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Abstract. A left order of a countable group G is called isolated if it is

an isolated point in the compact space LO(G) of all the left orders of G. We
study properties of a dynamical realization of an isolated left order. Especially
we show that it acts on R cocompactly. As an application, we give a dynamical
proof of the Tararin theorem which characterizes those countable groups which

admit only finitely many left orders. We also show that the braid group B3

admits countably many isolated left orders which are not the automorphic
images of the others.

1. Introduction.

Throughout this paper, all the groups considered are countable. Given a group

G, a total order <λ on G is called a left order if for any f, g, h ∈ G, f <λ g implies

hf <λ hg. An element g ∈ G is called λ-positive if g >λ e. The set of all the λ-positive

elements is called the positive cone of λ and is denoted by Pλ. It is a subsemigroup and

Pλ ⊔ P−1
λ = G \ {e}.

Given a left order <λ, we define λ : G \ {e} → {±1} by λ(g) = 1 if and only if

g ∈ Pλ. Then we have

λ(f) = 1, λ(g) = 1 ⇒ λ(fg) = 1, and λ(f−1) = −λ(f). (1.1)

Conversely given a map λ : G \ {e} → {±1} which satisfies (1.1), we get a left order

<λ by setting f <λ g if λ(f−1g) = 1. The map λ is also referred to as a left order.

Thus the set LO(G) of the left orders on G is viewed as a closed subset of the space

{±1}G\{e} with the pointwise convergence topology. This yields a totally disconnected

compact metrizable topology on LO(G) (metrizable since G is countable). It is either

finite or uncountably many [9]. We call λ ∈ LO(G) isolated if it is an isolated point in

the space LO(G).

Given λ ∈ LO(G), there is defined a dynamical realization

ρλ : G → Homeo+(R)

based at x0 ∈ R such that f <λ g if and only if fx0 < gx0. We discuss its fundamental

properties in Section 2. Especially we show that the dynamical realization is tight at the

base point. See Definition 2.1.
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In this paper, we are mainly interested in isolated orders, since in this case, the

dynamical realizations display a certain kind of rigidity, and vice versa. In [10, Theo-

rems 1.2 and 3.11], the relation between the isolation of left orders and the rigidity of

the dynamical realization is described, as well as for circular orders.

An action ρ : G → Homeo+(R) is said to be cocompact if there is a compact interval

I such that any orbit ρ(G)x intersects I. Our first result, proved in Section 3, is the

following.

Theorem 1. If λ ∈ LO(G) is isolated, then its dynamical realization ρλ is cocom-

pact.

In fact if the group G is finitely generated, the dynamical realization is cocompact for

any left order, isolated or not. (See Lemma 3.1 below.) Therefore Theorem 1 is mainly

concerned with non finitely generated groups. By Theorem 1, the dynamical realization

of an isolated order admits a minimal set M, which is shown to be unique unless G ∼= Z.
In Section 4, we show that if M = R, then the group is rational (Theorem 4.1).

Given λ ∈ LO(G), a subgroup H of G is called λ-convex, if whenever h1, h2 ∈ H,

g ∈ G and h1 <λ g <λ h2, we have g ∈ H. The set of convex subgroups is totally ordered

by the inclusion. The following theorem is shown in Section 5.

Theorem 2. If λ ∈ LO(G) is isolated, then there are only finitely many λ-convex

subgroups.

This is known to specialists (see for example [4, Exercise 3.3.15]). However, our

strategy of the proof is different from that mentioned in [4].

Theorem 2 enables us to define the maximal sequence of convex subgroups of an

isolated left order. As an application of our method, we give a dynamical proof of the

Tararin theorem which characterizes the groups with finitely many left orders in Section 6.

In Section 7, the maximal Tararin subgroup of an isolated left order is defined, and is

shown to be equal to the Conradian soul [12].

Last Sections 8 and 9 are more or less independent of the previous sections.

Dubrovina–Dubrovin [2] constructed an isolated order λn on the braid group Bn, n ≥ 3.

In Section 9, we show:

Theorem 3. There are countably many isolated orders in LO(B3) which are not

the automorphic images 1 of the others.

The method is a modification of the proof of [10, Theorem 1.4]. The following

theorem is the starting point of the proof of Theorem 3. Let

G = ⟨a, b | a2 = b3⟩, G = ⟨α, β | α2 = β3 = e⟩,

and q : G → G the surjective homomorphism defined by q(a) = α and q(b) = β. Notice

that G is isomorphic to B3, and G to PSL(2,Z). We denote by CO(G) the space of the

1Given ϕ ∈ Aut(G) and λ ∈ LO(G), the left order ϕ∗λ ∈ LO(G) defined by g <ϕ∗λ g′ if and only if

ϕ(g) <λ ϕ(g′) is called an automorphic image of λ. For example, the reciprocal of the natural order λ
of Z is an automorphic image of λ.
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left invariant circular orders of G (see Section 8). In Section 9, we show:

Theorem 4. The homomorphism q induces a homeomorphism q∗ : LO(G) →
CO(G).

Isolated left orders are often induced from isolated circular orders of the group

quotiented by the center. See [10, Section 5], for example. The above theorem is also a

typical example. However there is an example of a group with isolated left orders which

admits no center, constructed in [6, 3.2].

Acknowledgements. The author is grateful to Y. Matsuda for stimulating con-

versations. Hearty thanks are due to the referee for many helpful suggestions.

2. Dynamical realization.

In this section, we define a dynamical realization of a left order λ ∈ LO(G) and

study its fundamental properties. Fix an enumeration of G: G = {gi | i ∈ N} such that

g1 = e. We define an order preserving embedding ι : G → R inductively as follows.

Define ι(g1) = x0, where x0 is some point in R. Assume we have defined ι on the subset

{g1, . . . , gn}, n ≥ 1, and let us define ι(gn+1). Order the subset {g1, . . . , gn} as

gi1 <λ gi2 <λ · · · <λ gin .

If gn+1 <λ gi1 , define ι(gn+1) = ι(gi1)− 1,

if gin <λ gn+1, ι(gn+1) = ι(gin) + 1,

and if gik <λ gn+1 <λ gik+1
, ι(gn+1) = (1/2)(ι(gik) + ι(gik+1

)).

Then we have inf ι(G) = −∞ and sup ι(G) = ∞. The left translation of G yields

an order preserving action of G on ι(G), which extends to a continuous action on the

closure Cl(ι(G)). (See Proposition 2.2 and the proof of Corollary 2.3.) Extend it further

to a continuous action on R by setting that the action on gaps of Cl(ι(G)) be linear.

This action is called the dynamical realization of λ based at x0, and is denoted by ρλ.

The dynamical realization depends on the choice of the enumeration of G. Soon later,

we shall show that any two dynamical realizations are mutually topologically conjugate.

Definition 2.1. An action ρ : G → Homeo+(R) is called tight at x0 ∈ R if

(1) ρ is free at x0 i.e. the stabilizer at x0 is trivial,

(2) inf ρ(G)x0 = −∞, sup ρ(G)x0 = ∞, and

(3) whenever Cl(ρ(G)x0) ∩ [a, b] = {a, b} for any a < b, we have {a, b} ⊂ ρ(G)x0.

Proposition 2.2. The dynamical realization ρλ based at x0 is tight at x0.

Proof. All that needs proof is (3). Let a < b be as in (3). The proof is by

contradiction. Assume, to fix the idea, that a ̸∈ ρ(G0)x0 = ι(G). (Notice that ι(g) =

ρλ(g)x0.) Choose ϵ small enough compared with b− a, and choose ι(g1) ∈ (a− ϵ, a) and

ι(g2) ∈ [b, b+ ϵ). Recall that the dynamical realization is defined via an enumeration of

G. One may assume that there is no point in (ι(g1), ι(g2)) ∩ ι(G) which is enumerated

before g1 or g2, since otherwise one may pass to that point. Since a ∈ Cl(ι(G)) \ ι(G),

there is a point ι(g3) in (ι(g1), ι(g2)) ∩ ι(G) which is enumerated for the first time after
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g1 and g2. Then ι(g3) is the midpoint of ι(g1) and ι(g2) and must be fallen in (a, b) since

ϵ is small. A contradiction. □

Corollary 2.3. The dynamical realizations defined via two different enumerations

of G are mutually conjugate by an orientation and base point preserving homeomorphism

of R.

Proof. Let ι and ι′ be two embeddings of G obtained by different enumerations of

G. There is an orientation preserving bijection h : ι(G) → ι′(G) defined by h(ι(g)) = ι′(g)

(g ∈ G). By the tightness, h extends, first of all, to a homeomorphism h : Cl(ι(G)) →
Cl(ι′(G)), and then to a homeomorphism of R linearly on gaps. The extended h yields

the required conjugacy. □

The proof of the previous corollary also yields the following result, which will be

used in Section 9.

Corollary 2.4. Let H be the set of the orientation and base point x0 preserving

topological conjugacy classes of the homomorphisms G → Homeo+(R) which are tight at

x0. Then the dynamical realization at x0 induces a bijection of LO(G) onto H.

A left order <λ is called discrete if there is a minimal λ-positive element, and indis-

crete otherwise.

Corollary 2.5. If λ ∈ LO(G) is indiscrete, then the orbit ρλ(G)x0 of the base

point x0 is dense in R.

