©2019 The Mathematical Society of Japan J. Math. Soc. Japan Vol. 71, No. 3 (2019) pp. 689–708 doi: 10.2969/jmsj/79597959

Superharmonic functions of Schrödinger operators and Hardy inequalities

By Yusuke MIURA

(Received Jan. 14, 2018)

Abstract. Given a Dirichlet form with generator \mathcal{L} and a measure μ , we consider superharmonic functions of the Schrödinger operator $\mathcal{L} + \mu$. We probabilistically prove that the existence of superharmonic functions gives rise to the Hardy inequality. More precisely, the L^2 -Hardy inequality is derived from Itô's formula applied to the superharmonic function.

1. Introduction.

Let $\mathbb{M} = (X_t, \mathbb{P}_x)$ be an *m*-symmetric Hunt process on a locally compact separable metric space *E*. Here *m* is a positive Radon measure with full topological support. $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ denotes the Dirichlet form on $L^2(E; m)$ generated by \mathbb{M} .

Let μ be a positive smooth measure and $\mathcal{D}_{loc}(\mathcal{E})$ the set of functions locally in $\mathcal{D}(\mathcal{E})$ in the ordinary sense. A function $h \in \mathcal{D}_{loc}(\mathcal{E})$ is said to be *superharmonic* with respect to the Schrödinger operator $\mathcal{L}^{\mu} := \mathcal{L} + \mu$ if

$$\mathcal{E}(h,\varphi) - \int_E h\varphi \, d\mu \ge 0 \quad \text{for all } \varphi \in \mathcal{D}(\mathcal{E}) \cap C_0(E) \text{ with } \varphi \ge 0.$$

Here \mathcal{L} is the generator of the process \mathbb{M} and $C_0(E)$ is the set of continuous functions with compact support. We remark that $\mathcal{E}(h,\varphi)$ is not well-defined for $h \in \mathcal{D}_{\text{loc}}(\mathcal{E})$ and $\varphi \in \mathcal{D}(\mathcal{E}) \cap C_0(E)$ in general if $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ has a jumping part. For this reason, we assume that every superharmonic function belongs to the subclass $\mathcal{D}_{\text{loc}}^{\dagger}(\mathcal{E})$ of $\mathcal{D}_{\text{loc}}(\mathcal{E})$ (see Section 2 for the definition). The class $\mathcal{D}_{\text{loc}}^{\dagger}(\mathcal{E})$ was introduced by Kuwae [16] and satisfies the following property: for any $u \in \mathcal{D}_{\text{loc}}^{\dagger}(\mathcal{E})$ and $\varphi \in \mathcal{D}(\mathcal{E}) \cap C_0(E)$, $\mathcal{E}(u,\varphi)$ is well-defined by

$$\mathcal{E}(u,\varphi) = \mathcal{E}^{(c)}(u,\varphi) + \int_{E\times E} (u(x) - u(y))(\varphi(x) - \varphi(y))J(dx,dy) + \int_E u\varphi \,d\kappa$$

(the definitions of $\mathcal{E}^{(c)}$, J and κ are found in Section 2).

It is known that superharmonic functions play an important role in the study of $(L^2$ -)Hardy's inequality:

²⁰¹⁰ Mathematics Subject Classification. Primary 31C25; Secondary 31C05, 60J25.

Key Words and Phrases. symmetric Markov process, Dirichlet form, superharmonic function, excessive function, Hardy inequality.

$$\int_E u^2 d\mu \leq \mathcal{E}(u, u), \quad u \in \mathcal{D}(\mathcal{E})$$

(see [4] and [9] for example). One of objectives is to show that if there exists a superhamonic function h of \mathcal{L}^{μ} , then the following equality holds true

$$\mathcal{E}(u,u) - \int_{E} u^{2} d\mu = \mathcal{E}^{h}\left(\frac{u}{h}, \frac{u}{h}\right) + \int_{E} \frac{u^{2}}{h} d\nu, \quad u \in \mathcal{D}(\mathcal{E}).$$
(1)

Note that the equality (1) is a refinement of L^2 -Hardy's inequality because the righthand side is nonnegative. Here \mathcal{E}^h is the Dirichlet form generated by the Girsanov transformed process defined by h (see Section 4 for details) and ν is a positive smooth measure satisfying the relation

$$\mathcal{E}(h,\varphi) - \int_E h\varphi \, d\mu = \int_E \varphi \, d\nu, \quad \varphi \in \mathcal{D}(\mathcal{E}) \cap C_0(E).$$

Our proof is obtained by applying Itô's formula to Fukushima's decompositions of superharmonic functions. Kuwae [16] and [17] proves that every $u \in \mathcal{D}_{loc}^{\dagger}(\mathcal{E})$ admits Fukushima's decomposition: $u(X_t) - u(X_0)$ is decomposed into a martingale additive functional locally of finite energy and a continuous additive functional locally of zero energy. It is known that the 0-energy part in Fukushima's decomposition is not always of bounded variation, in particular, Itô's formula is not always applicable. From [13, Chapter 5], we know sufficient conditions for the 0-energy part of a function in $\mathcal{D}(\mathcal{E})$ being of locally bounded variation. We extend those conditions to the class $\mathcal{D}_{loc}^{\dagger}(\mathcal{E})$ (Theorem 3.2, Corollary 3.3) and show that the 0-energy part of superharmonic function in $\mathcal{D}_{loc}^{\dagger}(\mathcal{E})$ is of locally bounded variation (Lemma 4.1). By combining this result with Itô's formula, we prove that the equality (1) holds whenever there exists a positive continuous superharmonic function in $\mathcal{D}_{loc}^{\dagger}(\mathcal{E})$.

We consider the Dirichlet form $(\mathcal{E}^{(\alpha)}, \mathcal{D}(\mathcal{E}^{\alpha}))$ associated with the symmetric α -stable process on \mathbb{R}^d . Assume $0 < \alpha < 2 \land d$, that is, $(\mathcal{E}^{(\alpha)}, \mathcal{D}(\mathcal{E}^{\alpha}))$ is transient. We show that $|x|^{-p}, p \in (0, (d/2) \land (d-\alpha))$ is a superharmonic function of $-1/2(-\Delta)^{\alpha/2} + C_{d,\alpha,p} \cdot |x|^{-\alpha}$, and derive the following equality as an application of (1):

$$\mathcal{E}^{(\alpha)}(u,u) - C_{d,\alpha,p} \int_{\mathbb{R}^d} \frac{u(x)^2}{|x|^{\alpha}} dx$$

$$= \frac{1}{2} \mathcal{A}(d,\alpha) \iint_{\mathbb{R}^d \times \mathbb{R}^d} \left(\frac{u(x)}{|x|^{-p}} - \frac{u(y)}{|y|^{-p}} \right)^2 \frac{|x|^{-p}|y|^{-p}}{|x-y|^{d+\alpha}} dx dy, \quad u \in \mathcal{D}(\mathcal{E}^{(\alpha)})$$

$$(2)$$

(the definitions of constants $C_{d,\alpha,p}$, $\mathcal{A}(d,\alpha)$ are found in Section 6). The representation (2) has been already proved by Bogdan, Dyda and Kim [5] (see also [2], [12]). We would like to emphasize that although the proof in [5] is analytic, our proof is probabilistic, that is, L^2 -Hardy's inequality follows from Itô's formula.

We can characterize superharmonic functions by using excessive functions. Let μ be a positive measure in the local Kato class and $\{p_t^{\mu}\}_{t\geq 0}$ the Feynman–Kac semigroup defined by

$$p_t^{\mu} f(x) = \mathbb{E}_x[\exp(A_t^{\mu})f(X_t)],$$

where $\{A_t^{\mu}\}_{t\geq 0}$ is a positive continuous additive functional with Revuz measure μ . Takeda [20] shows that under the local property assumption, a strictly positive function h in $\mathcal{D}_{\text{loc}}(\mathcal{E}) \cap C(\mathcal{E})$ is superharmonic with respect to \mathcal{L}^{μ} if and only if h is p_t^{μ} -excessive, that is, $p_t^{\mu}h \leq h$. We extend this result to more general Dirichlet forms with non-local part (Theorem 5.1).

2. Preliminaries on Dirichlet forms.

Let E be a locally compact separable metric space and m a positive Radon measure with full topological support on E. Denote by $E_{\Delta} := E \cup \{\Delta\}$ the one point compactification of E. Let $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ be a regular Dirichlet form on $L^2(E; m)$. We denote $\mathcal{D}_e(\mathcal{E})$ by the family of m-measurable functions u on E such that $|u| < \infty$ m-a.e. and there exists an \mathcal{E} -Cauchy sequence $\{u_n\}$ of $\mathcal{D}(\mathcal{E})$ such that $\lim_{n\to\infty} u_n = u$ m-a.e. We call $\mathcal{D}_e(\mathcal{E})$ the extended Dirichlet space of $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$.

Let $\mathbb{M} = (\Omega, \mathscr{F}, \{\mathscr{F}_t\}_{t \ge 0}, \{\mathbb{P}_x\}_{x \in E}, \{X_t\}_{t \ge 0}, \zeta)$ be the symmetric Hunt process generated by $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$, where $\{\mathscr{F}_t\}_{t \ge 0}$ is the augmented filtration and $\zeta := \inf\{t \ge 0 \mid X_t = \Delta\}$ is the lifetime of \mathbb{M} . Denote by $\{p_t\}_{t \ge 0}$ and $\{R_\beta\}_{\beta \ge 0}$ the semigroup and resolvent of \mathbb{M} :

$$p_t f(x) = \mathbb{E}_x[f(X_t)], \ R_\beta f(x) = \int_0^\infty e^{-\beta t} p_t f(x) dt, \ f \in \mathfrak{B}_b(E),$$

where $\mathfrak{B}_b(E)$ is the space of bounded Borel functions on E.

