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Abstract. In this paper, we study restricted modules over a class of

(1/2)Z-graded Lie algebras g related to the Virasoro algebra. We in fact give
the classification of certain irreducible restricted g-modules in the sense of de-
termining each irreducible restricted module up to an irreducible module over
a subalgebra of g which contains its positive part. Several characterizations

of these irreducible g-modules are given. By the correspondence between re-
stricted modules over g and modules over the vertex algebra associated to g,
we get the classification of certain irreducible modules over vertex algebras

associated to these g.

1. Introduction.

For a vertex operator algebra V , there are three kinds of modules, i.e., weak, admissi-

ble and ordinary V -modules, and the notion of weak modules for vertex operator algebras

just corresponds to the notion of modules for vertex algebras. One of the fundamental

tasks in the representation theory of vertex operator algebras is to classify all irreducible

admissible and ordinary modules. But it is also interesting to classify irreducible mod-

ules for vertex algebras. In fact, it is even challenging to do such classification for vertex

operator algebras which are not rational or C2-cofinite (see [10]). A rough classification

of irreducible modules for vertex algebras related to the Virasoro algebra is obtained in

this paper. This is not achieved directly in the theory of vertex algebras, but with the

help of the theory of Lie algebras. The strategy we used is to view these modules as

modules over Lie algebras.

We call a Lie algebra g G-graded if g =
⊕

g∈G gg and [gg, gh] ⊆ gg+h for any g, h ∈ G,

where G is an abelian group. And we call a g-module M G-graded if M =
⊕

g∈G Mg

and ggMh ⊆ Mg+h for any g, h ∈ G. Among infinite dimensional Z-graded Lie algebras,

the most important one is the Virasoro algebra V, which has a basis {Ln, C | n ∈ Z}
subject to the following bracket relations

[C,Lm] = 0, [Lm, Ln] = (n−m)Lm+n +
m3 −m

12
δm+n,0C, ∀m,n ∈ Z.

Recently, certain irreducible modules over the Virasoro, Heisenberg–Virasoro and

Schrödinger–Virasoro algebra, W -algebra W (2, 2) were respectively classified in [7], [1]

and [2], whose constructions are slight generalizations of highest weight modules. In the
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present paper, we consider a class of (1/2)Z-graded Lie algebras g which includes all these

algebras except for the Virasoro algebra (see Remark 3.3). It is easily observed from [7,

Theorem 2] that some of the irreducible V-modules studied there, are in fact irreducible

restricted V-modules. g-modules of this kind are studied in this paper. To be more pre-

cise, we determine each irreducible restricted g-module up to an irreducible module over

a subalgebra which contains the positive part of g (see Theorem 2.2 and Proposition 3.2);

and we give several characterizations of these modules (see Theorem 3.1). Finally, we

prove that these modules also exhaust (inequivalent) irreducible modules over the ver-

tex algebra associated to g (see Theorem 3.5). Indeed, this is our motivation to study

restricted g-modules.

The organization of this paper is as follows. In Section 2, we first give an explicit

form of Lie algebras under investigation. Then similar as the construction of Verma

modules we construct the induced module Ind(M), the main object of this paper. The

main result of this section is to show the irreducibility of Ind(M) under certain conditions.

Several characterizations of these irreducible g-modules Ind(M) are given in Section 3.

This result can also be viewed as the classification of certain irreducible g-modules. Using

this classification and the known relation between restricted g-modules and modules over

the vertex algebra Vg associated to g we classify certain irreducible modules over Vg.

Throughout this paper, we denote by C, Z, N, Z+ the sets of complex numbers,

integers, positive integers, and nonnegative integers, respectively, and denote by U(L)

the universal enveloping algebra of a Lie algebra L. And all vector spaces are assumed

to be over C.

2. Preliminary and Irreducibility.

To be more precise, we study Lie algebras g = V 0 + V 1 + V 2 + · · · + V n (n ∈ N)
with V 0 = V satisfying the following conditions

(1) each V i is a (nonzero) Z or (1/2)+Z-graded V-module such that dim(V i)l ≤ 1 for

all 0 ̸= l ∈ (1/2)Z and dim(V i)0 < ∞, and [V i, V j ] = 0 for any 1 ≤ i ̸= j ≤ n;

(2) g is (1/2)Z-graded: g =
⊕

l∈(1/2)Z gl with gl =
∑n

i=0(V
i)l for all l ∈ (1/2)Z;

(3) there exists ρ ∈ {1, . . . , n} for which V ρ is Z-graded, [V ρ, V ρ] = 0, [(V 0)l+q, (V
ρ)−q]

̸= 0 and [(V ρ)l+q, (V
0)−q] ̸= 0 for any l ∈ Z+, q ∈ N;

(4) [(V i)l+q, (V
i)−q] ⊆ (V ρ)l for any 1 ≤ i ≤ n, q ∈ (1/2)Z, l ∈ Z and

[(V i)l+q, (V
i)−q] ̸= 0 for any 1 ≤ i ̸= ρ ≤ n, l ∈ Z+, q ∈ (1/2)N such that

(V i)−q ̸= 0.