Proof. Assume Cl(ρλ(G)x0) ̸= R and let (a, b) be a gap of Cl(ρλ(G)x0). Then

by the previous lemma, we have a, b ∈ ρλ(G)x0. That is, a = ι(g1) and b = ι(g2) for

some g1, g2 ∈ G. Then g−1
1 g2 is the minimal positive element, and λ is discrete. □

3. Proof of Theorem 1.

We begin with two lemmas. The first one can be found in [11, Proposition 2.1.12].

Lemma 3.1. Let G be a finitely generated group which acts on R without global

fixed points. Then the action is cocompact.

Proof. We identify R ≈ (0, 1). Let G0 be a finite generating set of G. Define

a = sup
s∈G0

sup
x∈(0,1)

|sx− x|.

Choose a compact interval J ⊂ (0, 1) such that |J | > a. Given any point x ∈ (0, 1), we

have inf Gx = 0 and supGx = 1 since there is no global fixed point. Considering the

Schreier graph of Gx, one can show that Gx ∩ J ̸= ∅. □

Lemma 3.2. Let G be a group acting on R and let y0 ∈ R. Denote by Gy0 the

stabilizer of G at y0. Assume Gy0
̸= G. Given λ0 ∈ LO(Gy0

), there are at least two

orders in LO(G) which restrict to λ0 on Gy0 .
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Proof. Let µ be the G-invariant order on G/Gy0 given by the natural order of the

orbit Gy0 ≈ G/Gy0 in R. Then λ0 and µ determines a left order on G lexicographically

(Lemma 5.1). If we consider the reciprocal order −µ, we get another one. □

Assume λ ∈ LO(G) is an isolated left order on G. Since we are considering the

pointwise convergence topology, this is equivalent to the following condition (⋆).

(⋆) There is a finite subset S ⊂ Pλ such that λ is the only element in LO(G) which

contains S in its positive cone.

Such a subset S is called a characteristic positive set of λ.

Proof of Theorem 1. By the dynamical realization of the isolated left order

λ, the group G acts on R. Let H be the subgroup of G generated by a characteristic

positive set S of λ. If there is no global fixed point by the action of H, then H acts on

R cocompactly by Lemma 3.1, and hence also G, finishing the proof. In the remaining

case, choose a global fixed point y0 of H and consider Gy0 . We have Gy0 ̸= G since the

dynamical realization has no global fixed point, by its tightness. By the previous lemma,

the restriction of λ to Gy0
extends to two left orders of G. But we have S ⊂ H ⊂ Gy0

and hence S is contained in the positive cone of both orders. A contradiction. □

Remark 3.3. The condition that λ be isolated is actually necessary for Theorem 1.

To show this, let G be the infinite direct sum of Z, i.e.

G = {(an)n∈N | an ∈ Z, an = 0 but for finitely many n}.

Define a left order on G by setting 0 < (an) if 0 < aN , where N is the largest number

such that aN ̸= 0. Then its dynamical realization is not cocompact. To show this, define

for m ∈ N,

Gm = {(an) | an = 0, ∀n > m}.

Then Gm’s form an exhausting increasing sequence of convex subgroups. Consider the

dynamical realization ρλ based at x0. The points

ξn = inf ρλ(Gn)x0 and ηn = sup ρλ(Gn)x0

are fixed points of ρλ(Gn). They satisfy ξn ↘ −∞ and ηn ↗ ∞ by condition (2) of

Definition 2.1, since Gn is exhausting. This implies that ρλ is not cocompact.

Theorem 1 implies that there is a minimal set M for the dynamical realization of

an isolated left order.2 There is a trichotomy for M ([3, Proposition 6.1]).

(I) M = R.
(II) M is infinite and discrete in R.

2The results of the remaining part of this section (trichotomy, Lemma 3.4 and Corollary 3.5) and
Lemma 5.4 (1) (2) hold true whenever the left order λ admits a cocompact dynamical realization,
especially when G is finitely generated. But we shall state it only for an isolated left order λ.
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(III) M is locally Cantor. In this case, if X is a nonempty closed subset of R
invariant by the dynamical realization of G, then M ⊂ X. Especially, M is the unique

minimal set.

Lemma 3.4. Let λ ∈ LO(G) be isolated, with M an associated minimal set. As-

sume (III) above, or (II) and G ̸∼= Z. Then the base point x0 is contained in a gap I1 of

M, the stabilizer GI1 is nontrivial, and there is no gap of M other than the orbit of I1.

Proof. We give a proof only for case (III). Case (II) can be treated much easier.

Notice that if ρ(G)x0 is discrete, then G ∼= Z. Assume that the base point x0 is contained

in M and let (a, b) be a gap of M. Since the dynamical realization ρλ is tight, we

have a, b ∈ ρλ(G)x0. But there is no orientation preserving homeomorphism leaving M
invariant and mapping a to b. The contradiction shows that x0 is contained in a gap I1
of M.

If GI1 is trivial, then ρλ(G)x0 ∩ I1 = {x0}. Again by the tightness, the bound-

ary points of I1 must belong to ρλ(G)x0. A contradiction. The last statement follows

similarly from the tightness. □

Corollary 3.5. If G ̸∼= Z, then the minimal set M of the dynamical realization

ρλ of an isolated left order λ is unique.

Proof. All that needs proof is the case where M is discrete, since a locally Cantor

minimal set is always unique. We still use the notation of the previous lemma. If there

is another minimal set M′, then M′ ∩ I1 must be one point, say y0, which is fixed by

ρλ(GI1). But then ρλ(G)x0 ∩ I1 = ρλ(GI1)x0 must be contained in an open subinterval

of I1 delimited by y0, contrary to the tightness. □

4. The case M = R.

This section is devoted to the proof of the following theorem.

Theorem 4.1. Let λ ∈ LO(G) be isolated and assume that the dynamical realiza-

tion ρλ is minimal. Then the group G is isomorphic to an additive subgroup A of Q such

that A ̸∼= Z, and λ is either the natural left order given by A ⊂ Q ⊂ R or its reciprocal.

This theorem might be known among specialists, but the author cannot locate it in

the literature.

Let λ be an element of LO(G) which satisfies the hypothesis of Theorem 4.1. We

shall abbreviate the notations ρλ(g)x by gx, and ρλ(G) ⊂ Homeo+(R) by G. Let Z be

the centralizer of G in Homeo+(R).

Lemma 4.2. The centralizer Z is an abelian group which acts freely on R.

Proof. For ζ ∈ Z \ {id}, Fix(ζ) is a closed set which is invariant by G. Since the

G-action is minimal, we have Fix(ζ) = ∅. By Hölder’s theorem (e.g. [12]), any group

acting freely on R is abelian. □
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Let x0 be the base point of the dynamical realization. Choose xn ∈ Gx0, n ∈ N,
such that xn → x0, xn ̸= x0. Notice that G acts freely at xn. Let λn ∈ LO(G) be the

order determined by xn: g >λn
e if and only if gxn > xn. Then λn → λ in LO(G).

Since λ is isolated, λn = λ for any large n. We assume λn = λ for all n. Define an order

preserving bijection ζn : Gx0 → Gxn by ζn(gx0) = gxn. Since Gx0 = Gxn is dense in R,
the map ζn extends to an orientation preserving homeomorphism of R, denoted by the

same letter ζn. Clearly ζn ̸= id.

Lemma 4.3. We have ζn ∈ Z.

Proof. Given any g ∈ G, it suffices to show that ζng = gζn on the dense subset

Gx0. For any hx0 ∈ Gx0, we have

ζng(hx0) = ζn((gh)x0) = ghxn = g(hxn) = gζn(hx0),

as is required. □

Lemma 4.4. The action of Z is minimal, and is conjugate to translations.

Proof. By Lemmas 4.2 and 4.3, there is an element in Z which acts freely on R.
This implies that the action of Z is cocompact. Let N be a minimal set of Z. If it is

locally Cantor, then N is the unique minimal set, and must be invariant by G. But G-

action is minimal by the assumption. A contradiction. Next assume N is discrete. Then

since the Z-action is free, we must have Z ∼= Z, contradicting Lemma 4.3. Therefore Z

must act minimally on R.
Choose any ζ0 ∈ Z \{id}. Since the action of the group ⟨ζ0⟩ is free and Z is abelian,

the group Z/⟨ζ0⟩ acts on R/⟨ζ0⟩ ≈ S1. Since Z/⟨ζ0⟩ is amenable, there is an Z/⟨ζ0⟩-
invariant probability measure. It lifts to a locally finite Z-invariant measure µ on R.
Since the action of Z is minimal, µ is atomless and fully supported. Thus there is a

homeomorphism h such that h∗µ is the Lebesgue. Conjugating the Z-action by h, we

obtain an action by translations. □

Proof of Theorem 4.1. By changing the coordinate, we assume that the action

of Z is by translations. Since the Z-action is minimal, any element of G, commuting

with Z, acts also by translations. Then we have an injective homomorphism ϕ : G → R
defined by the translation length. We shall show that ϕ embeds G into Q. Assume

not. Then G is a nontrivial direct sum: G = G1 ⊕ G2. Given any a ∈ R, we obtain a

homomorphism ϕa : G → R by setting ϕa = ϕ on G1 and ϕa = aϕ on G2. There is a

arbitrarily near 1 such that ϕa is injective. But ϕa yields a left order different from λ

and arbitrarily near λ. This contradicts the assumption that λ is isolated, finishing the

proof that G is isomorphic to an additive subgroup A of Q. The last statement of the

theorem follows at once. □

5. Convex subgroups.

We shall prove Theorem 2 in this section. First we begin with fundamental properties

of convex subgroups. For the definition of convex subgroups, see Introduction. We begin
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with a well known easy fact.

