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Abstract. We derive explicit formulas for the discriminants of classical
quasi-orthogonal polynomials, as a full generalization of the result of Dilcher
and Stolarsky (2005). We consider a certain system of Diophantine equations,
originally designed by Hausdorff (1909) as a simplification of Hilbert’s solution

(1909) of Waring’s problem, and then create the relationship to quadrature
formulas and quasi-Hermite polynomials. We reduce these equations to the
existence problem of rational points on a hyperelliptic curve associated with
discriminants of quasi-Hermite polynomials, and show a nonexistence theorem

for solutions of Hausdorff-type equations by applying our discriminant formula.

1. Introduction.

The Jacobi, Laguerre, and Hermite polynomials are the classical orthogonal poly-

nomials, which, as we see in Szegő’s book Orthogonal Polynomials, provide a great deal

of interesting topics in broad areas of mathematics. In this paper we are particularly

concerned with a compact elegant formula for the discriminant.

Stieltjes [27], [28] and Hilbert [12] computed the discriminants of all classical or-

thogonal polynomials. An order-one quasi-orthogonal polynomial is a polynomial of a

sum of two orthogonal polynomials of consecutive degrees [32]; some authors use the

same term ‘order’ in a bit different meaning [26]. Dilcher and Stolarsky [7, Theorem 4]

derived a compact elegant formula for the discriminant of a quasi-Chebyshev polynomial

of the second kind. Their proof is based on algebraic properties of resultants and the

Euclidean algorithm for polynomials.

In this paper we derive explicit formulas for the discriminants of classical quasi-

orthogonal polynomials, as a full generalization of the result of Dilcher and Stolarsky.

Our proof uses Schur’s method based on the three-term relations of polynomials [23]

(see [31, Section 6.71]). We create a surprizing connection with Hausdorff’s work on

Waring’s problem. For this purpose of exploring this connection, we also consider a

certain system of Diophantine equations, originally designed by Hausdorff [11] as a

simplification of Hilbert’s solution [13] of Waring’s problem. Interest was revived by

Nestarenko [16, p.4700], who modified Hausdorff’s arguments to simplify Hilbert’s so-

lution. The problem of finding a solution of such Hausdorff-type equations was posed
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again in [21], where an example of nonexistence of solutions was reported. We elucidate

the advantages of examining these equations through the discriminants of quasi-Hermite

polynomials. Remarkably, a solution of such Diophantine equations not only establishes a

constructive proof of Hilbert’s solution but also provides constructions of various objects

such as Gaussian designs in algebraic combinatorics [2] and a certain class of polynomials

identities called Hilbert identities [17]; for the details, see [21, Section 3].

The paper is organized as follows. Section 2 gives preliminaries, where we review

some basic results on discriminants, quasi-orthogonal polynomials, and quadrature for-

mulas. Sections 3 and 4 are the main body of this paper. In Subsection 3.1 we prove

explicit formulas for the discriminants of quasi-Jacobi polynomials. In Subsection 3.2,

as a limit case of quasi-Jacobi polynomials, we derive explicit formulas for the discrimi-

nants of quasi-Laguerre and quasi-Hermite polynomials. In Subsection 4.1, we introduce

Hausdorff-type equations and then show the relationship to quasi-Hermite polynomials

and quadrature formulas for Gaussian integration. In Subsection 4.2, as a generaliza-

tion of the above-mentioned report in [21, p.32], we show a nonexistence theorem for

solutions of such Hausdorff-type equations. To do this, we reduce the problem to the

existence of Q2-rational points on a hyperelliptic curve associated with the discriminants

of quasi-Hermite polynomials. By applying our discriminant formula, we then show a

necessary and sufficient condition for the existence of Q2-rational points. Section 5 is the

conclusion, where further remarks will be made.

2. Preliminary.

In this section we introduce various notions such as discriminants, quasi-orthogonal

polynomials, quadrature formulas and so on. We also review some basic properties and

prove lemmas for further arguments in Sections 3 and 4.

2.1. Discriminants and Schur’s method.

Let

f(x) = a0x
n + · · ·+ an

be a polynomial of degree n. Let α1, . . . , αn be the zeros of f(x). The discriminant of

f(x) is defined by

disc(f) = a2n−2
0

∏
1≤i<j≤n

(αi − αj)
2. (2.1)

Let

f(x) = a0x
n + · · ·+ an, g(x) = b0x

m + · · ·+ bm

be polynomials of degree n and m respectively. The resultant of f and g is defined by
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Res(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 . . . an
. . .

. . .

a0 a1 . . . an
b0 b1 . . . bm

. . .
. . .

b0 b1 . . . bm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.2)

where the determinant is of order (m+n). The discriminant of f is represented in terms

of a resultant as follows.

disc(f) =
(−1)n(n−1)/2

a0
Res(f, f ′). (2.3)

Remark 2.1. The sign in the right-hand side differs in some literature. For exam-

ple, the sign (−1)n(n−1)/2 does not appear in [8] because the definition of discriminants

differs by sign.

The following proposition follows from (2.2) and (2.3).

Proposition 2.2. Let f(x) = a0x
n + · · · + an. Then disc(f) is a homogeneous

polynomial in a0, . . . , an of degree 2n− 2 with integer coefficients.

By Proposition 2.2, we may substitute a polynomial of degree less than n for f in

disc(f). If necessary, we use the notation discn(f) to emphasize the dependence on n.

Proposition 2.3. Let f(x) = a0x
n + · · ·+ an. Then we have

discn+1(f) = a20 discn(f).

Proof. See [8, Chapter 12, (1.41)]. Note that the definition of discriminants in [8]

differs by sign from ours. □

Proposition 2.4. Let f(x) = a0x
n + · · · + an and let a, b, c be constants. Then

we have

disc(f(ax+ b)) = an(n−1) disc(f(x)),

disc(cf(x)) = c2(n−1) disc(f(x)).

Proof. The proposition follows from (2.1). See also [7, Lemma 4.3]. □

Proposition 2.5. Let p(x) and q(x) be polynomials of degree n and n− 1 respec-

tively. Let c be a constant.

(i) The discriminant disc(p+ cq) is a polynomial in c and

deg disc(p+ cq) ≤ 2(n− 1).

The equality holds if and only if q has no multiple zeros.
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(ii) If p(−x) = (−1)np(x) and q(−x) = (−1)n−1q(x), then disc(p + cq) is an even

polynomial in c.

Proof. (i) By Proposition 2.2, disc(p + cq) is a polynomial in c. By Proposi-

tion 2.4, we have

disc(p+ cq)

c2(n−1)
= discn

(
1

c
p+ q

)
.

By Proposition 2.3, we have

lim
c→∞

disc(p+ cq)

c2(n−1)
= discn(q) = l2 discn−1(q),

where l is the leading coefficient of q. This completes the proof.

(ii) By assumption,

p(−x) + cq(−x) = (−1)n(p(x)− cq(x)).

Therefore, by Proposition 2.4,

disc(p− cq) = disc((−1)n(p(−x) + cq(−x)))

= (−1)n·2(n−1)(−1)n(n−1) disc(p(x) + cq(x))

= disc(p+ cq). □

The following lemma, due to Schur [23] (see [31, Section 6.71]), plays a role in the

proof of the main theorems of Section 3.

Lemma 2.6 (Schur’s method). Let {ρm} be a sequence of polynomials satisfying

ρm(x) = (amx+ bm)ρm−1(x)− cmρm−2(x),

ρ0(x) = 1, ρ1(x) = a1x+ b1,
(2.4)

where am, bm, cm are constants with amcm ̸= 0. Let y1, . . . , yn be the zeros of ρn(x).

Then we have

n∏
k=1

ρn−1(yk) = (−1)n(n−1)/2
n∏

k=1

an−2k+1
k ck−1

k .

2.2. Quasi-orthogonal polynomials and Riesz–Shohat Theorem.

Let µ be a positive Borel measure on an interval (a, b) with finite moments. For

convenience, we assume that
∫ b

a
dµ = 1. Let {Φn(x)} be a sequence of orthogonal poly-

nomials with respect to µ, namely∫ b

a

Φm(x)Φn(x)dµ = 0 for every m ̸= n.

Bochner [3] completely classified all polynomials which are solutions of a second-
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order Sturm–Liouville type differential equation. Among such polynomial solutions, the

only orthogonal polynomials with respect to a positive definite linear functional are

Jacobi polynomials, Laguerre polynomials and Hermite polynomials; for example see [15].