For a closed subset F of E, we define

$$\mathcal{D}(\mathcal{E})_F := \{ u \in \mathcal{D}(\mathcal{E}) \mid u = 0 \text{ m-a.e. on } E \setminus F \}.$$

An increasing sequence $\{F_n\}_{n\geq 1}$ of closed sets of E is said to be an \mathcal{E} -nest if $\bigcup_{n\geq 1} \mathcal{D}(\mathcal{E})_{F_n}$ is dense in $\mathcal{D}(\mathcal{E})$ with respect to the norm $\sqrt{\mathcal{E}_1}$ (:= $\sqrt{\mathcal{E}(\cdot, \cdot) + (\cdot, \cdot)_m}$), where $(\cdot, \cdot)_m$ denotes the inner product on $L^2(E; m)$.

A subset N of E is said to be \mathcal{E} -exceptional if there is an \mathcal{E} -nest $\{F_n\}_{n\geq 1}$ such that $N \subset \bigcap_{n\geq 1} (E \setminus F_n)$. A statement depending on $x \in E$ is said to hold quasi-everywhere (q.e. in abbreviation) on E if there exists an \mathcal{E} -exceptional set N such that the statement is true for every $x \in E \setminus N$. A function u is said to be quasi-continuous if there exists an \mathcal{E} -nest $\{F_n\}_{n\geq 1}$ such that $u|_{F_n}$ is finite and continuous on F_n for each n. Here $u|_{F_n}$ is the restriction of u to F_n . Each function $u \in \mathcal{D}_e(\mathcal{E})$ admits a quasi-continuous m-version \tilde{u} , that is $u = \tilde{u}$ m-a.e. In the sequel, we always take a quasi-continuous m-version for every element of $\mathcal{D}_e(\mathcal{E})$.

A positive Borel measure ν on E is said to be *smooth* if it satisfies the following two conditions:

- (i) ν charges no \mathcal{E} -exceptional set,
- (ii) there exists an \mathcal{E} -nest $\{F_n\}_{n\geq 1}$ such that $\nu(F_n) < \infty$ for each n.

A function u is said to be *locally in* $\mathcal{D}(\mathcal{E})$ *in the ordinary sense* $(u \in \mathcal{D}_{loc}(\mathcal{E})$ in notation) if for any relatively compact open set G, there exists a function $v \in \mathcal{D}(\mathcal{E})$ such that u = v m-a.e. on G.

We define the family Θ of finely open sets by

 $\Theta = \left\{ \{G_n\}_{n \ge 1} \mid G_n \text{ is finely open and Borel for all } n, G_n \subset G_{n+1}, \ \bigcup_{n=1}^{\infty} G_n = E \ \text{q.e.} \right\}.$

(The definition of a finely open set is found in [13].) For two subsets A, B of E, A = Bq.e. means $A\Delta B := (A \setminus B) \cup (B \setminus A)$ is \mathcal{E} -exceptional. Note that for an \mathcal{E} -nest $\{F_n\}$ of closed sets, $\{G_n\} \in \Theta$ by setting $G_n := F_n^{f-\text{int}}$, where $F_n^{f-\text{int}}$ means the fine interior of F_n . A function u on E is said to be *locally in* $\mathcal{D}(\mathcal{E})$ in the broad sense $(u \in \dot{\mathcal{D}}_{\text{loc}}(\mathcal{E}))$ in notation) if there exists $\{G_n\} \in \Theta$ and $\{u_n\} \subset \mathcal{D}(\mathcal{E})$ such that $u = u_n$ m-a.e. on G_n for each $n \in \mathbb{N}$. Clearly, $\mathcal{D}_{\text{loc}}(\mathcal{E}) \subset \dot{\mathcal{D}}_{\text{loc}}(\mathcal{E})$.

For $u, v \in \mathcal{D}_e(\mathcal{E})$, the following Beurling–Deny formula holds:

$$\mathcal{E}(u,v) = \mathcal{E}^{(c)}(u,v) + \int_{E \times E} (u(x) - u(y))(v(x) - v(y))J(dx,dy) + \int_E uv \, d\kappa \qquad (3)$$

([13, Theorem 4.5.2]). Here J is a symmetric Radon measure on $E \times E$ and κ is a Radon measure on E. $\mathcal{E}^{(c)}$ is a symmetric form possessing the strong local property, i.e., $\mathcal{E}^{(c)}(u,v) = 0$ whenever u has a compact support and v is constant on a neighborhood of supp[u]. Moreover, we see by [13, Lemma 3.2.3] that for $u, v \in \mathcal{D}_e(\mathcal{E})$, there exists a signed measure $\mu^c_{\langle u,v \rangle}$ such that $\mathcal{E}^{(c)}(u,v) = 2^{-1}\mu^c_{\langle u,v \rangle}(E)$. Set $\mu^c_{\langle u \rangle} := \mu^c_{\langle u,u \rangle}$. We can extend $\mu^c_{\langle u,v \rangle}$ to $u, v \in \dot{\mathcal{D}}_{loc}(\mathcal{E})$.

LEMMA 2.1. For any $\{G_n\} \in \Theta$, there exists an \mathcal{E} -nest $\{F_n\}$ such that $F_n \subset G_n$ q.e. and $J(F_n \times (E \setminus G_n)) < \infty$ for each n.

PROOF. The proof is based on an idea in the proof of [16, Lemma 2.2]. Take $g \in L^2(E;m)$ with $0 < g \leq 1$ on E and define

$$R_1^{G_n}g(x) := \mathbb{E}_x \left[\int_0^{\tau_{G_n}} e^{-s} g(X_s) ds \right],$$

where τ_{G_n} is the first exit time from the set G_n . Then $R_1^{G_n}g(x) > 0$ on G_n and $R_1^{G_n}g(x)$ is quasi-continuous for each n. Take a common \mathcal{E} -nest $\{K_j\}$ such that all $R_1^{G_n}g$, $n \ge 1$ are continuous on each K_j . Set $F_n := \{x \in K_n \mid R_1^{G_n}g(x) \ge 1/n\}$. Then since $B_n := \{R_1^{G_n}g > 1/n\}$ is increasing and $E \setminus \bigcup_{n\ge 1} B_n$ is \mathcal{E} -exceptional, $\{F_n\}$ is an \mathcal{E} -nest by [15, Lemma 3.3]. For each n, $(E \setminus G_n)^r \subset E \setminus F_n$, where $(E \setminus G_n)^r = \{x \in E \mid R_1^{G_n}g(x) = 0\}$ is the set of regular points for $E \setminus G_n$. Hence,

$$F_n \setminus G_n \subset F_n \cap ((E \setminus G_n) \setminus (E \setminus G_n)^r).$$

Since $((E \setminus G_n) \setminus (E \setminus G_n)^r)$ is \mathcal{E} -exceptional, we see $F_n \subset G_n$ q.e. Moreover, since $R_1^{G_n}g \geq 1/n$ on F_n and $R_1^{G_n}g = 0$ q.e. on $E \setminus G_n$, it holds that

Superharmonic functions and Hardy inequalities

$$J(F_n \times (E \setminus G_n)) \le n^2 \int_{F_n \times (E \setminus G_n)} (R_1^{G_n}g(x) - R_1^{G_n}g(y))^2 J(dx, dy)$$

The right-hand side is finite because $R_1^{G_n}g$ is an element of $\mathcal{D}(\mathcal{E})$. Hence, $\{F_n\}$ is a desired one.

For $u \in \dot{\mathcal{D}}_{\text{loc}}(\mathcal{E})$, we define a Borel measure $\mu_{(u)}^{j}$ on E by

$$\mu^j_{\langle u\rangle}(B) := \int_{B \times E} (u(x) - u(y))^2 J(dx, dy).$$

We introduce subclasses $\mathcal{D}_{loc}^{\dagger}(\mathcal{E})$ of $\mathcal{D}_{loc}(\mathcal{E})$ and $\dot{\mathcal{D}}_{loc}^{\dagger}(\mathcal{E})$ of $\dot{\mathcal{D}}_{loc}(\mathcal{E})$ defined by

$$\mathcal{D}_{\rm loc}^{\dagger}(\mathcal{E}) := \{ u \in \mathcal{D}_{\rm loc}(\mathcal{E}) \mid \mu_{\langle u \rangle}^{j} \text{ is a Radon measure on } E \}, \\ \dot{\mathcal{D}}_{\rm loc}^{\dagger}(\mathcal{E}) := \{ u \in \dot{\mathcal{D}}_{\rm loc}(\mathcal{E}) \mid \mu_{\langle u \rangle}^{j} \text{ is a smooth measure on } E \}.$$

Clearly, $\mathcal{D}_{\text{loc}}^{\dagger}(\mathcal{E}) \subset \dot{\mathcal{D}}_{\text{loc}}^{\dagger}(\mathcal{E})$. It is noted in [16] that $\mathcal{D}(\mathcal{E}) \cup l(\mathcal{D}_{\text{loc}}(\mathcal{E}))_b \subset \mathcal{D}_{\text{loc}}^{\dagger}(\mathcal{E})$ and $\mathcal{D}_e(\mathcal{E}) \cup (\dot{\mathcal{D}}_{\text{loc}}(\mathcal{E}))_b \subset \dot{\mathcal{D}}_{\text{loc}}^{\dagger}(\mathcal{E})$. Here $(\mathcal{D}_{\text{loc}}(\mathcal{E}))_b$ (resp. $(\dot{\mathcal{D}}_{\text{loc}}(\mathcal{E}))_b$) is the set of bounded functions in $\mathcal{D}_{\text{loc}}(\mathcal{E})$ (resp. $\dot{\mathcal{D}}_{\text{loc}}(\mathcal{E})$). For any $v \in \mathcal{D}(\mathcal{E})$ with compact support and $u \in \mathcal{D}_{\text{loc}}^{\dagger}(\mathcal{E})$, the value of $\mathcal{E}(u, v)$ defined by (3) is finite ([11, Theorem 3.5]).