Lemma 5.1. Let H be a subgroup of G. For any λ0 ∈ LO(H) and any G-invariant

total order λ1 on G/H, there is a unique order λ ∈ LO(G) such that H is λ-convex, that

λ|H = λ0, and that for g ̸∈ H, g >λ e if and only if gH >λ1 H. □

Such an order λ is said to be determined lexicographically by λ0 and λ1.

Lemma 5.2. Let λ ∈ LO(G) and H a λ-convex subgroup of G. Then there is a

G-invariant total order λ1 on G/H such that λ is determined lexicographically by λ|H
and λ1.

Proof. Define a total order λ1 on G/H by setting g1H <λ1 g2H if e <λ g−1
1 g2 and

g−1
1 g2 ̸∈ H. The convexity of H shows that this is a well defined G-invariant order. □

If G is isomorphic to Z or if the minimal set of the dynamical realization of λ is R,
then there is no proper λ-convex subgroups, and Theorem 2 holds true. Henceforth in

this section we work under the following assumption.

Assumption 5.3. (1) λ ∈ LO(G) is isolated with a characteristic positive set S.

(2) G is not isomorphic to Z.
(3) The minimal set M of the dynamical realization is not R.

Denote by I1 = (y0, z0) the gap of M which contains the base point x0 (Lemma 3.4),

and by G1 the stabilizer of I1.

Lemma 5.4. (1) G1 is proper and nontrivial.

(2) G1 is the maximal proper λ-convex subgroup of G.

(3) The restricted order λ|G1 is isolated with characteristic positive set S ∩G1.

(4) S ∩ (G \G1) ̸= ∅.

Proof. The subgroup G1 is clearly proper. It is nontrivial by Lemma 3.4. Also

G1 is convex. Let H be an arbitrary proper λ-convex subgroup of G. We shall show

that H ⊂ G1. Consider first the case where M is discrete. By looking at the action of

G on M, one can define a surjective homomorphism ϕ : G → Z such that Ker(ϕ) = G1.

If ϕ(H) is nontrivial, then clearly we have H = G since H is convex. If ϕ(H) is trivial,

then H ⊂ G1, as is required.

So in the rest, we assume that M is locally Cantor. Let H be the convex hull of

Hx0 in R. Then H is a bounded open interval of R. The boundedness follows from the

convexity and the properness of H. The convexity of H implies that for any g ∈ G, we

have either gH = H or gH ∩H = ∅. Thus the closed set

X = R \
∪
g∈G

gH

is G-invariant and nonempty. Therefore we have M ⊂ X, which implies H ⊂ I1, showing

that H ⊂ G1.
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Let us show that S ∩G1 is a characteristic positive set of λ|G1 . If not, there is a left

order λ′
0 (λ′

0 ̸= λ|G1) of G1 such that S ∩G1 is contained in the positive cone of λ′
0. Let

λ1 be the G-invariant total order on G/G1 obtained by Lemma 5.2. Let λ′ ∈ LO(G) be

the order determined lexicographically by λ′
0 and λ1. Then λ′ contains S in its positive

cone and λ′ ̸= λ, contradicting that S is a characteristic positive set of λ.

Finally let us show that S ∩ (G \ G1) is nonempty. If it is empty, then λ|G1 and

−λ1 lexicographically determine λ′ ∈ LO(G), where −λ1 is the reciprocal of the order λ1

constructed in Lemma 5.2. But S is contained in the positive cone of λ′. A contradiction.

□

Proof of Theorem 2. By Lemma 5.4, we obtain the maximal proper convex

subgroup G1. If G1 is not isomorphic to Z and the minimal set of the dynamical real-

ization of λ|G1 is not the whole R, then we can repeat the process and obtain the second

maximal proper convex subgroup G2. This process ends at finite steps since each time

the number of elements of positive characteristic set decreases. □

Definition 5.5. The sequence

G = G0 > G1 > · · · > Gn > {e}

of all the λ-convex subgroups is called the maximal convex sequence of the isolated order

λ. The number n is called the height of λ.

Thus an isolated left order with minimal dynamical realization has height 0. Let

M0 be the minimal set of G and I1 the gap of M0 containing the base point x0. Then

the maximal proper λ-convex subgroup G1 is the stabilizer of I1. By Lemma 5.4 (3),

λ|G1 is isolated, and there is a minimal set M1 of the G1-action on I1. Next consider

the gap I2 of M1 in I1 containing x0. Continuing this way, we get a decreasing sequence

of open intervals

R ⊃ I1 ⊃ · · · ⊃ In.

Each subgroup Gi is the stabilizer of Ii, and each Mi is a minimal set of Gi in Ii. The

pair (Ii,Mi) is called the i-th internal pair associated with the maximal convex sequence.

There are only two possibilities for the last group Gn:

(A) Mn = In,

(B) Gn = Z.
In (A), the order λ is indiscrete and in (B), it is discrete.

As a corollary of Theorem 4.1, we get the following proposition, which will be used

in the next section.

Proposition 5.6. If an isolated order λ has height 0, i.e. if there is no proper

λ-convex subgroup, then the group G is rational and the order λ is the natural order of

G ⊂ Q ⊂ R or its reciprocal.
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6. Tararin groups.

Definition 6.1. A group G is called a Tararin group if |LO(G)| < ∞.

Of course any left order of a Tararin group is isolated. In this section, we shall give

a dynamical proof of the following theorem by Tararin [14]. See also [4, Theorem 2.2.13]

or [8].

Theorem 6.2. (I) Assume |LO(G)| < ∞. Then the following holds.

(1) There is a unique rational series 3

G = G0 ▷G1 ▷ · · ·▷Gn ▷Gn+1 = {e}. (6.1)

(The uniqueness implies that each subgroup Gi is characteristic, i.e. invariant by any

automorphism of G. Especially it is a normal subgroup of G.)

(2) There are elements si ∈ Gi \ Gi+1 for each i ∈ {0, 1, . . . , n} such that for any

map ϵ : {0, 1, . . . , n} → {±1}, there is exactly one order λϵ such that s
ϵ(i)
i is positive.

Thus

LO(G) = {λϵ | ϵ ∈ {±1}{0,1,...,n}}.

(3) The sequence (6.1) is the maximal convex sequence for any λϵ.

(4) The quotient group Gi/Gi+2, i ∈ {0, . . . , n− 1}, is not bi-orderable.

(II) Conversely, if a group G admits a rational series (6.1) such that Gi+2 is a

normal subgroup of Gi and Gi/Gi+2 is not bi-orderable (0 ≤ i ≤ n− 1), then |LO(G)| =
2n+1.

Proof. First of all, let us show (II). It suffices to prove that G1 is λ-convex for any

λ ∈ LO(G). In fact, this implies that any λ is constructed in a lexicographical way, and

thus |LO(G)| = |LO(G1)| · |LO(G/G1)|. On the other hand, we have |LO(G/G1)| = 2.

An induction on n shows that |LO(G)| = 2n+1. We use the following easy fact.

If A is a rational group and ϕ : A → {±1} is a nontrivial homomorphism, then

for any nontrivial element g ∈ A, there are g0 ∈ A and n ≥ 1 such that g = gn0 and

ϕ(g0) = −1.

Fix λ ∈ LO(G). We shall show that G1 is λ-convex by an induction on n. Consider

an exact sequence

1 → G1/G2 → G/G2 → G/G1 → 1.

By the induction hypothesis, G2 is λ|G1 -convex and there is a left order < on G1/G2

induced from λ|G1
. One can define a homomorphism ϕ′ : G → {±1} according as the

conjugation by an element of G preserves the order < on G1/G2 or not. (Notice that there

are only two orders on G1/G2.) Since G1/G2 is abelian, ϕ′ induces a homomorphism

ϕ : G/G1 → {±1}. Should ϕ, equivalently ϕ′, be trivial, the order on G/G2 constructed

3Rational series means that for any i, Gi/Gi+1 is a rational group, i.e. an abelian group embeddable

into Q.
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lexicographically from < and an order of G/G1 would be a bi-order. This shows that ϕ

is nontrivial.

To complete the proof, let us show that for any element g ∈ G \ G1, g >λ e, we

have g−1 <λ G1 <λ g. There exist g0 ∈ G and n ≥ 1 such that g ≡ gn0 mod G1 and

ϕ′(g0) = −1. Then for any h ∈ G1 \G2, h >λ e if and only if g−1
0 hg0 <λ e.

Assume for a while that g0 >λ e. Then if h >λ e,

e <λ h <λ hg0 <λ g0.

Applying h successively, we obtain

e <λ h <λ h2 <λ · · · <λ h2g0 <λ hg0 <λ g0.