These polynomials are often called classical orthogonal polynomials; without assuming

positive definiteness, some authors also consider Bessel polynomials as a class of classical

polynomials.

Jacobi polynomial. For α, β > −1, the n-th Jacobi polynomial P
(α,β)
n (x) is defined

by the Rodrigues’ formula as follows:

P (α,β)
n (x) =

(−1)n

2nn!
(1− x)−α(1 + x)−β dn

dxn

(
(1− x)n+α(1 + x)n+β

)
. (2.5)

The polynomials P
(α,β)
n (x) are orthogonal with respect to (1− x)α(1 + x)β on (−1, 1).

Laguerre polynomial. For α > −1, the n-th Laguerre polynomial L
(α)
n (x) is defined

by the Rodrigues’ formula as follows:

L(α)
n (x) =

exx−α

n!

dn

dxn
(e−xxn+α). (2.6)

The polynomials L
(α)
n (x) are orthogonal with respect to e−xxα on (0,∞).

Hermite polynomial. The n-th Hermite polynomial Hn(x) is defined by the Ro-

drigues’ formula as follows:

Hn(x) = (−1)nex
2 dn

dxn
e−x2

. (2.7)

The polynomials Hn(x) are orthogonal with respect to e−x2

on R.

Some of the basic properties on classical orthogonal polynomials, used in Sections 3

and 4, are summarized in Appendix A. For the general theory, we refer the readers to

Szegő’s book Orthogonal Polynomials [31, Chapter IV and Section 5.1 and Section 5.5].

A quasi-orthogonal polynomial of degree n and order r is a polynomial of the form

Φn,r(x) = Φn(x) + b1Φn−1(x) + · · ·+ brΦn−r(x)

in which b1, . . . , br ∈ R and in particular br ̸= 0 [32]. Some authors use the term ‘order’

in a bit different meaning; for example, see [26].

For convenience, we set Φn,0(x) = Φn(x). The polynomial Φn,r(x) is orthogonal to

all polynomials of degree at most n− r − 1.

We now look at two important facts which will be used many times throughout this

paper.

Proposition 2.7. Let b1 be a real constant. Then the polynomial Φn+1,1(x) =

Φn+1(x) + b1Φn(x) has n+ 1 distinct real roots.
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Proof. See [31, Theorem 3.3.4]. □

The following result was first obtained by Riesz [20, p.23] for k = 2, and generalized

by Shohat [25, Theorem I] for k ≥ 3.

Theorem 2.8 (Riesz–Shohat Theorem). Let c1, . . . , cn be distinct real numbers,

ωn(x) =
∏n

i=1(x− ci), and

γi =

∫ b

a

ωn(x)

(x− ci)ω′
n(ci)

dµ.

Let k be an integer with 1 ≤ k ≤ n+ 1. The following are equivalent.

(i) The equation

n∑
i=1

γif(ci) =

∫ b

a

f(x)dµ, (2.8)

holds for all polynomials f(x) of degree at most 2n− k.

(ii) For all polynomials g(x) of degree at most n− k,∫ b

a

ωn(x)g(x)dµ = 0.

(iii) The polynomial ωn(x) is a quasi-orthogonal polynomial of degree n and order k−1,

that is, there exists real numbers b1, . . . , bk−1 such that

ωn(x) = Φn(x) + b1Φn−1(x) + · · ·+ bk−1Φn−k+1(x).

Integration formulas of type (2.8) are called quadrature formulas. Quadrature for-

mulas with positive weights γi are important as integration formula, which, by a theorem

of Xu [32, Theorem 4.1], have an elegant characterization in terms of tri-diagonal matri-

ces. A class of positive quadrature formulas was also implicitly used in Hausdorff’s work

[13] on Waring’s problem; the details will be clear in the next subsection.

2.3. Hilbert identities, quadrature formulas, and Hausdorff’s theorem.

A real Hilbert identity is a polynomial identity of the form

(x2
1 + · · ·+ x2

n)
r =

M∑
i=1

ci(ai1x1 + · · ·+ ainxn)
2r (2.9)

where 0 < ci and aij ∈ R. Clearly, it is always possible to absorb the coefficients ci’s

into the linear forms. A rational Hilbert identity is an identity of type (2.9) in which

0 < ci ∈ Q and aij ∈ Q. In this case scaling is no longer simple.

Waring’s problem in number theory asks whether every positive integer can be ex-

pressed as a sum of r-th powers of integers. The case r = 2 had been stated by Fermat

in 1640 and was solved by Lagrange in 1770. The first advance for r ≥ 3 was made by
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Liouville in 1859, who proved that every natural integer is a sum of at most 53 fourth

powers of integers. In doing so, Liouville used the rational identity

6(x2
1 + x2

2 + x2
3 + x2

4)
2 =

∑
1≤i<j≤4

{
(xi + xj)

4 + (xi − xj)
4
}
.

Mathematicians in the rest of the 19th century gave similar identities and settled War-

ing’s problem in the small-degree cases. For a good introduction to the early histories

on Waring’s problem, we refer the readers to Dickson’s book History of the Theory of

Numbers, II [6, pp.717–725].

It was Hilbert [13] who finally solved Waring’s problem in general; namely, for every

positive integer r, there exists some positive integer g(r) so that for each n ∈ N there

exist xk ∈ Z so that

n =

g(r)∑
k=1

xr
k.

We are concerned here only with the first part of Hilbert’s proof, which involved the

construction of rational Hilbert identities.

The first key step of Hilbert’s proof is Theorem 2.9 below, which was stated for

n = 5; it is obvious that Hilbert’s argument applies to general values of n.

Theorem 2.9 (Hilbert’s lemma). It holds that for every positive integers n and r,

(x2
1 + · · ·+ x2

n)
r =

M∑
i=1

ci(ai1x1 + · · ·+ ainxn)
2r

in which M = (2r + n− 1) · · · (2r + 1)/(n− 1)!, 0 < ci ∈ Q, and aij ∈ Q.

Hilbert found his identities in two steps. First, he showed that if dµ is a suitably-

normalized surface measure on Sn−1 and xi’s are taken parameters, then∫
· · ·

∫
u∈Sn−1

(x1u1 + · · ·+ xnun)
2rdµ = (x2

1 + · · ·+ x2
n)

r. (2.10)

By approximating the integral with a Riemann sum and then using some elementary

arguments, he derived the existence of real Hilbert identities. Then by a standard conti-

nuity argument, Hilbert found his rational identities. There have been some expository

works which, while mainly concerned with Waring’s problem, described Hilbert’s theo-

rem; for example, see Pollack [18].

The first simplification of Hilbert’s result was made by Hausdorff [11], who replaced

the integral on the left of (2.10) by the Gaussian integral∫
· · ·

∫
u∈Rn

e−(u2
1+···+u2

n)(x1u1 + · · ·+ xnun)
2r du1 · · · dun,

and showed that, up to a constant, the value is (
∑

x2
i )

r again. Then he constructed an
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iterated sum which leads to explicit real Hilbert identities in any number of variables,

by using the roots of the Hermite polynomial H2r and then showing the following key

lemma:

Lemma 2.10 (Hausdorff’s lemma). There exist rationals x1, . . . , x2r+1, y1, . . . ,

y2r+1 such that

2r+1∑
i=1

xiy
j
i =

1√
π

∫ ∞

−∞
tj e−t2dt, j = 0, 1, . . . , 2r. (2.11)

Hausdorff then quickly argued that the real coefficients may be replaced by rational

ones. Interest was revived by Nestarenko [16, p.4700], who modified Hausdorff’s argu-

ments to simplify Hilbert’s result. The problem of finding a solution of such equations

was also stated in [21, p.32].

Diophantine equations of type (2.11) are significant in the theory of quadrature

formulas. Let ξ be a positive Borel measure on an interval (a, b). Let x1, . . . , xm ∈ R
and y1, . . . , ym ∈ (a, b). A quadrature formula of degree t is an integration formula of the

form

m∑
i=1

xif(yi) =

∫ b

a

f(x) dξ (2.12)

in which f ranges over all polynomials of degree at most t. The points yi’s are called nodes

and xi’s are called weights. A quadrature formula is positive if all weights are positive.

This is also called a Gaussian t-design in algebraic combinatorics [2]. We see that the

equations (2.11) are equivalent to a rational Gaussian design or a rational quadrature,

meaning a quadrature formula of degree 2r for Gaussian integration (1/
√
π)

∫∞
−∞ e−t2dt

with rational nodes and weights. In Subsection 4.1, we formulate Diophantine equations

of type (2.11) in a more general setting.