Remark 2.1. Without loss of generality, we may assume ρ = n from now on. As

a consequence of the conditions (1) and (3) we have 0 ̸= [(V 0)l+q, (V
n)−q] ⊆ (V n)l for

any l ∈ Z+, q ∈ N. In particular, (V n)l ̸= 0 for any l ∈ Z+.

To avoid any ambiguity, we write g as g(n) if necessary. Here we give some examples

of infinite dimensional Lie algebras satisfying the above conditions:

• g(1) = Vir(a, b) =
⊕

i∈Z(CLi ⊕ CIi) ⊕ CC1 ⊕
∑

i∈Z CC2,i (cf. [3]), the universal

central extension of W(a, b) (see [4]) except for the case (a, b) ̸= (0, 1), which

satisfies the following (nontrivial) relations:
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[Li, Lj ] = (j − i)Li+j + δi+j,0
i3 − i

12
C1,

[Li, Ij ] = (a+ j + bi)Ii+j + δi+j,0C2,i,

where {Li, Ii, Ck | i ∈ Z, k = 1, 2} is linearly independent, a, b ∈ C such that

±a+ l /∈ bN for any l ∈ N and

C2,i =



(i2 + i)C2 if (a, b) = (0, 0),

i3 − i

12
C2 if (a, b) = (0,−1),

iC2 if (a, b) = (0, 1),

0 otherwise.

• g(1) = the W -algebra W (2, 2) (see [9]) which has a basis {Li, Ii, C | n ∈ Z} subject

to the following (nontrivial) relations:

[Li, Lj ] = (j − i)Li+j +
i3 − i

12
δi+j,0C,

[Li, Ij ] = (j − i)Ii+j +
i3 − i

12
δi+j,0C.

• g(2) = the deformative Schrödinger–Virasoro algebra (see [8]) which has a basis

{Li, Ii, Yi+s, C | i ∈ Z, s = 0 or 1/2} subject to the following (nontrivial) relations:

[Li, Lj ] = (j − i)Li+j +
i3 − i

12
δi+j,0C,

[Li, Ij ] = (j − λi+ 2µ)Ii+j ,

[Li, Yj+s] =

(
j + s− λ+ 1

2
i+ µ

)
Yi+j+s,

[Yi+s, Yj+s] = (j − i)Ii+j+2s,

where λ, µ ∈ C such that ±2µ− l /∈ λN for any l ∈ N.
• g(n)(n ≥ 2) = a Lie algebra with basis {Li, Ii, Y

(j)
i+s, C | i ∈ Z, 1 ≤ j ≤ n − 1, s =

0 or 1/2} subject to the same nontrivial relations as the deformative Schrödinger–

Virasoro algebra with Yi+s replaced by Y
(j)
i+s for all j.

Let M be a module over a Lie algebra L and X be a subspace of L. For any v ∈ M

and n ∈ Z+, denote Xnv = span{x1x2 . . . xnv | xi ∈ X for i = 1, 2, . . . , n}. The action

of X on M is called locally nilpotent if for any v ∈ M there exists n ∈ Z+ such that

Xnv = 0 and locally finite if dim(
∑

n∈Z+
CXnv) < +∞ for any v ∈ M . A g-module M

is called restricted if for any v ∈ M there exists n ∈ (1/2)Z+ such that gmv = 0 for all

m ≥ n.

Before presenting our results, we first need to do some preparations. Let M be the

set of elements of form i = (. . . , i2, i1) with each ik ∈ Z+ such that
∑

k≥1 ik < ∞. Let

ϵi denote the element of M such that the i-th entry from the right is 1 and all the other

entries being zero and 0 denote the element of M with all its entries being zero. For

any i ∈ M, write w(i) =
∑

k≥1 kik. For any 0 ̸= i ∈ M, let p and q be the maximal
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and minimal integers such that ip ̸= 0 and iq ̸= 0 respectively, and set i′ = i − ϵp and

i′′ = i− ϵq.