3. Continuous additive functionals locally of zero energy.

A stochastic process $\{A_t\}_{t\geq 0}$ is said to be an *additive functional* (AF in abbreviation) if it satisfies the following conditions:

- (i) $A_t(\cdot)$ is \mathscr{F}_t -measurable for all $t \ge 0$,
- (ii) there exists a set $\Lambda \in \mathscr{F}_{\infty} = \sigma(\bigcup_{t \geq 0} \mathscr{F}_t)$ such that $\mathbb{P}_x(\Lambda) = 1$ for q.e. $x \in E$, $\theta_t \Lambda \subset \Lambda$ for all t > 0, and for each $\omega \in \Lambda$, $A_{\cdot}(\omega)$ is a function satisfying: $A_0(\omega) = 0$, $A_t(\omega) < \infty$ for $t < \zeta(\omega)$, $A_t(\omega) = A_{\zeta}(\omega)$ for $t \geq \zeta(\omega)$, and $A_{t+s}(\omega) = A_t(\omega) + A_s(\theta_t \omega)$ for $s, t \geq 0$.

An AF $\{A_t\}_{t\geq 0}$ is said to be *continuous additive functional* (CAF in abbreviation) if $t \mapsto A_t(\omega)$ is continuous on $[0,\infty[$ for each $\omega \in \Lambda$. A $[0,\infty[$ -valued CAF is called a *positive continuous additive functional* (PCAF in abbreviation). The family of all smooth measures and the set of all PCAF's are in one-to-one correspondence (*Revuz correspondence*) as follows: for each smooth measure ν , there exists a unique PCAF $\{A_t\}_{t\geq 0}$ such that for any nonnegative Borel function f and γ -excessive function h, that is, $e^{-\gamma t}p_th \leq h$,

$$\lim_{t \downarrow 0} \frac{1}{t} \mathbb{E}_{hm} \left[\int_0^t f(X_s) dA_s \right] = \int_E f(x) h(x) \nu(dx)$$

([13, Theorem 5.1.4]). Here $\mathbb{E}_{hm}[\cdot] = \int_E \mathbb{E}_x[\cdot]h(x)m(dx)$. For a smooth measure ν , we denote by $\{A_t^{\nu}\}_{t>0}$ the PCAF corresponding to ν .

We see from [17, Theorem 1.2] that for $u \in \dot{\mathcal{D}}_{loc}^{\dagger}(\mathcal{E})$, the additive functional $u(X_t) - u(X_0)$ admits the following decomposition (*Fukushima's decomposition*):

$$u(X_t) - u(X_0) = M_t^{[u]} + N_t^{[u]}, \text{ for } t \in [0, \zeta],$$

where $M_t^{[u]}$ is a martingale additive functional locally of finite energy and $N_t^{[u]}$ is a CAF locally of zero energy (see [16] and [17] for more details). A CAF $\{A_t\}_{t\geq 0}$ is said to be of bounded variation if A_t can be expressed as a difference of two PCAF's:

$$A_t = A_t^{(1)} - A_t^{(2)}, \quad t < \zeta.$$

It is known that the 0-energy part $N_t^{[u]}$ in Fukushima's decomposition is not necessary of bounded variation. For $u \in \mathcal{D}_e(\mathcal{E})$, sufficient conditions for $N_t^{[u]}$ being of bounded variation are given in [13, Chapter 5]. Our aim in this section is to extend those results to the class $\dot{\mathcal{D}}_{loc}^{\dagger}(\mathcal{E})$.

Recall that for a closed subset F of E, $\mathcal{D}(\mathcal{E})_F$ is the space defined by

$$\mathcal{D}(\mathcal{E})_F = \{ u \in \mathcal{D}(\mathcal{E}) \mid u = 0 \text{ m-a.e. on } F^c := E \setminus F \}.$$

 $\mathcal{D}_e(\mathcal{E})_F$ and $\mathcal{D}_b(\mathcal{E})_F$ are defined similarly, where $\mathcal{D}_b(\mathcal{E})$ is a set of bounded functions in $\mathcal{D}(\mathcal{E})$. For a function f and a Borel set $B \subset E$, define

$$H_B f(x) := \mathbb{E}_x[f(X_{\sigma_B}); \sigma_B < \infty],$$

where σ_B is the first hitting time of B.

Following the argument in the proof of [7, Lemma 6.2.10], we have the next lemma.

LEMMA 3.1. For any $u \in \dot{\mathcal{D}}_{loc}^{\dagger}(\mathcal{E})$, there exists an \mathcal{E} -nest $\{F_n\}$ such that for each n, F_n satisfies the following three properties:

(i)
$$\mu_{\langle u \rangle}^c(F_n) + \int_{F_n \times E} (u(x) - u(y))^2 J(dx, dy) + \int_{F_n} u^2 d\kappa < \infty,$$

in particular, the value of $\mathcal{E}(u, v)$ defined by (3) is finite for all $v \in \bigcup_{n \ge 1} \mathcal{D}(\mathcal{E})_{F_n}$,

(ii) $u - H_{F_n^c} u \in \mathcal{D}_e(\mathcal{E})_{F_n}$ and

$$\begin{aligned} \mathcal{E}(u - H_{F_n^c} u, u - H_{F_n^c} u) &\leq \frac{1}{2} \,\mu_{\langle u \rangle}^c(F_n) + \int_{F_n \times F_n} (u(x) - u(y))^2 J(dx, dy) \\ &+ 2 \int_{F_n \times F_n^c} (u(x) - u(y))^2 J(dx, dy) + \int_{F_n} u^2 \,d\kappa, \end{aligned}$$

(iii) $H_{F_n^c} u \in \dot{\mathcal{D}}_{\text{loc}}^{\dagger}(\mathcal{E})$ and $\mathcal{E}(H_{F_n^c} u, v) = 0$ for any $v \in \mathcal{D}_b(\mathcal{E})_{F_n}$.

PROOF. Note that $H_{F_n^c} u = u$ q.e. on F_n^c .

First we show that (i)–(iii) are satisfied for any $u \in \mathcal{D}_e(\mathcal{E})$ and closed set F instead of F_n . Clearly, (i) holds. $u - H_{F_n^c} u \in \mathcal{D}_e(\mathcal{E})_{F_n}$ and (iii) follow from [13, Theorem 4.6.5]. Since

$$\mathcal{E}(u - H_{F^c}u, u - H_{F^c}u) = \mathcal{E}(u, u) - \mathcal{E}(H_{F^c}u, H_{F^c}u)$$

and

$$\begin{aligned} \mathcal{E}(H_{F^c}u, H_{F^c}u) &\geq \frac{1}{2}\,\mu^c_{\langle H_{F^c}u\rangle}(F^c) + \int_{F^c\times F^c} \left(H_{F^c}u(x) - H_{F^c}u(y)\right)^2 J(dx, dy) \\ &+ \int_{F^c} \left(H_{F^c}u\right)^2 d\kappa \\ &= \frac{1}{2}\,\mu^c_{\langle u\rangle}(F^c) + \int_{F^c\times F^c} (u(x) - u(y))^2 J(dx, dy) + \int_{F^c} u^2 \,d\kappa, \end{aligned}$$

we attain (ii).

Suppose $u \in \dot{\mathcal{D}}^{\dagger}_{\text{loc}}(\mathcal{E})$. From the definition of $\dot{\mathcal{D}}^{\dagger}_{\text{loc}}(\mathcal{E})$, there exists an \mathcal{E} -nest $\{F_n^{(1)}\}$ such that

$$\int_{F_n^{(1)} \times E} (u(x) - u(y))^2 J(dx, dy) < \infty$$

for every *n*. By the regularity of $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$, we may assume that all $F_n^{(1)}$, $n \geq 1$ are compact. Take sequences $\{G_n\} \in \Theta$ and $\{u_n\} \subset \mathcal{D}(\mathcal{E})$ such that $u = u_n$ q.e. on G_n for each *n*. From Lemma 2.1, there exists an \mathcal{E} -nest $\{F_n^{(2)}\}$ such that $F_n^{(2)} \subset G_n$ q.e. and $J(F_n^{(2)} \times G_n^c) < \infty$ for each *n*. We define an \mathcal{E} -nest $\{F_n\}$ by $F_n := F_n^{(1)} \cap F_n^{(2)}$. Clearly, $\{F_n\}$ satisfies (i).