The concept of quadrature formula is simply generalized to higher dimensions and

integrands may be also replaced by the homogeneous polynomials. A cubature formula of

index t is an integration formula of type (2.12) in which f ranges over all homogeneous

polynomials of degree t. The relationship of Hilbert identities to index-type cubature

formulas for
∫
Sn−1 dρ, where ρ is a surface measure on Sn−1, goes back to the 19th

century at least [19]. Interest was revived in the development of spherical designs by

Delsarte, Goethals and Seidel in the 1970s [5]. By a suitable scaling of weights and nodes,

cubature formulas for
∫
Sn−1 dρ and

∫
· · ·

∫
Rn e−(u2

1+···+u2
n)du1 · · · dun can be transformed

each other (cf. [2], [17]). We can easily construct a cubature formula for Gaussian

integration by taking copies of a quadrature formula for (1/
√
π)

∫∞
−∞ e−t2dt and then

taking their convolutions. This is an example of the widely-used method in the study

of cubature formulas, called product construction [29], and explains why Hausdorff’s

simplification works well.
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3. Compact formulas for discriminants of classical quasi-orthogonal

polynomials.

In this section we derive explicit formulas for the discriminants of quasi-Jacobi,

quasi-Laguerre, quasi-Hermite polynomials by using Schur’s method (Lemma 2.6).

3.1. Quasi-Jacobi polynomials.

The discriminants of quasi-Jacobi polynomials are computed as follows.

Theorem 3.1. Let c be a constant and let P
(α,β)
n;c (x) = P

(α,β)
n (x) + cP

(α,β)
n−1 (x).

Then

disc(P (α,β)
n;c ) =

(2n+ α+ β)2n−1

2n(n−1)

n∏
k=1

kk−2n+3

·
n−1∏
k=1

(k + α)k−1(k + β)k−1(n+ k + α+ β)n−k−1

·
(−c)nP

(α,β)
n;c

(
−(2n(n+ α+ β)c2 + (α2 − β2)c+ 2(n+ α)(n+ β))/(2n+ α+ β)2c

)
(n+ α+ cn)(n+ β − cn)

.

(3.1)

Furthermore, disc(P
(α,β)
n;c ) is a polynomial in c of degree 2(n− 1).

Remark 3.2. Taking the limit as c → 0, we have

disc(P (α,β)
n ) = 2−n(n−1)

n∏
k=1

kk−2n+2(k + α)k−1(k + β)k−1(n+ k + α+ β)n−k.

This formula coincides with Stieltjes’s formula [31, (6.71.5)].

Proof of Theorem 3.1. Let y1, . . . , yn be the zeros of P
(α,β)
n;c (x) and l

(α,β)
n be

the leading coefficient of P
(α,β)
n;c (x). Then we have

disc(P (α,β)
n;c ) = (l(α,β)n )2n−2

∏
1≤i<j≤n

(yi − yj)
2

= (−1)n(n−1)/2(l(α,β)n )n−2
n∏

k=1

d

dx
P (α,β)
n;c (yk).

By (A.3) and (A.4),

d

dx
P (α,β)
n;c (x)

=
d

dx
P (α,β)
n (x) + c

d

dx
P

(α,β)
n−1 (x)

=
(
(2n+ α+ β)(1− x2)

)−1

·
(
−n

(
(2n+ α+ β)x+ β − α+ 2c(n+ α+ β)

)
P (α,β)
n (x)
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+
(
c(n+ α+ β) ((2n+ α+ β)x+ α− β) + 2(n+ α)(n+ β)

)
P

(α,β)
n−1 (x)

)
.

Since P
(α,β)
n;c (yk) = P

(α,β)
n (yk) + cP

(α,β)
n−1 (yk) = 0, we have

d

dx
P (α,β)
n;c (yk) =

(
(2n+ α+ β)(1− y2k)

)−1

·
(
2n(n+ α+ β)c2 + ((2n+ α+ β)2yk + α2 − β2)c

+ 2(n+ α)(n+ β)
)
P

(α,β)
n−1 (yk).

Let

ξ(α,β)n;c = −2n(n+ α+ β)c2 + (α2 − β2)c+ 2(n+ α)(n+ β)

(2n+ α+ β)2c
.

Then we have

n∏
k=1

d

dx
P (α,β)
n;c (yk) =

n∏
k=1

(2n+ α+ β)c

y2k − 1
(ξ(α,β)n;c − yk)P

(α,β)
n−1 (yk)

=
l
(α,β)
n (2n+ α+ β)ncn

P
(α,β)
n;c (1)P

(α,β)
n;c (−1)

P (α,β)
n;c (ξ(α,β)n;c )

n∏
k=1

P
(α,β)
n−1 (yk).

For k = 1, 2, . . . , n, let

ak =
(2k + α+ β − 1)(2k + α+ β)

2k(k + α+ β)
, ck =

(k + α− 1)(k + β − 1)(2k + α+ β)

k(k + α+ β)(2k + α+ β − 2)
.

Let ρn(x) = P
(α,β)
n;c (x) and ρk(x) = P

(α,β)
k (x) for k = 0, 1, . . . , n − 1. By (A.2), there

exist b1, b2, . . . , bn such that ρ0(x), ρ1(x), . . . , ρn(x) satisfy (2.4). By Lemma 2.6, we have

n∏
k=1

P
(α,β)
n−1 (yk) = (−1)n(n−1)/2

n∏
k=1

an−2k+1
k ck−1

k

= (−1)n(n−1)/2
n∏

k=1

kk−n(k + α+ β)k−n(2k + α+ β − 1)n−2k+1

·
n−1∏
k=1

(k + α)k(k + β)k(2k + α+ β)n−2k

= (−1)n(n−1)/2
n−1∏
k=1

kk−n(k + α)k(k + β)k(n+ k + α+ β)−k.

The leading coefficient l
(α,β)
n is computed by (A.2) as follows.

l(α,β)n =
1

2n

(
2n+ α+ β

n

)
.

By (A.1), we have
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P (α,β)
n;c (1) =

(
n+ α

n

)
+ c

(
n− 1 + α

n− 1

)
,

P (α,β)
n;c (−1) = (−1)n

((
n+ β

n

)
− c

(
n− 1 + β

n− 1

))
.

Therefore

disc(P (α,β)
n;c ) =

(l
(α,β)
n )n−1(2n+ α+ β)n(−c)n((

n+α
n

)
+ c

(
n−1+α
n−1

))((
n+β
n

)
− c

(
n−1+β
n−1

))P (α,β)
n;c (ξ(α,β)n;c )

·
n−1∏
k=1

kk−n(k + α)k(k + β)k(n+ k + α+ β)−k

=
(2n+ α+ β)2n−1

2n(n−1)

n∏
k=1

kk−2n+3

·
n−1∏
k=1

(k + α)k−1(k + β)k−1(n+ k + α+ β)n−k−1

· (−c)n

(n+ α+ cn)(n+ β − cn)
P (α,β)
n;c (ξ(α,β)n;c ).

The latter part of the theorem follows from Propositions 2.5 and 2.7. □

We now describe some specializations of Theorem 3.6.

For λ ∈ R and 0 < n ∈ Z, we define

(λ)0 = 1, (λ)n = λ(λ+ 1) · · · (λ+ n− 1).

The n-th Gegenbauer polynomial is defined by

C(λ)
n (x) =

(2λ)n
(λ+ 1/2)n

P (λ−1/2,λ−1/2)
n (x).

These polynomials often appear in the study of spherical designs (cf. [5]).

Corollary 3.3. Let c be a constant and let C
(λ)
n;c (x) = C

(λ)
n (x)+ cC

(λ)
n−1(x). Then

disc(C(λ)
n;c ) = 2n(n−1)(2n+ 2λ− 1)n

n∏
k=1

kk−2n+3(k + λ− 1)2n−2k

·
n−1∏
k=1

(k + 2λ− 1)k−2 ·
(−c)nC

(λ)
n;c

(
−(nc2 + n+ 2λ− 1)/(2n+ 2λ− 1)c

)
(n+ 2λ− 1)2 − (cn)2

. (3.2)

Furthermore, disc(C
(λ)
n;c ) is an even polynomial in c of degree 2(n− 1).

