ∈ ω, ψ(ev0) belongs to the set(
n∑

i=0

ai · · · a0

)
+KP (an+1 · · · a0) .

However, this is a contradiction because ψ(ev0) have to belong to KP . □

Theorem 1.10. Suppose that K is an algebraically closed field, and Q is a con-

nected quiver such that, for any finite subset P ′0 of Q0, the closure of P ′0 under Q is a

finite acyclic quiver. Then PKQ(repKQ).

For example, the following quivers satisfy the assumption of the theorem:

◦ ◦oo ◦oo
oo ◦oo ◦oo

oo ◦oo ◦oo
oo · · ·oo ,

◦zz ◦zz ◦zz
◦ ◦oo ◦oo

mm
◦oo

qq
◦oo ◦oo
mm

◦oo
qq

◦oo · · · ,oo
mm

◦
dd

◦
dd ee

◦
◦ ◦
ffLLLL

· · ·
◦ ◦
ffLLLL

◦
ffLLLL

· · ·
◦ ◦oo
eeKKKK

◦oo
eeKKKK

◦oo
ffMMMMM

· · · ,oo

◦
uullll

◦oo ◦oo · · ·oo
◦

||yy
yy

◦oo ◦oo
◦

iiRRRR ◦oo ◦oo · · ·oo
◦ ◦oo

◦
uullll

◦oo ◦oo · · ·oo
◦

bbEEEE
◦oo ◦oo

◦
iiRRRR ◦oo ◦oo · · · .oo

Note that any infinite quiver as in the assumption of the theorem contains at least one

of the following quivers as a subquiver:

◦ ◦oo ◦oo · · ·oo ◦oo ◦oo · · ·oo ,
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◦

◦

44iiiiiiiiiiiiiii ◦

77nnnnnnnnnn ◦

==|||||
· · · ◦

aaBBBBB
◦

ggPPPPPPPPPP
· · · · · · ,

◦ ◦
◦

99ttt ◦
eeKKK

◦
99ttt ◦

eeKKK
· · · · · ·

◦
99

◦
ee

◦
99

◦
ee

· · · · · ·
◦

99ttt ◦
99ttt

eeKKK
◦

;;vvv
eeKKK

.

Proof. This theorem has been proved when Q is a finite quiver in Corollary 1.5.

Suppose that Q is an infinite quiver, and X is a finite dimensionalK-linear representation

of Q such that Ext1KQ(G(X ),KQ) = 0. We show that X is projective. Since

Ext1KQ

(⊕
i∈I

Mi,KQ

)
=
∏
i∈I

Ext1KQ(Mi,KQ)

in general, without loss of generality we may assume that X is indecomposable.

By Proposition 1.8, for every finite closed subquiver P of Q, Ext1KP (G(X ↾
P ),KP ) = 0. Therefore, by PKP (modKP ), X ↾ P is projective. It is known that

any indecomposable projective KP -module is of the form evKP for some v ∈ P0 [3,

Section III. 2]. Since P is a closed subquiver of Q, the underlying set of evKP is equal

to evKQ, and F (evKQ) ↾ P = F (evKP ). So, since X is finite dimensional, X ↾ P is iso-

morphic to a direct sum of finitely many K-linear representations of the form F (evKQ)

for v ∈ P0. Therefore, since X is indecomposable, only one of the following statements

holds:

1. X is isomorphic to F (evKQ) for some v ∈ Q0, or

2. Q contains the quiver

v0 v1oo v2oo · · ·oo vnoo vn+1
oo · · ·oo

as a subquiver such that, for each n ∈ ω, Xvn ̸= {0K}, and X ↾ {vn}
Q

is a direct

sum of finitely many copies of F (evnKQ).

By Proposition 1.9 and the assumption that Ext1KQ(G(X ),KQ) = 0, X is isomorphic to

F (evKQ) for some v ∈ Q0. By our assumption, {v}
Q

is a finite acyclic quiver, so ev is

an idempotent of KQ. Hence evKQ is projective, so is X . □

1.3. Martin’s axiom.

Martin’s axiom was introduced by Martin and Solovay [18]. This axiom can neither

be proved nor refuted from axiomatic set theory ZFC, so it is consistent with ZFC.