In the remainder of the proof, we fix $n \ge 1$ and put $F := F_n$, $G := G_n$. For k > nand M > 0, we set $u_k^{(M)} := (-M) \lor u_k \land M$, $u^{(M)} := (-M) \lor u \land M$. We have by applying (ii) to $u_k^{(M)} \in \mathcal{D}(\mathcal{E})$

$$\begin{split} \mathcal{E} \big(u_k^{(M)} - H_{F^c} u_k^{(M)}, \, u_k^{(M)} - H_{F^c} u_k^{(M)} \big) \\ &\leq \frac{1}{2} \mu_{\langle u_k^{(M)} \rangle}^c(F) + \int_{F \times F} \big(u_k^{(M)}(x) - u_k^{(M)}(y) \big)^2 J(dx, dy) \\ &\quad + 2 \int_{F \times F^c} \big(u_k^{(M)}(x) - u_k^{(M)}(y) \big)^2 J(dx, dy) + \int_F \big(u_k^{(M)} \big)^2 d\kappa. \end{split}$$

Noting that $u_k^{(M)} = u^{(M)}$ q.e. on G and $u^{(M)}$ is a normal contraction of u, the right-hand side is dominated by

$$\begin{split} \frac{1}{2} \mu_{\langle u \rangle}^{c}(F) &+ \int_{F \times F} \left(u(x) - u(y) \right)^{2} J(dx, dy) \\ &+ 2 \int_{F \times (F^{c} \cap G)} \left(u(x) - u(y) \right)^{2} J(dx, dy) \\ &+ 2 \int_{F \times (F^{c} \cap G^{c})} \left(u^{(M)}(x) - u_{k}^{(M)}(y) \right)^{2} J(dx, dy) + \int_{F} u^{2} d\kappa. \end{split}$$

Since $J(F \times G^c) < \infty$, we have by the bounded convergence theorem

$$\limsup_{k \to \infty} \mathcal{E} \left(u_k^{(M)} - H_{F^c} u_k^{(M)}, u_k^{(M)} - H_{F^c} u_k^{(M)} \right) \\
\leq \frac{1}{2} \mu_{\langle u \rangle}^c(F) + \int_{F \times F} (u(x) - u(y))^2 J(dx, dy) \\
+ 2 \int_{F \times F^c} (u(x) - u(y))^2 J(dx, dy) + \int_F u^2 d\kappa < \infty.$$
(4)

We see from the Banach–Saks theorem ([7, Theorem A.4.1]) that there exists a subsequence $\{u_{k_i}^{(M)}\}_{j\geq 1}, k_1 > n$ such that

$$\psi_j := \frac{1}{j} \sum_{\ell=1}^{j} \left(u_{k_\ell}^{(M)} - H_{F^c} u_{k_\ell}^{(M)} \right)$$

is an \mathcal{E} -Cauchy sequence. Hence, we see that $\{\psi_j\}$ \mathcal{E} -converges to $u^{(M)} - H_{F^c}u^{(M)} \in \mathcal{D}_e(\mathcal{E})_F \cap L^{\infty}(E;m)$. Since F is compact, the space $\mathcal{D}_e(\mathcal{E})_F \cap L^{\infty}(E;m)$ is contained in $L^2(E;m)$, and thus it coincides with $\mathcal{D}_b(\mathcal{E})_F$ by [13, Theorem 1.5.2]. Moreover,

$$\begin{aligned} \mathcal{E} \big(u^{(M)} - H_{F^c} u^{(M)}, u^{(M)} - H_{F^c} u^{(M)} \big) &= \lim_{j \to \infty} \mathcal{E} (\psi_j, \psi_j) \\ &\leq \limsup_{k \to \infty} \mathcal{E} \big(u_k^{(M)} - H_{F^c} u_k^{(M)}, u_k^{(M)} - H_{F^c} u_k^{(M)} \big). \end{aligned}$$

From the inequality (4), the right-hand side is uniformly bounded in M > 0. By using the Banach–Saks theorem again, we can choose an increasing sequence $\{M_j\}_{j\geq 1}$ such that

$$\varphi_j := \frac{1}{j} \sum_{\ell=1}^{j} \left(u^{(M_\ell)} - H_{F^c} u^{(M_\ell)} \right)$$

is an \mathcal{E} -approximating sequence of $u - H_{F^c}u$, which proves (ii).

Finally, we show (iii). From (ii) and the fact $\mathcal{D}_e(\mathcal{E}) \subset \dot{\mathcal{D}}_{\text{loc}}^{\dagger}(\mathcal{E})$, we see $H_{F^c}u \in \dot{\mathcal{D}}_{\text{loc}}^{\dagger}(\mathcal{E})$. For M > 0, we take the sequences $\{u_{k_j}^{(M)}\}_{j\geq 1}$, $\{\psi_j\}_{j\geq 1}$ defined in the last paragraph and put $\overline{u}_j^{(M)} := (1/j) \sum_{\ell=1}^j u_{k_\ell}^{(M)}$. Note that $\overline{u}_j^{(M)} = u^{(M)}$ q.e. on G. For $v \in \mathcal{D}_b(\mathcal{E})_F$, the value of $\mathcal{E}(\overline{u}_j^{(M)}, v)$ equals

$$\begin{split} &\frac{1}{2}\,\mu^c_{\langle u^{(M)},v\rangle}(F) + \int_{F\times F} \big(u^{(M)}(x) - u^{(M)}(y)\big)(v(x) - v(y))J(dx,dy) \\ &+ 2\int_{F\times (F^c\cap G)} \big(u^{(M)}(x) - u^{(M)}(y)\big)(v(x) - v(y))J(dx,dy) \\ &+ 2\int_{F\times (F^c\cap G^c)} \big(u^{(M)}(x) - \overline{u}_j^{(M)}(y)\big)(v(x) - v(y))J(dx,dy) + \int_F u^{(M)}v\,d\kappa. \end{split}$$

Hence, $\mathcal{E}(\overline{u}_j^{(M)}, v)$ converges to $\mathcal{E}(u^{(M)}, v)$ as $j \to \infty$ by the bounded convergence theorem, and thus

Superharmonic functions and Hardy inequalities

$$\mathcal{E}(H_{F^c}u^{(M)}, v) = \lim_{j \to \infty} \left(\mathcal{E}(\overline{u}_j^{(M)}, v) - \mathcal{E}(\psi_j, v) \right)$$
$$= \lim_{j \to \infty} \frac{1}{j} \sum_{\ell=1}^{j} \mathcal{E}(H_{F^c}u_{k_{\ell}}^{(M)}, v) = 0.$$

Take the sequences $\{u^{(M_j)}\}_{j\geq 1}$, $\{\varphi_j\}_{j\geq 1}$ defined in the last paragraph and put $\overline{u}_j := (1/j) \sum_{\ell=1}^j u^{(M_\ell)}$. Since \overline{u}_j is a normal contraction of u, $\mathcal{E}(\overline{u}_j, v)$ converges to $\mathcal{E}(u, v)$ as $j \to \infty$. Consequently, we have

$$\mathcal{E}(H_{F^c}u,v) = \lim_{j \to \infty} \left(\mathcal{E}(\overline{u}_j,v) - \mathcal{E}(\varphi_j,v) \right)$$
$$= \lim_{j \to \infty} \frac{1}{j} \sum_{\ell=1}^{j} \mathcal{E}(H_{F^c}u^{(M_\ell)},v) = 0.$$

We can now give a sufficient condition for $u \in \dot{\mathcal{D}}_{loc}^{\dagger}(\mathcal{E})$ that the 0-energy part $N^{[u]}$ in Fukushima's decomposition is of bounded variation.

THEOREM 3.2. Let $\nu = \nu^+ - \nu^-$ be a difference of positive smooth measures on E. If $u \in \dot{\mathcal{D}}_{loc}^{\dagger}(\mathcal{E})$ satisfies

$$\mathcal{E}(u,v) = \int_{E} v \, d\nu \quad \text{for all } v \in \bigcup_{n=1}^{\infty} \mathcal{D}_{b}(\mathcal{E})_{F_{n}}$$
(5)

for an \mathcal{E} -nest $\{F_n\}$ associated with ν and $\mu^j_{\langle u \rangle}$, then

$$\mathbb{P}_x(N_t^{[u]} = -A_t^+ + A_t^-, t < \zeta) = 1 \quad \text{q.e. } x \in E,$$

where A_t^{\pm} is a PCAF with Revuz measure ν^{\pm} .

PROOF. Suppose that u satisfies (5) for an \mathcal{E} -nest $\{F_n^{(1)}\}$. Take another \mathcal{E} -nest $\{F_n^{(2)}\}$ satisfying conditions in Lemma 3.1. Set $F_n := F_n^{(1)} \cap F_n^{(2)}$. By repeating computations in the proof of the previous lemma, we can check that the \mathcal{E} -nest $\{F_n\}$ also satisfies the statements in Lemma 3.1. On account of Lemma 3.1 (iii) and [17, Theorem 1.2], $H_{F_n^c}u(X_t) - H_{F_n^c}u(X_0)$ has Fukushima's decomposition:

$$H_{F_n^c} u(X_t) - H_{F_n^c} u(X_0) = M_t^{[H_{F_n^c} u]} + N_t^{[H_{F_n^c} u]}, \quad t < \zeta$$

By an argument similar to that in the proof of [7, Lemma 5.5.5], we can show that

$$\mathbb{P}_x\left(N_t^{[H_{F_n^c}u]} = 0, \ t < \tau_{F_n}\right) = 1 \quad \text{q.e. } x \in E.$$
(6)

Here τ_{F_n} is the first exit time from F_n . Note that $u - H_{F_n^c} u \in \mathcal{D}_e(\mathcal{E})_{F_n}$ and

$$\mathcal{E}(u - H_{F_n^c}u, v) = \int_E v \, d\nu \quad \text{for all } v \in \mathcal{D}_b(\mathcal{E})_{F_n}$$

by Lemma 3.1. We then see from [13, Lemma 5.4.4] and (6) that

$$\mathbb{P}_x(N_t^{[u]} = -A_t^+ + A_t^-, t < \tau_{F_n}) = 1$$
 q.e. $x \in E$

We have the assertion by letting $n \to \infty$.

By the same argument as that in the proof of [13, Corollary 5.4.1], we have the next corollary.

COROLLARY 3.3. Let $\nu = \nu^+ - \nu^-$ be a difference of positive smooth Radon measures on E. Suppose $u \in \mathcal{D}_{loc}^{\dagger}(\mathcal{E})$ satisfies

$$\mathcal{E}(u,v) = \int_E v \, d\nu \quad \text{for all } v \in \mathcal{C}$$

for some special standard core C. Then

$$\mathbb{P}_x\left(N_t^{[u]} = -A_t^+ + A_t^-, \ t < \zeta\right) = 1 \quad \text{q.e. } x \in E,$$

where A_t^{\pm} is a PCAF with Revuz measure ν^{\pm} .