If we put h1 = g−1
0 hg0, then

e <λ h <λ h2 <λ · · · <λ g0h
2
1 <λ g0h1 <λ g0. (6.2)

By an analogous argument, we have

g−1
0 <λ g−1

0 h−1
1 <λ g−1

0 h−2
1 <λ · · · <λ h−2 <λ h−1 <λ e. (6.3)

The elements h, h1 ∈ G1 \G2 are λ|G1-cofinal
4 by the assumption that G2 is λ|G1 -convex

and G1/G2 is rational. Therefore by (6.2) and (6.3), we obtain g−1
0 G1 <λ G1 <λ g0G1.

For our initial g, since g±1G1 = g±n
0 G1, we have g−1G1 <λ G1 <λ gG1, as is required.

On the other hand, if g0 <λ e, then the same argument shows that gG1 <λ G1 <λ g−1G1,

contradicting the hypothesis g >λ e. This finishes the proof of (II).

Now we shall proceed to the proof of (I). For a Tararin group G, let n(G) be the

minimal height of all the elements of LO(G). We shall show (I) by the induction on

n(G). This is already shown for n(G) = 0 by Proposition 5.6. Let G be a Tararin group,

λ ∈ LO(G) with height n = n(G), and G1 the maximal proper λ-convex subgroup.

Then the lexicographic construction shows that G1 is also Tararin, and n(G1) ≤ n − 1.

Therefore by the induction hypothesis, the maximal convex sequence of λ|G1

G1 ▷G2 ▷ · · ·▷Gn+1 = {e}

is a unique rational series of G1 and Gi/Gi+2 is not bi-orderable (1 ≤ i ≤ n− 1).

First of all, let us show that G1 is a normal subgroup of G, and G/G1 is a rational

group. But this is clear if the minimal set M of the dynamical realization ρλ is discrete.

So assume M is a locally Cantor set. Let x0 be the base point of ρλ, and choose gk ∈ G

so that ρλ(gk)x0 → ∃y0 ∈ M as k → ∞. One may assume that ρλ(gk)x0 belongs to

a distinct gap of M for each k. The left orders of G induced by the ρλ(G)-orbit of

ρλ(gk)x0 are finite in number. So one may assume, by passing to a subsequence, that the

left orders are the same. By the same argument as in Theorem 4.1, one can construct

order preserving homeomorphisms hk,k′ of Cl(ρλ(G))x0 which commute with any ρλ(g)

4For λ ∈ LO(G), an element h ∈ G is said to be λ-cofinal if for any g ∈ G, there are n,m ∈ Z such

that hn <λ g <λ hm.
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such that hk,k′(ρλ(gk)x0) = ρλ(gk′)x0. The map hk,k′ leaves the unique minimal set M
of ρλ(G) invariant.

Consider the quotient space R of R obtained by collapsing each gap of M to a point.

Then hk,k′ induces an orientation preserving homeomorphism of R commuting with the

induced action of ρλ(G). Let Z be the centralizer of the action on R induced from ρλ(G)

in the space of the orientation preserving homeomorphisms of R. Then since the induced

action of G is minimal, Z acts freely on R. In fact, if an element of Z has nonempty

fixed point set, then the fixed point set must be G-invariant and coincides with R. Thus

the action of Z is topologically conjugate to translations.

By the choices of k, k′, there are arbitrarily small translations. That is, the action

of Z must be minimal. This shows that the induced G-action on R itself is also by

translations. ThereforeG1 is the kernel of the inducedG-action, and is a normal subgroup

of G. Finally, the left order of G/G1 induced by λ must be isolated, and hence by

Theorem 4.1, G/G1 is rational.

Since G1 is a normal subgroup of G, and Gi (i ≥ 2) is a characteristic subgroup of

G1 by the induction hypothesis, Gi, especially G2, is a normal subgroup of G. Next let

us show that H = G/G2 is not bi-orderable. Denote A = G1/G2 and B = G/G1. There

is an exact sequence

1 → A → H
q→ B → 1. (6.4)

Notice that H is Tararin, since otherwise lexicographic construction would yield infinitely

many left orders onG. The conjugation yields a homomorphism fromH to Aut(A), which

projects to a homomorphism ϕ : B → Aut(A) since A is abelian. Any automorphism of

A ⊂ Q is the multiplication by a nonzero rational number. Thus we get ϕ : B → Q×. If ϕ

takes a negative value, then H does not admit a bi-order, and we are done. If ϕ is trivial,

then projecting H = A × B ⊂ Q2 ⊂ R2 to R along one dimensional linear subspaces of

irrational slope yields embeddings of H into R, from which we obtain infinitely many left

orders on H. A contradiction.

Assume ϕ is positive valued and nontrivial. Let {Bi} be an exhausting increasing

sequence of subgroups of B which are isomorphic to Z, and let Hi = q−1(Bi). Then the

exact sequence

1 → A → Hi → Bi → 1

is split. There is a representation fi : Hi → Aff+(R) to the group of the orientation

preserving affine transformations of the real line such that A is mapped to translations

(by A ⊂ Q itself) and that the split image of Bi is mapped to the homotheties of

ratio ϕ(Bi) at some point of R. Two such representations are mutually conjugate by

translations (regardless of the choice of the splittings). Therefore we can arrange so

that fi+1 is an extension of fi. As the direct limit, we get a faithful representation

f : H → Aff+(R). By considering the orbit of various points of R at which f(H) acts

freely, we get various left orders of H, leading to a contradiction. This finishes the proof

that H is not bi-orderable.

Finally let us show that a rational series of G is unique. By the induction hypothesis,
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the groups Gi/Gi+2, 1 ≤ i ≤ n− 1, are also not bi-orderable. So the sequence

G = G0 ▷G1 ▷ · · ·▷Gn ▷Gn+1 = {e} (6.5)

satisfies the hypothesis of (II). We already know that the cardinality of LO(G) is 2n+1.

Choose si ∈ Gi \Gi+1 and let S = {s0, . . . , sn}. For any ϵ : S → {±1}, define

Sϵ = {sϵ(si)i | i = 0, . . . , n}.

For any ϵ, we can construct a left order λϵ whose positive cone contains Sϵ, lexicographi-

cally using sequence (6.5). Such left orders exhaust LO(G), since |LO(G)| = 2n+1. This

shows that a rational series of G is unique. In fact, any such series gives birth to a left

order lexicographically. The series is the maximal convex sequence of that order, but all

the 2n+1 orders have (6.5) as the maximal convex sequence. □

Remark 6.3. Let (Ii,Mi) be the i-th internal pair associated with the maximal

convex sequence (6.1) of a Tararin group G. The next subgroup Gi+1 leaves the gap

Ii+1 of Mi in Ii invariant. But because Gi+1 is a normal subgroup of Gi, it leaves all

the iterates of Ii+1 under Gi invariant. By Lemma 3.4, these are the only gaps of Mi.

Therefore Gi+1 acts trivially on Mi. That is, there is an induced action of Gi/Gi+1

on Mi. If Mi is discrete, then Gi/Gi+1
∼= Z, and the action on Mi is by translation.

Assume Mi is locally Cantor. Let Ri be the quotient space obtained by Ii by collapsing

each gap of Mi to a point. It is homeomorphic to R. The quotient group Gi/Gi+1 acts

on Ri minimally and freely. The whole action of G on R is a “pileup” of translations.

Any left order is discrete if and only if the last group Gn is isomorphic to Z.

7. Maximal convex sequence.

We shall raise one more example (other than the Tararin groups) of isolated orders

whose height is as big as possible. Let Bn be the braid group of n strings, with the

standard generators σ1, . . . , σn−1. Define

z1 = σ1 · · ·σn−1, z2 = σ2 · · ·σn−1, . . . , zn−2 = σn−2σn−1, zn−1 = σn−1,

and yi = z
(−1)i−1

i . Let Pn be the subsemigroup of Bn generated by yi’s. Based upon a

result of Dehornoy [1], Dubrovina and Dubrovin [2] have shown a remarkable fact that

Pn⊔P−1
n = Bn\{e}. The left order λn whose positive cone is Pn is called the Dubrovina–

Dubrovin order. Since S = {y1, . . . , yn−1} generates Pn, the order λn is isolated with

characteristic positive set S. Moreover λn can be defined lexicographically as a twist of

the Dehornoy order [1], and the subgroups

B∗
n−k = ⟨yk+1, . . . , yn−1⟩ = ⟨σk+1, . . . , σn−1⟩

are λn-convex. Since |S| = n − 1, they are the only convex subgroups by Lemma 5.4,

and the maximal convex sequence is given by

Bn > B∗
n−1 > · · · > B∗

2 > {e}. (7.1)
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The height of λn is n−2. The order λn is discrete since B∗
2
∼= Z. The i-th minimal set Mi

of the i-th internal pair (Ii,Mi) is locally Cantor, since each term B∗
n−k in (7.1) is not a

normal subgroup of the previous term B∗
n−(k−1), because σk+1 ∈ B∗

n−k, σk ∈ B∗
n−(k−1),

and σkσk+1σ
−1
k ̸∈ B∗

n−k.

We shall construct countably many isolated orders of B3 in Section 9.

For an isolated order λ ∈ LO(G), we can define the maximal Tararin subgroup Gi

in its maximal convex sequence

G > G1 > · · · > Gn > {e}. (7.2)

For λn, the maximal Tararin subgroup is B∗
2
∼= Z, and its height is 0. We shall raise

questions about the isolated orders of non Tararin groups.

Question 7.1. Is there a non Tararin group with an isolated order whose maximal

Tararin subgroup has height ≥ 1?