Martin’s axiom can be considered as a generalization of the Baire category theorem (see

e.g. [17, Theorem III. 4.7]). MAℵ1 denotes Martin’s axiom for ℵ1 many dense sets.



425(93)

Some infinitely generated non-projective modules over path algebras 425

MAℵ1 implies that 2ℵ0 ≥ ℵ2. In this paper we use UP2, which is one combinatorial

consequence from MAℵ1 .

Definition 1.11. 1. A ladder system (on ω1 ) is a sequence ⟨Cα : α ∈ ω1 ∩ Lim⟩
such that

• for each α ∈ ω1∩Lim, Cα is a cofinal subset of α, that is, for any ξ ∈ α, there

is η ∈ Cα such that ξ ∈ η, and

• Cα is of order type ω, that is, the elements of Cα can be enumerated as

{ζαn : n ∈ ω} increasingly, that is, for every m,n ∈ ω, if m ∈ n, then ζαm ∈ ζαn .

2. A coloring ⟨dα : α ∈ ω1 ∩ Lim⟩ of a ladder system ⟨Cα : α ∈ ω1 ∩ Lim⟩ is a sequence
of functions such that the domain of each dα is Cα.

3. We say that a function f with domain ω1 uniformizes a coloring ⟨dα : α ∈ ω1∩Lim⟩
of a ladder system ⟨Cα : α ∈ ω1 ∩ Lim⟩, Cα = {ζαn : n ∈ ω}, if for every α ∈ ω1 ∩ Lim,

the restricted function f ↾ Cα of f by Cα is equal to the function dα for all but finitely

many points, that is, there exists an N ∈ ω such that, for any n ∈ ω\N , f(ζαn ) = dα(ζ
α
n ).

4. The assertion UP means that, for any sequence ⟨Xβ : β ∈ ω1⟩ of countable sets

and any coloring ⟨dα : α ∈ ω1 ∩ Lim⟩ of a ladder system ⟨Cα : α ∈ ω1 ∩ Lim⟩, whenever
dα(ζ

α
n ) belongs to Xζα

n
for any α ∈ ω1 ∩ Lim and n ∈ ω, there exists a function with

domain ω1 which uniformizes the coloring ⟨dα : α ∈ ω1 ∩ Lim⟩.

Theorem 1.12 (Devlin–Shelah [6, Theorem 5.2]). MAℵ1 implies UP.

The assertion UP was inspired by Shelah’s proof that MAℵ1 implies the existence

of a non-free Whitehead group [20, Theorem 3.5] (see also [10]).

1.4. Trlifaj’s construction.

In this paper, our modules are built by modifying Trlifaj’s construction. As every

proof in Section 2 is fairly self-contained, the reader does not need to be familiar with

this construction. Trlifaj’s construction is a quotient module of the outer direct sum⊕
ξ∈ω1

F ξ of some sequence
⟨
F ξ : ξ ∈ ω1

⟩
of modules, defined in [22, Definition 1.1] and

[15, Notation 5.3], which seems to be inspired by Shelah’s solution of Whitehead problem

[20]. To fix our notation and understand our construction better, Trlifaj’s construction

is presented as follows.

Let R be a ring with identity and let

F0

f0 // F1

f1 // · · ·
fn−1 // Fn

fn // Fn+1

fn+1 // · · ·

be a countable direct system of R-modules. Let ⟨Cα : α ∈ ω1 ∩ Lim⟩ be a ladder system

such that

Cα = {ζαn : n ∈ ω}

2This notation follows [11] but it is not that common in set theory.
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is an increasing enumeration and assume that, for each n ∈ ω, ζαn is of the form δ+n+1

for some δ ∈ α ∩ ({0} ∪ Lim) (there is such a ladder system). Define F 0 := {0R}; for
each γ ∈ ω1 \Lim with γ = δ + nγ + 1 for some δ ∈ γ ∩ ({0} ∪Lim) and nγ ∈ ω, define