For any i, j ∈ M, define

j > i ⇐⇒ there exists 1 ≤ r ∈ Z+ such that jr > ir and js = is for all s > r

and

j ≻ i ⇐⇒ there exists 1 ≤ r ∈ Z+ such that jr > ir and js = is for all 1 ≤ s < r.

And define a total order “≻ ” on M× · · · ×M︸ ︷︷ ︸
n+1

by decreeing

(i(n), i(n−1), . . . , i(0)) ≻ (j(n), j(n−1), . . . , j(0)) ⇐⇒

∃1 ≤ r ≤ n− 1 such that j(k) = i(k) for 0 ≤ k ≤ r − 1 and
(
i(r),w(i(r))

)
≻

(
j(r),w(j(r))

)
or (i(n−1), . . . , i(0)) = (j(n−1), . . . , j(0)) and i(n) > j(n).

Set

S =
{
d = (d0, d1, . . . , dn) ∈ Zn+1

+ | d0 = 0, dn ≥ 2di for 1 ≤ i ≤ n− 1
}
,

gd =
∑

i∈(1/2)Z+

(
(V 0)i−d0 ⊕ (V 1)i−d1 ⊕ · · · ⊕ (V n)i−dn

)
and

g+∞ =
∑

i∈Z+

(V 0)i + V 1 + · · ·+ V n.

It is easy to check that for any d ∈ S ∪ {+∞}, gd is a subalgebra of g by using the

assumptions on g. Let L be a Lie algebra, a a subalgebra of L, M an a-module and Y a

subset of a. Set AnnM (Y ) = {v ∈ M | yv = 0 for y ∈ Y } and form the induced module

IndLa (M) := U(L)
⊗

U(a) M , which is simply written as Ind(M) if the context is clear.

For any vector space V , define

δV,0 =

{
1 if V = 0,

0 if V ̸= 0.

For a gd-module M, it is hard to give a sufficient and necessary condition for Ind(M) to

be irreducible. The following result provides a sufficient condition.

Theorem 2.2. Let d ∈ S ∪ {+∞} and M be an irreducible gd-module for which

there exists k ∈ Z+ such that

(1) AnnM (V n)k = 0 if k ̸= 0;
∑

q∈Z(1−δ[(V 0)−q,(V n)q],0)AnnM [(V 0)−q, (V
n)q] = 0 and∑

1≤i≤n−1

∑
q∈(1/2)Z+

(1− δ[(V i)−q,(V i)q ],0)AnnM [(V i)−q, (V
i)q] = 0 if k = 0;

(2) (V 0)k+dn+pM = (V n)k+pM = (V i)k+di+pM = 0 for all 1 ≤ i ≤ n − 1 and

p ∈ (1/2)N.
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Then

(i) Ind(M) is an irreducible g-module ;

(ii) the actions of (V 0)k+dn+p, (V
n)k+p and (V i)k+di+p on Ind(M) for all 1 ≤ i ≤ n−1

and p ∈ (1/2)N are locally nilpotent.

We denote by u
(i)
k a basis of nonzero (V i)k with u

(0)
k = Lk for 0 ̸= k ∈ (1/2)Z and

i ∈ {0, 1, . . . , n}. Note that for any i, the set consisting of all indexes k ≤ −(1/2) − di
such that (V i)k ̸= 0 is denumerable, say, · · · < −I

(i)
2 < −I

(i)
1 ≤ −(1/2) − di. Set

U j
i = · · · (u(i)

−I
(i)
2

)j2(u
(i)

−I
(i)
1

)j1 for any j = (. . . , j2, j1) ∈ M. Take 0 ̸= u ∈ Ind(M). Then u

can be (uniquely) written as the following form∑
j(n),..., j(0)∈M

U j(n)

n · · ·U j(1)

1 U j(0)

0 uj(n),..., j(0) (finite sum), (2.1)

where all (j(n), . . . , j(0)) ∈ M and uj(n),..., j(0) ∈ M . Set

supp(u) =
{(

j(n), . . . , j(0)
)
∈ M×M · · · ×M | uj(n),..., j(0) ̸= 0

}
.

Let m(u) := (k(n), . . . ,k(0)) be the maximum in supp(u) with respect to the total order

≻ on M× · · · ×M︸ ︷︷ ︸
n+1

.

Lemma 2.3. Let M be a gd-module satisfying the conditions in Theorem 2.2. For

any u ∈ Ind(M) \M , let (k(n), . . . ,k(0)) be its maximum in supp(u) and r minimal such

that k(r) ̸= 0. Set î = max{s | k(r)s ̸= 0} and ĵ = min{s | k(r)s ̸= 0}.