Question 7.2. Is there a non Tararin group with an isolated and indiscrete order?

There is a sufficient condition for a group to be Tararin in terms of an isolated order

on it.

Proposition 7.3. If the maximal convex sequence of an isolated order λ ∈ LO(G)

is subnormal,5 then G is a Tararin group.

Proof. The proof is an induction on the height of λ. For height 0, this is true by

Proposition 5.6. Assume the height is ≥ 1 and consider the maximal convex sequence of

λ:

G = G0 ▷G1 ▷G2 ▷ · · ·▷Gn ▷Gn+1 = {e}. (7.3)

By the induction hypothesis, G1 is a Tararin group and the subsequence of (7.3) that

begins with G1 is the unique rational series in Theorem 6.2. Since each Gi 2 ≤ i ≤ n, is

a characteristic subgroup of G1 and since G1 is a normal subgroup of G, Gi is a normal

subgroup of G. By virtue of lemmas 5.1 and 5.2, the order induced from λ on G/G1 is

isolated, and of height 0. Therefore G/G1 is a rational group, by virtue of Proposition 5.6.

That is, the sequence (7.3) is a rational series.

Finally let us show that H = G/G2 is not bi-orderable. Let A = G1/G2, B = G/G1

and consider the exact sequence

1 → A → H → B → 1.

As in the proof of Theorem 6.2, the conjugation defines a homomorphism ϕ : B →
Aut(A) ⊂ Q×. If ϕ attains a negative value, then H is not bi-orderable, and we are

done.

The order λ induces a left order λ0 of H, which is the lexicographical order given

by the orders of B and A. To fix the idea, assume that these two orders are the natural

5Each term is a normal subgroup of the previous term.
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one given by the inclusions B ⊂ Q and A ⊂ Q. Notice also that λ0 is isolated, since λ is

isolated.

If ϕ is trivial, then H = A×B. Consider the embeddings

A×B ⊂ Q2 ⊂ R2.

Let πn : R2 → R be the projection along a one dimensional subspace of irrational slope

kn. The projection πn maps A × B injectively to R, and this gives a left order λn of

A × B. Then λn → λ0 as kn ↓ 0: the y-coordinate becomes more and more important

as kn ↓ 0, and λ0 is the lexicographical order for which B-factor (y-coordinate) is of the

primary importance. Thus λ0 is not isolated.

If ϕ is nontrivial and positive valued, there is an embedding ϕ of H into Aff+(R)
(Proof of Theorem 6.2). Points xn ∈ R at which ϕ(H) acts freely yield left orders λn

on H. As is observed by Rivas [13], we have λn → λ0 as xn → ∞ (the slope of affine

transformations becomes more and more important). □

Corollary 7.4. Let λ ∈ LO(G) be isolated of height 1. If the minimal set of the

dynamical realization is discrete, then G is a Tararin group.

Proof. If the minimal set is discrete, then we get a surjective homomorphism

ϕ : G → Z and its kernel is a convex subgroup. By the previous proposition, G is a

Tararin group. □

Example 7.5. The above corollary does not hold if we remove the condition that

λ is height 1. Let us construct an example of isolated order λ ∈ LO(G) of height 2

with discrete minimal set, where G is non Tararin. We start with the braid group B3.

The subsemigroup P generated by y1 = σ1σ2 and y2 = σ−1
2 is the positive cone of the

Dubrovina–Dubrovin order λ3. The group B3 is described as

B3 = ⟨y1, y2 | y2y21y2 = y1⟩.

There is an automorphism ϕ of B3 which satisfies ϕ(y1) = y−1
1 and ϕ(y2) = y−1

2 . There-

fore if we define a group G by

G = ⟨x, y1, y2 | y2y21y2 = y1, xy1x
−1 = y−1

1 , xy2x
−1 = y−1

2 ⟩,

then B3 is a subgroup of G [5]. Let P̂ be the subsemigroup of G generated by x and

P . Then we have B3 = P ⊔ P−1 ⊔ {e}, xP = P−1x, and G = P̂ ⊔ P̂−1 ⊔ {e}. To

show the last statement, denote by ⟨x⟩± the subsemigroup generated by x±1. Then

⟨x⟩+P−1 = P ⟨x⟩+ ⊂ P̂ and ⟨x⟩−P = P−1⟨x⟩− ⊂ P̂−1. Since B3 is a normal subgroup

of G, we have

G = ⟨x⟩B3 = (⟨x⟩+ ⊔ ⟨x⟩− ⊔ {e})(P ⊔ P−1 ⊔ {e})
= ⟨x⟩+P ⊔ ⟨x⟩−P ⊔ P ⊔ ⟨x⟩+P−1 ⊔ ⟨x⟩−P−1 ⊔ P−1 ⊔ ⟨x⟩+ ⊔ ⟨x⟩− ⊔ {e},

and each term except {e} is contained either in P̂ or in P̂−1.

The left order λ on G determined by P̂ has B3 as a λ-convex normal subgroup. In
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fact,

B−1
3 x = (P ⊔ P−1 ⊔ {e})x = Px ⊔ P−1x ⊔ {x} = Px ⊔ xP ⊔ {x} ⊂ P̂

and likewise B−1
3 x−1 ⊂ P̂−1, which means x−1 <λ B3 <λ< x. Since G/B3

∼= Z, the
minimal set associated to λ is discrete. The dynamics of λ is as depicted in Figure 1.

x

B3

Figure 1. The dotted points form the minimal set M. The element x moves

these points one to the right. The intervals bounded by the points are invari-

ant by B3. The actions of B3 are opposite in neighbouring intervals, showing

the stability of the action.

Navas [12] has defined the Conradian soul Cλ for any λ ∈ LO(G). Let us recall it

briefly. A left order λ ∈ LO(G) of a group G is called Conradian if we have g−1hg2 >λ e

whenever g >λ e and h >λ e. Thus a bi-invariant order is Conradian. Given an action of

G on R, a point x ∈ R, is called resilient if there are an element h of the stabilizer of x

and a point y ∈ Gx\{x} such that hny → x as n → ∞. It is shown [12] that λ ∈ LO(G)

is Conradian if and only if the dynamical realization of λ admits no resilient point.

For a general left order λ ∈ LO(G), a subgroup H < G is called λ-Conradian if

the restriction of λ to H is Conradian. The Conradian soul Cλ of λ is defined to be the

maximal convex Conradian subgroup. In other words, it is the union of all the convex

Conradian subgroups. The following proposition is a consequence of [12], Proposition 4.1,

which states that if a group G is non Tararin, a Conradian order of G can never be

isolated. Here we will give a proof based upon Proposition 7.3.

Proposition 7.6. If λ is isolated, the maximal Tararin subgroup of λ coincides

with the Conradian soul of λ.

Proof. In the maximal convex sequence (7.2) of λ, let Gi be the maximal Tararin

subgroup. It follows from Remark 6.3, that the dynamical realization of λ|Gi is a pileup

of translations, and cannot have a resilient point. Thus Gi is λ-Conradian. So it suffices

to show that Gi−1 is not λ-Conradian, that is, the dynamical realization of λ|Gi−1 admits

a resilient point. It is no loss of generality to assume that i = 1. That is, we assume that

G is not a Tararin group, while its maximal convex subgroup G1 is. By Proposition 7.3,

G1 is not a normal subgroup of G. Then the minimal set M is not discrete, and the

action of G1 on M is nontrivial. Choose g ∈ G1 which acts nontrivially on M. Since G1

leaves invariant the gap I1 of M containing the base point x0, we have Fix(g) ∩M ̸= ∅.
Then there are distinct points x, y ∈ M such that g(x) = x and either gn(y) → x

or g−n(y) → x as n → ∞. Since the action of G on M is minimal, the point y is

accumulated by the orbit of x. This shows that the point x is resilient. □
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8. Circular orders.

In this section, we provide preliminary facts about circular orders.

Definition 8.1. For a countable group G, a map c : G
3 → {0, 1,−1} is called a

left invariant circular order of G if it satisfies the following conditions.

(1) c(g1, g2, g3) = 0 if and only if gi = gj for some i ̸= j.

(2) For any g1, g2, g3, g4 ∈ G, we have

c(g2, g3, g4)− c(g1, g3, g4) + c(g1, g2, g4)− c(g1, g2, g3) = 0.

(3) For any g1, g2, g3, g4 ∈ G, we have

c(g4g1, g4g2, g4g3) = c(g1, g2, g3).

Definition 8.2. Given a finite set F of G, a configuration of F in S1 is an

equivalence class of injections ι : F → S1, where two injections ι and ι′ are said to be

equivalent if there is an orientation preserving homeomorphism h of S1 such that ι′ = hι.

Given a left invariant circular order c of G, the configuration of the set {g1, g2, g3}
of three points is determined by the rule that g1, g2 and g3 are positioned anticlockwise

if c(g1, g2, g3) = 1, and clockwise if c(g1, g2, g3) = −1. By condition (2) of Definition 8.1,

this is well defined. But (2) says more. One can show the following proposition by an

easy induction on the cardinality of F .

Proposition 8.3. Given a left invariant circular order of G, the configuration of

any finite set F in S1 is determined. □

Denote by CO(G) the set of all the left invariant circular orders. It is equipped

with a totally disconnected compact metrizable topology, just as LO(G). An isolated

left invariant circular order is defined using this topology. If c ∈ CO(G) is isolated, then

there is a finite set S of G, called a determining set, such that any left invariant circular

order which gives the same configuration of S as c is c.