F γ := Fnγ ; and, for each δ ∈ ω1∩Lim, define F δ :=
⊕

n∈ω Fn. So, for each member x of

the outer direct sum
⊕

ξ∈ω1
F ξ, x forms a finite support function with domain included

in ω1 and, for each α ∈ ω1, x(α) belongs to F
α. Hence, if δ ∈ ω1∩Lim, then x(δ) belongs

to the outer direct sum F δ :=
⊕

n∈ω Fn, which also forms a finite support function with

domain included in ω. For each δ ∈ ω1 ∩ Lim, define the R-submodule

Gδ :=

⟨{
x ∈

⊕
ξ∈ω1

F ξ : for some n ∈ ω, supp(x) =
{
ζδn, δ

}
,

supp(x(δ)) = {n, n+ 1} , x(ζδn) = x(δ)(n),

and x(δ)(n+ 1) = fn(x(δ)(n))

}⟩
R

of the R-module
⊕

ξ∈ω1
F ξ, and define

Iω1
:=

∑
δ∈ω1∩Lim

Gδ,

which is an R-submodule of the R-module
⊕

ξ∈ω1
F ξ. Trlifaj’s construction is the quo-

tient R-module
⊕

ξ∈ω1
F ξ/Iω1 of the R-module

⊕
ξ∈ω1

F ξ by the R-submodule Iω1 .

Trlifaj applied this construction for a non-left perfect ring [22], and Herbera–Trlifaj

applied it to analyze some classes of modules called Kaplansky classes or deconstructible

classes [15]. For further properties of this module, see [15, Section 5].

2. Some infinitely generated modules of path algebras.

Throughout this section, we fix a ladder system ⟨Cα : α ∈ ω1 ∩ Lim⟩ such that

Cα = {ζαn : n ∈ ω}

is an increasing enumeration and, for each n ∈ ω, ζαn is of the form δ + n + 1 for some

δ ∈ α ∩ ({0} ∪ Lim). We note that, for any α, β ∈ ω1 ∩ Lim and m,n ∈ ω, if ζαm = ζβn
then m = n. For γ ∈ ω1 \ ({0} ∪ Lim), let nγ ∈ ω be the unique integer such that

γ = δ + nγ + 1 for some (unique) δ ∈ ω1 ∩ ({0} ∪ Lim).

For each subsection of this section, we deal with some quiver Q and build a non-

projective KQ-module Mω1 . For each quiver Q in each subsection, we use the following

notation. For each v ∈ Q0, ev denotes the path of length 0 from the vertex v (to itself).

For γ ∈ ω1 \ Lim, α ∈ ω1 ∩ Lim and n ∈ ω, let F γ = Fα,n := KQ, and let Fα be the

outer direct sum
⊕

n∈ω F
α,n. For γ ∈ ω1 \Lim and v ∈ Q0, let e

γ
v be the member of the

outer direct sum
⊕

ξ∈ω1
F ξ of KQ-modules such that

supp(eγv) = {γ}, eγv(γ) = ev.
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For α ∈ ω1 ∩ Lim, n ∈ ω and v ∈ Q0, let e
α,n
v ∈

⊕
ξ∈ω1

F ξ be such that

supp(eα,nv ) = {α}, supp(eα,nv (α)) = {n}, eα,nv (α)(n) = ev.

Remark 2.1. The set

{eγv , eα,nv : γ ∈ ω1 \ Lim, v ∈ Q0, α ∈ ω1 ∩ Lim, n ∈ ω}

is linearly independent with respect to KQ in
⊕

ξ∈ω1
F ξ.

2.1. On a quiver of A∞ type.

Throughout this subsection, let K be a field, and Q the quiver A←∞ as follows:

0 1
a0oo · · ·

a1oo n
an−1oo n+ 1

anoo · · ·
an+1oo ,

that is, the set Q0 of vertices is the set of all non-negative integers and the set Q1 of

arrows is defined by {
n n+ 1 : n ∈ ω
anoo

}
.

Since Q0 is infinite, KQ does not have an identity. By simplifying the notation in this

subsection, for each α ∈ ω1 ∩ Lim and n ∈ ω,

eαn := eα,0n .

For each α ∈ ω1 ∩ Lim, define

Gα :=
⟨{
e
ζα
n

n − eαn + eαn+1an : n ∈ ω
}⟩

KQ
,

Iω1 :=
∑

ξ∈ω1∩Lim

Gξ.