4. Hardy inequalities.

Let μ be a smooth measure (denote by $\mu \in S$). In this section, we consider the *Hardy-type inequality*:

$$\int_{E} u^{2} d\mu \leq \mathcal{E}(u, u) \quad \text{for all } u \in \mathcal{D}(\mathcal{E}).$$

We shall show that if there exists a function in the space $\widetilde{\mathcal{H}}^+(\mu)$ below, then the inequality above holds.

Define

 $\Theta_0 = \{ G \mid G \text{ is open and } E \setminus G \text{ is } \mathcal{E}\text{-exceptional} \}.$

Take $G \in \Theta_0$ and let $\mathbb{M}^G = (X_t^G, \mathbb{P}_x)$ be the part process on G:

$$X_t^G = \begin{cases} X_t, & t < \tau_G, \\ \Delta, & t \ge \tau_G. \end{cases}$$

Define the Dirichlet form $(\mathcal{E}^G, \mathcal{D}(\mathcal{E}^G))$ on $L^2(G, m)$ by

$$\begin{cases} \mathcal{E}^G = \mathcal{E}, \\ \mathcal{D}(\mathcal{E}^G) = \mathcal{D}(\mathcal{E})_G \end{cases}$$

Then $(\mathcal{E}^G, \mathcal{D}(\mathcal{E}^G))$ is a regular Dirichlet form generated by \mathbb{M}^G ([13, Theorem 4.4.3]). Note that $\mathcal{D}(\mathcal{E}^G) = \mathcal{D}(\mathcal{E})$ because $E \setminus G$ is \mathcal{E} -exceptional.

For $\mu \in \mathcal{S}$, we set a function space of superharmonic functions:

698

$$\begin{split} \widetilde{\mathcal{H}}^+(\mu) \\ &:= \left\{ h \left| \begin{array}{c} \text{there exists } G \in \Theta_0 \ \text{such that } h \in \mathcal{D}^{\dagger}_{\text{loc}}(\mathcal{E}^G) \cap C(G \cup \{\Delta\}), \ h > 0 \ \text{on } G \\ \text{and } \mathcal{E}^G(h, \varphi) - \int_E h \varphi \, d\mu \geq 0 \ \text{ for all } \varphi \in \mathcal{D}(\mathcal{E}) \cap C^+_0(G) \end{array} \right\}. \end{split}$$

Here $C_0^+(G)$ is a set of nonnegative continuous functions on G whose supports are compact and contained in G. Note that $v \in \mathcal{D}_{loc}^{\dagger}(\mathcal{E}^G)$ implies $v \in \dot{\mathcal{D}}_{loc}^{\dagger}(\mathcal{E})$ and $\mathcal{E}^G(v,\varphi) = \mathcal{E}(v,\varphi)$ holds for any $\varphi \in \mathcal{D}(\mathcal{E}) \cap C_0(G)$.

The next lemma tells us that $h(X_t)$ is a semimartingale for any $h \in \widetilde{\mathcal{H}}^+(\mu)$.

LEMMA 4.1. For $h \in \widetilde{\mathcal{H}}^+(\mu)$, there exists a smooth measure ν_h such that

$$N_t^{[h]} = -\int_0^t h(X_s) dA_s^{\mu} - A_t^{\nu_h}, \quad t < \zeta, \ \mathbb{P}_x$$
-a.s. q.e. $x \in E_s$

where $N_t^{[h]}$ is the 0-energy part in Fukushima's decomposition of $h(X_t) - h(X_0)$.

PROOF. Define a functional I on $\Lambda := \mathcal{D}(\mathcal{E}) \cap C_0(G)$ by

$$I(\varphi) = \mathcal{E}^G(h, \varphi) - \int_E h\varphi \, d\mu, \quad \varphi \in \Lambda.$$

Note that Λ is a *Stone vector lattice*, i.e., $u \wedge v \in \Lambda$, $u \wedge 1 \in \Lambda$ for any $u, v \in \Lambda$. Moreover, I is *pre-integral* on the space Λ , that is, $I(\varphi_k) \downarrow 0$ whenever $\varphi_k \in \Lambda$ and $\varphi_k(x) \downarrow 0$ for all $x \in E$. Indeed, let $\psi \in \mathcal{D}(\mathcal{E}) \cap C_0^+(G)$ such that $\psi = 1$ on $\operatorname{supp}[\varphi_1]$. Then since $\|\varphi_k\|_{\infty}\psi - \varphi_k \in \mathcal{D}(\mathcal{E}) \cap C_0^+(G)$, it holds that

$$I(\varphi_k) \le \|\varphi_k\|_{\infty} \cdot I(\psi) \downarrow 0 \text{ as } k \to \infty$$

by Dini's theorem. We see from [8, Theorem 4.5.2] that there exists a Borel measure ν on G such that

$$I(\varphi) = \int_{G} \varphi \, d\nu, \quad \varphi \in \Lambda.$$
(7)

We extend ν to a measure on E by setting $\nu(E \setminus G) = 0$.

We shall prove that ν is a smooth measure on E. Let $K \subset G$ be a compact set of zero capacity and take a relatively compact open set D such that $K \subset D \subset G$. On account of [7, Theorem 3.3.8(iii)], there exists a sequence $\{\varphi_n\}_{n\geq 1} \subset \mathcal{D}(\mathcal{E}) \cap C_0^+(D)$ such that $\varphi_n \geq 1$ on K and $\mathcal{E}_1(\varphi_n, \varphi_n) \to 0$ as $n \to \infty$. Let $\psi \in \mathcal{D}(\mathcal{E}) \cap C_0(G)$ such that $\psi = 1$ on D and $0 \leq \psi \leq 1$ on E. Then note that $h\psi \in \mathcal{D}(\mathcal{E}) \cap C_0(G)$ and $h\psi = h$ on D. Hence,

$$\begin{aligned} \mathcal{E}(h\psi,\varphi_n) &= \frac{1}{2} \int_E d\mu_{\langle h,\varphi_n \rangle}^c + \int_{D \times D} (h(x) - h(y))(\varphi_n(x) - \varphi_n(y))J(dx,dy) \\ &+ 2 \int_{D \times (E \setminus D)} (h(x) - h\psi(y))\varphi_n(x)J(dx,dy) + \int_E h\varphi_n \, d\kappa \\ &\geq \mathcal{E}^G(h,\varphi_n). \end{aligned}$$

Therefore,

$$\nu(K) \leq \int_E \varphi_n \, d\nu = \mathcal{E}^G(h, \varphi_n) - \int_E h \varphi_n \, d\mu \leq \mathcal{E}(h\psi, \varphi_n)$$

and the right-hand side is dominated by

$$\mathcal{E}(h\psi,h\psi)^{1/2}\cdot\mathcal{E}(\varphi_n,\varphi_n)^{1/2}.$$

Since $\mathcal{E}(\varphi_n, \varphi_n)^{1/2}$ tends to 0 as $n \to \infty$, the measure ν charges no \mathcal{E} -exceptional set. For any compact subset K of G, we can see $\nu(K) < \infty$ as proved above. Let $\{K_j\}$ be an \mathcal{E} -nest of compact sets satisfying $E \setminus G \subset \bigcap_{j=1}^{\infty} K_j^c$. Then $\nu(K_j) < \infty$ implies the smoothness of ν .

We see from (7) that

$$\mathcal{E}^{G}(h,\varphi) = \int_{G} \varphi \left(h \, d\mu + d\nu \right) \quad \text{for all } \varphi \in \mathcal{D}(\mathcal{E}) \cap C_{0}(G).$$

Recall that $h \in \mathcal{D}^{\dagger}_{\text{loc}}(\mathcal{E}^G)$ implies $h \in \dot{\mathcal{D}}^{\dagger}_{\text{loc}}(\mathcal{E})$. By applying Theorem 3.2 to \mathbb{M} , it holds that

$$N_t^{[h]} = -\int_0^t h(X_s) dA_s^{\mu} - A_t^{\nu}, \quad t < \zeta, \ \mathbb{P}_x \text{-a.s. q.e. } x \in E.$$

We have the assertion by setting $\nu_h := \nu$.

Lemma 4.2.

$$\int_E u^2 d\mu + \int_E \frac{u^2}{h} d\nu_h \le \mathcal{E}(u, u) \quad \text{for any } u \in \mathcal{D}(\mathcal{E}).$$

PROOF. We first show the following claim:

$$\int_{E} \varphi \, d\mu + \int_{E} \frac{\varphi}{h} \, d\nu_{h} = \mathcal{E}\left(h, \frac{\varphi}{h}\right) \quad \text{for any } \varphi \in \mathcal{D}(\mathcal{E}) \cap C_{0}(G).$$
(8)

Let $K = \operatorname{supp}[\varphi]$ and D a relatively compact open set satisfying $K \subset D \subset \overline{D} \subset G$. Put $c := 1/(\inf_{x \in D} h(x))$. Then for $(x, y) \in D \times D$

$$\begin{aligned} \left|\frac{\varphi}{h}(x)\right| &\leq c|\varphi(x)|,\\ \left|\frac{\varphi}{h}(x) - \frac{\varphi}{h}(y)\right| &\leq 2c|\varphi(x) - \varphi(y)| + c^2|h(x)\varphi(x) - h(y)\varphi(y)| \end{aligned}$$

Since $\varphi, h\varphi \in \mathcal{D}(\mathcal{E}) \cap C_0(G)$, the function φ/h also belongs to $\mathcal{D}(\mathcal{E}) \cap C_0(G)$. Hence, the claim follows from (7).