Given c ∈ CO(G), we define a dynamical realization ρc : G → Homeo+(S
1) based at

y0 ∈ S1 as follows. Fix an enumeration ofG: G = {gi | i ∈ N} such that g1 = e. Define an

embedding ι : G → S1 inductively as follows. First, set ι(g1) = y0 and ι(g2) = y0+1/2. If

ι is defined on {g1, . . . , gn}, then there is a connected component of S1\{ι(g1), . . . , ι(gn)}
where the point gn+1 should be embedded, by virtue of Proposition 8.3. Define ι(gn+1)

to be the midpoint of that interval. Using the injection ι, we can define the action of G

on S1 just as in the case of left orders. The action is called the dynamical realization of

c based at y0 and denoted by ρc. We shall raise fundamental properties of ρc. The proof

is completely parallel to the case of left orders.

Lemma 8.4. The dynamical realization ρc is tight at the base point y0, i.e. it is

free at y0 and if I is a connected component of S1 \ Cl(ρc(G)y0), then ∂I ⊂ ρc(G)y0.

Lemma 8.5. Two dynamical realizations obtained via different enumerations of G

are mutually conjugate by an orientation and base point preserving homeomorphism of
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S1.

Let M be a minimal set of the dynamical realization ρc of an isolated circular order

c. It is shown by Mann and Rivas [10] that (unlike left orders) M is always a proper

subset of S1. Summarizing with other properties, we get:

Lemma 8.6. If G is not finite cyclic, the minimal set M of the dynamical realiza-

tion ρc of any isolated circular order c ∈ CO(G) is unique. It is either a finite set or a

Cantor set.

Proof. If M is a Cantor set, then a standard argument shows that it is the

unique minimal set. So suppose M is a finite set of cardinality, say n. Then by looking

at the action of G on M, one can define a surjective homomorphism ϕ : G → Z/nZ.
Since G is not finite cyclic, the base point y0 of the dynamical realization ρc must be

contained in a gap, say I1 = (a, b) 6 of M. The stabilizer G1 of I1 is the kernel of ϕ, and

ρc(G)y0 ∩ I1 = ρ(G1)y0. Now if we set x = inf(ρc(G1)y0), then x = a: for, otherwise,

x ∈ ρc(G)y0 by the tightness, contradicting that x is the infimum. Likewise we have

sup(ρc(G1)y0) = b. This shows that all the orbits other than M is infinite and contains

M in its closure, that is, M is the unique minimal set. □

Taking into account the Cantor minimal set case, the similar argument shows the

following.

Lemma 8.7. If G is not finite cyclic and c is isolated, then the base point y0 of the

dynamical realization is contained in a gap I of the minimal set M, the stabilizer GI of

I is nontrivial, and there is no gap of M other than the orbit of I.

Here is an analogue of Corollary 2.4 for circular orders.

Lemma 8.8. Let H be the set of the orientation and base point y0 preserving topo-

logical conjugacy classes of the homomorphisms G → Homeo+(S
1) which are tight at y0.

Then the dynamical realization at y0 induces a bijection of CO(G) onto H.

Definition 8.9. Let c be a circular order of G, isolated or not, and H a nontrivial

subgroup of G. H is said to be c-convex if ρc(H) acts with global fixed points, and

ρc(G)y0∩ IH = ρc(H)y0, where IH denotes the connected component of the complement

of the global fixed point set of ρc(H) containing y0. The configuration of ρc(H)y0 in IH
defines a left order λ on H, which we call the left order on H induced from c. The trivial

subgroup is said to be c-convex.

As shown in [10, Lemma 3.15], there is a unique maximal c-convex subgroup for any

c ∈ CO(G), which we call the linear part of c. By virtue of Lemmas 8.6 and 8.7, we get

the following lemma.

6Given two points a, b ∈ S1, we define (a, b) = {t ∈ S1 | a ≺ t ≺ b}, where ≺ is the anticlockwise

circular order of S1.
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Lemma 8.10. Assume G is not finite cyclic. Let M be the minimal set of the

dynamical realization of an isolated circular order c ∈ CO(G), and I the gap of M which

contains the base point y0. Then the linear part of c coincides with the stabilizer of I.

9. Isolated left orders on B3.

In this section, using a method of [10], we construct countably many isolated left

orders on the braid group B3, which are not the automorphic images of the others. The

group B3 has the following presentations.

B3 = ⟨σ1, σ2 | σ1σ2σ1 = σ2σ1σ2⟩
= ⟨y1, y2 | y2y21y2 = y1⟩
= ⟨a, b | a2 = b3⟩,

where the generators are related by

y1 = σ1σ2, y2 = σ−1
2 , a = y2y

2
1 , b = y1.

The Dubrovina–Dubrovin order λ3 is the unique left order on B3 which satisfies y1 >λ3 e

and y2 >λ3 e, equivalently e <λ3 a <λ3 b. To show the equivalence, assume y1 >λ3 e and

y2 >λ3 e. Then

a = y2y
2
1 >λ3 e, and a−1b = y−2

1 y−1
2 y1 = y−2

1 y−1
2 (y2y

2
1y2) = y2 >λ3 e.

The converse is shown similarly.

Henceforth in this section we denote by G the braid group B3 and by G its quotient

by the center. Namely, we put

G = ⟨a, b, t | a2 = b3 = t⟩, G = ⟨α, β | α2 = β3 = e⟩,

and q : G → G to be the surjective homomorphism satisfying q(a) = α and q(b) = β.

The first half of this section is devoted to show that there is a homeomorphism

between LO(G) and CO(G). Thus the construction of isolated orders in LO(G) reduces

to the construction of isolated orders in CO(G), which is easier, thanks to well developed

theory of Fuchsian groups. The last half is devoted to this construction.

First of all, notice that t is λ-cofinal for any λ ∈ LO(G). In fact, assume, to fix the

idea, that t >λ e. Then a >λ e and b >λ e. Since t is in the center of G, any element

g ∈ G can be written as g = tNai1bj1 · · · airbjr for an integer N and negative integers iν
and jν , showing that g <λ tN . Likewise, there is M ∈ Z such that tM <λ g.

Let τ be the translation of R by 1, and p : R → S1 = R/⟨τ⟩ the canonical projection.
Denote by HomeoZ(R) the group of all the homeomorphisms of R which commute with

τ . It is the universal covering group of Homeo+(S
1). Denote by π : HomeoZ(R) →

Homeo+(S
1) the covering map. Let

LO+(G) = {λ ∈ LO(G) | t >λ e} and LO−(G) = {λ ∈ LO(G) | t <λ e}.

Likewise, let
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CO±(G) = {c ∈ CO(G) | c(e, β, β2) = ±1}.

In order to show that LO±(G) is homeomorphic to CO±(G), it is easier and more natural

to consider the sets of the conjugacy classes of certain homeomorphisms: one is H± with

a bijection to LO±(G) and the other is H±
with a bijection to CO±(G). Next we shall

construct a natural bijection from H± to H±
. Finally, we shall show that the induced

bijection from LO±(G) to CO±(G) is a homeomorphism (Theorem 9.1).

Let H± be the set of the homomorphisms ρ : G → HomeoZ(R) which are tight at a

prescribed base point x0 and satisfy ρ(t) = τ±1, and let H± be the set of the orientation

and base point preserving topological conjugacy classes of the elements of H±. Then we

have H = H+ ∪ H− for H in Corollary 2.4. In fact, for any class [ρ] of H, ρ(t) is fixed

point free since t is cofinal for any left orders. Thus [ρ] has a representative ρ such that

ρ(t) = τ±1.

A dynamical realization at x0 of any element of LO±(G) represents a unique element

of H± (Corollary 2.4). That is, we get a map ϕ : LO±(G) → H±. Clearly ϕ is injective.

To show the surjectivity, let ρ ∈ H±, let λ ∈ LO±(G) be the left order of G defined by

the natural order of the orbit ρ(G)x0, and let ρλ ∈ H± a representative of the conjugacy

class of the dynamical realization of λ. There is an order and the base point preserving

equivariant bijection from ρλ(G)x0 to ρ(G)x0, which can be extended to a homeomor-

phism between the closures, thanks to the tightness. Finally this homeomorphism can

be extended to an equivariant homeomorphism of R. We have completed the proof that

ϕ is a bijection.

Denote by H
±
the set of the homomorphisms ρ : G → Homeo+(S

1) which are tight

at y0 = p(x0) and satisfy rot(ρ(β)) = ±1/3, and let H±
the set of the orientation and

the base point preserving topological conjugacy classes of the elements of H
±
. Then H±

is identified with CO±(G) (Lemma 8.8).

Define a map q∗ : H± → H
±

by (q∗ρ)(g) = π(ρ(g)), where ρ ∈ H±, g ∈ G and

g ∈ G is any element such that q(g) = g. There is a commutative diagram

G
ρ→ HomeoZ(R)

↓ q ↓ π

G
q∗ρ→ Homeo+(S

1).

Define a map π∗ : H
± → H± for ρ ∈ H

±
by

• (π∗ρ)(a) is the lift of ρ(α) to HomeoZ(R) whose square is τ±1, and

• (π∗ρ)(b) is the lift of ρ(β) to HomeoZ(R) whose cube is τ±1.