For each x ∈
⊕

ξ∈ω1
F ξ, x+Iω1 denotes the equivalence class of x in the quotient module⊕

ξ∈ω1
F ξ/Iω1 . For each ξ ∈ ω1 + 1, define the KQ-module Mξ by⟨{

eγnγ
+ Iω1 : γ ∈ ξ \ Lim

}
∪ {eαn + Iω1 : α ∈ ξ ∩ Lim, n ∈ ω}

⟩
KQ

,

which is considered as a KQ-submodule of the quotient module
⊕

ξ∈ω1
F ξ/Iω1 .

Remark 2.2. The set
{
e
ζα
n

n − eαn + eαn+1an : α ∈ ω1 ∩ Lim, n ∈ ω
}

is linearly in-

dependent with respect to KQ in
⊕

ξ∈ω1
F ξ.

In this paper,
⊕

ω1
KQ denotes the outer direct sum of ω1 many copies of KQ,

which is considered as a KQ-module.

Claim 2.3. Ext1KQ(Mω1
,
⊕

ω1
KQ) ̸= 0. In particular, Mω1

is not a projective
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KQ-module.

Proof. Fω1 denotes the KQ-module⟨{
eγnγ

: γ ∈ ω1 \ Lim
}
∪ {eαn : α ∈ ω1 ∩ Lim, n ∈ ω}

⟩
KQ

.

Applying HomKQ(−,
⊕

ω1
KQ) to the exact sequence

0 // Iω1

idIω1 // Fω1
// Mω1

// 0 ,

we obtain the exact sequence

0 // HomKQ

(
Mω1 ,

⊕
ω1

KQ

)
//

HomKQ

(
Fω1 ,

⊕
ω1

KQ

) HomKQ

(
idIω1

,
⊕
ω1

KQ

)
// HomKQ

(
Iω1 ,

⊕
ω1

KQ

)
.

Then

Ext1KQ

(
Mω1 ,

⊕
ω1

KQ

)
= HomKQ

(
Iω1 ,

⊕
ω1

KQ

)/
Im

(
HomKQ

(
idIω1

,
⊕
ω1

KQ

))
.

By Remark 2.2, we can find a KQ-homomorphism φ in HomKQ(Iω1 ,
⊕

ω1
KQ) such that

for each α ∈ ω1 ∩ Lim and n ∈ ω,

φ
(
e
ζα
n

n − eαn + eαn+1an

)
:= eαn.

We show that φ does not belong to Im(HomKQ(idIω1
,
⊕

ω1
KQ)).

Assume that φ ∈ Im(HomKQ(idIω1
,
⊕

ω1
KQ)), and let ψ ∈ HomKQ(Fω1 ,

⊕
ω1
KQ)

such that

HomKQ

(
idIω1

,
⊕
ω1

KQ

)
(ψ) = ψ ◦ idIω1

= ψ ↾ Iω1 = φ.

We note that for each γ ∈ ω1 and n ∈ ω, supp(ψ(eγn)) is a finite subset of ω1. So we

can take an α ∈ ω1 ∩ Lim such that, for every γ ∈ α and n ∈ ω, supp(ψ(eγn)) is a finite

subset of α3. For each n ∈ ω,

ψ
(
e
ζα
n

n

)
− ψ(eαn) + ψ(eαn+1)an = ψ

(
e
ζα
n

n − eαn + eαn+1an

)
= eαn.

Therefore, by induction on n ∈ ω,

3This can be done by e.g. [17, Exercise III. 6.20]
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ψ(eα0 ) = ψ
(
e
ζα
0

0

)
− eα0 + ψ(eα1 )a0

= ψ
(
e
ζα
0

0

)
− eα0 +

(
ψ
(
e
ζα
1

1

)
− eα1 + ψ(eα2 )a1

)
a0

= ψ
(
e
ζα
0

0

)
− eα0 + ψ

(
e
ζα
1

1

)
a0 − eα1 a0 + ψ(eα2 )a1a0

= · · ·

= ψ
(
e
ζα
0

0

)
− eα0 +

n∑
i=1

ψ
(
e
ζα
i

i

)
ai−1 · · · a0 −

n∑
i=1

eαi ai−1 · · · a0

+ ψ(eαn+1)an · · · a0.

