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Abstract. Let U−
q = U−

q (g) be the negative part of the quantum group

associated to a finite dimensional simple Lie algebra g, and σ : g → g be the
automorphism obtained from the diagram automorphism. Let gσ be the fixed
point subalgebra of g, and put U−

q = U−
q (gσ). Let B be the canonical basis

of U−
q and B the canonical basis of U−

q . σ induces a natural action on B, and

we denote by Bσ the set of σ-fixed elements in B. Lusztig proved that there
exists a canonical bijection Bσ ≃ B by using geometric considerations. In this

paper, we construct such a bijection in an elementary way. We also consider
such a bijection in the case of certain affine quantum groups, by making use
of PBW-bases constructed by Beck and Nakajima.

Introduction.

0.1. Let X be a Dynkin diagram with vertex set I, and g the semisimple Lie

algebra associated to X. We denote by Uq = Uq(g) the quantum enveloping algebra of

g, and by U−
q its negative part, which are associative algebras over Q(q). Let W be the

Weyl group of g, and w0 the longest element of W . Let h = (i1, . . . , iν) be a sequence

of ik ∈ I such that w0 = si1 · · · siν gives a reduced expression of w0, where si(i ∈ I) are
simple reflections in W . For each h as above, there exists a basis Xh of U−

q , called the

PBW-basis of U−
q . Put A = Z[q, q−1], and let AU−

q be Lusztig’s integral form of U−
q .

We consider the following statements.

(0.1.1)

(i) The Z[q]-submodule of U−
q generated by Xh is independent of the choice of h,

which we denote by LZ(∞).

(ii) The Z-basis of LZ(∞)/qLZ(∞) induced from Xh is independent of the choice of

h.

(iii) For each h, PBW-basis Xh gives rise to an A-basis of AU−
q .

We also consider a weaker version of (iii),

(iii′) For each h, any element of Xh is contained in AU−
q .

The canonical basis B of U−
q was constructed by Lusztig [L2], [L3] by using a

geometric method. It is known that it coincides with the global crystal basis of Kashiwara

[K1].

The statement (0.1.1) can be verified in general by making use of the canonical basis

or Kashiwara’s global crystal basis.
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0.2. We are interested in an elementary construction of canonical bases, in the

sense that we don’t appeal to Lusztig’s geometric theory of canonical bases nor Kashi-

wara’s theory of crystal bases. We shall construct canonical bases (as discussed in [L2]),

by making use of PBW-basis, based on the properties (0.1.1). Actually, in their the-

ories, canonical bases or crystal bases are constructed independently from PBW-bases.

However those constructions look like a huge black box, and it is not easy to trace the

construction even in the small rank cases. On the other hand, the construction of PBW-

bases is more explicit, the parametrization is easy, and they fit to direct computations.

So it is important to express canonical basis in terms of PBW-bases, which is the problem

closely related to the elementary construction of canonical basis.

In the case where X is simply laced, the verification of (0.1.1) is rather easy. In the

non-simply laced case, the problem is reduced to the case of type B2 or G2. In the case

of B2, the properties (i) and (iii) were verified by [L1], by computing the commutation

relations of root vectors in the case of type B2, and furthermore by applying the method

of Kostant on the Z-form of Chevalley groups in the case of type G2. Later [X1] gave a

proof of (iii) similar to the case of B2. But in any case, it requires a hard computation.

In [X2], Xi computed, in the case of B2, the canonical basis of U−
q explicitly in terms

of PBW-basis. The property (ii) follows from his result. But the property (ii) for G2 is

not yet verified (in an elementary method).

If we assume (i) and (iii) in (0.1.1), one can construct the “canonical basis”, which

is only independent of h, up to ±1. We call them the signed basis of U−
q . Thus in the

non-simply laced case, one can construct the signed basis.

0.3. Assume that X is simply laced, and let σ be a graph automorphism of X.

We denote by I the set of orbits in I under the action of σ : I → I. Then σ determines

a Dynkin diagram X whose vertex set is given by I. X corresponds to the σ-fixed

point subalgebra gσ of g, and we denote by Uq = Uq(g
σ) the corresponding quantum

enveloping algebra, and U−
q its negative part. Let B be the canonical basis of U−

q . Then

σ permutes B, and we denote by Bσ the set of σ-fixed elements in B. We also denote by

B the set of canonical basis of U−
q . In [L4] (and in [L3]), Lusztig proved that there exists

a canonical bijection between Bσ and B, based on geometric considerations of canonical

basis.

In this paper, we construct the bijection Bσ ∼−→B in an elementary way. We assume

that σ is admissible, namely for η ∈ I, if i, j ∈ η with i ̸= j, then i and j are not joined in

X. Let ε be the order of σ. We assume that ε = 2 or 3 (note that if X is irreducible, then

ε = 2 or 3). Let F be the finite field Z/εZ, and put A′ = F[q, q−1] = A/εA. Let AU−,σ
q

be the subalgebra of AU−
q consisting of σ-fixed elements, and consider the A′-algebra

A′U−,σ
q = AU−,σ

q ⊗A A′. Let J be the A′-submodule of A′U−,σ
q consisting of elements

of the form
∑

0≤i<ε σ
i(x) for x ∈ A′U−

q . Then J is a two-sided ideal of A′U−,σ
q , and we

denote by Vq the quotient algebra A′U−,σ
q /J . We define A′U−

q similarly to A′U−
q . We

can prove the following result (Proposition 1.20 and Corollary 1.21).

Theorem 0.4. Assume that (iii) in (0.1.1) holds for AU−
q , and (iii′) holds for

AU−
q . Then we have an isomorphism of A′-algebras

A′U−
q ≃ Vq. (0.4.1)
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Moreover (iii) holds for AU−
q .

By Theorem 0.4, one can define the signed basis for U−
q by assuming (iii′). But in

the case of G2, we have a more precise result (Proposition 1.23), namely

Proposition 0.5. Let U−
q be of type G2. Then the ambiguity of the sign can be

removed in the signed basis, hence (ii) of (0.1.1) holds for U−
q .

(0.4.1) gives a surjective map A′U−,σ
q → A′U−

q combined with the natural surjection

A′U−,σ
q → Vq. This map is compatible with PBW-bases, hence induces a natural map

Bσ → B, which is shown to be bijective (see Remark 1.24). Thus we can recover Lusztig’s

bijection Bσ ∼−→B by an elementary method.

0.6. In Beck and Nakajima [BN], PBW-bases were constructed for the affine

quantum enveloping algebras U−
q . They showed that an analogous property of (iii′)

holds for those PBW-basis, and that of (iii) holds if the corresponding diagram X is

simply laced. We apply the previous discussion to the case where X is simply laced of

type A
(1)
2n+1 (n ≥ 1), D

(1)
n (n ≥ 4), E

(1)
6 with ε = 2, and D

(1)
4 with ε = 3. Then X is

twisted affine of type D
(2)
n+2, A

(2)
2n−3, E

(2)
6 and D

(3)
4 , respectively (under the notation in

[Ka, 4.8]). We have (Corollary 2.17)

Theorem 0.7. Assume that X is twisted of type D
(2)
n , A

(2)
2n−1, E

(2)
6 or D

(3)
4 . Then

(iii) holds for U−
q . Moreover the surjective map A′U−,σ

q → A′U−
q gives a natural bijection

Bσ ∼−→B.

Remark 0.8. Assume that g is an affine Lie algebra, and g0 the associated finite

dimensional subalgebra of g. We consider the automorphism σ : g → g. In order to

apply the construction of PBW-basis in [BN] to our σ-setting, we need to assume that

σ leaves g0 invariant. Then gσ is necessarily twisted affine type. Our discussion can not

cover the case where gσ is untwisted type.

0.9. As mentioned in 0.3, Lusztig has given a canonical bijection between the

set of σ-stable canonical bases of U−
q and the set of canonical bases of U−

q . A closely

related problem for crystal bases was also studied by many researchers, such as Naito

and Sagaki [NS], Savage [S]. However those results are concerned with the level of

the parametrization, since there exists no direct relationship between Uσ
q and U−

q . The

main observation in our work is that if we replace A = Z[q, q−1] by A′ = (Z/εZ)[q, q−1],

we obtain a natural surjective map from A′U−,σ
q to A′U−

q as A′-algebras. This has an

advantage that we can compare directly the algebra structure of U−
q and of U−,σ

q , not

only the correspondence of bases. For example, the following is an easy consequence of

our results. (Notations are as in Section 1 for the Dynkin case. A similar result also

holds for the affine case.)

Theorem 0.10. Let b(c,h) be a canonical basis of U−
q , and b(c,h) the correspond-

ing σ-stable canonical basis of U−
q . We write them as
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b(c,h) = L(c,h) +
∑
d>c

adL(d,h),

b(c,h) = L(c,h) +
∑
d′>c

a′d′L(d′,h),

with a′d′ , ad ∈ qZ[q]. If L(d′,h) is the σ-stable PBW-basis corresponding to L(d,h), then

we have a′d′ ≡ ad (mod ε).

Some examples of Theorem 0.10 for small rank cases were computed in [MNZ].

This research has grown up from the question, concerning the elementary construc-

tion of canonical bases, posed by Nakajima in his lecture note [N] on the lectures at

Sophia University, 2006. The authors are grateful to him for his helpful suggestions.

1. PBW-bases and canonical bases.

1.1. In this paper, we understand that a Cartan datum is a pair X = (I, ( , )),

where ( , ) is a symmetric bilinear form on
⊕

i∈I Qαi (a finite dimensional vector space

over Q with the basis {αi} indexed by I) such that (αi, αj) ∈ Z, satisfying the property

• (αi, αi) ∈ 2Z>0 for any i ∈ I,

• 2(αi, αj)/(αi, αi) ∈ Z≤0 for any i ̸= j in I.

The Cartan datum X is called simply laced if (αi, αj) ∈ {0,−1} for any i ̸= j in

I, and (αi, αi) = 2 for any i ∈ I. The Cartan datum X determines a graph with the

vertex set I. If the associated graph is connected, X is said to be irreducible. Put

aij = 2(αi, αj)/(αi, αi) for any i, j ∈ I. The matrix (aij) is called the Cartan matrix.

In the case where the bilinear form is positive definite, X is called finite type. In

that case, the associated graph is a Dynkin diagram. In the case where the bilinear form

is positive semi-definite, X is called affine type. In that case, the associated graph is a

Euclidean diagram. In this paper, we are concerned with X of finite type or affine type.

1.2. Let X = (I, ( , )) be a simply laced Cartan datum, and let σ : I → I be a

permutation such that (σ(αi), σ(αj)) = (αi, αj) for any i, j ∈ I. Let I be the set of orbits

of σ on I. We assume that σ is admissible, namely for each orbit η ∈ I, (αi, αj) = 0 for

any i ̸= j in η.

We define a symmetric bilinear form ( , )1 on
⊕

η∈I Qαη by

(αη, αη′)1 =

{
2|η| if η = η′,

−|{(i, j) ∈ η × η′ | (αi, αj) ̸= 0}| if η ̸= η′.

It is easy to see that X = (I, ( , )1) defines a Cartan datum.

1.3. Let I = {1, 2, . . . , 2n − 1} for n ≥ 1. For i, j ∈ I, we put (αi, αj) = 2 if

i = j, (αi, αj) = −1 if i− j = ±1, and (αi, αj) = 0 otherwise. Then (I, ( , )) is a simply

laced irreducible Cartan datum of type A2n−1. We define a permutation σ : I → I by

σ(i) = 2n− i for all i. Then σ satisfies the condition in 1.2. We can identify I with the
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set {1, . . . , n}, where i = {i, 2n − i} for 1 ≤ i ≤ n − 1 and n = {n}. Then (I, ( , )1) is

the Cartan datum of type Bn.