Proof. By definition,
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C(λ)
n;c (x) =

(2λ)n
(λ+ 1/2)n

P (λ−1/2,λ−1/2)
n (x) + c

(2λ)n−1

(λ+ 1/2)n−1
P

(λ−1/2,λ−1/2)
n−1 (x)

=
(2λ)n

(λ+ 1/2)n
P

(λ−1/2,λ−1/2)
n;c′ (x),

where c′ = c(λ+ n− (1/2))/(2λ+ n− 1). By Proposition 2.4 and Theorem 3.6,

disc(C(λ)
n;c ) =

(
(2λ)n

(λ+ 1/2)n

)2(n−1)
(2n+ 2λ− 1)2n−1

2n(n−1)

n∏
k=1

kk−2n+3

·
n−1∏
k=1

(
k + λ− 1

2

)2k−2

(n+ k + 2λ− 1)n−k−1

·
(−c′)nP

(λ−1/2,λ−1/2)
n;c′

(
−(2n(n+ 2λ− 1)(c′)2 + 2(n+ λ− 1/2)2)/(2n+ 2λ− 1)2c′

)
(n+ λ− (1/2) + c′n)(n+ λ− (1/2)− c′n)

=

(
(2λ)n

(λ+ 1/2)n

)2n−3
(2n+ 2λ− 1)2n−1

2n(n−1)

n∏
k=1

kk−2n+3

·
n−1∏
k=1

(
k + λ− 1

2

)2k−2

(n+ k + 2λ− 1)n−k−1

·
(n+ λ− 1/2)n−2(−c)nC

(λ)
n;c

(
−(nc2 + n+ 2λ− 1)/(2n+ 2λ− 1)c

)
(n+ 2λ− 1)n−2(n+ 2λ− 1 + cn)(n+ 2λ− 1− cn)

=
(2n+ 2λ− 1)n

2(n−1)2(n+ 2λ− 1)n−2

n∏
k=1

kk−2n+3(k + 2λ− 1)2n−3

·
n−1∏
k=1

(
k + λ− 1

2

)2k−2n+1

(n+ k + 2λ− 1)n−k−1

·
(−c)nC

(λ)
n;c

(
−(nc2 + n+ 2λ− 1)/(2n+ 2λ− 1)c

)
(n+ 2λ− 1)2 − (cn)2

.

The constant factor is computed as follows.

(2n+ 2λ− 1)n

2(n−1)2(n+ 2λ− 1)n−2

n∏
k=1

kk−2n+3(k + 2λ− 1)2n−3

·
n−1∏
k=1

(
k + λ− 1

2

)2k−2n+1

(n+ k + 2λ− 1)n−k−1

=
(2n+ 2λ− 1)n

(n+ 2λ− 1)n−2

n∏
k=1

kk−2n+3(k + 2λ− 1)2n−3

·
n−1∏
k=1

(2k + 2λ− 1)
2k−2n+1 ·

2n−1∏
k=n+1

(k + 2λ− 1)2n−k−1
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=
(2n+ 2λ− 1)n

(n+ 2λ− 1)n−2

n∏
k=1

kk−2n+3(k + 2λ− 1)2n−3 ·
2n−1∏
k=1

(k + 2λ− 1)
k−2n+1

·
n∏

k=1

(2k − 1 + 2λ− 1)2n−2k ·
2n−1∏
k=n+1

(k + 2λ− 1)2n−k−1

= 2n(n−1)(2n+ 2λ− 1)n
n∏

k=1

kk−2n+3(k + λ− 1)2n−2k ·
n−1∏
k=1

(k + 2λ− 1)k−2.

The latter part of the corollary follows from Propositions 2.5 and 2.7. □

We describe another specialization of Theorem 3.6. The n-th Chebyshev polynomial

of the first kind is defined by

Tn(x) =
P

(−1/2,−1/2)
n (x)

P
(−1/2,−1/2)
n (1)

=

(
n− 1/2

n

)−1

P (−1/2,−1/2)
n (x).

When n ≥ 1, we have

Tn(x) = lim
λ→0

n

2λ
C(λ)

n (x). (3.3)

The n-th Chebyshev polynomial of the second kind is defined by

Un(x) = (n+ 1)
P

(1/2,1/2)
n (x)

P
(1/2,1/2)
n (1)

= C(1)
n (x).

Corollary 3.4 ([7]). Let c be a constant and let Tn;c(x) = Tn(x)+ cTn−1(x) and

Un;c(x) = Un(x) + cUn−1(x). Then we have

disc(Tn;c) =
2(n−1)(n−2)(2n− 1)n(−c)n

1− c2
Tn;c

(
− (n− 1)c2 + n

(2n− 1)c

)
. (3.4)

disc(Un;c) =
2n(n−1)(2n+ 1)n(−c)n

(n+ 1)2 − (cn)2
Un;c

(
−nc2 + n+ 1

(2n+ 1)c

)
. (3.5)

Furthermore, disc(Tn;c) and disc(Un;c) are even polynomials in c of degree 2(n− 1).

Proof. We first consider disc(Tn;c). When n = 1, it is easy to verify (3.4). We

assume that n ≥ 2. By (3.3),

Tn;c(x) = lim
λ→0

n

2λ
C(λ)

n (x) + c lim
λ→0

n− 1

2λ
C

(λ)
n−1(x) = lim

λ→0

n

2λ
C

(λ)
n;c′(x),

where c′ = (n− 1)c/n. By Proposition 2.4 and Corollary 3.3,

disc(T (λ)
n;c ) = lim

λ→0

(
n

2λ

)2n−2

2n(n−1)(2n+ 2λ− 1)n
n∏

k=1

kk−2n+3(k + λ− 1)2n−2k
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·
n−1∏
k=1

(k + 2λ− 1)k−2 ·
(−c′)nC

(λ)
n;c′

(
−(n(c′)2 + n+ 2λ− 1)/(2n+ 2λ− 1)c′

)
(n+ 2λ− 1)2 − (c′n)2

= lim
λ→0

2(n−1)(n−2)(n− 1)nnn−3(2n+ 2λ− 1)n

·
n∏

k=2

kk−2n+3(k + λ− 1)2n−2k

·
n−1∏
k=2

(k + 2λ− 1)k−2 ·
(−c)n(n/2λ)C

(λ)
n;c′

(
−(n(c′)2 + n+ 2λ− 1)/(2n+ 2λ− 1)c′

)
(n+ 2λ− 1)2 − c2(n− 1)2

= 2(n−1)(n−2)(n− 1)nnn−3(2n− 1)n
n∏

k=2

kk−2n+3(k − 1)2n−2k

·
n−1∏
k=2

(k − 1)k−2 ·
(−c)nTn;c

(
−((n− 1)c2 + n)/(2n− 1)c

)
(n− 1)2 − c2(n− 1)2

=
2(n−1)(n−2)(2n− 1)n(−c)n

1− c2
Tn;c

(
− (n− 1)c2 + n

(2n− 1)c

)
.

Next, we consider disc(Un;c). Since Un;c(x) = C
(1)
n;c(x), by Corollary 3.3,

disc(Un;c) = 2n(n−1)(2n+ 1)n
n∏

k=1

k3−k

·
n−1∏
k=1

(k + 1)k−2 ·
(−c)nUn;c

(
−(nc2 + n+ 1)/(2n+ 1)c

)
(n+ 1)2 − (cn)2

=
2n(n−1)(2n+ 1)n(−c)n

(n+ 1)2 − (cn)2
Un;c

(
−nc2 + n+ 1

(2n+ 1)c

)
. □

Remark 3.5. Dilcher and Stolarsky [7, Theorem 4] derived the compact formula

(3.5) by using algebraic properties of resultants and the Euclidean algorithm. They

also obtained similar results on the resultant of two quasi-Chebyshev polynomials of the

second kind. Based on Schur’s method, Gishe and Ismail [9] also found similar resultant

formulas concerning quasi-Chebyshev polynomials.

3.2. Quasi-Laguerre and quasi-Hermite polynomials.

In this subsection, as a limit case of quasi-Jacobi polynomials, we derive explicit

formulas for the discriminants of quasi-Laguerre and quasi-Hermite polynomials, respec-

tively.

We first consider quasi-Laguerre polynomials.

Theorem 3.6. Let c be a constant and let L
(α)
n;c (x) = L

(α)
n (x) + cL

(α)
n−1(x). Then
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disc(L(α)
n;c) =

1

n+ α+ cn

n∏
k=1

kk−2n+3
n−1∏
k=1

(k + α)k−1

· (−c)nL(α)
n;c

(
nc2 + (2n+ α)c+ n+ α

c

)
.