(a) If r = 0, then m(u
(n)

I
(0)

ĵ
+k

u) =
(
k(n), . . . ,k(1), (k(0))′′

)
.

(b) If 0 < r < n, then m(u
(r)

I
(r)

ĵ
+k

u) =
(
k(n), . . . ,k(r+1), (k(r))′′,0, . . . ,0

)
.

(c) If r = n, then m(L
I
(n)

î
+k

u) =
(
(k(n))′,0, . . . ,0

)
.

Proof. The idea of this proof comes essentially from [7], [1] (see also [2]). Let k

be the nonnegative integer satisfying conditions (1) and (2) in Theorem 2.2. Assume u

has the form (2.1).

(a) Note by the condition (2) in Theorem 2.2 that u
(n)

I
(0)

ĵ
+k

v = 0 for any v ∈ M . It

follows this and the conditions [V n, V n] = [V i, V j ] = 0, ∀1 ≤ i ̸= j ≤ n that

u
(n)

I
(0)

ĵ
+k

Uk(n)

n · · ·Uk(0)

0 uk(n),...,k(0)

= Uk(n)

n · · ·Uk(1)

1

[
u
(n)

I
(0)

ĵ
+k

, u
(0)

−I
(0)

î

]
U

(k(0))′

0 uk(n),...,k(0) + · · ·

+ Uk(n)

n · · ·Uk(1)

1 U
(k(0))′′

0

[
u
(n)

I
(0)

ĵ
+k

, u
(0)

−I
(0)

ĵ

]
uk(n),...,k(0) . (2.2)
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Note that by the condition (3) on g we see that 0 ̸= [u
(n)

I
(0)

ĵ
+k

, u
(0)

−I
(0)

ĵ

] ∈ (V n)k.

Then by the assumption on k, AnnM [u
(n)

I
(0)

ĵ
+k

, u
(0)

−I
(0)

ĵ

] = 0. Thus in particular,

[u
(n)

I
(0)

ĵ
+k

, u
(0)

−I
(0)

ĵ

]uk(n),...,k(0) ̸= 0 and therefore

(
k(n), . . . ,k(1), (k(0))′′

)
= m

(
u
(n)

I
(0)

ĵ
+k

Uk(n)

n · · ·Uk(0)

0 uk(n),...,k(0)

)
.

Denote

(j
(n)
1 , . . . , j

(0)
1 ) = m

(
u
(n)

I
(0)

ĵ
+k

U j(n)

n · · ·U j(0)

0 uj(n),..., j(0)

)
for (j(n), . . . , j(0)) ∈ supp(u).

Case 1. j(0) = k(0).

Note that in this case,

(j
(n)
1 , . . . , j

(1)
1 , j

(0)
1 ) =

(
j(n), . . . , j(1), (k(0))′′

)
⪯

(
k(n), . . . ,k(1), (k(0))′′

)
and the equality holds if and only if j(l) = k(l) for all l = 1, 2, . . . , n, by a similar formula

(2.2) for (j(n), . . . , j(1), j(0)) and the fact that (j(n), . . . , j(1), j(0)) ⪯ (k(n), . . . ,k(1),k(0)).

Case 2. j(0) ̸= k(0).

In this case we have (j(0),w(j(0))) ≺ (k(0),w(k(0))). Then either w(j(0)) < w(k(0))

or w(j(0)) = w(k(0)) and j(0) ≺ k(0). If w(j(0)) < w(k(0)), then w(j
(0)
1 ) ≤ w(j(0))− ĵ <

w(k(0))− ĵ = w(k(0))′′ and therefore (j
(n)
1 , . . . , j

(0)
1 ) ⪯ (k(n), . . . ,k(1), (k(0))′′).

Assume that w(j(0)) = w(k(0)) and j(0) ≺ k(0). Let s = min{s ∈ N | j(0)s ̸= 0}.
Since j(0) ≺ k(0), s ≥ ĵ. If s > ĵ, then w(j

(0)
1 ) ≤ w(j(0))−s < w(j(0))− ĵ = w(k(0))− ĵ =

w(k(0))′′ and therefore (j
(n)
1 , . . . , j

(0)
1 ) ⪯ (k(n), . . . ,k(1), (k(0))′′). If s = ĵ, then

(j
(n)
1 , . . . , j

(0)
1 ) = m

(
u
(n)

I
(0)

ĵ
+k

U j(n)

n · · ·U j(0)

0 uj(n),..., j(0)

)
= m

(
u
(n)

I
(0)
s +k

U j(n)

n · · ·U j(0)

0 uj(n),..., j(0)

)
=

(
j(n), . . . , j(1), (j(0))′′

)
≺

(
j(n), . . . , j(1), (k(0))′′

)
⪯

(
k(n), . . . ,k(1), (k(0))′′

)
.