1.4. Let I = {1, 2, 2′, 2′′}. We define a permutation σ : I → I of order 3 by

σ(1) = 1 and σ : 2 7→ 2′ 7→ 2′′ 7→ 2. The set I of orbits of σ in I is given by I = {1, 2},
where 1 = {1} and 2 = {2, 2′, 2′′}. We define a symmetric bilinear form on

⊕
i∈I Qαi by

(αi, αj) =


2 if i = j,

−1 if i ∈ 1, j ∈ 2 or i ∈ 2, j ∈ 1,

0 if i, j ∈ 2, i ̸= j.

Then (I, ( , )) gives the Cartan datum of type D4. σ : I → I satisfies the condition in

1.2, and (I, ( , )1) gives the Cartan datum of type G2.

1.5. Let q be indeterminate, and for an integer n, a positive integer m, put

[n]q =
qn − q−n

q − q−1
, [m]!q =

m∏
i=1

[i]q, [0]!q = 1.

For each i ∈ I, put qi = q(αi,αi)/2, and consider [n]qi , etc. by replacing q by qi in the

above formulas. Let U−
q be the negative part of the quantum enveloping algebra Uq

associated to a Cartan datum X = (I, ( , )). Hence U−
q is an associative algebra over

Q(q) with generators fi (i ∈ I) satisfying the fundamental relations

1−aij∑
k=0

(−1)kf (k)i fjf
(1−aij−k)
i = 0 (1.5.1)

for any i ̸= j ∈ I, where f (n)i = fni /[n]
!
qi for a non-negative integer n.

We now assume that the Cartan datum X is simply laced. Then [n]qi = [n]q for

any i ∈ I. Let σ : I → I be the automorphism as in 1.2. Then σ induces an algebra

automorphism σ : U−
q
∼−→U−

q by fi → fσ(i). We denote by U−,σ
q the subalgebra of U−

q

consisting of σ-fixed elements. Let A = Z[q, q−1], and AU
−
q be the A-subalgebra of U−

q

generated by f
(a)
i for i ∈ I and a ∈ N (N is the set of non-negative integers). Then σ

stabilizes AU
−
q , and we can define AU

−,σ
q the subalgebra of AU

−
q consisting of σ-fixed

elements.

Let X = (I, ( , )1) be the Cartan datum obtained from σ as in 1.2. We denote by

U−
q the negative part of the quantum enveloping algebra associated to X, namely, U−

q

is the Q(q)-algebra generated by f
η
with η ∈ I satisfying a similar relation as in (1.5.1).

Let ε be the order of σ (here we assume that ε = 2 or 3), and let F = Z/εZ be the

finite field of ε-elements. Put A′ = F[q, q−1], and consider the A′-algebra

A′U−,σ
q = AU−,σ

q ⊗A A′ ≃ AU−,σ
q /ε(AU−,σ

q ). (1.5.2)

Let J be the A′-submodule of A′U−,σ
q consisting of elements of the form

∑
0≤i<ε σ

i(x)

for x ∈ A′U−
q . Then J is a two-sided ideal of A′U−,σ

q , and we denote by Vq the quotient

algebra A′U−,σ
q /J . Let π : A′U−,σ

q → Vq be the natural map.
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Let U−
q be as before. We can define AU−

q and A′U−
q similarly to AU−

q and A′U−
q .

1.6. In the rest of this section, we assume that X is of finite type. Let W be the

Weyl group associated to the Cartan datum X, with simple reflections {si | i ∈ I}. Let

l :W → N be the standard length function ofW relative to the generators si (i ∈ I). Let
w0 be the unique longest element inW with respect to l, and put ν = l(w0). LetW be the

Weyl group associated to the Cartan datum X, with simple reflections {sη | η ∈ I}. Then
l, w0, ν with respect to X are defined similarly to l, w0, ν. For any η ∈ I, let wη be the

product of si for i ∈ η (note, by our assumption, that such si are mutually commuting).

Then W can be identified with the subgroup of W generated by {wη | η ∈ I} under the
correspondence sη ↔ wη. The map si 7→ sσ(i) defines an automorphism σ : W → W ,

and W coincides with the subgroup Wσ = {w ∈ W | σ(w) = w} of W under the above

identification. We have w0 = w0, and if w0 = sη1
· · · sην

is a reduced expression of w0,

then w0 = wη1 · · ·wην , which satisfies the relation
∑ν

k=1 l(wηk
) = ν. Thus if we write

wη =
∏

i∈η si for any η ∈ I, w0 = wη1 · · ·wην induces a reduced expression of w0,

w0 =

( ∏
k1∈η1

sk1

)
· · ·

( ∏
kν∈ην

skν

)
= si1 · · · siν . (1.6.1)

We write h = (η1, . . . , ην) and h = (i1, . . . , iν). Note that h is determined from h by

choosing the expression wη = sk1 · · · sk|η| for each η.

1.7. For any i ∈ I the braid group action Ti : Uq → Uq is defined as in [L4,

Chapter 39] (denoted by T ′′
si,1 there). Let h = (i1, . . . , iν) be a sequence such that

w0 = si1 · · · siν is a reduced expression. For c = (c1, . . . , cν) ∈ Nν , put

L(c,h) = f
(c1)
i1

Ti1(f
(c2)
i2

) · · · (Ti1 · · ·Tiν−1)(f
(cν)
ν ). (1.7.1)

Then {L(c,h) | c ∈ Nν} gives a PBW-basis of U−
q , which we denote by Xh. Now assume

given σ : I → I as in 1.2. Then σ ◦ Ti ◦ σ−1 = Tσ(i) and TiTj = TjTi if i, j ∈ η. Hence

one can define Rη =
∏

i∈η Ti for each η ∈ I, and Rη commutes with σ.

We consider the braid group action T η : Uq → Uq. Let h = (η1, . . . , ην) be a

sequence for w0. For any c = (γ1, . . . , γν) ∈ Nν , L(c,h) is defined in a similar way as in

(1.7.1),

L(c,h) = f (γ1)

η1
T η1

(f (γ2)

η2
) · · · (T η1

· · ·T ην−1
)(f (γν)

ην
). (1.7.2)

Then {L(c,h) | c ∈ Nν} gives a PBW-basis of U−
q , which we denote by X h.

Now assume that h is obtained from h as in 1.6. Then L(c,h) can be written as

follows. For k = 1, . . . , ν, let Ik be the interval in [1, ν] corresponding to ηk so that

wηk
=

∏
j∈Ik

sij in the expression of w0 in (1.6.1). Put Fηk
(c) =

∏
j∈Ik

f
(cj)
ij

for each k.

Then we have

L(c,h) = Fη1(c)Rη1(Fη2(c)) · · · (Rη1 · · ·Rην−1)(Fην (c)). (1.7.3)

In particular, the following holds.
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Lemma 1.8. Under the notation as above,

(i) σ gives a permutation of the PBW-basis Xh, namely σ(L(c,h)) = L(c′,h) for

some c′ ∈ Nν . L(c,h) is σ-invariant if and only if cj is constant for j ∈ Ik for

k = 1, . . . , ν.

(ii) For each c ∈ Nν , let c ∈ Nν be the unique element such that cj = γk for each

j ∈ Ik. Then L(c,h) 7→ L(c,h) gives a bijection

X h
∼−→X σ

h ,

where X σ
h is the set of σ-stable PBW-basis in Xh.

1.9. For each η ∈ I and a ∈ N, put f̃
(a)
η =

∏
i∈η f

(a)
i . Since f

(a)
i and f

(a)
j

commute each other for i, j ∈ η, we have f̃
(a)
η ∈ AU−,σ

q . We denote its image in A′U−,σ
q

also by f̃
(a)
η . Thus we can define g

(a)
η ∈ Vq by

g(a)η = π(f̃ (a)η ). (1.9.1)

In the case where a = 1, we put f̃
(1)
η = f̃η =

∏
i∈η fi and g

(1)
η = gη. Recall that A′U−

q is

generated by f (a)
η

for η ∈ I and a ∈ N. We have the following result.

Proposition 1.10. The correspondence f (a)
η
7→ g

(a)
η gives rise to a homomorphism

Φ : A′U−
q → Vq of A′-algebras.

1.11. Proposition 1.10 will be proved in Section 3. Here assuming the proposition,

we continue the discussion. Let Xh be as in Lemma 1.8. It is known that the PBW

-basis Xh is contained in AU
−
q (see Introduction). Thus σ-stable PBW-basis L(c,h) in

X σ
h is contained in AU−,σ

q . By Lemma 1.8 such an L(c,h) can be written as

L(c,h) = f̃ (γ1)
η1

Rη1(f̃
(γ2)
η2

) · · · (Rη1 · · ·Rην−1)(f̃
(γν)
ην ), (1.11.1)

where c = (γ1, . . . , γν) and

c = (c1, . . . , cν) = (γ1, . . . , γ1︸ ︷︷ ︸
|η1|-times

, γ2, . . . , γ2︸ ︷︷ ︸
|η2|-times

, . . . , γν , . . . , γν︸ ︷︷ ︸
|ην |-times

). (1.11.2)

For each L(c,h) ∈ X σ
h , put E(c,h) = π(L(c,h)) under the correspondence in (1.11.2).

By Lemma 1.8 (i), any element x ∈ A′U−,σ
q can be written as an A′-linear combination

of σ-stable PBW-basis modulo J . Thus we have

(1.11.3) The set {E(c,h) | c ∈ Nν} generates Vq as A′-module.

1.12. It is known, for any Cartan datum X, that there exists a canonical sym-

metric bilinear form ( , ) on U−
q , which satisfies the property,
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(L(c,h), L(c′,h)) =
ν∏

k=1

(f
(ck)
ik

, f
(c′k)
ik

) =
ν∏

k=1

δck,c′k

ck∏
d=1

1

1− qik
(1.12.1)

for c = (c1, . . . , cν), c
′ = (c′1, . . . , c

′
ν). In particular, (L(c,h), L(c′,h)) = 0 if c ̸= c′, and

the form ( , ) is non-degenerate. Assume that X is as in 1.2. Then σ preserves the form,

namely, (σ(x), σ(y)) = (x, y) for any x, y ∈ U−
q .

Let F(q) be the field of rational functions over F, and put F(q)Vq = Vq ⊗A′ F(q).

Then the form ( , ) on U−
q induces a symmetric bilinear form on F(q)Vq (note that

(
∑

i σ
i(x),

∑
i σ

i(y)) = 0 in F(q)). We have (E(c,h), E(c′,h′)) = 0 if c ̸= c′, and

(E(c,h), E(c,h)) ̸= 0. Thus {E(c,h) | c ∈ Nν} gives rise to an orthogonal basis of

F(q)Vq.

Put F(q)U
−
q = A′U−

q ⊗A′ F(q). We can regard {L(c,h) | c ∈ Nν} as an F(q)-basis of

F(q)U
−
q . The map Φ : A′U−

q → Vq induces an algebra homomorphism F(q)U
−
q → F(q)Vq,

which we denote also by Φ. We need a lemma.

Lemma 1.13. Assume that X has rank 2, and h = (η1, . . . , ην). Then for k =

1, . . . , ν, we have

Φ
(
T η1
· · ·T ηk−1

(f
ηk
)
)
= π

(
Rη1 · · ·Rηk−1

(f̃ηk
)
)
. (1.13.1)

Lemma 1.13 will be proved in Section 4. We continue the discussion assuming the

lemma. By using Lemma 1.13, we can prove the following theorem.

Theorem 1.14. Let h and h be as in 1.6.

(i) For any c ∈ Nν , we have Φ(L(c,h)) = E(c,h).

(ii) Φ gives an algebra isomorphism F(q)U
−
q
∼−→F(q)Vq.