Also we have a commutative diagram

G
π∗ρ→ HomeoZ(R)

↓ q ↓ π

G
ρ→ Homeo+(S

1).

It is clear that q∗ and π∗ map the conjugacy classes to the conjugacy classes. That is, we

have maps (denoted by the same letters) q∗ : H± → H±
and π∗ : H± → H±. We have
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π∗q∗ = q∗π
∗ = id. Thus we obtain a bijection q∗ : LO(G) → CO(G) and its inverse π∗.

We shall show the following theorem (Theorem 4 in the introduction).

Theorem 9.1. The map q∗ : LO(G) → CO(G) is a homeomorphism.

Proof. Let us show that q∗ is continuous. For any λ ∈ LO(G), let c = q∗(λ) ∈
CO(G). Choose arbitrary elements g1, . . . , gn of G and consider their configuration in

S1 with respect to c. This is the same as the configuration of ρ(g1)y0, . . . , ρ(gn)y0 in S1,

where ρ ∈ H is a dynamical realization of c. Let ρ = π∗(ρ) ∈ H, a dynamical realization

of λ. Choose gi ∈ G such that q(gi) = gi and e ≤λ gi <λ t (1 ≤ i ≤ n). The configuration

of ρ(g1)x0, . . . , ρ(gn)x0 in R coincides with the configuration of g1, . . . , gn with respect to

λ. Choose any λ′ ∈ LO(G) whose configuration of e, g1, . . . , gn, t is the same as λ. Then

the configuration of g1, . . . , gn of q∗(λ
′) is the same as c, showing the continuity of q∗.

Thus the compact metrizable sets LO(G) and CO(G) are homeomorphic by q∗. □

By virtue of the previous theorem, Theorem 3 in the introduction reduces to the

following theorem. This is because any automorphism ofG, preserving the center, induces

an automorphism of G.

Theorem 9.2. There are isolated circular orders c(k) ∈ CO(G), (k > 0, k ≡
±1mod 6) which are not the automorphic images of the others.

The rest of this section is devoted to the proof of this theorem. Our argument is based

upon Fuchsian representations. The Lie group PSL(2,R) is the group of the orientation

preserving isometries of the Poincaré upper half plane H = {z ∈ C | Im(z) > 0}, acting by
linear fractional transformations. We consider H to be an open half disk in the Riemann

sphere Ĉ = C ∪ {∞}. Then PSL(2,R) acts on Ĉ by linear fractional transformations

and leaves invariant the oriented boundary ∂H, which we identify with S1. This gives

an inclusion PSL(2,R) ⊂ Homeo+(S
1). Denote by H the closure of H in Ĉ.

Let Γ be a nonamenable countable group. A representation ρ : Γ → PSL(2,R)
is called Fuchsian if it is faithful and the image ρ(Γ) is discrete in PSL(2,R). For a

Fuchsian representation ρ, its limit set Lρ ⊂ ∂H ≈ S1 is, by definition, the set of the

accumulation points of an orbit ρ(Γ)z0 (z0 ∈ H). It does not depend on the choice of z0.

It is also characterized as the unique minimal set of the representation Γ
ρ→ PSL(2,R) ⊂

Homeo+(S
1). It is either the whole S1 or a Cantor set (by the nonamenability of Γ). In

the former case, ρ is called of the first kind, and in the latter of the second kind.

Let us return to our group G. There is an isomorphism ι : G ∼= PSL(2,Z) which

satisfies

ι(α) =

[
0−1

1 0

]
, ι(β) =

[
1 1

−1 0

]
.

Let us define a homomorphism ρM : G → PSL(2,R), called the modular represen-

tation, as the composite

G
ι∼= PSL(2,Z) ⊂ PSL(2,R).
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For the dynamics of the modular representation ρM , see Figure 2. The open disk bounded

by the circle is the image of H by the stereographic projection from −i. The element

∞

−1 ω i

ρM (αβ)

ρM (α)

ρM (β)

0

Figure 2.

ρM (α) is the 1/2-rotation around i, and ρM (β) the 1/3-rotation around ω = (−1 +√
−3)/2. The element ρM (αβ) is a parabolic transformation which fixes the point 0 and

moves points on S1\{0} clockwise, as is depicted in Figure 2. The Fuchsian group ρM (G)

is of the first kind.

Let us define another Fuchsian representation ρ : G → PSL(2,R), a deformation of

ρM . Choose a point ω′ on the geodesic which passes through i and ω, but slightly farther

than ω from i: d(ω′, i) > d(ω, i). See Figure 3. We set ρ(α) to be the same as ρM (α),

the 1/2-rotation around i, and ρ(β) the 1/3-rotation around ω′. We put the base point

y0 = 0.

Consider the 4-gon P depicted in Figure 3, a closed subset of H. It is routine to

show, using hyperbolic metric of H, that the translates of P ∩ H tesselate H, that is,∪
γ∈G ρ(γ)(P ∩ H) = H and ρ(γ)(IntP ) ∩ IntP = ∅ if γ ̸= e. This shows that ρ is a

Fuchsian representation. Moreover it is of the second kind since the tesselation implies

that Lρ∩P = ∅. But we need a bit more: we shall show that the translates of P tesselate

the whole H \ Lρ, that is,
∪

γ∈G ρ(γ)P = H \ Lρ.

Endow the half disk H with the restriction of the spherical metric of the Riemann

sphere C ∪ {∞}. Then for any g ∈ PSL(2,R) and any z ∈ H, the absolute value of the

derivative |g′(z)| is well defined. Given g ∈ PSL(2,R) \ PSO(2), define I(g) = {z ∈ H |
|g′(z)| ≥ 1}. It is a subset of H delimited by a circle perpendicular to ∂H, whose radius

is denoted by rad(I(g)). It satisfies the following properties: (1) gI(g) = H \ I(g−1). (2)

g is hyperbolic if and only if7 I(g)∩ I(g−1) = ∅. (3) gn → ∞ in PSL(2,R) if and only if

rad(I(gn)) → 0.

Returning to our representation ρ : G → PSL(2,R), there is a purely hyperbolic

subgroup of ρ(G) of index 6, as is shown later. On the other hand, the limit set does not

7To show “only if part”, let ℓ be the axis of a hyperbolic element g. Let m be the midpoint of ℓ and

let p, q ∈ ℓ be points such that d(p,m) = d(q,m) and g(p) = q. Then I(g) (resp. I(g−1)) is bounded by
a circle crossing ℓ perpendicularly at p (resp. q). Thus I(g) ∩ I(g−1) = ∅.
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change if we pass to a finite index subgroup. Thus we get:

For a point x ∈ ∂H, x ∈ Lρ if and only if ρ(γn)z0 → x for some hyperbolic elements

ρ(γn), where z0 is any prescribed point in H.

Now if ρ(γ) is hyperbolic, then I(ρ(γ)), as well as I(ρ(γ)−1), contains a fixed point

of ρ(γ). In particular, I(ρ(γ)) ∩ Lρ ̸= ∅ and I(ρ(γ)−1) ∩ Lρ ̸= ∅. Moreover if ρ(γ) is

sufficiently far away from the identity, then I(ρ(γ))∩P = ∅ because rad(I(ρ(γ))) is small

and P ∩ Lρ = ∅. Therefore the translate ρ(γ)P is contained in I(ρ(γ)−1) and has small

diameter. This is true not only for elements of a subgroup of index 6, but also for any

element of ρ(G): if γn → ∞ in the word norm, then diam(ρ(γn)P ) → 0. This yields yet

another characterization of the limit set.

For x ∈ ∂H, x ∈ Lρ if and only if any neighbourhood of x in H intersects infinitely

many translates of P .

Finally, this, together with the fact that the translates of P ∩H tesselate H, implies

that the translates of P tesselate H \ Lρ. This is what we wanted to show.

Henceforth we denote the composite

G
ρ→ PSL(2,R) ⊂ Homeo+(S

1)

also by ρ, and the unique minimal set Lρ of the homomorphism ρ by M. The translates

of the interval P |S1 tesselate S1 \M, where P |S1 is the component of P ∩ S1 which is

homeomorphic to a closed interval. Let y0 be a point in S1 which corresponds to 0 ∈ ∂H
and is depicted by e in Figure 3. Since y0 ∈ P , it lies in a gap of M, say I1 = (σ−, σ+).

The element αβ ∈ G sends y0 to a point slightly right to itself (e to αβ in Figure 3). As

can be seen by Figure 3, the iterates of ρ(α)P |S1 by ρ(αβ)n, n ∈ Z, tesselate an open

interval of S1 \M. Therefore ρ(αβ)ny0 lie in I1. We also have limn→±∞ ρ(αβ)ny0 = σ±,

since the limits, being fixed points of ρ(αβ), must be contained in M = Lρ. Thus αβ

generates the stabilizer of I1. Since ρ is a slight perturbation of ρM , we can assume that

σ± are very near to e (in Figure 3).

Since the translates of P |S1 tesselate S1 \ M, there are no gaps of M other than

the translates of I1. In particular, any gap of Cl(ρ(G)y0) is a gap of ρ(G)y0. This,

together with the freeness of the action ρ at y0, shows that ρ acts tightly at y0. Thus ρ

is topologically conjugate to a dynamical realization of a circular order c ∈ CO(G). The

linear part of c is the subgroup ⟨αβ⟩ by Lemma 8.10.