So in either case, we obtain (j
(n)
1 , . . . , j

(0)
1 ) ⪯ (k(n), . . . ,k(1), (k(0))′′) and the equality

holds only when (j(n), . . . , j(0)) = (k(n), . . . ,k(0)), proving (a).

(b) follows similar arguments as for (a). Here we need to point out that u
(r)

I
(r)

ĵ
+k

̸= 0.

Note by the condition (4) on g that [(V r)
I
(r)

ĵ
+k

, (V r)−I
(r)

ĵ

] ̸= 0, since (V r)−I
(r)

ĵ

̸= 0. This,

in particular, implies (V r)
I
(r)

ĵ
+k

̸= 0. Then as a basis element of (V r)
I
(r)

ĵ
+k

, u
(r)

I
(r)

ĵ
+k

̸= 0.

(c) For any (j(n),0, . . . ,0) ∈ supp(u), we have

L
I
(n)

î
+k

U j(n)

n uj(n),0,...,0
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= L
I
(n)

î
+k

(
· · · (u(n)

−I
(n)
2

)j
(n)
2 (u

(n)

−I
(n)
1

)j
(n)
1 uj(n),0,...,0

)
(by the condition [V n, V n] = 0)

= j
(n)

î
U

j(n)−ϵî
n

[
L
I
(n)

î
+k

, u
(n)

−I
(n)

î

]
uj(n),0,...,0 +

∑
l<î

j
(n)
l U j(n)−ϵl

n

[
L
I
(n)

î
+k

, u
(n)

−I
(n)
l

]
uj(n),0,...,0

= j
(n)

î
U (j(n))′

n

[
L
I
(n)

î
+k

, u
(n)

−I
(n)

î

]
uj(n),0,...,0 (since

[
L
I
(n)

î
+k

, u
(n)

−I
(n)
l

]
uj(n),0,...,0 = 0)

and [L
I
(n)

î
+k

, u
(n)

−I
(n)

î

]uj(n),0,...,0 ̸= 0. That is,

supp
(
L
I
(n)

î
+k

U j(n)

n uj(n),0,...,0

)
=

{{(
(j(n))′,0, . . . ,0

)}
if j

(n)

î
̸= 0,{

(0, . . . ,0,0)
}

if j
(n)

î
= 0.

Then it is easy to see that m(L
I
(n)

î
+k

u) =
(
(k(n))′,0, . . . ,0

)
. □

Proof of Theorem 2.2. Let W be any nonzero g-submodule of Ind(M). Take

0 ̸= u ∈ W such that m(u) is minimal among m(u′) for all 0 ̸= u′ ∈ W . If m(u) ̸=
(0, . . . ,0), then by the lemma above there exists 0 ̸= w ∈ W such that m(w) ≺ m(u),

contradicting the choice of u. Thus, m(u) = (0, . . . ,0) and therefore u ∈ M . Now the

irreducibility of Ind(M) follows from that of M . □

Remark 2.4. Let d and M be as in Theorem 2.2 except that M may not be

irreducible. Then

M =

{
u ∈ Ind(M)

∣∣∣∣ (V 0)k+dn+pu = (V n)k+pu = (V i)k+di+pu = 0,

∀1 ≤ i ≤ n− 1,
1

2
≤ p

}

and Lemma 2.3 still holds.

3. Characterization and VA-Module.

Define gx for x = (x0, x1, . . . , xn) ∈ ((1/2)Z)n+1 to be the subalgebra of g generated

by (V i)j with xi ≤ j ∈ (1/2)Z for i = 0, 1, . . . , n. As in [1, Section 3] we have the

following characterizations of certain irreducible g-modules.

Theorem 3.1. Let S be an irreducible g-module such that [(V 0)p, (V
i)q] = (V i)p+q

on S for any p ∈ Z+, q ∈ (1/2)N, i = 1, . . . , n and that∑
q∈Z

(1− δ[(V 0)−q,(V n)q ],0)AnnS [(V
0)−q, (V

n)q] = 0

and
∑

1≤i≤n−1

∑
q∈(1/2)Z+

(1− δ[(V i)−q,(V i)q ],0)AnnS [(V
i)−q, (V

i)q] = 0.

Then the following conditions are equivalent.