Proof. Since Rη’s satisfy the braid relation, we can define Rw = Rη1 · · ·Rηk

for a reduced expression w = sη1
· · · sηk

∈ W . Let ∆+ be the set of positive roots in⊕
η∈I Qαη. We consider the following statement.

(1.14.1) Assume that, w(αη) ∈ ∆+. Then π
(
Rw(f̃η)

)
= Φ

(
Tw(fη)

)
.

Note that (1.14.1) certainly holds in the case where X has rank 2, in view of

Lemma 1.13. We prove (1.14.1) by induction on l(w). (1.14.1) holds if l(w) = 0. Thus we

assume that l(w) > 0, and choose η′ ∈ I such that l(wsη′) = l(w)−1. From the assump-

tion in (1.14.1), η′ ̸= η. It is known that there exist w′, w′′ ∈ W such that w = w′w′′,

which satisfy the condition

(i) w′′ is contained in the subgroup of W generated by sη and sη′ ,

(ii) l(w) = l(w′) + l(w′′),

(iii) l(w′sη) = l(w′) + 1, l(w′sη′) = l(w′) + 1.

By applying (1.14.1) to the case X has rank 2, we see that π(Rw′′(f̃η)) =

Φ(Tw′′(f
η
)). Since w ̸= w′, we have l(w′) < l(w). Also note that w′(αη), w

′(αη′) ∈ ∆+.

Thus by induction, we have
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π
(
Rw′(f̃η)

)
= Φ

(
Tw′(f

η
)
)
, π

(
Rw′(f̃η′)

)
= Φ

(
Tw′(f

η′)
)
.

Since Rw(f̃η) = Rw′Rw′′(f̃η) and Tw(fη) = Tw′Tw′′(f
η
), (1.14.1) holds for w. Thus

(1.14.1) is proved.

Now the claim (i) in the theorem follows from (1.14.1). Let Z be the F(q)-subspace

of F(q)U
−
q spanned by {L(c,h)}. Since {E(c,h)} is a basis of F(q)Vq, Φ gives an isomor-

phism Z ∼−→F(q)Vq by (i), and so Z is an algebra over F(q). Since f (a)
η

= ([a]!qη )
−1fa

η
is

contained in Z, we see that Z = F(q)U
−
q . Thus (ii) holds. The theorem is proved. □

1.15. We follow the point of view explained in Introduction. In the simply laced

case, the properties (i), (ii) and (iii) in (0.1.1) are known to hold. Hence there exists

the canonical basis {b(c,h) | c ∈ Nν} in LZ(∞), which is characterized by the following

properties,

b(c,h) = b(c,h), (1.15.1)

b(c,h) ≡ L(c,h) mod qLZ(∞),

where x 7→ x is the bar involution in U−
q . Note that {b(c,h) | c ∈ Nν} is independent of

the choice of h, which we denote by B.

We define a total order on Nν by making use of the lexicographic order, i.e., for

c = (c1, . . . , cν),d = (d1, . . . , dν) ∈ Nν , c < d if and only if there exists k such that

ci = di for i < k and ck < dk. Then the second formula in (1.15.1) can be written more

precisely as

b(c,h) = L(c,h) +
∑
c<d

adL(d,h) (1.15.2)

with ad ∈ qZ[q].

1.16. We choose h and h as in 1.6. Since σ permutes the PBW-basis L(c,h), σ

permutes the canonical basis B. We denote by Bσ the set of σ-stable canonical basis of

U−
q . Take b = b(c,h) ∈ Bσ. Then L(c,h) is σ-stable, and c is obtained from c as in

1.11. Since b ∈ AU−,σ
q , one can consider π(b). Then we can write as

π(b) = E(c,h) +
∑
c<d

adE(d,h) (1.16.1)

with ad ∈ qF[q]. The total order c < d on Nν is defined similarly. The bar involution

can be defined on Vq, and the map π is compatible with those bar involutions. Thus we

have

π(b) = π(b). (1.16.2)

Let L̃F(∞) be the F[q]-submodule of Vq generated by E(c,h). Then the set {π(b) | b ∈
Bσ} gives rise to an F[q]-basis of L̃F(∞) satisfying the properties (1.16.1) and (1.16.2).

Note that the set {π(b) | b ∈ Bσ} is characterized by those properties, and this set is
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independent of the choice of h, which we call the canonical basis of Vq.

Let L F(∞) be the F[q]-submodule of F(q)U
−
q generated by {L(c,h) | c ∈ Nν}. We

have the following result.

Proposition 1.17. There exists a unique F[q]-basis {b(c,h) | c ∈ Nν} in L F(∞)

satisfying the following properties,

b(c,h) = b(c,h), (1.17.1)

b(c,h) = L(c,h) +
∑
c<d

adL(d,h), (ad ∈ qF[q]).

Moreover, the set {b(c,h)} is independent of the choice of h, and L F(∞) does not

depend on the choice of h.

Proof. It is clear that the map Φ : F(q)U
−
q → F(q)Vq is compatible with the bar

involutions. Then the proposition immediately follows from Theorem 1.14. □

1.18. For any X, we consider the following statements corresponding to (iii) and

(iii′) in (0.1.1).

(1.18.1) PBW-basis X h gives an A-basis of AU−
q .

(1.18.2) Any element L(c,h) ∈X h is contained in AU−
q .

As was explained in Introduction, the proof of (1.18.1) is reduced to the case of

rank 2, namely the case of type B2 and G2, and in that case, (1.18.2) was proved by

Lusztig [L1] and Xi [X1]. In any case, the computation in the case of G2 is not easy.

(1.18.2) can be proved by computing the commutation relations of root vectors, which is

relatively easy compared to (1.18.1).

In the discussion below, we only assume that (1.18.2) holds for AU−
q , and will prove

that (1.18.1) holds for AU−
q .

1.19. We return to our original setting, and consider the map Φ : A′U−
q → Vq.

By (1.18.2), the PBW-basis X h = {L(c,h)} is contained in A′U−
q . Since {E(c,h)}

is an A′-basis of Vq, we see that Φ is surjective, by Theorem 1.14 (i). Let A′Ũ
−
q be

the A′-module generated by {L(c,h) | c ∈ Nν}. Again by Theorem 1.14, A′Ũ
−
q is an

A′-submodule of F(q)U
−
q , which is independent of the choice of h. We show that

A′Ũ
−
q = A′U−

q . (1.19.1)

By (1.18.2), we know that A′Ũ
−
q ⊂ A′U−

q . On the other hand, for each η ∈ I, one can

find a sequence h = (η1, . . . , ηN ) such that η1 = η. This implies that A′Ũ
−
q is invariant

under the left multiplication by f (a)
η

. Since this is true for any η, we see that A′U−
q is

contained in A′Ũ
−
q . Thus (1.19.1) holds.

Summing up the above arguments, we have the following integral form of Theo-

rem 1.14.
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Proposition 1.20. Assume that (1.18.2) holds for AU−
q . Then Φ induces an

isomorphism A′U−
q ≃ Vq. In particular, the PBW-basis X h gives an A′-basis of A′U−

q .

As a corollary, we have

Corollary 1.21. Assume that (1.18.2) holds for AU−
q . Then (1.18.1) also holds.

Proof. Let AÛ
−
q be the inverse limit of AU−

q /ε
n(AU−

q ). Then AÛ
−
q has a natural

structure of the module over Zε[q, q
−1] = lim←−A/εnA, where Zε is the ring of ε-adic

integers. We have a natural embedding AU−
q ⊂ AÛ

−
q . Now take x ∈ AU−

q . (1.18.1)

shows that x can be written as a linear combination of PBW-basis with coefficients in

A modulo ε(AU−
q ). We regard x as an element in AÛ

−
q . Then x can be written as a

linear combination of PBW-basis with coefficients in Zε[q, q
−1]. On the other hand, we

know that x is a linear combination of PBW-basis with coefficients in Q(q). Thus those

coefficients belong to A = Z[q, q−1], and we obtain (1.18.1). □

1.22. We assume that (1.18.2) holds for U−
q . Then by Corollary 1.21, we have

(1.22.1) In U−
q , L(c,h) is a linear combination of various L(d,h) with coefficients in A.

Then by [L3, Lemma 24.2.1], one can define a basis {b(c,h) | c ∈ Nν} of U−
q , satisfying

the properties

b(c,h) = b(c,h), (1.22.2)

b(c,h) = L(c,h) +
∑
c<d

adL(d,h), (ad ∈ qZ[q]).

In this construction, we cannot give the independence of the basis {b(c,h)} from h.

But by using the almost orthogonality of PBW-basis (1.12.1), one can prove a weaker

property, namely, the independence from h, up to sign (see [L3, Theorem 14.2.3]); if we

fix h,h′, then for any c, there exists a unique c′ such that

b(c,h) = ±b(c′,h′). (1.22.3)

We denote by B the set of canonical basis {b(c,h)} in U−
q . On the other hand,

let B′ be the canonical basis in A′U−
q given in Proposition 1.17. We temporally write

them as {b′(c,h)}. Then the image of b(c,h) under the natural map AU−
q → A′U−

q

coincides with b′(c,h), and this gives a bijection B ∼−→B′. In the case where ε = 2, this

does not give a new information on the sign of b(c,h). But in the case where ε = 3, we

have the following result.

Proposition 1.23. Assume that ε = 3, and X is of type G2. Then the canonical

basis {b(c,h) | c ∈ Nν} is independent of the choice of h, namely, if we fix h,h′, then

for any c, there exists a unique c′ such that

b(c,h) = b(c′,h′).
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Proof. By (1.22.3), we have b′(c,h) = ab′(c′,h′) for some a = ±1. But by

Proposition 1.17, b′(c,h) is determined uniquely as an element in L F(∞), which is

independent of the choice of h. It follows that a ≡ 1 mod 3. This implies that a = 1,

and the proposition is proved. □

Remark 1.24. By Proposition 1.20, we have a natural bijection B′ ∼−→Bσ. By the

discussion in 1.22, we have B ≃ B′. Hence

Bσ ≃ B′ ≃ B. (1.24.1)

Thus we have a natural correspondence Bσ ↔ B between the set of σ-stable canon-

ical basis of U−
q and the set of canonical basis of U−

q . This is nothing but the reformu-

lation, by our context of elementary setting, of Lusztig’s result [L4, 1.12 (b)] (see also

[L3, Theorem 14.4.9]) obtained by geometric considerations.

2. PBW-bases for affine quantum groups.

2.1. In Beck and Nakajima [BN], the PBW-bases were constructed in the case

of affine quantum groups. In this section, by making use of their PBW-bases, we shall

extend the results in the previous section to the case of affine quantum groups.

Let g be an untwisted affine Lie algebra associated to the simply laced Cartan datum

X, with the vertex set I, and g0 the simple Lie algebra over C with the vertex set I0
associated to the simply laced Cartan datum X0 such that

Lg0 = g0 ⊗C C[t, t−1],

g = Lg0 ⊕Cc⊕Cd,

where c is the center of g and d is the degree operator. Here Lg0 ⊕ Cc is the central

extension of the Loop algebra Lg0.

Let g0 = h0 ⊕
⊕

α∈∆0
(g0)α be the root space decomposition of g0 with respect to a

Cartan subalgebra h0 of g0, where ∆0 is the set of roots in g0. Then h = h0 ⊕Cc⊕Cd

is a Cartan subalgebra of g, and g is decomposed as

g = h⊕
( ⊕

α∈∆0
m∈Z

(g0)α ⊗ tm
)
⊕

( ⊕
m∈Z−{0}

h0 ⊗ tm
)
. (2.1.1)

We define δ ∈ h∗ by ⟨d, δ⟩= 1,⟨h0 ⊕Cc, δ⟩= 0. We regard α ∈ ∆0 ⊂ h∗0 as an element

in h∗ by α(c) = 0, α(d) = 0. Then (g0)α ⊗ tm, h0 ⊗ tm correspond to the root space with

root α + mδ, mδ, respectively, and (2.1.1) gives a root space decomposition of g with

respect to h. Let ∆ (resp. ∆+) be the set of roots (resp. the set of positive roots) in g.