Hence, for every n ∈ ω, since each supp
(
ψ
(
e
ζα
i

i

))
does not contain α as a member,

ψ(eα0 )(α) ̸∈ KQ≤n,

where KQ≤n is the K-subspace of KQ generated by all paths of length ≤ n. This is a

contradiction. □

The following is similar to [11, Theorem XII 2.2, Proposition XIII 0.2].

Theorem 2.4. Suppose that K is a countable field. Then UP implies that

Ext1KQ(Mω1 ,KQ) = 0. In particular, PKQ(ModKQ) fails.

Proof. Applying HomKQ(−,KQ) to the exact sequence

0 // Iω1

idIω1 // Fω1
// Mω1

// 0 ,

we obtain the exact sequence

0 // HomKQ(Mω1
,KQ) // HomKQ(Fω1

,KQ)
HomKQ(idIω1

,KQ)
// HomKQ(Iω1

,KQ) .

Then

Ext1KQ(Mω1 ,KQ) = HomKQ(Iω1 ,KQ)/ Im(HomKQ(idIω1
,KQ)).

Let φ ∈ HomKQ(Iω1 ,KQ). We show that φ belongs to Im(HomKQ(idIω1
,KQ)).

For each α ∈ ω1 ∩ Lim and n ∈ ω, define

dα(ζ
α
n ) := φ

(
e
ζα
n

n − eαn + eαn+1an

)
.

We notice that, for each n ∈ ω,

φ
(
e
ζα
n

n − eαn + eαn+1an

)
en = φ

(
e
ζα
n

n − eαn + eαn+1an

)
,

and, for any m ∈ Q0 \ {n},
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φ
(
e
ζα
n

n − eαn + eαn+1an

)
em = φ

(
0 ⊕

ξ∈ω1

F ξ

)
= 0KQ.

Thus, for each n ∈ ω, dα(ζ
α
n ) belongs to the countable set∑

p : path in Q ending in n

Kp.

Therefore, by UP, we can find a uniformization f of the ladder system coloring

⟨dα : α ∈ ω1 ∩ Lim⟩, that is, for each α ∈ ω1 ∩ Lim, there is an Nα ∈ ω such that,

for every n ≥ Nα, f(ζ
α
n ) = dα(ζ

α
n ).

For each α ∈ ω1 ∩ Lim and n ∈ ω, define

• ψ
(
e
ζα
n

n

)
:= f(ζαn ),

• ψ(eαn) := 0KQ when n ≥ Nα, and

• by downward induction on n < Nα, define

ψ(eαn) := ψ
(
e
ζα
n

n

)
+ ψ(eαn+1)an − φ

(
e
ζα
n

n − eαn + eαn+1an

)
.

By Remark 2.1, ψ can be extended to aKQ-homomorphism from Fω1 intoKQ. Therefore

ψ ↾ Iω1 = ψ ◦ idIω1
= HomKQ(idIω1

,KQ)(ψ) = φ,

which finishes the proof. □

Remark 2.5. By a similar argument to the one in the previous theorem, it can be

proved that if K is a countable field and UP holds, then Ext1KQ(Mω1 ,
⊕

ωKQ) = 0.

Remark 2.6. Jensen introduced the assertion ♢ which is true in Gödel’s con-

structible universe. So ♢ is one set theoretic axiom consistent with ZFC (see e.g. [17]).

For a stationary set S, ♢S is a variation of ♢, which is also true in Gödel’s constructible

universe. Contrary to MAℵ1 , ♢ (and ♢S) implies that 2ℵ0 = ℵ1. By a similar argu-

ment as in [10, Lemma 4.3], we can show that if K is a countable field, then ♢ implies

Ext1KQ(Mω1 ,KQ) ̸= 0. The main ingredient to prove this is the following fact.