Let us show first of all that c is isolated. In [10, Proposition 3.3], the authors showed

that the dynamical realization is continuous. More precisely, they showed the following.

Proposition 9.3. Given any neighbourhood U of ρ in Hom(G,Homeo+(S
1)),

there is a neighbourhood V of c in CO(G) such that any element in V has a conjugate

of its dynamical realization contained in U .

In Figure 3, six translates of P are depicted. Let Q be their union:

Q = P ∪ βP ∪ β2P ∪ αP ∪ αβP ∪ αβ2P.

The convex set Q∩H has four sides. Let γ1 = β2αβα and γ2 = αβαβ2. Then ρ(γi) maps
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P

σ−

β2α

σ+

αβα

αβ2
i

ω′

αβ

β2 αP

αβPβ2P

e αβ

βα

αβ2α

ρ(αβ)

ρ(αβ)

Figure 3. e indicates the base point y0 = 0 and g indicates the point ρ(g)y0.

P is a fundamental domain of ρ(G).

a side of Q ∩ H onto its opposite side, as indicated in Figure 4. By the Klein criterion

(also known as the ping-pong lemma), γ1 and γ2 are free generators of a free subgroup H

of G. Moreover, for any nontrivial element γ of H, ρ(γ) is a hyperbolic transformation.

The subgroup H coincides with the commutator subgroup [G,G]. To show this, notice

that γi are commutators and thus H ⊂ [G,G]. On the other hand, H is an index 6

subgroup of G, since the fundamental domain Q of ρ(H) consists of 6 iterates of P , and

[G,G] is also of index 6, since the abelianization of G is Z/6Z.
Below we indicate the point ρ(g)y0 simply by g, as we already did in the figures.

Let us define four intervals of S1:

K−
1 = [αβ2, αβ2α], K+

1 = [β2, β2α], K−
2 = [β, βα], K+

2 = [αβ, αβα].

Then ρ(γ1)(S
1 \K−

1 ) = Int(K+
1 ) and ρ(γ2)(S

1 \K−
2 ) = Int(K+

2 ). Define open intervals

J−
1 , J+

1 , J−
2 and J+

2 , slightly bigger than K−
1 , K+

1 , K−
2 and K+

2 . See Figure 4. (J±
i

and K±
i are actually intervals of S1.) Recall the interval I1, the gap of M containing

y0, and let I2 = ρ(αβ2)I1, I3 = ρ(α)I1 and I4 = ρ(βα)I1 (Figure 4). They are gaps of

the minimal set M and the orbit ρ(G)y0 is discrete in each of them. Since the stabilizer

of I1 is generated by αβ, the three points in I1, β
2α, e and αβ are consecutive points

of ρ(G)y0 contained in I1. Their images by ρ(α), αβ2α, α and β are consecutive points

of ρ(G)y0 contained in I3. Likewise αβα and αβ2 are consecutive in I2, and βα and β2

are consecutive in I4. One chooses J+
2 so that the point αβ (resp. αβα) is the leftmost

(resp. rightmost) point of ρ(G)y0 ∩ J+
2 . More generally, the intervals J±

i are so chosen

that points of ∂K±
i are extremal in ρ(G)y0 ∩ J±

i . These points are called the guardians

of the interval with respect to ρ. Notice that there are just two points of ρ(G)y0 outside
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ρ(γ1)ρ(γ2)

β α

αβ2

αβα

αβ
e

β2

βα

σ−
σ+

β2α

αβ2α

J−
1J−

2

J+
2J+

1

I1

I2

I3

I4

Figure 4. ρ(γ1) = ρ(β2αβα) maps αβ2α to β2 and αβ2 to β2α.

ρ(γ2) = ρ(αβαβ2) maps β to αβα and βα to αβ.

of
∪

i,± J±
i , namely y0 and ρ(α)y0 (denoted by e and α in Figure 4).

Define a neighbourhood U of ρ in Hom(G,Homeo+(S
1)) such that each element

ρ′ ∈ U satisfies the following conditions.

(1) ρ′(γi) maps the closed set S1 \ J−
i into the open set J+

i (i = 1, 2).

(2) The configuration of ρ′(g)y0 in S1 for ten elements

g = e, αβ, αβα, αβ2, αβ2α, α, β, βα, β2, β2α (9.1)

is the same as for ρ (Figure 4), as well as their configuration with respect to the four

intervals J±
i .

Take a neighbourhood V of c as in Proposition 9.3, and for any c′ ∈ V , let ρ′ be a

conjugate of a dynamical realization of c′ which is contained in U . Then by the ping-pong

argument, the circular order of the orbit ρ′(G)y0 is uniquely determined. Let us show this

a bit in detail. Call ten points ρ′(g)y0 (g as in (9.1)) of the first generation. The images

of points of the first generation by γ±1
i which are not themselves of first generation are

called of the second generation. Then the configuration of the points of first and second

generations are uniquely determined. In fact, the guardians ρ′(αβ2)y0 and ρ′(αβ2α)y0
of the interval J−

1 are mapped by ρ′(γ1) to the guardians ρ′(β2α)y0 and ρ′(β2)y0 of J+
1 ,

and all the other eight points are mapped into the interval in J+
1 bounded by the latter

guardians. The same is true for γ−1
1 and γ±1

2 . Since γ±1
i are orientation preserving, the

configuration of the points of the first and second generation is uniquely determined.

Next we define points of third generation in a similar way. These points are contained

in
∪

i,± J±
i . For example, those contained in J+

1 are the images of the points of second
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generation in S1 \ J−
1 by ρ′(γ1). The configuration of these points, together with the

points of first and second generations, is uniquely determined. On the other hand, any

point in ρ′(G)y0 is a point of some generation. This is because the ten elements of (9.1)

exhaust the set of right cosets [G,G] \ G, and the elements γ1 and γ2 generate [G,G].

Therefore continuing this way, we see that the natural circular order of the whole orbit

ρ′(G)y0 is uniquely determined, that is, the same as ρ(G)y0. This shows that c
′ = c, i.e.

c is isolated. Define c(1) in Theorem 9.2 to be this c.

For k > 1, denote by pk : S1 → S1 the k-fold covering map. A representation

ρ(k) : G → Homeo+(S
1) is called a k-fold lift of ρ if pkρ

(k)(g) = ρ(g)pk holds for any

g ∈ G. There is a k-fold lift ρ(k) of our representation ρ if and only if k ≡ ±1 mod 6,

and it is unique if it exists. Computation shows that if k = 6ℓ± 1, then

rot(ρ(k)(αβ)) = ∓ℓ/k. (9.2)

Notice that (k, ℓ) = 1. We fix such k.

Let yµ0 , 1 ≤ µ ≤ k, be the lifts of the point y0 by pk. The natural circular order

of the orbit ρ(k)(G)yµ0 in S1 is the same for any µ. Denote it by c(k) ∈ CO(G). It is

easy to show that ρ(k) is tight at yµ0 . Thus ρ
(k) is topologically conjugate to a dynamical

realization of c(k) at yµ0 by an orientation and base point preserving homeomorphism.

Let us show that c(k) is isolated. Let J±
i,µ (µ = 1, . . . , k) be the connected components of

p−1
k (J±

i ).

Define a neighbourhood U (k) of ρ(k) such that each element ρ′ ∈ U (k) satisfies the

following conditions.

(1) ρ′(γi) maps each component of S1 \
∪

µ J
−
i,µ into J+

i,ν (i = 1, 2), where ν is determined

so that ρ(k)(γi) maps the same component into J+
i,ν .

(2) The configuration of 10k points ρ′(g)yµ0 in S1 (g as in (9.1) and 1 ≤ µ ≤ k) is the

same as ρ(k). Their configuration relative to J±
i,µ is also the same.

Then the same ping-pong argument as before shows that the natural circular order

of ρ′(G)(p−1
k (y0)) for ρ

′ ∈ U (k) is uniquely determined. In particular, the natural circular

order of ρ′(G)yµ0 is the same as for ρ(k), showing that c(k) is isolated.

Finally let us show that c(k)’s are not the automorphic images of the others, by

considering their linear parts. In G = PSL(2,Z), any element of infinite order is a

multiple of a unique primitive element. This can be shown by considering the modular

representation ρM : the fixed point set of any element of infinite order is either one point

of ∂H or a two point set of ∂H, and the isotropy group of the fixed point set is infinite

cyclic.

As we have seen above, the linear part of c(1) is generated by a primitive element

(αβ)±1. The equality (9.2) shows that the linear part of c(k) is generated by (αβ)±k.

For different choices of k and k′, there is no automorphism of G which maps (αβ)±k

to (αβ)±k′
. In fact, any automorphism of G maps a primitive element to a primitive

element, and thus it should map (αβ)±k to a k-multiple of a primitive element. This

finishes the proof of Theorem 9.2. □

Remark 9.4. The left order λ = π∗c(1) ∈ LO(G) is the Dubrovina–Dubrovin

order, since it satisfies e <λ a <λ b. It can be shown that λ′ = π∗c(5) is the unique left
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order which satisfies

(ab)5t−4 <λ′ e <λ′ a <λ′ (ab)5t−4a.
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