Also ∆+
0 be the set of positive roots in ∆0. Then ∆

+ is given by

∆+ = ∆re,+
> ⊔∆re,+

< ⊔ Z>0δ, (2.1.2)

where
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∆re,+
> = {α+mδ | α ∈ ∆+

0 ,m ∈ Z≥0},

∆re,+
< = {α+mδ | α ∈ −∆+

0 ,m ∈ Z>0}.

∆re,+
> ⊔∆re,+

< is the set of positive real roots, and Z>0δ is the set of positive imaginary

roots. The simple roots Π are given by

Π = {αi | i ∈ I0} ⊔ {α0 = δ − θ},

where θ is the highest root in ∆+
0 .

2.2. Let σ : I → I be the permutation as in 1.2. We assume that σ preserves

I0. Thus if X is irreducible, X has type A
(1)
2n+1(n ≥ 1), D

(1)
n (n ≥ 4), E

(1)
6 for ε = 2, and

D
(1)
4 for ε = 3. Correspondingly, X has type D

(2)
n+2, (n ≥ 1), A

(2)
2n−3, (n ≥ 4), E

(2)
6 and

D
(3)
4 under the notation of the table in [Ka, Section 4.8]. Let I0 be the set of σ-orbits in

I0, and X0 be the corresponding Cartan datum. Then X0 has type Bn+1, Cn−1, F4, G2,

respectively.

σ induces a Lie algebra automorphism σ : g → g, and let gσ be the subalgebra of

g consisting of σ-fixed elements. σ preserves g0, and σ(c) = c, σ(d) = d. We define gσ0
similarly. Then gσ0 is a simple Lie algebra, and gσ = Lgσ0 ⊕ Cc ⊕ Cd is the affine Lie

algebra associated to gσ0 . Note that gσ is isomorphic to the affine Lie algebra g associated

to X, which is the twisted affine Lie algebra of type X
(r)
k given above (here r coincides

with ε). Moreover gσ0 is isomorphic to g
0
associated to X0. We have hσ = hσ0 ⊕Cc⊕Cd,

and hσ ≃ h, hσ0 ≃ h
0
(Cartan subalgebras of g and g

0
).

Note that σ acts on ∆+, leaving ∆+
0 invariant. Moreover, σ(δ) = δ. Thus ∆re,+

> and

∆re,+
< are stable by σ.

Let ∆+ (resp. ∆re,+, ∆im,+) be the set of positive roots (resp. positive real roots,

positive imaginary roots) in the root system ∆ of g. Since g is twisted of type X
(r)
n , by

[Ka, Proposition 6.3], ∆re,+ can be written as ∆re,+ = ∆re,+
> ⊔∆re,+

< and ∆im,+ = Z>0δ,

where

∆re,+
> = {α+mδ | α ∈ (∆+

0 )s,m ∈ Z≥0} ⊔ {α+mrδ | α ∈ (∆+
0 )l,m ∈ Z≥0}, (2.2.1)

∆re,+
< = {α+mδ | α ∈ −(∆+

0 )s,m ∈ Z>0} ⊔ {α+mrδ | α ∈ −(∆+
0 )l,m ∈ Z>0}.

Here (∆+
0 )s (resp. (∆+

0 )l) is the set of positive short roots (resp. positive long roots) in

the root system ∆0 of g
0
.

2.3. Let h∗0 = {λ ∈ h∗ | ⟨c, λ⟩= 0} = {λ ∈ h∗ | (λ, δ) = 0} be the subspace of h∗.

Then h∗0 =
⊕

i∈I0
Cαi ⊕Cδ. We define a map

cl : h∗0 → h∗0

by cl(αi) = αi (i ∈ I0) and cl(δ) = 0, where h∗0 = (h0)
∗. Then cl induces an isomorphism

h∗0/Cδ ∼−→ h∗0. σ acts on h∗0 and on h∗0, and cl is compatible with those σ-actions. Hence cl

induces a map (h∗0)σ → (h∗0)
σ. The restriction map h∗ → (hσ)∗ induces an isomorphism

(h∗)σ ∼−→ (hσ)∗, which implies that (h∗0)σ ≃ h∗0 since hσ ≃ h. Similarly we have (h∗0)
σ ≃
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(hσ0 )
∗ ≃ h∗

0
. Under those identifications, the induced map (h∗0)σ → (h∗0)

σ coincides with

the map cl : h∗0 → h∗
0
defined for g similarly to g.

2.4. Let Qcl be the image of
⊕

i∈I0
Zαi in h∗0/Cδ. Then Qcl can be identified

with the root lattice of g0 via cl. We define t : h∗0 → GL(h∗) by

t(ξ)(λ) = λ+ (λ, δ)ξ −
{
(λ, ξ) +

(ξ, ξ)

2
(λ, δ)

}
δ, (ξ ∈ h∗0, λ ∈ h∗), (2.4.1)

which induces a map t : h∗0/Cδ → GL(h∗), and consider the restriction of t on Qcl. Note

that in the case where λ ∈ h∗0, (2.4.1) can be written in a simple form

t(ξ)(λ) = λ− (λ, ξ)δ. (2.4.2)

Let W be the Weyl group of g and W0 the Weyl group of g0. Then we have an exact

sequence

1 −−−−→ Qcl
t−−−−→ W −−−−→ W0 −−−−→ 1. (2.4.3)

Put

Pcl = {λ ∈ h∗0 | (λ, αi) ∈ Z for any i ∈ I0}/Cδ.

Then Pcl is identified with the weight lattice of g0 via cl. We define an extended affine

Weyl group W̃ by W̃ = Pcl ⋊W0 (note that g is simply laced).

Let W be the Weyl group of g and W 0 the Weyl group of g
0
. Let ( , )1 be the

non-degenerate symmetric bilinear form on h∗
0
, normalized that (αi, αi)1 = 2 for a short

root αi (i ∈ I0) (see 1.2). The form ( , )1 is extended uniquely to a non-degenerate

symmetric bilinear form ( , )1 on h∗ by the condition that (λ, δ) = ⟨c, λ⟩ for any λ ∈ h∗.

For α ∈ ∆0, put α
∨ = 2α/(α, α)1. Put Q

cl
=

⊕
η∈I0

Zαη and Q∨
cl
=

⊕
η∈I0

Zα∨
η . Since

g is the dual of the untwisted algebra, we have Q
cl
⊂ Q∨

cl
. As in (2.4.1), we can define a

map t : h∗0/Cδ → GL(h∗), and we have an exact sequence

1 −−−−→ Q∨
cl

t−−−−→ W −−−−→ W 0 −−−−→ 1. (2.4.4)

For each i ∈ I0, let ωi be the fundamental weight of (∆0, h
∗
0), defined by (ωi, αj) = δij

(i, j ∈ I0). Then under the isomorphism cl : h∗0/Cδ ≃ h∗0, Pcl ≃
⊕

i∈I0
Zωi. The action

of σ on h∗0 induces an action of σ on Pcl, which is given by ωi 7→ ωσ(i) (i ∈ I0).

Thus we have an action of σ on W̃ , which preserves W0. On the other hand, we define

the fundamental coweight ω∨
η of (∆0, h

∗
0
) by (ω∨

η , αη′)1 = δηη′ (η, η′ ∈ I0), and put

ω̃η = |η|ω∨
η . We define P̃ cl =

⊕
η∈I0

Zω̃η, which we regard as a lattice of h∗0/Cδ dual

to Q∨
cl
. Define the extended affine Weyl group by W̃ = P̃ cl ⋊W 0. Since the map

(Pcl)
σ ∼−→ P̃ cl,

∑
i∈η

ωi 7→ |η|ω∨
η = ω̃η (2.4.5)
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is compatible with the action of W σ
0 ≃W 0, we have an isomoprhism

W̃σ = (Pcl)
σ ⋊Wσ

0 ≃ P̃ cl ⋊W 0 = W̃ . (2.4.6)

Let T = {w ∈ W̃ | w(∆+) ⊂ ∆+}, which is a subgroup of the automorphism group

of the ambient diagram. Then we have W̃ = T ⋉W . Similarly we define T = {w ∈W |
w(∆+) ⊂ ∆+} so that W̃ = T ⋉W . The action of σ on W̃ preserves T , and we have

T σ = T .

2.5. Following [BN, 3.1], put

ξ =
∑
i∈I0

ωi ∈ Pcl, (2.5.1)

and consider t(ξ) ∈ W̃ , which we simply denote by ξ. Here ξ ∈ W̃σ ≃ W̃ = T ⋉W , and

one can express ξ as

ξ = sη1 · · · sην τ (2.5.2)

with τ ∈ T = T σ, where w = sη1 · · · sην is a reduced expression of w ∈ W (w is the

W -component of ξ). Accordingly, we obtain a reduced expression of w = si1 · · · siν ∈W
such that

w =

( ∏
k1∈η1

sk1

)
· · ·

( ∏
kν∈ην

skν

)
= si1 · · · siν . (2.5.3)

As in [BN, 3.1], we define a doubly infinite sequence attached to g

h = (. . . , i−1, i0, i1, . . . ) (2.5.4)

by setting ik+ν = τ(ik) for k ∈ Z. Then for any integer m < p, the product

simsim+1 · · · sip ∈ W is a reduced expression. Similarly, we define a doubly infinite

sequence

h = (. . . , η−1, η0, η1, . . . ) (2.5.5)

by the condition that ηk+ν = τ(ηk) for k ∈ Z, which satisfies the property that

sηmsηm+1 · · · sηp ∈ W is a reduced expression for m < p. Note that ξ ∈ (Pcl)
σ, and

under the isomorphism (Pcl)
σ ≃ P̃ cl in (2.4.5), ξ coincides with the element

∑
η∈I0

ω̃η.

Thus the sequence (2.5.5) is exactly the sequence defined in [BN, 3.1] attached to g.

By (2.4.2), for β = α + mδ ∈ ∆re,+
> and n ∈ Z, (nξ)−1(β) = β + n(ξ, β)δ =

α+(m+n(ξ, β))δ. Since (ξ, β) > 0 by (2.5.1), (nξ)−1(β) ∈ ∆− if n < 0 is small enough.

Similar argument holds also for β ∈ ∆re,+
< by replacing n < 0 by n > 0. It follows that∪

n∈Z<0

(∆re,+
> ∩ wn(∆−)) = ∆re,+

> ,
∪

n∈Z>0

(∆re,+
< ∩ wn(∆−)) = ∆re,+

< . (2.5.6)
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Similar formulas hold also for the root system ∆+ of g. As a corollary of (2.5.6), we have

(2.5.7) Let h be as in (2.5.4). Then any i ∈ I appears in the infinite sequence

(. . . , i−1, i0, i1, . . . ). Similarly, let h be as in (2.5.5). Then any η ∈ I appears in the

infinite sequence (. . . , η−1, η0, η1, . . . ).

2.6. Let U−
q (resp. U−

q ) be the negative part of the quantum enveloping algebra

Uq (resp. Uq) associated to X (resp. X). We follow the notation in 1.5. We fix h as in

(2.5.4), and define βk ∈ ∆+ for k ∈ Z by

βk =

{
si0si−1 · · · sik+1

(αik) if k ≤ 0,

si1si2 · · · sik−1
(αik) if k > 0.