(3.6)

Furthermore, disc(L
(α)
n;c) is a polynomial in c of degree 2(n− 1).

We now give a proof by using the fact that Laguerre polynomials can be expressed

as a limit case of Jacobi polynomials (see [31, (5.3.4)]):

L(α)
n (x) = lim

β→∞
P (α,β)
n (1− 2β−1x). (3.7)

Proof of Theorem 3.6. By (3.7), we have

L(α)
n;c(x) = lim

β→∞
P (α,β)
n;c (1− 2β−1x). (3.8)

The discriminant disc(f) is continuous with respect to the coefficients of f by Propo-

sition 2.2. Hence, by Proposition 2.4, (3.8), and Theorem 3.1, we have

disc(L(α)
n;c ) = lim

β→∞
disc

(
P (α,β)
n;c (1− 2β−1x)

)
= lim

β→∞
(−2β−1)n(n−1) disc(P (α,β)

n;c )

= lim
β→∞

2n(n−1)

βn(n−1)

(2n+ α+ β)2n−1

2n(n−1)

n∏
k=1

kk−2n+3

·
n−1∏
k=1

(k + α)k−1(k + β)k−1(n+ k + α+ β)n−k−1

·
(−c)nP

(α,β)
n;c

(
−(2n(n+ α+ β)c2 + (α2 − β2)c+ 2(n+ α)(n+ β))/(2n+ α+ β)2c

)
(n+ α+ cn)(n+ β − cn)

=

n∏
k=1

kk−2n+3
n−1∏
k=1

(k + α)k−1 (−c)n

n+ α+ cn

· lim
β→∞

P (α,β)
n;c

(
−2n(n+ α+ β)c2 + (α2 − β2)c+ 2(n+ α)(n+ β)

(2n+ α+ β)2c

)
.

Let

1− 2β−1xβ = −2n(n+ α+ β)c2 + (α2 − β2)c+ 2(n+ α)(n+ β)

(2n+ α+ β)2c
.

Then we have

lim
β→∞

xβ =
nc2 + (2n+ α)c+ n+ α

c
.

Therefore, by (3.8), we have
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lim
β→∞

P (α,β)
n;c

(
−2n(n+ α+ β)c2 + (α2 − β2)c+ 2(n+ α)(n+ β)

(2n+ α+ β)2c

)
= L(α)

n

(
nc2 + (2n+ α)c+ n+ α

c

)
,

which completes the proof. □

Remark 3.7. Taking the limit as c → 0, we have

disc(L(α)
n ) =

n∏
k=1

kk−2n+2(k + α)k−1.

This formula coincides with Stieltjes’s formula [31, (6.71.6)].

Next, we derive an explicit formula for the discriminants of quasi-Hermite polyno-

mials.

Theorem 3.8. Let c be a constant and let Hn;c(x) = Hn(x) + cHn−1(x). Then

disc(Hn;c) = 2n(3n−5)/2
n−1∏
k=1

kk · (−c)nHn;c

(
−c2 + 2n

2c

)
. (3.9)

Furthermore, disc(Hn;c) is an even polynomial in c of degree 2(n− 1).

We give a proof by using the limiting property, namely the fact that

Hn(x)

n!
= lim

λ→∞
λ−n/2C(λ)

n (λ−1/2x); (3.10)

for example, see [31, (5.6.3)].

Proof of Theorem 3.8. By (3.10), we have

Hn;c(x) = Hn(x) + cHn−1(x)

= n! lim
λ→∞

λ−n/2C(λ)
n (λ−1/2x) + c(n− 1)! lim

λ→∞
λ−(n−1)/2C

(λ)
n−1(λ

−1/2x)

= n! lim
λ→∞

λ−n/2C
(λ)

n;c
√
λ/n

(λ−1/2x).

By Proposition 2.4 and Corollary 3.3, we have

disc
(
λ−n/2C

(λ)

n;c
√
λ/n

(λ−1/2x)
)

= λ−n(n−1)−n(n−1)/2 disc
(
C

(λ)

n;c
√
λ/n

(x)
)

= λ−3n(n−1)/22n(n−1)(2n+ 2λ− 1)n
n∏

k=1

kk−2n+3(k + λ− 1)2n−2k
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·
n−1∏
k=1

(k + 2λ− 1)k−2

·

(
− c

√
λ/n

)n
C

(λ)

n;c
√
λ/n

(
−((c2 + 2n)λ+ n2 − n)/

√
λ(2n+ 2λ− 1)c

)
(n+ 2λ− 1)2 − c2λ

.

Therefore, taking the limit as λ → ∞, we have

disc(Hn;c) = (n!)2(n−1) lim
λ→∞

λ−3n(n−1)/22n(n−1)(2n+ 2λ− 1)n

·
n∏

k=1

kk−2n+3(k + λ− 1)2n−2k ·
n−1∏
k=1

(k + 2λ− 1)k−2

·

(
− c

√
λ/n

)n
C

(λ)

n;c
√
λ/n

(
−((c2 + 2n)λ+ n2 − n)/

√
λ(2n+ 2λ− 1)c

)
(n+ 2λ− 1)2 − c2λ

=
2n(3n−5)/2

nn

n∏
k=1

kk+1 · (−c)n

· lim
λ→∞

λ−n/2C
(λ)

n;c
√
λ/n

(
− (c2 + 2n)λ+ n2 − n√

λ(2n+ 2λ− 1)c

)

= 2n(3n−5)/2
n−1∏
k=1

kk · (−c)nHn;c

(
−c2 + 2n

2c

)
. □

Remark 3.9. Taking the limit as c → 0, we have

disc(Hn) = 23n(n−1)/2
n∏

k=1

kk.

This formula coincides with Hilbert’s formula [31, (6.71.7)].

Remark 3.10. Hermite polynomials are expressed as a limit case of Laguerre

polynomials (see [31, Problem 80, p.389]):

lim
α→∞

α−n/2L(α)
n (α1/2x+ α) = (−1)n2−n/2(n!)−1Hn(2

−1/2x).

By this, together with Proposition 2.4 and Theorem 3.6, we can give another proof of

Theorem 3.8. As in the proof of Theorem 3.1, we can directly show Theorems 3.6 and

3.8 by using Schur’s method and the elementary properties of Hermite and Laguerre

polynomials. The proof we present above will be a quicker way of getting the same

formulas as Theorems 3.6 and 3.8.

4. Applications.

In this section we give a generalization of Hausdorff’s equations (2.11) and then

examine solutions for such equations. We use the explicit formula for discriminants of

quasi-Hermite polynomials given in Theorem 3.8.
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Throughout this section, let

ak =
1√
π

∫ ∞

−∞
tk e−t2dt, k = 0, 1, . . . (4.1)

It is then obvious that

a2k =
(2k)!

22kk!
, a2k+1 = 0. (4.2)

4.1. Hausdorff-type equations.

The following question originally goes back to Hausdorff’s equations (2.11) and are

considered in [16, p.4700] and [21, p.32].

Problem 4.1 ([11], [16], [21]). Let m,n ≥ 0 be integers. Do the Diophantine

equations

m∑
i=1

xiy
j
i = aj , j = 0, 1, . . . , n (4.3)

have a solution (x1, . . . , xm, y1, . . . , ym) ∈ Q2m?

The following proposition makes the relationship of Problem 4.1 to quadrature for-

mulas for Gaussian integration.

Proposition 4.2. The following are equivalent :

(i) The equations (4.3) have a solution (x1, . . . , xm, y1, . . . , ym) ∈ Q2m ;

(ii) The formula

1√
π

∫ ∞

−∞
f(t) e−t2dt =

m∑
i=1

xif(yi) (4.4)

is a rational quadrature of degree n.

Proof. We remark that 1, x, x2, . . . , xn form a basis of the vector space of all

polynomials of degree at most n. □

The following proposition gives a slight generalization of Stroud-type bound for pos-

itive quadrature formulas [29] or Fisher-type bound for Gaussian designs [2].

Proposition 4.3. If there exists a rational solution of (4.3), then n ≤ 2m− 1.