(1) There exists t ∈ Z such that the actions of (V i)r, i = 0, 1, . . . , n on S are locally

finite for all t ≤ r ∈ (1/2)Z.
(2) There exists t ∈ Z such that the actions of (V i)r, i = 0, 1, . . . , n on S are locally

nilpotent for all t ≤ r ∈ (1/2)Z.
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(3) There exists t ∈ Zn+1 such that S is a locally finite gt-module.

(4) There exists t ∈ Zn+1 such that S is a locally nilpotent gt-module.

(5) There exist d ∈ Zn+1 and an irreducible gd-module M satisfying the conditions in

Theorem 2.2 such that S ∼= Ind(M).

Proof. The following implications (5) ⇒ (3) ⇒ (1), (5) ⇒ (4) ⇒ (2) and (2) ⇒
(1) are clear. So we only need to show (1) ⇒ (5).

By (1) we know that there exists t ∈ Z+ such that the actions of (V i)r, i = 0, 1, . . . , n

on S are locally finite for all t ≤ r ∈ (1/2)Z. In particular, there exists a nonzero v ∈ S

such that Ltv = λv for some λ ∈ C.
Choose any 1/2 < ai ∈ (1/2)Z such that (V i)t+ai ̸= 0 and denote

Nai =
∑

m∈Z+

CLm
t (V i)t+aiv, i = 0, 1, . . . , n,

which are all finite dimensional. Note by the assumption [(V 0)p, (V
i)q] = (V i)p+q (p ≥

0, q > 0) on S that

(V i)t+ai+(m+1)tv = [Lt, (V
i)t+ai+mt]v = (Lt − λ)(V i)t+ai+mtv

for m ∈ Z+ and i = 0, 1, . . . , n, from which we know that

(V i)t+ai+mtv ⊆ Nai implies (V i)t+ai+(m+1)tv ⊆ Nai for m ∈ Z+ and i = 0, 1, . . . , n.

So induction on m shows

(V i)t+ai+mtv ⊆ Nai for m ∈ Z+ and i = 0, 1, . . . , n.

In particular,
∑

m∈Z+
C(V i)t+ai+mtv for i = 0, 1, . . . , n are all finite dimensional and so

are∑
p∈Z+

C(V i)t+ai+pv = C(V i)t+aiv +
∑2t

j=t+1

∑
m∈Z+

(V i)j+ai+mtv, i = 0, 1, . . . , n.

Then there exist li
′ ∈ N such that∑

p∈Z+

C(V i)t+ai+pv =
∑li

′

p=0
C(V i)t+ai+pv, i = 0, 1, . . . , n. (3.1)

Similarly, there exist li
′′ ∈ N such that∑

p∈Z+

C(V i)t+ai+1/2+pv =
∑li

′′

p=0
C(V i)t+ai+1/2+pv, i = 0, 1, . . . , n. (3.2)

Note that for any i, the set consisting of all indexes k ≥ t + ai such that (V i)k ̸= 0

is denumerable, say, I
(i)
1 < I

(i)
2 < · · · . Set l = max{li′, li′′ | i = 0, 1, . . . , n} and î =

max{k ∈ N | t+ ai ≤ I
(i)
k ≤ t+ ai + 1/2 + l} for all i = 0, 1, . . . , n. Denote

V ′ =
∑

m
(0)
1 ,...,m

(n)
n̂ ∈Z+

C
(
u
(0)

I
(0)
1

)m
(0)
1

· · ·
(
u
(0)

I
(0)

0̂

)m
(0)

0̂

· · ·
(
u
(n)

I
(n)
1

)m
(n)
1

· · ·
(
u
(n)

I
(n)
n̂

)m
(n)
n̂

v
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which is finite dimensional by (1).

Claim. V ′ is a (finite dimensional) gt+a-module, where t+ a = (t+a0, . . . , t+an).

Note that u
(i)

I
(i)
s

v′ for all v′ ∈ V ′, i = 0, 1, . . . , n and s ∈ N can be written as a sum

of vectors of the form:(
u
(0)

I
(0)
1

)m
(0)
1

· · ·
(
u
(0)

I
(0)

0̂

)m
(0)

0̂

· · ·
(
u
(n)

I
(n)
1

)m
(n)
1

· · ·
(
u
(n)

I
(n)
n̂

)m
(n)
n̂

u
(i)

I
(i)
r

v (r ≥ 1). (3.3)

So it suffices to show that all elements above lie in V ′. By (3.1) and (3.2), we only need

to show that elements in (3.3) with t+ ai ≤ I
(i)
r ≤ t+ ai +1/2+ l lie in V ′. This is clear

for i = n in (3.3). For all i = 0, 1, . . . , n− 1, we have

(
u
(0)