Claim 2.7. Suppose that ExtKQ(Mα+1/Mα,KQ) ̸= 0, and let

0 // KQ // Cα
π // Mα

// 0

be a short exact sequence that splits, that is, there exists a homomorphism ρ from Mα

into Cα such that π ◦ ρ = idMα . Then there exists a short exact sequence

0 // KQ // Cα+1
π′

// Mα+1
// 0

such that

π′ ↾ Cα = π
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and there is no homomorphism ρ′ from Mα+1 into Cα+1 such that

π′ ◦ ρ′ = idMα+1 and ρ′ ↾Mα = ρ.

Since KQ is countable and Claim 2.3 holds, a similar argument as in [10, Theorem 6.3]

works well to show that ExtKQ(Mω1 ,KQ) ̸= 0. Moreover, by a similar argument as

in [16], we can show that, if K is a countable field and there is a set {Sα : α ∈ ω1} of

pairwise disjoint stationary subsets of ω1 such that ♢Sα holds for each α ∈ ω1, then the

cardinality of ExtKQ(Mω1 ,KQ) is greater than ℵ1.

2.2. On a circular quiver.

In this subsection, let K be a field and Q the following quiver.

0

1

2

3k − 2

k − 1

k

a0
##

a1

��

a2
��

ak−2

QQ

ak−1
CC

ak 11

Then the path a0a1 · · · ak is a path in Q whose source and target are both the vertex 0.

We denote the path

(a0a1 · · · ak)0 = e0,

and, for each n ∈ ω, define the path

(a0a1 · · · ak)n+1
= (a0a1 · · · ak)n a0a1 · · · ak.

Recall that
∑

v∈Q0
ev is the identity of KQ. For each α ∈ ω1 ∩ Lim, define

Gα :=
⟨{
e
ζα
n

0 − eα,n0 + eα,n+1
0 a0a1 · · · ak : n ∈ ω

}⟩
KQ

,

Iω1
:=

∑
ξ∈ω1∩Lim

Gξ,

and, for each ξ ∈ ω1 + 1, define the KQ-module Mξ by

⟨{eγ0 + Iω1 : γ ∈ ξ \ Lim} ∪ {eα,n0 + Iω1 : α ∈ ξ ∩ Lim, n ∈ ω}⟩KQ ,

which is considered as a KQ-submodule of the quotient module
⊕

ξ∈ω1
F ξ/Iω1 .

Claim 2.8. Ext1KQ(Mω1 ,
⊕

ω1
KQ) ̸= 0. Therefore, Mω1 is not projective.

Proof. This can be proved in a similar way as in Claim 2.3. To see this, it suffices

to replace the formula
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φ
(
e
ζα
n

n − eαn + eαn+1an

)
:= eαn

by the formula

φ
(
e
ζα
n

0 − eα,n0 + eα,n+1
0 a0a1 · · · ak

)
:= eα,n0

in the proof of Claim 2.3. □

Moreover, by a similar proof as Theorem 2.4, the following theorem can be proved.

Theorem 2.9. Suppose that K is a countable field. Then UP implies that

Ext1KQ(Mω1 ,KQ) = 0. In particular, PKQ(ModKQ) fails.

Remark 2.10. As in Remark 2.6, if K is a countable field and ♢ holds, then

Ext1KQ(Mω1 ,KQ) ̸= 0.

2.3. Generalizations.

Theorem 2.11. Suppose that K is a countable field and Q′ is a quiver that contains

a subquiver Q of one of the following types

v
◦

◦

◦◦

◦

◦ %%

��

��
SS

EE
33

, v ◦oo ◦oo · · ·oo ◦oo ◦oo · · ·oo

in such a way that the set of all paths in Q′ ending in v is countable. Then UP implies

the failure of PKQ′(ModKQ′).

Proof. Let Mω1 be one of the KQ-modules constructed before. Then, Mω1 can

be considered as a KQ′-module and, by a similar argument as before, it can be proved

that Ext1KQ′(Mω1 ,
⊕

ω1
KQ′) ̸= 0, and that UP implies Ext1KQ′(Mω1 ,KQ

′) = 0. □
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[ 8 ] E. E. Enochs, S. Estrada, J. R. Garćıa Rozas and L. Oyonarte, Flat covers of representations of

the quiver A∞, Int. J. Math. Math. Sci., 2003 (2003), 4409–4419.