(2.6.1)

Then, as in [BN, 3.1], we have

∆re,+
> = {βk | k ∈ Z≤0}, ∆re,+

< = {βk | k ∈ Z>0}. (2.6.2)

We define root vectors f
(c)
βk
∈ U−

q by

f
(c)
βk

=

{
Ti0Ti−1 · · ·Tik+1

(f
(c)
ik

), if k ≤ 0,

T−1
i1
T−1
i2
· · ·T−1

ik−1
(f

(c)
ik

), if k > 0.
(2.6.3)

We fix p ∈ Z, and let c+p = (cp, cp−1, . . . ) ∈ NZ≤p , c−p = (cp+1, cp+2, . . . ) ∈ NZ>p be

functions which are almost everywhere 0. We define L(c+p), L(c−p) ∈ U−
q by

L(c+p) = f
(cp)
ip

Tip(f
(cp−1)
ip−1

)TipTip−1(f
(cp−2)
ip−2

) · · · (2.6.4)

L(c−p) = · · ·T−1
ip+1

T−1
ip+2

(f
(cp+3)
ip+3

)T−1
ip+1

(f
(cp+2)
ip+2

)f
(cp+1)
ip+1

.

In the case where p = 0, we simply write c+p , c−p as c+, c−. Thus (c+p , c−p) is

obtained from (c+, c−) by the shift by p. Note that L(c+) (resp. L(c−)) coincides

with f
(c0)
β0

f
(c−1)
β−1

f
(c−2)
β−2

· · · (resp. · · · f (c3)β3
f
(c2)
β2

f
(c1)
β1

). A similar discussion works for U−
q .

We fix h as in (2.5.5). βk ∈ ∆+ for k ∈ Z is defined similarly to (2.6.1), and the

root vectors f
βk
∈ U−

q are defined as in (2.6.3). For c+p
= (γp, γp−1, . . . ) ∈ NZ≤p ,

c−p
= (γp+1, γp+2, . . . ) ∈ NZ>p , define L(c+p

), L(c−p
) ∈ U−

q similarly to (2.6.4).

It is known by [BN, Remark 3.6], for i ∈ I0, η ∈ I0,

fkδ+αi
= T k

−ωi
fi, (k ≥ 0), fkδ−αi

= T−k
−ωi

Tifi, (k > 0), (2.6.5)

f
k|η|δ+αη

= T k
−ω̃η

f
η
, (k ≥ 0), f

k|η|δ−αη
= T−k

−ω̃η
Tηfη, (k ≥ 0). (2.6.6)

2.7. For i ∈ I0, η ∈ I0, k > 0, put

ψ̃i,k = fkδ−αifi − q2fifkδ−αi , (2.7.1)

ψ̃
η,k|η| = f

k|η|δ−αη
f
η
− q2ηfηfk|η|δ−αη

. (2.7.2)

It is known that ψ̃i,k (i ∈ I0, k ∈ Z>0) are mutually commuting, and similarly, ψ
η,k|η|
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(η ∈ I0, k ∈ Z>0) are mutually commuting. For each i ∈ I0, k ∈ Z>0, we define P̃i,k ∈ U−
q

by the following recursive identity;

P̃i,k =
1

[k]q

k∑
s=1

qs−kψ̃i,sP̃i,k−s. (2.7.3)

Similarly, for η ∈ I0, k ∈ Z>0, we define P̃ η,k|η| ∈ U−
q by

P̃ η,k|η| =
1

[k]qη

k∑
s=1

qs−k
|η| ψ̃η,s|η|P̃ η,(k−s)|η|. (2.7.4)

For a fixed i ∈ I0, regarding P̃i,k (k ∈ Z>0) as elementary symmetric functions, we define

Schur polynomials by making use of the determinant formula; for each partition ρ(i), put

Sρ(i) = det
(
P̃i,ρ′

k−k+m

)
1≤k,m≤t

(2.7.5)

where (ρ′1, . . . , ρ
′
t) is the dual partition of ρ(i). For an |I0|-tuple of partitions c0 =

(ρ(i))i∈I0 , we define Sc0 by

Sc0 =
∏
i∈I0

Sρ(i) . (2.7.6)

Similarly, for a fixed η ∈ I0, choose a partition ρ(η), and define a Schur polynomial

by

Sρ(η) = det
(
P̃ η,(ρ′

k−k+m)|η|
)
1≤k,m≤t

(2.7.7)

where (ρ′1, . . . , ρ
′
t) is the dual partition of ρ(η). For an I0-tuple of partitions c0 =

(ρ(η))η∈I0
, we define

Sc0
=

∏
η∈I0

Sρ(η) . (2.7.8)

We denote by C the set of triples c = (c+, c0, c−), where c+ ∈ NZ≤0 , c− ∈ NZ>0 ,

and c0 is an I0-tuple of partitions. For each c ∈ C , p ∈ Z, we define L(c, p) ∈ U−
q by

L(c, p) =

{
L(c+p)×

(
T−1
ip+1

T−1
ip+2
· · ·T−1

i0
(Sc0)

)
× L(c−p), if p ≤ 0,

L(c+p)×
(
Tip · · ·Ti2Ti1(Sc0)

)
× L(c−p), if p > 0.

(2.7.9)

Similarly, we denote by C the set of triples c = (c+, c0, c−), where c+ ∈ NZ≤0 , c− ∈
NZ>0 , and c0 is the set of I0-tuples of partitions. We define L(c, p) ∈ U−

q in a similar

way as in (2.7.9). The following results are proved in [BN]. Note that Lemma 3.39 in

[BN] can be applied to the case where X is simply laced.

Proposition 2.8 ([BN, Proposition 3.16]). L(c, p) ∈ AU−
q , and L(c, p) ∈ AU−

q .
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Proposition 2.9 ([BN, Theorem 3.13 (i), Lemma 3.39]). We fix h and p as

before.

(i) For various c ∈ C , L(c, p) are almost orthonormal, namely,

(L(c, p), L(c′, p)) ∈ δc,c′ + qZ[[q]] ∩Q(q).

In particular, for a fixed h, p, {L(c, p) | c ∈ C } gives a Q(q)-basis of U−
q .

Similarly, L(c, p) are almost orthonormal, and {L(c, p) | c ∈ C } gives a Q(q)-basis

of U−
q .

(ii) {L(c, p) | c ∈ C } gives an A-basis of AU−
q .

2.10. We first fix h as in (2.5.5), then construct h as in (2.5.4) from h by

making use of the relation (2.5.3). We also fix p > 0, and consider the sequence

wp = sηpsηp−1sηp−2 · · · in W ≃ Wσ. Then wp determines an integer p > 0 such that wp

corresponds to wp = sipsip−1sip−2 · · · in W . For each sηk
appearing in wp, let Ik be an

interval in Z such that sηk
=

∏
j∈Ik

sij corresponds to a subexpression of wp as above.

Put Fηk
(c±p

) =
∏

j∈Ik
f
(cj)
ij

. We also define Rη =
∏

j∈η Tj for η ∈ I0. Then σ commutes

with Rη. Note that L(c+p
), L(c−p

) can be expressed as

L(c+p) = Fηp(c+p)Rηp

(
Fηp−1(c+p)

)
RηpRηp−1

(
Fηp−2(c+p)

)
· · · , (2.10.1)

L(c−p) = · · ·R−1
ηp+1

R−1
ηp+2

(
Fηp+3(c−p)

)
R−1

ηp+1

(
Fηp+2(c−p)

)
Fηp+1(c−p).

We have a lemma.

Lemma 2.11. Take h, p as in 2.10.

(i) σ permutes the PBW-basis {L(c, p)} of U−
q , namely, σ(L(c, p)) = L(c′, p) for some

c′ ∈ C .

(ii) Let c = (c+, c0, c−) ∈ C . Then L(c, p) is σ-stable if and only if cj is constant

for each j ∈ Ik corresponding to sηk
in wp, and ρ

(i) is constant on i ∈ η for each

η ∈ I0. In particular, the set of σ-stable PBW-basis in U−
q with respect to h, p is

in bijection with the set of PBW-basis {L(c, p)} in U−
q if h, p are obtained from

h, p.

Proof. By (2.10.1), we have σ(L(c+p)) = L(c′+p
), σ(L(c−p)) = L(c′−p

) for some

c′+p
∈ NZ≤p , c′−p

∈ NZ>p . On the other hand, since σ(fkδ±αi) = fkδ±ασ(i)
for i ∈

I0, k > 0 by (2.6.5), we have σ(ψ̃i,k) = ψ̃σ(i),k, and so σ(P̃i,k) = P̃σ(i),k. This implies

that σ(Sρ(i)) = Sρ(σ(i)) for each i ∈ I0. We see that σ(Sc0) = Sc′
0
for some I0-tuple of

partitions c′0. Thus we obtain (i). (ii) follows from (i). □

2.12. We apply the discussion in 1.5 to the affine case, and we can define a

homomorphism π : A′U−,σ
q → Vq. For any η ∈ I, and a ∈ N, we define f̃

(a)
η =

∏
i∈I f

(a)
i ,

and put g
(a)
η = π(f̃

(a)
η ) as in 1.9. Then Proposition 1.10 still holds for the affine case,

and we can define an algebra homomorphism Φ : A′U−
q → Vq of A′-algebras. Assume
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that h, p are obtained from h, p as in 2.10. We denote by Xh,p the set of PBW-basis

{L(c, p) | c ∈ C } of U−
q , and X σ

h,p the subset of Xh,p consisting of σ-stable PBW-

basis. Similarly, we denote by X h,p the set of PBW-basis {L(c, p) | c ∈ C } of U−
q . By

Lemma 2.11 (ii), we have a natural bijection X σ
h,p ≃ X h,p, by L(c, p) ↔ L(c, p). We

put E(c, p) = π(L(c, p)) under this correspondence. Then by Lemma 2.11 (i), and by

Proposition 2.9 (see the discussion in 1.12), we see that {E(c, p)} gives rise to an A′-basis

of Vq.

Assume that L(c, p) ∈ X σ
h,p corresponds to L(c, p) ∈ X h,p with c = (c+, c0, c−),

c = (c+, c0, c−). We consider L(c+p), L(c−p) ∈ U−,σ
q and L(c+p

), L(c−p
) ∈ U−

q . The

following result can be proved in a similar way as in Theorem 1.14 (i).

Proposition 2.13. Φ(L(c+p
)) = π(L(c+p)) and Φ(L(c−p

)) = π(L(c−p)).

2.14. Let c0 = (ρ(i))i∈I0 be an I0-tuple of partitions appearing in c, and c0 =

(ρ(η))η∈I0
be an I0-tuple of partitions appearing in c as in 2.7. We have ρ(i) = ρ(η) if

i ∈ η for each η ∈ I0. Then Sc0 ∈ U−,σ
q , and we consider π(Sc0) ∈ Vq. On the other

hand, we can consider Sc0
∈ U−

q . We show a lemma.

Lemma 2.15. Φ(Sc0
) = π(Sc0).

Proof. Take i ∈ I0 such that i ∈ η. We consider
∏

i∈η fkδ+αi ∈ U−,σ
q and

f
k|η|δ+αη

∈ U−
q , and similar elements obtained by replacing αi by −αi, αη by −αη. By

applying Proposition 2.13 for the case where p = 0, we have

Φ
(
f
k|η|δ+αη

)
= π

(∏
i∈η

fkδ+αi

)
, Φ

(
f
k|η|δ−αη

)
= π

(∏
i∈η

fkδ−αi

)
. (2.15.1)

Next we show, for η ∈ I0, k > 0, that

Φ
(
ψ̃
η,k|η|

)
= π

(∏
i∈η

ψ̃i,k

)
. (2.15.2)

It is known by [B], [BCP] that Tωi(fkδ±αj ) = fkδ±αj for i ̸= j, k ≥ 0. Hence if

(αi, αj) = 0, we have

fjfkδ−αi = fjT
−k
−ωi

Ti(fi) = T−k
ωi
Ti(fjfi) = T−k

ωi
Ti(fifj) = fkδ−αifj (2.15.3)

by (2.6.5). Again by using (2.6.5) we have

fkδ−αifkδ−αj = fkδ−αjfkδ−αi . (2.15.4)

In the case where |η| = 1, (2.15.2) immediately follows from (2.15.1). We assume

that |η| = 2, and put η = {i, j}. Then by using commutation relations (2.15.3), (2.15.4),

we have

ψ̃i,kψ̃j,k = (fkδ−αifi − q2fifkδ−αi)(fkδ−αjfj − q2fjfkδ−αj )

= fkδ−αifkδ−αjfifj + q4fifjfkδ−αifkδ−αj − q2Z,



658(326)

658 T. Shoji and Z. Zhou

where

Z = fkδ−αififjfkδ−αj + fifkδ−αifkδ−αjfj

= fjfkδ−αifkδ−αjfi + fifkδ−αifkδ−αjfj

= fjfkδ−αjfkδ−αifi + σ(fjfkδ−αjfkδ−αifi).