Secondary, we shall show

$$\mathcal{E}\left(h,\frac{\varphi^2}{h}\right) \leq \mathcal{E}(\varphi,\varphi) \quad \text{for any } \varphi \in \mathcal{D}(\mathcal{E}) \cap C_0(G).$$
 (9)

700

Put $\psi = \varphi/h$. By the derivation property, $\mathcal{E}(h, \varphi^2/h)$ is equal to

$$\mathcal{E}(h,h\psi^2) = \frac{1}{2} \int_E \psi^2 d\mu^c_{\langle h \rangle} + \int_E h\psi \, d\mu^c_{\langle h,\psi \rangle} + \mathcal{E}^{(j)}(h,h\psi^2) + \int_E (h\psi)^2 d\kappa,$$

where

$$\mathcal{E}^{(j)}(f,g) := \int_{E \times E} (f(x) - f(y))(g(x) - g(y))J(dx, dy)$$

On the other hand, $\mathcal{E}(\varphi, \varphi)$ equals

$$\mathcal{E}(h\psi,h\psi) = \frac{1}{2} \int_E \psi^2 d\mu^c_{\langle h \rangle} + \int_E h\psi \, d\mu^c_{\langle h,\psi \rangle} + \frac{1}{2} \int_E h^2 d\mu^c_{\langle \psi \rangle} + \mathcal{E}^{(j)}(h\psi,h\psi) + \int_E (h\psi)^2 d\kappa d\mu^c_{\langle h,\psi \rangle} + \frac{1}{2} \int_E h^2 d\mu^c_{\langle \psi \rangle} + \mathcal{E}^{(j)}(h\psi,h\psi) + \int_E (h\psi)^2 d\kappa d\mu^c_{\langle h,\psi \rangle} + \frac{1}{2} \int_E h^2 d\mu^c_{\langle \psi \rangle} + \mathcal{E}^{(j)}(h\psi,h\psi) + \int_E (h\psi)^2 d\kappa d\mu^c_{\langle \psi \rangle} + \frac{1}{2} \int_E h^2 d\mu^c_{\langle$$

Since

$$\mathcal{E}^{(j)}(h\psi,h\psi) - \mathcal{E}^{(j)}(h,h\psi^2) = \int_{E\times E} (\psi(x) - \psi(y))^2 h(x)h(y)J(dx,dy),$$

we have

$$\mathcal{E}(h\psi,h\psi) - \mathcal{E}(h,h\psi^2) = \frac{1}{2} \int_E h^2 d\mu^c_{\langle\psi\rangle} + \int_{E\times E} (\psi(x) - \psi(y))^2 h(x)h(y)J(dx,dy).$$

Obviously, the right-hand side is nonnegative, and thus (9) holds.

Remark that $\mathcal{D}(\mathcal{E}) \cap C_0(G)$ is $\mathcal{E}_1^{1/2}$ -dense in $\mathcal{D}(\mathcal{E}^G) = \mathcal{D}(\mathcal{E})$. For any $u \in \mathcal{D}(\mathcal{E})$, there exists $\{u_n\} \subset \mathcal{D}(\mathcal{E}) \cap C_0(G)$ such that, $u_n \to u$ q.e. and $\mathcal{E}(u_n, u_n) \to \mathcal{E}(u, u)$ as $n \to \infty$ ([13, Theorem 2.1.4]). By Fatou's lemma and (8), we have

$$\int_{E} u^{2} d\mu + \int_{E} \frac{u^{2}}{h} d\nu_{h} \leq \liminf_{n \to \infty} \mathcal{E}\left(h, \frac{u_{n}^{2}}{h}\right).$$

On account of (9), the right-hand side is dominated by

$$\liminf_{n \to \infty} \mathcal{E}(u_n, u_n) = \mathcal{E}(u, u).$$

Suppose $\widetilde{\mathcal{H}}^+(\mu) \neq \emptyset$ and take $h \in \widetilde{\mathcal{H}}^+(\mu)$. Define a local martingale on the random interval $[0, \zeta^h[$ by $M_t = \int_0^t (h(X_{s-}))^{-1} dM_s^{[h]}$, where

$$\zeta^h := \zeta \wedge \sigma_h, \quad \sigma_h := \inf \{ t > 0 \mid X_t \in \{ h = 0 \text{ or } h = \infty \} \}$$

and $M_t^{[h]}$ is the martingale part in Fukushima's decomposition of $h(X_t) - h(X_0)$. Let L_t^h be the solution to the following stochastic differential equation:

$$L_t^h = 1 + \int_0^t L_{s-}^h dM_s, \quad t < \zeta^h.$$

It is known from the Doláns-Dade formula ([14, Theorem 9.39]) that

$$L_t^h = \exp\left(M_t - \frac{1}{2} \langle M^c \rangle_t\right) \prod_{0 < s \le t} \frac{h(X_s)}{h(X_{s-})} \exp\left(1 - \frac{h(X_s)}{h(X_{s-})}\right).$$

Since L_t^h is a positive local martingale on the random interval $[0, \zeta^h]$, so is a positive supermartingale. Define a family of probability measures on (Ω, \mathscr{F}) by

$$d\mathbb{P}^h_x := L^h_t d\mathbb{P}_x \quad \text{on } \mathscr{F}_t \cap \{t < \zeta^h\}.$$

It follows from [19, (62.19)] that under new measures $\{\mathbb{P}_x^h\}$, $\{X_t\}_{t\geq 0}$ is a right Markov process on $\{0 < h < \infty\}$. It is known that $\mathbb{M}^h := (\Omega, \mathscr{F}_t, X_t, \mathbb{P}_x^h, \zeta^h)$ is an h^2m -symmetric process (cf. [6], [18]). Let $(\mathcal{E}^h, \mathcal{D}(\mathcal{E}^h))$ be the Dirichlet form generated by \mathbb{M}^h .

On account of Lemma 4.1, we have the decomposition

$$h(X_t) - h(X_0) = M_t^{[h]} - \int_0^t h(X_s) dA_s^{\mu} - A_t^{\nu_h}, \quad t < \zeta, \ \mathbb{P}_x \text{-a.s. q.e.} \ x \in E.$$

By Itô's formula applied to the semimartingale $h(X_t)$ with the function log x, we have

$$L_t^h = \frac{h(X_t)}{h(X_0)} \exp\left(-\int_0^t \frac{1}{h(X_{s-})} dN_s^{[h]}\right)$$

= $\frac{h(X_t)}{h(X_0)} \exp\left(A_t^{\xi}\right), \quad t < \zeta, \ \mathbb{P}_x\text{-a.s. q.e. } x \in E,$ (10)

where $\xi(dx) := \mu(dx) + (1/h(x))\nu_h(dx)$. Hence, the transition semigroup p_t^h of \mathbb{M}^h is expressed by

$$p_t^h f(x) = \mathbb{E}_x \left[L_t^h f(X_t) ; t < \zeta^h \right]$$

= $\frac{1}{h(x)} \mathbb{E}_x \left[\exp(A_t^{\xi}) h(X_t) f(X_t) ; t < \zeta \right]$ (11)

for q.e. $x \in E$. By using these expressions, we will prove the following equality. This gives a refinement of Hardy's inequality.

THEOREM 4.3. Suppose $\widetilde{\mathcal{H}}^+(\mu) \neq \emptyset$. Then for any $h \in \widetilde{\mathcal{H}}^+(\mu)$,

$$\mathcal{E}(u,u) - \int_E u^2 d\mu = \mathcal{E}^h\left(\frac{u}{h},\frac{u}{h}\right) + \int_E \frac{u^2}{h} d\nu_h, \quad u \in \mathcal{D}(\mathcal{E}).$$

In addition, the value of $\mathcal{E}^h(u/h, u/h)$ is equal to

$$\frac{1}{2}\int_{E}h^{2}d\mu_{\langle u/h\rangle}^{c} + \int_{E\times E}\left(\frac{u}{h}(x) - \frac{u}{h}(y)\right)^{2}h(x)h(y)J(dx,dy) + h(\Delta)\int_{E}\frac{u^{2}}{h}\,d\kappa.$$
 (12)

PROOF. Let $\xi(dx) = \mu(dx) + (1/h(x))\nu_h(dx)$ and

$$\mathcal{E}^{\delta}(u,u) := \mathcal{E}(u,u) + \delta \int_{E} u^{2} d\xi, \quad \delta > 0.$$

Then it follows from Lemma 4.2 that

$$\int_E u^2 d\xi \le \frac{1}{1+\delta} \mathcal{E}^{\delta}(u, u), \quad u \in \mathcal{D}(\mathcal{E}),$$

and thus ξ belongs to the Hardy class associated with \mathcal{E}^{δ} . Define the subprocess \mathbb{P}_x^{δ} by $\mathbb{P}_x^{\delta} = \exp(-\delta A_t^{\xi})\mathbb{P}_x$. On account of the relation (10),

$$\mathbb{E}_x^{\delta} \left[e^{A_t^{\xi}} f(X_t) \right] = h(x) \, \mathbb{E}_x^h \left[e^{-\delta A_t^{\xi}} \left(\frac{f}{h}(X_t) \right) \right].$$

We see from [10] that for $u \in \mathcal{D}(\mathcal{E})$,

$$\lim_{t\downarrow 0} \frac{1}{t} \left(u - \mathbb{E}^{\delta}_{\cdot} \left[e^{A^{\xi}_{t}} u(X_{t}) \right], u \right)_{m} = \mathcal{E}^{\delta}(u, u) - \int_{E} u^{2} d\xi.$$

On the other hand, we see from [18] that

$$\begin{split} \lim_{t \downarrow 0} \frac{1}{t} \left(u - h \mathbb{E}^{h}_{\cdot} \left[e^{-\delta A^{\xi}_{t}} \left(\frac{u}{h}(X_{t}) \right) \right], u \right)_{m} &= \lim_{t \downarrow 0} \frac{1}{t} \left(\frac{u}{h} - \mathbb{E}^{h}_{\cdot} \left[e^{-\delta A^{\xi}_{t}} \left(\frac{u}{h}(X_{t}) \right) \right], \frac{u}{h} \right)_{h^{2}m} \\ &= \mathcal{E}^{h} \left(\frac{u}{h}, \frac{u}{h} \right) + \delta \int_{E} \left(\frac{u}{h} \right)^{2} h^{2} d\xi. \end{split}$$

Moreover, it is noted in [18] that $\mathcal{E}^h(u/h, u/h)$ equals (12).