Proof. Suppose contrary. Let f be a polynomial which vanishes at all yi’s. Then

0 <
1√
π

∫ ∞

−∞
f2(t) e−t2dt =

m∑
i=1

xi(f(yi))
2 = 0,

which is clearly a contradiction. □
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The first pair (m,n) to consider is that n = 2m− 1. Formulas of type (4.4) are then

called Gaussian quadrature and the nodes yi’s are the zeros of the Hermite polynomial

Hm (cf. [31]). By a classical result by Schur [22] (see also [30]), the polynomials H2r(x)

and H2r+1(x)/x are irreducible over Q. So in this case, the equations (4.3) have no

rational solutions.

The next case to consider is the ‘almost extremal’ situation.

Proposition 4.4. Assume that n = 2m− 2. Let y1, . . . , ym be distinct rationals.

The following are equivalent :

(i) The equations (4.3) have a solution (x1, . . . , xm, y1, . . . , ym) ∈ Q2m ;

(ii) There exists c ∈ Q such that y1, . . . , ym are the zeros of the quasi-Hermite polyno-

mial Hm;c(x) = Hm(x) + cHm−1(x).

Proof. By (A.8), we remark thatHm(x) is a polynomial with rational coefficients.

The result then follows by Theorem 2.8 and Proposition 4.2. □

In [21], the nonexistence of solutions was reported only for m = 3. In this paper,

we prove a more general nonexistence theorem for n = 2m− 2.

We work with the 2-adic numbers Q2 rather than Q. Let v2 : Q×
2 → Z be the

normalized valuation, where Q×
2 is the set of units in Q2. We use the convention that

v2(0) = ∞. We denote by Z2 and Z×
2 the ring of 2-adic integers and the set of units in

Z2, respectively. We remark that

Z2 = {x ∈ Q2 | v2(x) ≥ 0}, Z×
2 = {x ∈ Q2 | v2(x) = 0}.

The following lemma is used in the proof of the main theorem in Subsection 4.2.

Lemma 4.5. Let x = 2nu be an element in Q×
2 with n ∈ Z and u ∈ Z×

2 . For x to

be a square in Q2 it is necessary and sufficient that n is even and u ≡ 1 (mod 8).

Proof. See [24, Chapter II, Theorem 4]. □

4.2. Nonexistence theorem.

The following is the main result in this subsection.

Theorem 4.6. If n ≡ 3, 4, 5, 6, 7 (mod 8), then disc(Hn;c) is not a square in Q2

for any c ∈ Q2.

Corollary 4.7. If r ≡ 2, 3, 4, 5, 6 (mod 8), then there exist no rationals x1, . . . ,

xr+1, y1, . . . , yr+1 such that

r+1∑
i=1

xiy
k
i = ak, k = 0, 1, . . . , 2r. (4.5)

Proof. Assume that x1, . . . , xr+1, y1, . . . , yr+1 are a rational solution of (4.5).

Then by Proposition 4.3, y1, . . . , yr+1 are distinct each other. By Proposition 4.4 there
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exists c ∈ Q such that the zeros of Hr+1;c(x) are y1, . . . , yr+1. Therefore disc(Hr+1;c) is

a square in the rationals by (2.1), which however contradicts Theorem 4.6. □

Proof of Theorem 4.6. Let

Dn(c) = (−c)nHn;c

(
−c2 + 2n

2c

)
.

By Theorem 3.8,

disc(Hn;c) = 2n(3n−5)/2
n−1∏
k=1

kk ·Dn(c). (4.6)

It is easily seen that

n(3n− 5)

2
≡

{
0 (mod 2) if n ≡ 0, 3 (mod 4),

1 (mod 2) if n ≡ 1, 2 (mod 4).
(4.7)

Let t = 2 · 3 · 42 · 52 · · · · (n− 1)⌊(n−1)/2⌋. Then we have

n−1∏
k=1

kk =

{
t2 · (n− 1)!! if n is even,

t2 · (n− 2)!! if n is odd.

By Lemma 4.5, we have 2−2v2(t)t2 ≡ 1 (mod 8). Since 1 · 3 · 5 · 7 ≡ 1 (mod 8),

2−2v2(t)
n−1∏
k=1

kk ≡


1 (mod 8) if n ≡ 0, 1, 2, 3 (mod 8),

3 (mod 8) if n ≡ 4, 5 (mod 8),

7 (mod 8) if n ≡ 6, 7 (mod 8).

(4.8)

By (A.8),

Dn(c) =

⌊n/2⌋∑
k=0

ak −
⌊(n−1)/2⌋∑

k=0

bk, (4.9)

where

ak = (−1)k
n!

k!(n− 2k)!
c2k(c2 + 2n)n−2k,

bk = (−1)k
(n− 1)!

k!(n− 1− 2k)!
c2k+2(c2 + 2n)n−1−2k.

(4.10)

n!

k!(n− 2k)!
=

n!

(2k)!(n− 2k)!
· (2k)!

k!
=

(
n

2k

)
2k(2k − 1)!!, (4.11)

we have
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v2(ak) = v2

((
n

2k

))
+mn(c)k + nv2(c

2 + 2n),

v2(bk) = v2

((
n− 1

2k

))
+mn(c)k + 2v2(c) + (n− 1)v2(c

2 + 2n),

(4.12)

where mn(c) = 1 + 2v2(c)− 2v2(c
2 + 2n).

By (4.10),

a0 − b0 = 2n(c2 + 2n)n−1, a1 − b1 = −2(n− 1)c2(c2 + n2)(c2 + 2n)n−3. (4.13)

By expanding the right-hand sides,

a0 − b0 = 2nc2n−2 + 4p0(c), a1 − b1 = −2(n− 1)c2n−2 + 4p1(c),

where p0(c) and p1(c) are polynomials in c of degree 2n− 4 with integer coefficients. By

(4.11), we have ak, bk ∈ 4Z[c] for k ≥ 2. The degrees of ak and bk in c are 2n − 2k by

definition. Therefore, by (4.9),

Dn(c) = 2c2n−2 + 4sn−2c
2n−4 + · · ·+ 4s1c

2 + 4s0, (4.14)

where si ∈ Z; if v2(c) ≤ 0, then v2(Dn(c)) = v2(2c
2n−2) = 2(n− 1)v2(c) + 1.

We divide the proof into four cases.

The case n ≡ 3, 7 (mod 8).

If v2(c) ≤ 0, then v2(Dn(c)) = 2(n − 1)v2(c) + 1 by (4.14). By (4.6), (4.7), and

(4.8), we have v2(disc(Hn;c)) ≡ 1 (mod 2). Therefore disc(Hn;c) is not a square in Q2

by Lemma 4.5.

If v2(c) ≥ 1, then v2(c
2 + 2n) = 1 and mn(c) = 2v2(c)− 1 ≥ 1. By (4.12), we have

v2(ak) ≥ v2(a0)+1 and v2(bk) ≥ v2(b0)+1 for k ≥ 1. Since v2(b0)−v2(a0) = 2v2(c)−1 ≥
1, we have v2(Dn(c)) = v2(a0) = n. Since n ≡ 3, 7 (mod 8), we have v2(disc(Hn;c)) ≡ 1

(mod 2) by (4.6) through (4.8). Therefore disc(Hn;c) is not a square in Q2 by Lemma 4.5.

The case n ≡ 5 (mod 8).

If v2(c) ≤ −1, then by (4.14)

Dn(c)

2c2n−2
= 1 + 2sn−2c

−2 + · · ·+ 2s1c
−2n + 2s0c

−2n+2 ≡ 1 (mod 8).

By Lemma 4.5, we have c2n−2/22(n−1)v2(c) ≡ 1 (mod 8) and so Dn(c)/2
2(n−1)v2(c)+1 ≡ 1

(mod 8). By (4.6) through (4.8), we have

22e disc(Hn;c) ≡ 3 · 1 ≡ 3 (mod 8),

where e is an integer. Therefore disc(Hn;c) is not a square in Q2 by Lemma 4.5.

If v2(c) = 0, then v2(c
2 + 2n) = 0 and mn(c) = 1. Since n − 1 is even, we have

(c2 + 2n)n−1 ≡ 1 (mod 8) by Lemma 4.5. By (4.13),

a0 − b0
2

= n(c2 + 2n)n−1 ≡ 5 · 1 ≡ 5 (mod 8).
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Since n ≡ 5 (mod 8), and by (4.12), we have

v2(a1) = v2(a2) = 2, v2(ak) = v2

((
n

2k

))
+ k ≥ 3,

v2(b1) = v2(b2) = 2, v2(bk) = v2

((
n− 1

2k

))
+ k ≥ 3

for k ≥ 3. Therefore, by (4.9),

Dn(c) ≡ a0 − b0 + a1 − b1 + a2 − b2 ≡ 2 · 5 + 4− 4 + 4− 4 ≡ 2 (mod 8),

and so Dn(c)/2 ≡ 1 (mod 4). By (4.6) through (4.8), we have

22e disc(Hn;c) ≡ 3 · 1 ≡ 3 (mod 4),

where e is an integer. Therefore disc(Hn;c) is not a square in Q2 by Lemma 4.5.