I
(0)
1

)m
(0)
1

· · ·
(
u
(0)

I
(0)

0̂

)m
(0)

0̂

· · ·
(
u
(n)

I
(n)
1

)m
(n)
1

· · ·
(
u
(n)

I
(n)
n̂

)m
(n)
n̂

u
(i)

I
(i)
r

v

=

(
u
(0)

I
(0)
1

)m
(0)
1

· · ·
(
u
(i)

I
(i)
r

)m(i)
r +1

· · ·
(
u
(n)

I
(n)
n̂

)m
(n)
n̂

v

+

(
u
(0)

I
(0)
1

)m
(0)
1

· · ·
(
u
(i)

I
(i)
r−1

)m
(i)
r−1

[(
u
(i)

I
(i)
r

)m(i)
r

· · ·
(
u
(n)

I
(n)
n̂

)m
(n)
n̂

, u
(i)

I
(i)
r

]
v.

The first term on the right hand side lies in V ′ and the second term can be written as

a sum of elements which have the same form as (3.3) but with smaller
∑n

i=0

∑î
j=1 m

(i)
j .

By induction, all elements in (3.3) lie in V ′, proving the claim.

It follows from the claim that there exists a minimal l ∈ Z+ such that (Lm +

α1Lm+1+ · · ·+αlLm+l)V
′ = 0 for some m ≥ t+a0 and αi ∈ C. Then applying Lm gives

(α1[Lm, Lm+1] + · · ·+ αl[Lm, Lm+l])V
′ = 0,

which together with the minimality of l implies l = 0, that is, LmV ′ = 0. Therefore

0 = LjLmV ′ = [Lj , Lm]V ′ + LmLjV
′ = (m− j)Lm+jV

′, ∀j ≥ t+ a0,

that is, Lm+jV
′ = 0 for all j ≥ m + a0. Now by again our assumption [(V 0)p, (V

i)q] =

(V i)p+q on S for any p ∈ Z+, q ∈ (1/2)N, we have (V i)m+j+qV
′ = [Lm+j , (V

i)q]V
′ = 0

for any q ≥ t+ ai and i ≥ 1.

For any r = (r0, r1, . . . , rn) ∈ Zn+1, consider the vector space

Nr =

{
v ∈ S | (V i)ri+pv = 0 for all i = 0, 1, . . . , n and p ∈ 1

2
N
}
.

By the above discussion, Nr ̸= 0 for sufficiently large ri ∈ Z, i = 0, 1, . . . , n. Note

by Remark 2.1 and the assumption AnnS [(V
0)−q, (V

n)q] = 0 for any q ∈ N that

AnnS(V
n)0 = 0. Thus, Nr = 0 for all rn < 0. Choose a k = (k0, k1, . . . , kn)

from the set {r ∈ Zn+1 | Nr ̸= 0} such that the n-th component kn is minimal.

Moreover, we may assume ki ∈ Z+ with ki ≥ kn and k0 − kn ≥ 2(kj − kn), where
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i = 0, 1, . . . , n − 1 and j = 1, 2, . . . , n − 1. Denote M = Nk and d = (d0, d1, . . . , dn),

where d0 = 0, di = ki − kn, dn = k0 − kn, i = 1, 2, . . . , n− 1. It is easy to check that M

is a gd-module. Note also that M automatically satisfies the conditions in Theorem 2.2

with k = kn.

We are going to show that S ∼= Ind(M). Since S can be generated by M , there

exists a canonical surjective map

π : Ind(M) → S such that π(1⊗ v) = v, ∀v ∈ M.

Now it is enough to show that π is also injective. We only focus on the case kn ≥ 1, since

similar arguments can be applied to the case kn = 0 by using the assumptions∑
q∈Z

(1− δ[(V 0)−q,(V n)q ],0)AnnS [(V
0)−q, (V

n)q] = 0

and
∑

1≤i≤n−1

∑
q∈(1/2)Z+

(1− δ[(V i)−q,(V i)q ],0)AnnS [(V
i)−q, (V

i)q] = 0.

Let K = Ker(π) and it is clear that K ∩M = 0. If K ̸= 0, choose a vector u ∈ K\M
such that m(u) (see the remarks before Lemma 2.3) is minimal. Then Lemma 2.3 and

Remark 2.4 would lead to a contradiction: there exists 0 ̸= w ∈ K with m(w) ≺ m(u).