Assume \mathbb{M} is transient. For $\mu \in S$, we define its potential by $R\mu(x) = \mathbb{E}_x[A_{\zeta}^{\mu}]$. We introduce

$$\mathcal{S}^{\dagger} := \left\{ \mu \in \mathcal{S} \middle| \begin{array}{l} \text{there exists } G \in \Theta_0 \text{ such that } \mu \text{ is a Radon measure on } G, \\ R\mu > 0 \text{ on } G \text{ and } R\mu \in \mathcal{D}^{\dagger}_{\text{loc}}(\mathcal{E}^G) \cap C(G \cup \{\Delta\}) \end{array} \right\}.$$

For $\mu \in \mathcal{S}^{\dagger}$, the potential $R\mu$ satisfies

$$\mathcal{E}^G(R\mu,\varphi) - \int_E \varphi \, d\mu = 0 \quad \text{for all } \varphi \in \mathcal{D}(\mathcal{E}) \cap C_0(G).$$

Since $\int_E \varphi \, d\mu = \int_E R\mu \cdot \varphi (1/R\mu) \, d\mu$, we see that $R\mu$ is in the space $\widetilde{\mathcal{H}}^+((1/R\mu) \cdot \mu)$. By applying the previous theorem, we get

COROLLARY 4.4. Let $\mu \in S^{\dagger}$. Then

$$\mathcal{E}(u,u) - \int_E \frac{u^2}{R\mu} d\mu = \mathcal{E}^{R\mu} \left(\frac{u}{R\mu}, \frac{u}{R\mu}\right), \quad u \in \mathcal{D}(\mathcal{E}).$$

5. p_t^{μ} -excessive functions.

We introduce some subclasses of smooth measures S. A positive measure ν in S is said to be in the *Kato class* (\mathcal{K} in abbreviation) if

$$\lim_{\beta \to \infty} \left\| \mathbb{E} \left[\int_0^\infty e^{-\beta t} dA_t^\nu \right] \right\|_\infty = 0.$$

703

A positive measure ν in S is said to be in the *local Kato class* (\mathcal{K}_{loc} in abbreviation) if $\nu(\cdot \cap K) \in \mathcal{K}$ for any compact set K.

Let $\mu \in \mathcal{K}_{\text{loc}}$ and define the Feynman–Kac semigroup $\{p_t^{\mu}\}_{t \geq 0}$ by

$$p_t^{\mu} f(x) = \mathbb{E}_x[\exp\left(A_t^{\mu}\right) f(X_t)]$$

Let us introduce the function space of p_t^{μ} -excessive functions.

$$\mathcal{H}^{+}(\mu) := \left\{ h \left| \begin{array}{c} \text{there exists } G \in \Theta_{0} \text{ such that } h \in \mathcal{D}^{\dagger}_{\text{loc}}(\mathcal{E}^{G}) \cap C(G \cup \{\Delta\}), \\ h > 0 \text{ on } G \text{ and } p_{t}^{\mu}h \leq h \text{ } m\text{-a.e.} \end{array} \right\}.$$

The next theorem gives a characterization of p_t^{μ} -excessive functions in $\mathcal{H}^+(\mu)$.

THEOREM 5.1. Let $\mu \in \mathcal{K}_{loc}$. Then

$$\mathcal{H}^+(\mu) = \widetilde{\mathcal{H}}^+(\mu)$$

PROOF. $(\mathcal{H}^+(\mu) \supset \widetilde{\mathcal{H}}^+(\mu))$: Let $\{p_t^h\}_{t\geq 0}$ be the transition semigroup of \mathbb{M}^h given by (11). Then

$$p_t^{\mu}h(x) \le h(x) \cdot p_t^h 1(x) \le h(x), \quad \text{q.e. } x \in E,$$

and thus h is p_t^{μ} -excessive.

 $(\mathcal{H}^+(\mu) \subset \widetilde{\mathcal{H}}^+(\mu))$: Let $\varphi \in \mathcal{D}(\mathcal{E}) \cap C_0^+(G)$. Take an increasing sequence $\{G_n\}$ of relatively compact open sets such that $K := \operatorname{supp}[\varphi] \subset G_1$ and $G_n \uparrow G$. From the regularity of \mathcal{E} , there exists a sequence $\{\psi_n\} \subset \mathcal{D}(\mathcal{E}) \cap C_0(G)$ such that $0 \leq \psi_n \leq 1$ on G and $\psi_n = 1$ on G_n . Then $h\psi_n \in \mathcal{D}(\mathcal{E})$ and

$$\mathcal{E}(h\psi_n, \varphi) - \int_E h\psi_n \varphi \, d\widehat{\mu} \ge 0 \quad \text{for all } n \ge 1,$$

where $\widehat{\mu} := \mu(\cdot \cap K)$. Indeed, on account of $\widehat{\mu} \in \mathcal{K}$, the left-hand side is equal to

$$\lim_{t\downarrow 0} \frac{1}{t} \left(h\psi_n - p_t^{\widehat{\mu}}(h\psi_n), \varphi \right)_m = \lim_{t\downarrow 0} \frac{1}{t} \left(\left(h, \varphi \right)_m - \left(p_t^{\widehat{\mu}}(h\psi_n), \varphi \right)_m \right).$$

This limit is nonnegative because $p_t^{\hat{\mu}}(h\psi_n) \leq p_t^{\mu}h \leq h$. Since $h\psi_n = h$ on G_1 , the value of $\mathcal{E}(h\psi_n, \varphi)$ is equal to

$$\begin{split} \frac{1}{2} \int_E d\mu^c_{\langle h,\varphi\rangle} &+ \int_{K \times K} (h(x) - h(y))(\varphi(x) - \varphi(y))J(dx, dy) \\ &+ 2 \int_{K \times (K^c \cap G_1)} (h(x) - h(y))(\varphi(x) - \varphi(y))J(dx, dy) \\ &+ 2 \int_{K \times (K^c \cap G_1^c)} (h(x) - h\psi_n(y)) \cdot \varphi(x) J(dx, dy) + \int_E h\varphi \, d\kappa. \end{split}$$

Noting that $J(K \times G_1^c) < \infty$, the fourth term tends to

Superharmonic functions and Hardy inequalities

$$2\int_{K\times (K^c\cap G_1^c)}(h(x)-h(y))\cdot \varphi(x)\,J(dx,dy)$$

as $n \to \infty$ by the dominated convergence theorem. Consequently, we have

$$\mathcal{E}(h,\varphi) - \int_{E} h\varphi \, d\mu = \mathcal{E}(h,\varphi) - \int_{E} h\varphi \, d\widehat{\mu}$$
$$= \lim_{n \to \infty} \left(\mathcal{E}(h\psi_{n},\varphi) - \int_{E} h\psi_{n}\varphi \, d\widehat{\mu} \right) \ge 0.$$

6. Applications and examples.

In this section, we treat the case where the Dirichlet form has the jumping part. Let $d(\cdot, \cdot)$ be the metric which induces the original topology of E. We impose the next assumption on \mathbb{M} .

(**J**): For some Radon measure m^* on E and non-increasing $[0, \infty)$ -valued function Φ on $(0, \infty)$, the jumping measure J(dx, dy) on $E \times E \setminus d$ is expressed as

$$J(dx, dy) = \Phi(d(x, y))m^*(dx)m^*(dy),$$

where d is the diagonal set.

Firstly, we give sufficient conditions for a function in $\mathcal{D}_{loc}(\mathcal{E})$ belonging to $\mathcal{D}_{loc}^{\dagger}(\mathcal{E})$.

LEMMA 6.1. Let $u \in \mathcal{D}_{loc}(\mathcal{E}) \cap C(E)$. Then u belongs to $\mathcal{D}_{loc}^{\dagger}(\mathcal{E})$ if and only if for any compact set K, there exists a constant c > 0 such that

$$\int_{K \times \{|u|>c\}} (u(x) - u(y))^2 J(dx, dy) < \infty.$$

PROOF. The "only if" part is trivial.

We prove the "if" part. Take a relatively compact open set D such that $K \subset D$. Note that $J(K \times D^c) < \infty$ because of the regularity of \mathcal{E} . We shall show that

$$\int_{K \times E} (u(x) - u(y))^2 J(dx, dy) < \infty.$$

The integral is decomposed as

$$\int_{K \times D} (u(x) - u(y))^2 J(dx, dy) + \int_{K \times D^c} (u(x) - u(y))^2 J(dx, dy).$$

The first term is finite because there exists $v \in \mathcal{D}(\mathcal{E})$ such that u = v q.e. on D. The second term is less than or equal to

$$\int_{K \times (D^c \cap \{|u| \le c\})} (u(x) - u(y))^2 J(dx, dy) + \int_{K \times (D^c \cap \{|u| > c\})} (u(x) - u(y))^2 J(dx, dy)$$

$$\leq 2 \left(\|\mathbbm{1}_K \cdot u\|_{\infty}^2 + c^2 \right) \cdot J(K \times D^c) + \int_{K \times \{|u| > c\}} (u(x) - u(y))^2 J(dx, dy) < \infty. \quad \Box$$

LEMMA 6.2. Let $u \in \mathcal{D}_{loc}(\mathcal{E}) \cap C(E)$. If there exists c > 0 such that

$$\int_{\{|u|>c\}} u^2 dm^* < \infty,$$

then $u \in \mathcal{D}_{\text{loc}}^{\dagger}(\mathcal{E})$.