Since Z ∈ J , we have

π
(
ψ̃i,kψ̃j,k

)
= π(fkδ−αifkδ−αjfifj − q2ηfifjfkδ−αifkδ−αj ).

Now (2.15.2) follows from (2.15.1). The proof for the case |η| = 3 is similar. Thus

(2.15.2) is proved.

Since ψ̃i,k and ψ̃j,ℓ commute for any pair, ψ̃i,k commutes with P̃j,ℓ for any pair

i, j, k, ℓ. Then by a similar argument as in the proof of (2.15.2), for each η ∈ I0 we have

Φ
(
P̃ η,k

)
= π

(∏
i∈η

P̃i,k

)
. (2.15.5)

(Note that ([k]q)
|η| = [k]qη in A′.)

Since P̃i,k are commuting for any pair i, k, (2.15.5) implies, by a similar argument

as above, that

Φ(Sρ(η)) = π

(∏
i∈η

Sρ(i)

)
(2.15.6)

for any η ∈ I0. Lemma 2.15 follows from this. □

The following result is an analogue of Theorem 1.14 and Proposition 1.20.

Theorem 2.16. (i) For any c ∈ C , we have Φ(L(c, 0)) = E(c, 0).

(ii) PBW-basis {L(c, 0) | c ∈ C } gives an A′-basis of A′U−
q .

(iii) Φ gives an isomorphism A′U−
q
∼−→Vq.

Proof. (i) follows from Proposition 2.13 and Lemma 2.15. By Proposition 2.8,

(the image of ) L(c, 0) is contained in A′U−
q . Hence the map Φ : A′U−

q → Vq is surjective.

As in the proof of Theorem 1.14, Φ can be extended to the map F(q)U
−
q → F(q)Vq,

which gives an isomorphism of F(q)-algebras. Let A′Ũ
−
q be the A′-submodule of F(q)U

−
q

spanned by L(c, 0). Then Φ gives an isomorphism A′Ũ
−
q ≃ Vq of A′-modules. In

particular, A′Ũ
−
q is an algebra over A′. We note that

A′Ũ
−
q = A′U−

q . (2.16.1)

In fact, A′Ũ
−
q ⊂ A′U−

q by Proposition 2.8. Since {E(c, p) | c ∈ C } is an A′-basis

of Vq, {Φ−1(E(c, p)) | c ∈ C } gives an A′-basis of A′Ũ
−
q for any p. Hence by (2.10.1),
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A′Ũ
−
q is invariant under the left multiplication by f (k)

ηp
. By (2.5.7), for any η ∈ I, there

exists p such that η = ηp. Thus A′Ũ
−
q is invariant under the left multiplication by

any f (k)
η

, and (2.16.1) follows. Now (ii) and (iii) follow from (2.16.1). The theorem is

proved. □

Corollary 2.17. For any p ∈ Z, the PBW-basis {L(c, p) | c ∈ C } gives an

A-basis of AU−
q .

Proof. By a similar argument as in the proof of Corollary 1.21, we see that

{L(c, 0) | c ∈ C } gives an A-basis of AU−
q thanks to Theorem 2.16. Then by [BN,

Lemma 3.39], {L(c, p)} gives an A-basis of AU−
q . The corollary is proved. □

Remark 2.18. In the case where g is a simply laced affine algebra, the fact that

{L(c, p) | c ∈ C } gives an A-basis of AU−
q (Proposition 2.9 (ii)) was known by [BCP] for

p = 0, and was proved by [BN] for arbitrary p. Corollary 2.17 is a generalization of this

fact to the case of twisted affine algebras. Once this is done, one can define the (signed)

canonical basis b(c, p) parametrized by L(c, p) as in (1.22.2). The basis {b(c, p) | c ∈ C }
is independent of the choice of h and p, up to ±1. In [BN], in the simply laced case, this

ambiguity of the sign was removed by using the theory of extremal weight modules due

to [K2]. It is likely that our result makes it possible to extend their results to the case

of twisted affine Lie algebras.

3. The proof of Proposition 1.10.

3.1. In this and next section we write [a]qi as [a]i for any i ∈ Z. Thus [a]q = [a]1
and [a]qη = [a]|η| since (αη, αη)1/2 = |η|. A′U−

q is the A′-algebra with generators f (a)
η

(η ∈ I, a ∈ N) with fundamental relations

1−aηη′∑
k=0

(−1)kf (k)
η
f
η′f

(1−aηη′−k)

η
= 0, (η ̸= η′), (3.1.1)

[a]!|η|f
(a)

η
= fa

η
, (a ∈ N), (3.1.2)

where A = (aηη′) is the Cartan matrix of X. In order to prove Proposition 1.10, it is

enough to show that g
(a)
η satisfies a similar relations as above, namely,

1−aηη′∑
k=0

(−1)kg(k)η gη′g
(1−aηη′−k)
η = 0, (η ̸= η′), (3.1.3)

[a]!|η|g
(a)
η = gaη , (a ∈ N). (3.1.4)

First we show (3.1.4). We have

f̃ (a)η =
∏
i∈η

f
(a)
i = ([a]!1)

−|η|
∏
i∈η

fai = ([a]!1)
−|η|f̃aη .
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Since |η| = 1 or ε, we have ([a]!1)
|η| = [a]!|η| in A′ = F[q, q−1] with F = Z/εZ. Thus

(3.1.4) follows.

For the proof of (3.1.3), we may assume that X is of rank 2. Here we change the

notation from 1.3, and consider I = {1, 2} with Cartan matrix

A =

(
2 0

0 2

)
or

(
2 a

−1 2

)
where X is of type A1 ×A1 in the first case, and a = −1,−2,−3 according to the cases

X is of type A2, B2, G2.

Assume that X is of type A1×A1. In this case, we have (αi, αj) = 0 for any i, j ∈ I
such that i ̸= j. It is easily seen that g1g2 = g2g1, which coincides with the relation

(3.1.3). Thus (3.1.3) holds.

3.2. Assume that X is of type A2. We have two possibilities for I, i = {i} or

i = {i, i′} for i = 1, 2. In the former case, (3.1.3) clearly holds. So we may assume that

I = {1, 2, 1′, 2′} with 1 = {1, 1′}, 2 = {2, 2′}, where (αi, αj) = −1 for {i, j} = {1, 2} or
{1′, 2′}, and is equal to zero for other cases. We have g1 = π(f1f1′) and g2 = π(f2f2′).

The relation (3.1.3) is given by

g1g
(2)
2 − g2g1g2 + g

(2)
2 g1 = 0. (3.2.1)

By (3.1.4), this is equivalent to

g1g
2
2 − (q2 + q−2)g2g1g2 + g22g1 = 0. (3.2.2)

We show (3.2.2). It follows from the Serre relations for A2, we have

f1f
2
2 − (q + q−1)f2f1f2 + f22 f1 = 0, (3.2.3)

f2f
2
1 − (q + q−1)f1f2f1 + f21 f2 = 0,

and formulas obtained form (3.2.3) by replacing f1, f2 by f1′ , f2′ . By multiplying these

two formulas, and by using the commutation relations fifj = fjfi unless {i, j} = {1, 2}
nor {1′, 2′}, we have

(f1f1′)(f2f2′)
2 + (q + q−1)2(f2f2′)(f1f1′)(f2f2′) + (f2f2′)

2(f1f1′) + Z = 0,

where

Z = −(q + q−1)
(
f2f

2
2′f1f1′f2 + f2′f

2
2 f1′f1f2′

)
.

Since ε = 2, and Z ∈ J , we obtain (3.2.2). Thus (3.1.3) is verified for X of type A2.

3.3. Assume that X is of type B2 and X is of type A3. We have I = {1, 2, 2′},
I = {1, 2} with 1 = {1} and 2 = {2, 2′}, where (αi, αj) = −1 if {i, j} = {1, 2} or {1, 2′}
and is equal to zero for all other i ̸= j. By (3.1.4), (3.1.3) is equivalent to the formulas

g1g
2
2 − (q2 + q−2)g2g1g2 + g22g1 = 0, (3.3.1)
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g2g
3
1 − [3]1g1g2g

2
1 + [3]1g

2
1g2g1 − g31g2 = 0. (3.3.2)

We show (3.3.1). Here U−
q satisfies the formulas (3.2.3) and the formulas obtained

from (3.2.3) by replacing f1, f2 by f1, f2′ . By multiplying f22′ from the right on (3.2.3)

for f1f
2
2 , we have

f1f
2
2 f

2
2′ − (q + q−1)f2f1f

2
2′f2 + f22 f1f

2
2′ = 0. (3.3.3)

Here by applying (3.2.3) for f1f
2
2′ , we have

f2(f1f
2
2′)f2 = (q + q−1)(f2f2′)f1(f2f2′)− f2f22′f1f2,

f22 (f1f
2
2′) = (q + q−1)f22 f2′f1f2′ − (f2f2′)

2f1.

Substituting these formulas into (3.3.3), we have

f1(f2f2′)
2 − (q + q−1)2(f2f2′)f1(f2f2′)− (f2f2′)

2f1 + Z = 0,

where

Z = (q + q−1)
(
f22′f2f1f2 + f22 f2′f1f2′

)
.

Since δ = 2, Z ∈ J , we obtain (3.3.1).

Next we show (3.3.2). First note the following equality. By using (3.2.3) for f1f2f1
and for f2′f

2
1 , we have

(q + q−1)f1f2′(f1f2f1) = f1f2′(f2f
2
1 + f21 f2)

= f1(f2f2′)f
2
1 + f1(f2′f

2
1 )f2

= f1(f2f2′)f
2
1 + (q + q−1)f21 f2′f1f2 − f31 f2′f2. (3.3.4)

Here by applying (3.2.3) for f2f
2
1 and for f2′f

2
1 twice, we have

f2′f1(f2f
2
1 ) = f2′f1

(
(q + q−1)f1f2f1 − f21 f2

)
= f2′f

2
1

(
(q + q−1)f2f1 − f1f2

)
=

(
(q + q−1)f1f2′f1 − f21 f2′

)(
(q + q−1)f2f1 − f1f2

)
= (q + q−1)2f1f2′f1f2f1 − (q + q−1)f1(f2′f

2
1 )f2

− (q + q−1)f21 f2′f2f1 + f21 f2′f1f2

= (q + q−1)2f1f2′f1f2f1 −
(
(q + q−1)2 − 1

)
f21 f2′f1f2

− (q + q−1)f21 f2f2′f1 + (q + q−1)f31 f2f2′ .

Substituting (3.3.4) into the last equality, we obtain

f2′f1f2f
2
1 = (q + q−1)f1(f2f2′)f

2
1 − (q + q−1)f21 (f2f2′)f1 + f21 f2′f1f2. (3.3.5)

On the other hand, by applying (3.2.3) for f2′f
2
1 , we have
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(f2′f
2
1 )f2f1 = (q + q−1)f1f2′f1f2f1 − f21 f2′f2f1

= f1(f2f2′)f
2
1 + (q + q−1)f21 f2′f1f2 − f31 f2f2′ − f21 f2′f2f1. (3.3.6)

The second identity is obtained by substituting (3.3.4) into the first identity. Now by

applying (3.2.3) for f2f
2
1 we have

f2′f2f
3
1 = f2′(f2f

2
1 )f1 = (q + q−1)f2′f1f2f

2
1 − f2′f21 f2f1.