If v2(c) ≥ 1, then v2(c
2+2n) = 1 and mn(c) = 2v2(c)−1 ≥ 1. Since n ≡ 5 (mod 8),

by (4.12), we have

v2(ak) = v2

((
n

2k

))
+mn(c)k + n ≥ n+ 2,

v2(bk) = v2

((
n− 1

2k

))
+mn(c)k + 2v2(c) + n− 1 ≥ n+ 3

for k ≥ 1. Hence we have ak/2
n ≡ bk/2

n ≡ 0 (mod 4) for k ≥ 1. Since n − 1 is even,

(c2 + 2n)n−1/2n−1 ≡ 1 (mod 8) by Lemma 4.5. By (4.13),

a0 − b0
2n

= n · (c
2 + 2n)n−1

2n−1
≡ 5 (mod 8).

Therefore, by (4.9),

Dn(c)

2n
≡ a0 − b0

2n
≡ 1 (mod 4).

By (4.6) through (4.8), we have

22e disc(Hn;c) ≡ 3 · 1 ≡ 3 (mod 4),

where e is an integer. Therefore disc(Hn;c) is not a square in Q2 by Lemma 4.5.

The case n ≡ 4 (mod 8).

If v2(c) ≤ 0, then v2(Dn(c)) = 2(n− 1)v2(c) + 1 by (4.14). By (4.6) through (4.8),

we have v2(disc(Hn;c)) ≡ 1 (mod 2). Therefore disc(Hn;c) is not a square in Q2 by

Lemma 4.5.

If v2(c) = 1, then v2(c
2 + 2n) = 2 and mn(c) = −1. Since n ≡ 4 (mod 8), and by

(4.12),

v2(an/2) =
3

2
n, v2(an/2−1) =

3

2
n+ 2, v2(ak) ≥

3

2
n+ 2,
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v2(bn/2−1) =
3

2
n+ 1, v2(bk) ≥

3

2
n+ 2

for k ≤ n/2− 2.

By (4.10) and (4.11),

an/2 = (−1)n/2
n!

(n/2)!0!
cn = 2n/2(n− 1)!!cn. (4.15)

Since n ≡ 4 (mod 8), we have (n − 1)!! ≡ 3 (mod 8) and cn/2n ≡ 1 (mod 8). Hence

an/2/2
3n/2 ≡ 3 (mod 8). Therefore, by (4.9),

Dn(c)

23n/2
≡

an/2 − bn/2−1

23n/2
≡ 3− 2 ≡ 1 (mod 4).

By (4.6) through (4.8),

22e disc(Hn;c) ≡ 3 · 1 ≡ 3 (mod 4),

where e is an integer. Therefore disc(Hn;c) is not a square in Q2 by Lemma 4.5.

If v2(c) = 2, then v2(c
2 + 2n) = 3 and mn(c) = −1. By (4.12),

v2(an/2) =
5

2
n, v2(an/2−1) = v2(an/2−2) =

5

2
n+ 2, v2(ak) ≥

5

2
n+ 3,

v2(bn/2−1) =
5

2
n+ 2, v2(bn/2−2) =

5

2
n+ 3, v2(bk) ≥

5

2
n+ 4

for k ≤ n/2− 3. Since v2(c) = 2 and n is even, cn/22n ≡ 1 (mod 8). By (4.15), we have

an/2/2
5n/2 ≡ 3 (mod 8). Hence, by (4.9) and (4.15),

Dn(c)

25n/2
≡

an/2 + an/2−1 + an/2−2 − bn/2−1

25n/2
≡ 3 + 4 + 4− 4 ≡ 7 (mod 8).

By (4.6) through (4.8), we have

22e disc(Hn;c) ≡ 3 · 7 ≡ 5 (mod 8),

where e is an integer. Therefore disc(Hn;c) is not a square in Q2 by Lemma 4.5.

If v2(c) ≥ 3, then v2(c
2 + 2n) = 3 and mn(c) = 2v2(c)− 5 ≥ 1. By (4.12),

v2(a0) = 3n, v2(ak) = v2

((
n

2k

))
+mn(c)k + 3n ≥ 3n+ 2 for k ≥ 1,

v2(bk) = v2

((
n− 1

2k

))
+mn(c)k + 2v2(c) + 3(n− 1) ≥ 3n+ 3 for k ≥ 0.

Since n is even, (c2 + 2n)n/23n ≡ 1 (mod 8) by Lemma 4.5. Hence, by (4.9),

Dn(c)

23n
≡ a0

23n
≡ (c2 + 2n)n

23n
≡ 1 (mod 4).

By (4.6) through (4.8), we have
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22e disc(Hn;c) ≡ 3 · 1 ≡ 3 (mod 4),

where e is an integer. Therefore disc(Hn;c) is not a square in Q2 by Lemma 4.5.

The case n ≡ 6 (mod 8).

If v2(c) ≤ −1, then we have

Dn(c)

22(n−1)v2(c)+1
≡ 1 (mod 8)

as in the case where n ≡ 5 (mod 8). By (4.6) through (4.8), we have

22e disc(Hn;c) ≡ 7 · 1 ≡ 7 (mod 8),

where e is an integer. Therefore disc(Hn;c) is not a square in Q2 by Lemma 4.5.

If v2(c) = 0, then v2(c
2 + 2n) = 0 and mn(c) = 1. By (4.12), we have

v2(a0) = 0, v2(a1) = 1, v2(a2) = 2, v2(ak) ≥ 3,

v2(b0) = 0, v2(b1) = v2(b2) = 2, v2(bk) ≥ 3

for k ≥ 3. Since c2 ≡ 1 (mod 8) and c2 + 2n ≡ 5 (mod 8), by (4.13),

a0 − b0 = 2n(c2 + 2n)n−1 ≡ 2 · 6 · 5 ≡ 4 (mod 8),

a1 = −n(n− 1)c2(c2 + 2n)n−2 ≡ −6 · 5 · 1 · 1 ≡ 2 (mod 8).

Hence, by (4.9),

Dn(c) ≡ a0 − b0 + a1 − b1 + a2 − b2 ≡ 4 + 2− 4 + 4− 4 ≡ 2 (mod 8).

Therefore Dn(c)/2 ≡ 1 (mod 4). By (4.6) through (4.8), we have

22e disc(Hn;c) ≡ 7 · 1 ≡ 3 (mod 4),

where e is an integer. Therefore disc(Hn;c) is not a square in Q2 by Lemma 4.5.

If v2(c) = 1, then c2 + 2n ≡ 4 + 12 ≡ 0 (mod 16). Hence we have v2(c
2 + 2n) ≥ 4

and mn(c) ≤ −5. By (4.12),

v2(an/2) =
3

2
n, v2(ak) = 3k + (n− 2k)v2(c

2 + 2n) ≥ 3

2
n+ 5,

v2(bk) = 3k + 2 + (n− 1− 2k)v2(c
2 + 2n) ≥ 3

2
n+ 3

for k ≤ n/2− 1. By (4.10) and (4.11),

an/2 = (−1)n/2
n!

(n/2)!0!
cn = −2n/2(n− 1)!!cn.

Since (n− 1)!! ≡ 7 (mod 8), and by (4.9),
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Dn(c)

23n/2
≡

an/2

23n/2
= −(n− 1)!!

cn

2n
≡ 1 (mod 8).

By (4.6) through (4.8), we have

22e disc(Hn;c) ≡ 7 · 1 ≡ 7 (mod 8),

where e is an integer. Therefore disc(Hn;c) is not a square in Q2 by Lemma 4.5.

If v2(c) ≥ 2, then v2(c
2 + 2n) = 2 and mn(c) = 2v2(c)− 3 ≥ 1. By (4.12),

v2(a0) = 2n, v2(ak) ≥ 2n+ 1 for k ≥ 1, v2(bk) ≥ 2n+ 2 for k ≥ 0.