PROOF. By considering the decomposition $u = (u \lor 0) - (-u \lor 0)$, we may assume $u \ge 0$. Fix a compact set K and put $M := c \lor (\max_{x \in K} u(x))$. On account of Lemma 6.1, it is sufficient to prove that

$$\int_{K} m^{*}(dx) \int_{\{u>2M\}} (u(y) - u(x))^{2} \Phi(d(x,y)) m^{*}(dy) < \infty$$

Since $|u(y) - u(x)| \le u(y)$ for $(x, y) \in K \times \{u > 2M\}$, the left-hand side is bounded by

$$\int_{K} m^{*}(dx) \int_{\{u>2M\}} u(y)^{2} \Phi(d(x,y)) m^{*}(dy).$$
(13)

Let $d(x) := \inf\{d(x, y) | y \in \{u > 2M\}\}$ and $\delta := \inf\{d(x) | x \in K\}$. Then we easily see that δ is strictly positive. Hence, (13) is dominated by

$$\int_{K} m^{*}(dx) \int_{\{u > 2M\}} u(y)^{2} \Phi(\delta) m^{*}(dy) \leq \Phi(\delta) m^{*}(K) \int_{\{u > c\}} u^{2} dm^{*} < \infty.$$

EXAMPLE 6.3 (α -stable process). Let $\mathbb{M}^{\alpha} = (X_t, \mathbb{P}_x), 0 < \alpha < 2$, be a symmetric α -stable process on \mathbb{R}^d generated by the fractional Laplacian $-1/2(-\Delta)^{\alpha/2}$. Assume $\alpha < d$, that is, \mathbb{M}^{α} is transient. Then its Green function R(x, y) is given by

$$R(x,y) = C(d,\alpha) \cdot |x-y|^{\alpha-d},$$

where $C(d, \alpha) = 2^{-\alpha} \pi^{-d/2} \Gamma((d-\alpha)/2) \Gamma(\alpha/2)^{-1}$ and Γ is the Gamma function. For a Borel function f, the 0-potential of f is written as

$$Rf(x) = \int_{\mathbb{R}^d} R(x, y) f(y) dy$$

The Dirichlet form generated by \mathbb{M}^{α} is given by

$$\begin{cases} \mathcal{E}^{(\alpha)}(u,v) = \frac{1}{2}\mathcal{A}(d,\alpha) \iint_{\mathbb{R}^d \times \mathbb{R}^d} \frac{(u(x) - u(y))(v(x) - v(y))}{|x - y|^{d + \alpha}} \, dx dy, \\ \mathcal{D}(\mathcal{E}^{(\alpha)}) = \left\{ u \in L^2(\mathbb{R}^d; dx) \, \Big| \, \iint_{\mathbb{R}^d \times \mathbb{R}^d} \frac{(u(x) - u(y))^2}{|x - y|^{d + \alpha}} \, dx dy < \infty \right\}, \end{cases}$$

where $\mathcal{A}(d,\alpha) = \alpha 2^{\alpha-1} \pi^{-d/2} \Gamma((\alpha+d)/2) \Gamma(1-(\alpha/2))^{-1}$.

Let $w(x) = |x|^{-p}$. If $p \in (0, d/2)$, then

$$\int_{\{w>c\}} w(x)^2 dx < \infty$$

for any c > 0, and thus $w \in \mathcal{D}_{\text{loc}}^{\dagger}(\mathcal{E}^G) \cap C(G \cup \{\Delta\})$, $G := \mathbb{R}^d \setminus \{0\}$ by Lemma 6.2. Let $v(x) = |x|^{-(p+\alpha)}, \ 0 . Then it follows from [3, Lemma 2.1] that$

$$Rv(x) = C_{d,\alpha,p}^{-1} \cdot |x|^{-p}$$
, where $C_{d,\alpha,p} := 2^{\alpha} \frac{\Gamma((p+\alpha)/2)\Gamma((d-p)/2)}{\Gamma((d-(p+\alpha))/2)\Gamma(p/2)}$

By applying Corollary 4.4 to Rv, we have the equality

$$\mathcal{E}^{(\alpha)}(u,u) - C_{d,\alpha,p} \int_{\mathbb{R}^d} \frac{u(x)^2}{|x|^{\alpha}} dx$$

= $\frac{1}{2} \mathcal{A}(d,\alpha) \iint_{\mathbb{R}^d \times \mathbb{R}^d} \left(\frac{u(x)}{|x|^{-p}} - \frac{u(y)}{|y|^{-p}} \right)^2 \frac{|x|^{-p}|y|^{-p}}{|x-y|^{d+\alpha}} dx dy, \quad u \in \mathcal{D}(\mathcal{E}^{(\alpha)}).$

The equality above has been already shown by Bogdan, Dyda and Kim [5, Proposition 5] in an analytic way. The case $p = (d - \alpha)/2$ is treated in [2] and [12]. We see from [3, Lemma 2.2] that the maximum of a function

$$F(p) := 2^{\alpha} \frac{\Gamma((p+\alpha)/2)\Gamma((d-p)/2)}{\Gamma((d-(p+\alpha))/2)\Gamma(p/2)} \quad (=C_{d,\alpha,p}), \qquad p \in (0, d-\alpha)$$

is achieved at $p = (d-\alpha)/2$. It is known in [1] that $C_{d,\alpha,(d-\alpha)/2} = 2^{\alpha}\Gamma((d+\alpha)/4)^2\Gamma((d-\alpha)/4)^{-2}$ is the best constant for Hardy's inequality, that is, for any $C > C_{d,\alpha,(d-\alpha)/2}$, there exists $u \in \mathcal{D}(\mathcal{E}^{(\alpha)})$ such that

$$\mathcal{E}^{(\alpha)}(u,u) < C \int_{\mathbb{R}^d} \frac{u(x)^2}{|x|^{\alpha}} dx.$$

ACKNOWLEDGEMENTS. The author would like to thank Professor Masayoshi Takeda for helpful suggestions and comments.

References

- W. Beckner, Pitt's inequality and the uncertainty principle, Proc. Amer. Math. Soc., 123 (1995), 1897–1905.
- W. Beckner, Pitt's inequality and the fractional Laplacian: Sharp error estimates, Forum Math., 24 (2012), 177–209.
- [3] A. Beldi, N. Belhaj Rhouma and A. BenAmor, Pointwise estimates for the ground state of singular Dirichlet fractional Laplacian, J. Phys. A: Math. Theor., 46 (2013), 445201.
- [4] N. Belhadjrhouma and A. BenAmor, Hardy's inequality in the scope of Dirichlet forms, Forum Math., 24 (2012), 751–767.
- [5] K. Bogdan, B. Dyda and P. Kim, Hardy Inequalities and Non-explosion Results for Semigroups, Potential Anal., 44 (2016), 229–247.
- [6] Z.-Q. Chen, P. J. Fitzsimmons, M. Takeda, J. Ying and T.-S. Zhang, Absolute continuity of symmetric Markov processes, Ann. Probab., 32 (2004), 2067–2098.
- [7] Z.-Q. Chen and M. Fukushima, Symmetric Markov Processes, Time Change, and Boundary Theory, Princeton University Press, Princeton, 2012.
- [8] R. M. Dudley, Real Analysis and Probability, Cambridge Studies in Advanced Mathematics, 74, Cambridge University Press, Cambridge, 2002.
- [9] P. J. Fitzsimmons, Hardy's Inequality for Dirichlet Forms, J. Math. Anal. Appl., 250 (2000), 548–560.

- [10] P. J. Fitzsimmons and K. Kuwae, Non-symmetric perturbations of symmetric Dirichlet forms, J. Funct. Anal., 208 (2004), 140–162.
- [11] R. L. Frank, D. Lenz and D. Wingert, Intrinsic metrics for non-local symmetric Dirichlet forms and applications to spectral theory, J. Funct. Anal., 266 (2014), 4765–4808.
- [12] R. L. Frank, E. H. Lieb and R. Seiringer, Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc., 21 (2008), 925–950.
- [13] M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, 2nd ed. Walter de Gruyter, Berlin, 2011.
- [14] S. W. He, J. G. Wang and J. A. Yan, Semimartingale Theory and Stochastic Calculus, Science Press, Beijing, 1992.
- [15] K. Kuwae, Functional calculus for Dirichlet forms, Osaka J. Math., 35 (1998), 683–715.
- [16] K. Kuwae, Stochastic calculus over symmetric Markov processes without time reversal, Ann. Probab., 38 (2010), 1532–1569.
- [17] K. Kuwae, Errata to "Stochastic calculus over symmetric Markov processes without time reversal", Ann. Probab., 40 (2012), 2705–2706.
- [18] Y. Miura, The Conservativeness of Girsanov Transformed Symmetric Markov Processes, to appear in Tohoku Math. J.
- [19] M. Sharpe, General theory of Markov processes, Academic press, San Diego, 1988.
- [20] M. Takeda, Criticality and subcriticality of generalized Schrödinger forms, Illinois J. Math., 58 (2014), 251–277.

Yusuke MIURA Yamada Komuten Tsuruoka Yamagata 997-0162, Japan E-mail: qq592aqd@gmail.com