By substituting (3.3.5) and (3.3.6) into the last formula, we have

(f2f2′)f
3
1 = (q2 + 1 + q−2)f1(f2f2′)f

2
1 − (q2 + 1 + q−2)f21 (f2f2′)f1 + f31 (f2f2′). (3.3.7)

Since [3]1 = q2+1+ q−2, by applying π, we obtain (3.3.2). Note that the formula (3.3.7)

is obtained without appealing modulo 2. Thus (3.1.3) is verified for X of type B2.

3.4. Assume that X is of type G2 and X is of type D4. We have I = {1, 2, 2′, 2′′},
I = {1, 2} with 1 = {1} and 2 = {2, 2′, 2′′}, where (αi, αj) = −1 if {i, j} = {1, 2}, {1, 2′}
or {1, 2′′}, and is equal to zero for all other i ̸= j. By (3.1.4), (3.1.3) is equivalent to the

formulas

g1g
2
2 − (q3 + q−3)g2g1g2 + g22g1 = 0, (3.4.1)

g2g
4
1 − [4]1g1g2g

3
1 +

[
4

2

]
1

g21g2g
2
1 − [4]1g

3
1g2g1 + g41g2 = 0, (3.4.2)

where [4]1 = q3 + q + q−1 + q−3 and

[
4

2

]
1

= q4 + q2 + 2 + q−2 + q−4. We show (3.4.1).

HereU−
q satisfies the formulas (3.2.3) and the formulas obtained from (3.2.3) by replacing

f1, f2 by f1, f2′ or f1, f2′′ . By multiplying f22′f
2
2′′ from the right on (3.2.3) for f1f

2
2 , we

have

f1f
2
2 f

2
2′f

2
2′′ − (q + q−1)f2f1f

2
2′f

2
2′′f2 + f22 f1f

2
2′f

2
2′′ = 0. (3.4.3)

Concerning the middle term, by applying (3.2.3) for f1f
2
2′ , then for f1f

2
2′′ , we have

f2(f1f
2
2′)f

2
2′′f2 = (q + q−1)f2f2′(f1f

2
2′′)f2′f2 − f2f22′f1f22′′f2

= (q + q−1)2f2f2′f2′′f1f2f2′f2′′ − (q + q−1)f2f2′f
2
2′′f1f2f2′

− f2f22′f1f2f22′′ . (3.4.4)

Concerning the third term, by applying (3.2.3) for f1f
2
2′′ , then for f1f

2
2′ , and finally

for f22 f1, we have

f22 (f1f
2
2′′)f

2
2′ = (q + q−1)f22 f2′′f1f2′′f

2
2′ − f22 f22′′(f1f22′)

= (q + q−1)f22 f2′′f1f2′′f
2
2′ − (q + q−1)f2′f

2
2′′(f

2
2 f1)f2′ + f22 f

2
2′′f

2
2′f1

= (q + q−1)f22 f2′′f1f2′′f
2
2′ − (q + q−1)2f2′f

2
2′′f2f1f2f2′

+ (q + q−1)f2′f
2
2′′f1f

2
2 f2′ + f22 f

2
2′′f

2
2′f1.
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It follows that

f1(f2f2′f2′′)
2 − (q + q−1)3(f2f2′f2′′)f1(f2f2′f2′′) + (f2f2′f2′′)

2f1 + Z = 0,

where

Z = (q + q−1)
(
f2f

2
2′f1f

2
2′′f2 + f2′′f

2
2 f1f

2
2′f2′′ + f2′f

2
2′′f1f

2
2 f2′

)
.

Since ε = 3, Z ∈ J , we obtain (3.4.1).

3.5. It remains to prove (3.4.2). We shall prove the following formula in A′U−
q .

(f2f2′f2′′)f
4
1 − [4]1f1(f2f2′f2′′)f

3
1 +

[
4

2

]
1

f21 (f2f2′f2′′)f
2
1

− [4]1f
3
1 (f2f2′f2′′)f1 + f41 (f2f2′f2′′) ≡ 0 mod J. (3.5.1)

Clearly (3.5.1) will imply (3.4.2). The proof of (3.5.1) by the direct computation as in

the case of B2 seems to be difficult. Instead, we will prove (3.5.1) by making use of

PBW-basis of U−
q .

Let h = (i1, . . . , iν) be a sequence associated to the longest element w0 of W . Here

W is of type D4, and ν = 12. We choose h as

h = (2, 2′, 2′′, 1, 2, 2′, 2′′, 1, 2, 2′, 2′′, 1). (3.5.2)

We define βk = si1 · · · sik−1
(αik) for k = 1, . . . , ν = 12. Then the set ∆+ of positive

roots is given as

∆+ = {β1, . . . , β12}
= {2, 2′, 2′′, 122′2′′, 12′2′′, 122′′, 122′, 1122′2′′, 12, 12′, 12′′, 1}, (3.5.3)

where we use the notation for positive roots such as 12↔ α1+α2, 12
′2′′ ↔ α1+α2′+α2′′ ,

etc. For k = 1, . . . , ν, the root vector f
(c)
βk

is defined by f
(c)
βk

= Ti1 · · ·Tik−1
(f

(c)
ik

). Then

PBW-basis of U−
q is given as {L(c,h) | c ∈ N12}, where for c = (c1, . . . , c12),

L(c,h) = f
(c1)
2 f

(c2)
2′ f

(c3)
2′′ f

(c4)
122′2′′f

(c5)
12′2′′f

(c6)
122′′f

(c7)
122′f

(c8)
1122′2′′f

(c9)
12 f

(c10)
12′ f

(c11)
12′′ f

(c12)
1 .

We use the following commutation relations,

f12 = f1f2 − qf2f1, (similarly for f12′ , f12′′), (3.5.4)

f122′ = f12f2′ − qf2′f12 = f12′f2 − qf2f12′ , (similarly for f12′2′′ , f122′′),

f122′2′′ = f122′f2′′ − qf2′′f122′ = f12′2′′f2 − qf2f12′2′′ = f122′′f2′ − qf2′f122′′ ,
f1122′2′′ = f12′′f122′ − qf122′f12′′ = f12f12′2′′ − qf12′2′′f12 = f12′f122′′ − qf122′′f12′ .

The following formulas are obtained by applying the commutation formula of Lev-

endorskii and Soibelman [LS].

f122′2′′f2 = q−1f2f122′2′′ , (similarly for f122′2′′f2′ , f122′2′′f2′′),
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f12′2′′f122′2′′ = q−1f122′2′′f12′2′′ , (similarly for f122′f122′2′′ , f122′′f122′2′′),

f122′′f12′2′′ = f12′2′′f122′′ , (similarly for f122′f122′′ , f122′f12′2′′),

f1122′2′′f122′ = q−1f122′f1122′2′′ , (similarly for f1122′2′′f122′′ , f1122′2′′f12′2′′),

f12f1122′2′′ = q−1f1122′2′′f12, (similarly for f12′f1122′2′′ , f12′′f1122′2′′),

f12′f12 = f12f12′ , (similarly for f12′′f12′ , f12′′f12),

f1f12 = q−1f12f1, (similarly for f1f12′ , f1f12′′).

By using those relations, we obtain

f1f12′2′′ = f12′2′′f1 − (q − q−1)f12′f12′′ , (similarly for f1f122′′ , f1f122′).

Also we can compute

f1(f2f2′f2′′) = f122′2′′ + q(f2′′f122′ + f2′f122′′ + f2f12′2′′)

+ q2(f2′f2′′f12 + f2f2′′f12′ + f2f2′f12′′) + q3f2f2′f2′′f1.

It follows that

f1(f2f2′f2′′) ≡ f122′2′′ + q3f2f2′f2′′f1 mod J. (3.5.5)

By multiplying f1 from the left on both sides of (3.5.5), we have

f21 (f2f2′f2′′) ≡ f1f122′2′′ + q3f1(f2f2′f2′′f1)

≡ f1f122′2′′ + q3(f122′2′′ + q3f2f2′f2′′f1)f1

= f1f122′2′′ + q3f122′2′′f1 + q6f2f2′f2′′f
2
1 ,

where we again used (3.5.5) in the second identity. On the other hand, we can compute

f1f122′2′′ = qf122′2′′f1 − q(q − q−1){f12′2′′f12 + f122′′f12′ + f122′f12′′}
+ (q−1 − 2q)f1122′2′′

≡ qf122′2′′f1 + (q + q−1)f1122′2′′ mod J. (3.5.6)

Hence we have

f21 (f2f2′f2′′) ≡ (q + q3)f122′2′′f1 + (q + q−1)f1122′2′′ + q6f2f2′f2′′f
2
1 . (3.5.7)

Next by multiplying f1 from the left on both sides of (3.5.7), we have

f31 (f2f2′f2′′) ≡ (q + q3)f1f122′2′′f1 + (q + q−1)f1f1122′2′′ + q6f1f2f2′f2′′f
2
1 . (3.5.8)

Here we can compute

f1f1122′2′′ = q−1f1122′2′′f1 + (q − q−1)2f12f12′f12′′ . (3.5.9)

Thus by applying (3.5.6), (3.5.9) and (3.5.5) to (3.5.8), we have
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f31 (f2f2′f2′′) ≡ (q6 + q4 + q2)f122′2′′f
2
1 + (q4 + 2q2 + 2 + q−2)f1122′2′′f1

+ (q3 + 2q + 2q−1 + q−3)f12f12′f12′′ + q9f2f2′f2′′f
3
1 . (3.5.10)

Here we note that

f1f12f12′f12′′ = q−3f12f12′f12′′f1. (3.5.11)

Then by multiplying f1 from the left on both sides of (3.5.10), and by applying

(3.5.6), (3.5.9), (3.5.11) and (3.5.5), we have

f41 (f2f2′f2′′) ≡ (q9 + q7 + q5 + q3)f122′2′′f
3
1 + (q7 + 2q5 + 2q−1 + q−3)f1122′2′′f

2
1

+ (q6 + 2q2 + 2q−2 + q−6)f12f12′f12′′f1 + q12f2f2′f2′′f
4
1 . (3.5.12)

Now (3.5.1) can be verified easily by (3.5.5), (3.5.7), (3.5.10) and (3.5.12). Thus

(3.4.2) is verified, and (3.1.3) holds for the case X is of type G2. This completes the

proof of Proposition 1.10. □

Remark 3.6. In the case where X is of type B2, the equality (3.3.7) holds in U−
q .

This is also true for the case of type G2. In fact, a more precise computation shows that

(3.5.1) holds in U−
q , without appealing modulo J nor modulo 3.

4. The proof of Lemma 1.13.

4.1. We consider the Cartan matrix as in 3.1. Since X has rank 2, w0 has two

reduced expressions h = (η1, . . . , ην) and h′ = (η′1, . . . , η
′
ν). Let ∗ be the anti-algebra

automorphism of U−
q and of U−

q . It is known that(
T η1
· · ·T ηk−1

(
f
ηk

))∗
= T η′

1
· · ·T η′

ν−k

(
f
η′
ν−k+1

)
,

and the following formula is obtained from the corresponding formula for U−
q ,(

Rη1 · · ·Rηk−1

(
f̃ηk

))∗
= Rη′

1
· · ·Rη′

ν−k

(
f̃η′

ν−k+1

)
.

Thus we may verify (1.13.1) for a fixed h.

In the case where X has type A1 ×A1, there is nothing to prove.