[ 9 ] E. E. Enochs, L. Oyonarte and B. Torrecillas, Flat covers and flat representations of quivers,

Comm. Algebra, 32 (2004), 1319–1338.

[10] P. C. Eklof, Whitehead’s problem is undecidable, Amer. Math. Monthly, 83 (1976), 775–788.

[11] P. C. Eklof and A. H. Mekler, Almost Free Modules. Set-Theoretic Methods, revised edition,

North-Holland Math. Library, 65, North-Holland Publishing Co., Amsterdam, 2002.

[12] D. H. Fremlin, Consequences of Martin’s Axiom, Cambridge Tracts in Math., 84, Cambridge Univ.

Press, Cambridge, 1984.

[13] P. Gabriel, Auslander–Reiten sequences and representation-finite algebras, In: Representation

Theory, I (Proc. Workshop, Carleton Univ., Ottawa, Ont., 1979), Lecture Notes in Math., 831,

Springer, Berlin, 1980, 1–71.

[14] P. Gabriel and A. V. Roiter, Representations of finite-dimensional algebras, With a chapter by

B. Keller, Encyclopaedia Math. Sci., 73, Algebra, VIII, Springer, Berlin, 1992, 1–177.

[15] D. Herbera and J. Trlifaj, Almost free modules and Mittag-Leffler conditions, Adv. Math., 229

(2012), 3436–3467.

[16] H. L. Hiller and S. Shelah, Singular cohomology in L, Israel J. Math., 26 (1977), 313–319.

[17] K. Kunen, Set Theory, Stud. Log. (London), 34, College Publications, London, 2011.

[18] D. Martin and R. Solovay, Internal Cohen extensions, Ann. Math. Logic, 2 (1970), 143–178.

[19] H. Minamoto, Ampleness of two-sided tilting complexes, Int. Math. Res. Not. IMRN, 2012 (2012),

67–101.

[20] S. Shelah, Infinite abelian groups, Whitehead problem and some constructions, Israel J. Math.,

18 (1974), 243–256.

[21] R. Solovay and S. Tennenbaum, Iterated Cohen extensions and Souslin’s problem, Ann. of Math.

(2), 94 (1971), 201–245.

[22] J. Trlifaj, Non-perfect rings and a theorem of Eklof and Shelah, Comment. Math. Univ. Carolin.,

32 (1991), 27–32.

Ayako Itaba

Department of Mathematics

Tokyo University of Science

1-3 Kagurazaka, Shinjuku-ku

Tokyo 162-8601, Japan

E-mail: itaba@rs.tus.ac.jp

Diego A. Mej́ıa

Faculty of Science

Shizuoka University

Ohya 836

Shizuoka 422-8529, Japan

E-mail: diego.mejia@shizuoka.ac.jp

Teruyuki Yorioka

Faculty of Science

Shizuoka University

Ohya 836

Shizuoka 422-8529, Japan

E-mail: yorioka@shizuoka.ac.jp

https://doi.org/10.1017/CBO9780511623615
https://doi.org/10.1017/CBO9780511623615
https://doi.org/10.1080/00927877908822429
https://doi.org/10.1080/00927877908822429
https://doi.org/10.1007/BF02762012
https://doi.org/10.1007/BF02762012
https://doi.org/10.1155/S0161171203205391
https://doi.org/10.1081/AGB-120028784
https://doi.org/10.1080/00029890.1976.11994250
https://doi.org/10.1017/CBO9780511896972
https://doi.org/10.1017/CBO9780511896972
https://doi.org/10.1007/BFb0089778
https://doi.org/10.1007/BFb0089778
https://doi.org/10.1007/BFb0089778
https://doi.org/10.1016/j.aim.2012.02.013
https://doi.org/10.1016/j.aim.2012.02.013
https://doi.org/10.1007/BF03007650
https://doi.org/10.1016/0003-4843(70)90009-4
https://doi.org/10.1093/imrn/rnr001
https://doi.org/10.1093/imrn/rnr001
https://doi.org/10.1007/BF02757281
https://doi.org/10.1007/BF02757281
https://doi.org/10.2307/1970860
https://doi.org/10.2307/1970860