Hence v2(Dn(c)) = v2(a0) = 2n. Since n ≡ 6 (mod 8), we have v2(disc(Hn;c)) ≡ 1

(mod 2) by (4.6) through (4.8). So disc(Hn;c) is not a square in Q2 by Lemma 4.5. □

We now translate Theorem 4.6 in terms of rational points on curves. Let

fr(c) = disc(Hr+1;c). (4.16)

Then fr(c) is a polynomial in c of degree 2r with integer coefficients. Let Cr be the

hyperelliptic curve defined by y2 = fr(x).

Theorem 4.8. The curve Cr has no Q2-rational points if and only if r ≡ 2, 3, 4, 5, 6

(mod 8).

Proof. Assume that r ≡ 2, 3, 4, 5, 6 (mod 8). By Theorem 4.6, it is sufficient to

prove that the points at infinity of Cr are not Q2-rational. By the proof of Theorem 4.6,

the leading coefficient of fr(x) is equal to

2(r+1)(3r−2)/2+1
r∏

k=1

kk. (4.17)

It is not a square in Q2 by Lemma 4.5, (4.7), and (4.8). Therefore the points at infinity

of Cr are not Q2-rational.

Assume that r ≡ 0, 7 (mod 8). By Remark 3.9,

fr(0) = disc(Hr+1) = 23r(r+1)/2
r+1∏
k=1

kk.

If r ≡ 0, 7 (mod 8), then 3r(r + 1)/2 ≡ 0 (mod 2). By (4.8), we have

22e
r+1∏
k=1

kk ≡ 1 (mod 8),

where e is an integer. Hence fr(0) is a square in Q2 by Lemma 4.5. Therefore Cr has a

Q2-rational point.
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Finally, assume that r ≡ 1 (mod 8). Then the leading coefficient of fr(x) is a

square in Q2 by Lemma 4.5, (4.8), and (4.17). Therefore the points at infinity of Cr are

Q2-rational. □

Remark 4.9. In fact, if r ≡ 1 (mod 8), then fr(x) is a square in Q2 when v2(x)

is sufficiently small. Therefore Cr has a Q2-rational point in the affine part.

5. Conclusion and further remarks.

We have derived explicit formulas for the discriminants of all classical quasi-

orthogonal polynomials, as a full generalization of the result of Dilcher and Stolarsky

[7]. Their proof is based on algebraic properties of resultants and the Euclidean al-

gorithm for polynomials, whereas our proof uses Schur’s method [23] (see [31, Sec-

tion 6.71]). A natural question then asks whether we can generalize Theorem 3.1 to

larger classes of orthogonal polynomials. For this purpose, we may use some recent

results concerning the question of when a family of quasi-orthogonal polynomials is ac-

tually an orthogonal polynomial sequence. For example, Alfaro et al. [1] characterize the

families of orthogonal polynomials, say {Φn}n, such that quasi-orthogonal polynomials

Φn,2(x) = Φn(x) + a1Φn−1(x) + a2Φn−2(x) are also orthogonal. By computing the re-

currence coefficients and then using Schur’s method, we may find an explicit formula for

the discriminants even in the order-two case. Also, it is well known (cf. [10]) that the

Bernstein–Szegő polynomials can be expressed as linear combinations of Chebyshev poly-

nomials. By combining this with Schur’s method, we may prove the Dilcher–Stolarsky

formula.

We have also dealt with Hausdorff-type equations and created the relationship to

quasi-Hermite polynomials and quadrature formulas for Gaussian integration. We have

then proved a necessary and sufficient condition for the hyperelliptic curve Cr : y2 =

disc(Hr+1;x) to have Q2-rational points. This not only provides a general nonexistence

theorem for solutions of Hausdorff-type equations, but also gives opportunities to use

discriminants in the study of quadrature formulas and quasi-Hermite polynomials.

The hyperelliptic curve Cr may possibly have Qp-rational points for prime numbers

p ≥ 3. For example by using the function IsLocallySolvable in Magma [4], we have

examined r ≤ 40 and p such that the curve Cr has no Qp-rational points; see Table 1.

Accordingly, by the same argument as in Corollary 4.7, the equations (4.3) for (m,n) =

(r + 1, 2r) have no rational solutions for r ≤ 40. To improve Theorem 4.6 is again left

for future work.

It may be also interesting to consider analogues of Theorem 4.6 for other classical

quasi-orthogonal polynomials. For example, by Corollary 3.4, we have

disc(Ur+1) = lim
c→0

disc(Ur+1;c) = 2(r+1)2(r + 2)r−1.

This is a square in the rationals if r is odd. Therefore, for any odd integer r and any

prime number p, the hyperelliptic curve Cr has a Qp-rational point, which does not

give informations on solutions of (4.3). Another interesting case will be the Legendre

polynomials which correspond to the integration (1/2)
∫ 1

−1
dx. In this case, by a classical
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Table 1. The prime numbers p such that Cr(Qp) = ∅.

r p r p r p r p

1 11 2,3 21 2,3,11,13 31 11,31

2 2,3 12 2,5,7 22 2,11,13,17,19 32 23,31

3 2 13 2,5,7,11,13 23 3,17,23 33 3,17,23,29

4 2 14 2,7,11,13 24 13,23 34 2,13,19,23,29,31

5 2,3,5 15 7 25 11,19,23 35 2,5,7,13,23,29,31

6 2,3,5 16 11 26 2,13 36 2,5,7,13,17,19,23,29,31

7 7 17 7,11 27 2,11 37 2,13,19,23,29,37

8 5,7 18 2,3,11 28 2,7,11,17,19,23 38 2,3,5,7,19,23,37

9 3 19 2,17 29 2,11,29 39 17,37

10 2,5,7 20 2,5,11,13 30 2,3,17,19,23,29 40 5,7,17,31

result of Holt [14], we see that there exist no rational solutions of (4.3) for n = 2m− 1.

We are again naturally interested in the case when n = 2m− 2.
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A. The classical orthogonal polynomials and some basic properties.

We here describe some basic properties on Jacobi polynomials, Laguerre polynomi-

als, Hermite polynomials, which are used in the proof of our results.

A.1. Jacobi polynomials.

The following informations can be found in [31, Chapter IV].

Explicit expression.

P (α,β)
n (x) =

n∑
m=0

(
n+ α

m

)(
n+ β

n−m

)(
x− 1

2

)n−m (
x+ 1

2

)m

. (A.1)

Three-term relation.

2n(n+ α+ β)(2n+ α+ β − 2)P (α,β)
n (x)

= (2n+ α+ β − 1)
(
(2n+ α+ β)(2n+ α+ β − 2)x+ α2 − β2

)
P

(α,β)
n−1 (x)

− 2(n+ α− 1)(n+ β − 1)(2n+ α+ β)P
(α,β)
n−2 (x). (A.2)

Derivative formulas.

(2n+ α+ β)(1− x2)
d

dx
P (α,β)
n (x)

= −n ((2n+ α+ β)x+ β − α)P (α,β)
n (x) + 2(n+ α)(n+ β)P

(α,β)
n−1 (x), (A.3)
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(2n+ α+ β + 2)(1− x2)
d

dx
P (α,β)
n (x)

= (n+ α+ β + 1) ((2n+ α+ β + 2)x+ α− β)P (α,β)
n (x)

− 2(n+ 1)(n+ α+ β + 1)P
(α,β)
n+1 (x). (A.4)

A.2. Laguerre polynomials.

The following informations can be found in [31, Section 5.1].

Explicit expression.

L(α)
n (x) =

n∑
k=0

(
n+ α

n− k

)
(−x)k

k!
. (A.5)

Three-term relation.

nL(α)
n (x) = (−x+ 2n+ α− 1)L

(α)
n−1(x)− (n+ α− 1)L

(α)
n−2(x). (A.6)

Derivative formulas.

d

dx
L(α)
n (x) = x−1

(
nL(α)

n (x)− (n+ α)L
(α)
n−1(x)

)
. (A.7)

A.3. Hermite polynomials.

The following informations can be found in [31, Section 5.5].

Explicit expression.

Hn(x) =

⌊n/2⌋∑
k=0

(−1)k
n!

k!(n− 2k)!
(2x)n−2k. (A.8)

Three-term relation.

Hn(x)− 2xHn−1(x) + 2(n− 1)Hn−2(x) = 0. (A.9)

Derivative formulas.

H ′
n(x) = 2nHn−1(x). (A.10)
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