4.2. Assume that X has type A2. We write I = {1, 1′, 2, 2′} with I = {1, 2},
where 1 = {1, 1′}, 2 = {2, 2′}. Put h = (2, 1, 2). Then ∆+ = {2, 12, 1}. We have

T 2

(
f
1

)
= f

1
f
2
− q2f

2
f
1
, T 2T 1

(
f
2

)
= f

1
.

We have

R2(f̃1) = T2T2′(f1f1′) = T2(f1)T2′(f1′)

= (f1f2 − qf2f1)(f1′f2′ − qf2′f1′)
= f1f1′f2f2′ + q2f2f2′f1f1′ − qZ, (4.2.1)
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with

Z = f1f2f2′f1′ + f2f1f1′f2′

= (f12 + qf2f1)f2′f1′ + f2f1(f1′2′ + qf2′f1′)

= f12f2′f1′ + f1′2′f2f1 + 2qf2f1f2′f1′ ,

where f12 = T2(f1) = f1f2 − qf2f1 and f1′2′ = T2′(f1′) = f1′f2′ − qf2′f1′ . Since

σ(f12) = f1′2′ , we see that Z ∈ J . Thus π(R2(f̃1)) = g1g2 − q2g2g1 and (1.13.1) holds

for T 2(f1). Moreover,

R2R1(f̃2) = T2T2′T1T1′(f2f2′)

= T2T1(f2)T2′T1′(f2′)

= f1f1′ . (4.2.2)

Hence π(R2R1(f̃2)) = g1, and (1.13.1) holds for T 2T 1(f2). The lemma holds for X of

type A2.

4.3. Next assume that X has type B2, and X has type A3. We write I =

{2, 1, 2′} and I = {1, 2}, where 1 = {1}, 2 = {2, 2′}. Put h = (2, 2′, 1, 2, 2′, 1) and

∆+ = {2, 2′, 122′, 12′, 12, 1}. Then h = (2, 1, 2, 1) and ∆+ = {2, 12, 112, 1}. We define

root vectors and PBW-bases of U−
q and U−

q similarly to the case of G2 in 3.5. Then we

have

f
12

= T 2

(
f
1

)
= f

1
f
2
− q2f

2
f
1
, (4.3.1)

f
112

= T 2T 1

(
f
2

)
= (q + q−1)−1

(
f
1
f
12
− f

12
f
1

)
,

f
1
= T 2T 1T 2

(
f
1

)
.

We compute

R2(f̃1) = T2T2′(f1) = T2(f1f2′ − qf2′f1)
= (f1f2 − qf2f1)f2′ − qf2′(f1f2 − qf2f1)
= f1f2f2′ + q2f2f2′f1 − q(f2f1f2′ + f2′f1f2). (4.3.2)

Hence π(R2(f̃1)) = g1g2 − q2g2g1 and (1.13.1) holds for f
12
. Also

R2R1R2(f̃1) = T2(T2′T1T2′)T2(f1)

= T2(T1T2′T1)T2(f1)

= T2T1T2′(f2)

= T2T1(f2) = f1. (4.3.3)

Hence π(R2R1R2(f̃1)) = g1, and (1.13.1) holds for f
1
.

Finally consider
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R2R1(f̃2) = T2T2′T1(f2f2′)

= T2′(T2T1(f2))T2(T2′T1(f2′))

= T2′(f1)T2(f1)

= f12′f12. (4.3.4)

Put

Z112 = f1(f1f2f2′ − q2f2f2′f1)− (f1f2f2′ − q2f2f2′f1)f1
= f21 f2f2′ − (q2 + 1)f1f2f2′f1 + q2f2f2′f

2
1 . (4.3.5)

Clearly Z112 ∈ U−,σ
q , and π(Z112) = (q + q−1)Φ(f

112
) by (4.3.1). We express Z112 in

terms of PBW-basis of U−
q . By using (3.2.3) for f21 f2 and f21 f2′ , we have

f21 f2f2′ = (q + q−1)f1f2f1f2′ − (q + q−1)f2f1f2′f1 + f2f2′f
2
1 . (4.3.6)

f1f2f1f2′ = (qf2f1 + f12)(qf2′f1 + f12′)

= q2f2f1f2′f1 + qf12f2′f1 + qf2f1f12′ + f12f12′

= q3f2f2′f
2
1 + qf122′f1 + f2f12′f1 + f12f12′ + q2(f2f12′f1 + f2′f12f1),

f2f1f2′f1 = qf2f2′f
2
1 + f2f12′f1.

Here we have used the formula f1f12′ = q−1f12′f1. Moreover, by using f12f2′ = qf2′f12+

f122′ , we have

f1f2f2′f1 = q2f2f2′f
2
1 + q(f2f12′f1 + f2′f12f1) + f122′f1. (4.3.7)

Substituting these formulas into (4.3.5), we see that

Z112 = (q + q−1)f12f12′ . (4.3.8)

Combining this with (4.3.4), (4.3.5), we obtain Φ(f
112

) = π(R2R1)(f1). Thus the lemma

holds for X of type B2.

4.4. Finally assume that X has type G2. We follow the notation in 3.5. Put

h = (2, 1, 2, 1, 2, 1). Then ∆+ = {2, 12, 11122, 112, 1112, 1}. We have

f
12

= T 2

(
f
1

)
= f

1
f
2
− q3f

2
f
1
, (4.4.1)

f
11122

= T 2T 1

(
f
2

)
= [3]−1

1

(
f
112
f
12
− q−1f

12
f
112

)
,

f
112

= T 2T 1T 2

(
f
1

)
= [2]−1

1

(
f
1
f
12
− qf

12
f
1

)
,

f
1112

= T 2T 1T 2T 1

(
f
2

)
= [3]−1

1

(
f
1
f
112
− q−1f

112
f
1

)
f
1
= T 2T 1T 2T 1T 2

(
f
1

)
.

First consider the case f
12
. By using (4.3.2), we have
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R2(f̃1) = T2T2′T2′′(f1)

= T2′′
(
f1f2f2′ + q2f2f2′f1 − q(f2f1f2′ + f2′f1f2)

)
= f1(f2f2′f2′′)− q3(f2f2′f2′′)f1
− q(f2f1f2′f2′′ + f2′f1f2′′f2 + f2′′f1f2f2′)

+ q2(f2f2′f1f2′′ + f2′f2′′f1f2 + f2′′f2f1f2′).

Hence π(R2(f̃1)) = g1g2 − q3g2g1 and (1.13.1) holds for f
12
.

Next consider the case f
112

. Put

Z12 = f1(f2f2′f2′′)− q3(f2f2′f2′′)f1,
Z112 = f1Z12 − qZ12f1.

Then we have

Z112 = f21 f2f2′f2′′ − (q3 + q)f1f2f2′f2′′f1 + q4f2f2′f2′′f
2
1 . (4.4.2)

Clearly Z112 ∈ U−,σ
q , and we have

π(Z112) = (q + q−1)Φ
(
f
112

)
(4.4.3)

by (4.4.1). We express each term of Z112 in terms of PBW-basis. By (3.5.5), we have

f1(f2f2′f2′′)f1 ≡ f122′2′′f1 + q3f2f2′f2′′f
2
1 mod J. (4.4.4)

By (3.5.7), we have

f21 (f2f2′f2′′) ≡ (q + q3)f122′2′′f1 + (q + q−1)f1122′2′′ + q6f2f2′f2′′f
2
1 mod J. (4.4.5)

Substituting these formulas into (4.4.2), we have Z112 ≡ (q+ q−1)f1122′2′′ mod J , which

implies that

π(Z112) = (q + q−1)π(f1122′2′′). (4.4.6)

Note that by (3.5.2) and (3.5.3), we have

R2R1R2(f1) = T2T2′T2′′T1T2T2′T2′′(f1) = f1122′2′′ .

By comparing (4.4.3) and (4.4.6), we obtain

π(R2R1R2(f1)) = Φ
(
f
112

)
. (4.4.7)

Thus (1.13.1) holds for f
112

.

Next consider the case of f
1112

. Put

Z1112 = f1Z112 − q−1Z112f1.
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It follows from the computation of Z112 in (4.4.2), we have

Z1112 = f31 f2f2′f2′′ − (q3 + q + q−1)f21 f2f2′f2′′f1

+ (q4 + q2 + 1)f1f2f2′f2′′f
2
1 − q3f2f2′f2′′f31 . (4.4.8)

Clearly Z1112 ∈ U−,σ
q , and we have

π(Z1112) = [2]1[3]1Φ
(
f
1112

)
. (4.4.9)

By (3.5.10), we have

f31 (f2f2′f2′′) ≡ (q6 + q4 + q2)f122′2′′f
2
1 + (q4 + 2q2 + 2 + q−2)f1122′2′′f1

+ (q3 + 2q2 + 2q−1 + q−3)f12f12′f12′′ + q9f2f2′f2′′f
3
1 .

By this formula together with (3.5.7) and (3.5.5), we have Z1112 = [2]1[3]1f12f12′f12′′

mod J , which implies that.

π(Z1112) = [2]1[3]1π(f12f12′f12′′). (4.4.10)

Note that by (3.5.2) and (3.5.3), we have

R2R1R2R1(f̃2) = T2T2′T2′′T1T2T2′T2′′T1(f2f2′f2′′)

= f12f12′f12′′ .

By comparing (4.4.9) and (4.4.10), we obtain

π(R2R1R2R1(f̃2)) = Φ(f1112).

Thus (1.13.2) holds for f
1112

.

Finally consider the case of f
11122

. Put

Z11122 = f1122′2′′f122′2′′ − q−1f122′2′′f1122′2′′ .

By (3.5.2) and (3.5.3), we have

R2(f1) = T2T2′T2′′(f1) = f122′2′′ .

Hence, by the previous computation, we know that π(f122′2′′) = Φ(f
12
). On the other

hand, by (4.4.7), we have π(f1122′2′′) = Φ(f
112

). It follows, by (4.4.1), that

π(Z11122) = [3]1Φ
(
f
11122

)
. (4.4.11)

We note, by (3.5.2) and (3.5.3), that

R2R1(f2) = T2T2′T2′′T1(f2f2′f2′′) = f12′2′′f122′′f122′ .

Thus in order to prove (1.13.1) for f
11122

, it is enough to see that
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Z11122 ≡ [3]1f12′2′′f122′′f122′ mod J. (4.4.12)

We shall express Z11122 in terms of the PBW-basis ofU−
q . In the computation below,

in addition to the formulas in 3.5, we need to use the following commutation relations,

which are deduced from the formula of Levendorskii and Soibelman [LS] applied for the

subalgebra of type A3.

f12f2 = q−1f2f12, (4.4.13)

f122′′f2 = q−1f2f122′′ ,

f122′f2 = q−1f2f122′ ,

f12f122′ = q−1f122′f12,

f12f122′′ = q−1f122′′f12,

and the formulas (two for each) by applying the operation σ on both sides. By using

these relations, we have

f12f12′2′′ = f122′2′′f12 + (q−1 − q)f122′′f122′ , (4.4.14)

f1122′2′′f2 = f2f1122′2′′ + (q−1 − q)f122′′f122′ ,

and the formulas (two for each) by applying the operation σ on both sides.

Now we can compute (note that the second formula in (4.4.14) is not used in this

computation)

f1122′2′′f122′2′′ = (q2 − 2 + q−2)f12′2′′f122′′f122′ + q−1f122′2′′f1122′2′′ .

Hence

Z11122 = f1122′2′′f122′2′′ − q−1f122′2′′f1122′2′′

= (q2 − 2 + q−2)f12′2′′f122′′f122′

≡ [3]1f12′2′′f122′′f122′ mod J.

Thus (4.4.12) holds, and (1.13.1) is proved for f
11122

. The lemma holds for X of type

G2.
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