At last, we remark that M automatically satisfies the conditions in Theorem 2.2. □

If in addition S as a g-module is restricted, then

Nr =

{
v ∈ S | (V i)ri+pv = 0 for all i = 0, 1, . . . , n and p ∈ 1

2
N
}

is nonzero whenever each entry ri is large enough. It follows from the last part of the

proof of Theorem 3.1 we see that S ∼= Ind(M) for some d ∈ S and gd-module M . That

is, we derive the following result.

Proposition 3.2. Let S be an irreducible restricted g-module such that∑
q∈Z

(1− δ[(V 0)−q,(V n)q ],0)AnnS [(V
0)−q, (V

n)q] = 0

and
∑

1≤i≤n−1

∑
q∈(1/2)Z+

(1− δ[(V i)−q,(V i)q ],0)AnnS [(V
i)−q, (V

i)q] = 0.

Then there exist d ∈ S and an irreducible gd-module M satisfying the conditions in

Theorem 2.2 such that S ∼= Ind(M).

Remark 3.3. Let V be a module over L and E = L ⊕ L′ be a central extension

of L (that is, [x, y]E = [x, y]L for any x, y ∈ L and L′ lies in the center of E). Then V

can be naturally viewed as an L/T -module, where T = {x ∈ L | xv = 0 for all v ∈ V }
and also an E-module if the action of L′ is trivial on V . So in this sense we can extend

all above results for g to their quotients and central extensions.

Now we turn to the study of vertex algebras and modules over vertex algebras; we

refer the reader to [6] for relevant background. Associate each V i for i = 0, 1, . . . , n a

formal series V i(z). Suppose that these V i(z) are local, i.e., (z1−z2)
k[V i(z1), V

j(z2)] = 0
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for some fixed positive integer k and i, j = 0, 1, . . . , n. Then there is a vertex algebra Vg

(might not be a vertex operator algebra) associated to g (see [5]). And in what follows

we only consider Lie algebras g of this case and we identify (V i)k for i = 0, 1, . . . , n and

k ∈ (1/2)Z with subspaces of Vg in an obvious way.

Proposition 3.4. See [6]. There is one-to-one correspondence between the set

of irreducible modules over the vertex algebra Vg and the set of irreducible restricted

g-modules.

As a consequence of Propositions 3.2 and 3.4 we have the following result.

Theorem 3.5. Let S be an irreducible module over the vertex algebra Vg such that∑
q∈Z

(1− δ[(V 0)−q,(V n)q ],0)AnnS [(V
0)−q, (V

n)q] = 0

and
∑

1≤i≤n−1

∑
q∈(1/2)Z+

(1− δ[(V i)−q,(V i)q ],0)AnnS [(V
i)−q, (V

i)q] = 0.

Then there exist d ∈ S and an irreducible gd-module M satisfying the conditions in

Theorem 2.2 such that S ∼= Ind(M).
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[ 9 ] W. Zhang and C. Dong, W -algebra W (2, 2) and the vertex operator algebra L((1/2), 0) ⊗
L((1/2), 0), Comm. Math. Phys., 285 (2009), 991–1004.

[10] Y. Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc., 9

(1996), 237–302.

Guobo Chen

School of Mathematical Sciences

Tongji University

Shanghai 200092, China

E-mail: cguobo@tongji.edu.cn

Jianzhi Han

School of Mathematical Sciences

Tongji University

Shanghai 200092, China

E-mail: jzhan@tongji.edu.cn

https://doi.org/10.1016/j.jalgebra.2013.04.039
https://doi.org/10.1016/j.jalgebra.2013.04.039
https://doi.org/10.1016/j.jpaa.2017.05.013
https://doi.org/10.1016/j.laa.2016.11.002
https://doi.org/10.1016/j.laa.2016.11.002
https://doi.org/10.1080/00927871003591835
https://doi.org/10.1016/0022-4049(95)00079-8
https://doi.org/10.1016/0022-4049(95)00079-8
https://doi.org/10.1007/978-0-8176-8186-9
https://doi.org/10.1007/978-0-8176-8186-9
https://doi.org/10.1007/s00029-013-0140-8
https://doi.org/10.1007/s00023-006-0289-1
https://doi.org/10.1007/s00220-008-0562-x
https://doi.org/10.1090/S0894-0347-96-00182-8
https://doi.org/10.1090/S0894-0347-96-00182-8


72

72 G. Chen, J. Han and Y. Su

Yucai Su

School of Mathematical Sciences

Tongji University

Shanghai 200092, China

E-mail: ycsu@tongji.edu.cn


