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On bifurcations of cusps
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Abstract. Let Ft, where t ∈ R, be an analytic family of plane-to-plane

mappings with F0 having a critical point at the origin. The paper presents
effective algebraic methods of computing the number of those cusp points
of Ft, where 0 < |t| ≪ 1, emanating from the origin at which Ft has a
positive/negative local topological degree.

1. Introduction.

Mappings between surfaces are a natural object of study in the theory of singularities.

Whitney [29] proved that critical points of such a generic mapping are folds and cusps.

There are several results concerning relations between the topology of surfaces and the

topology of the critical locus of a mapping (see [8], [18], [24], [28], [29]). Singularities

of map germs of the plane into the plane were studied in [10], [11], [13], [21], [22], [25].

Let Ft, where t ∈ R, be an analytic family of plane-to-plane mappings with F0 having

a critical point at the origin. Under some natural assumptions there is a finite family

of cusp points of Ft bifurcating from the origin. There are important results [7, Section

6.3], [10, Theorem 3.1], [14, Section 6], [22, Proposition 7.1] concerning the parity of the

number of those points.

In this paper we show how to compute the number of cusps of Ft which are repre-

sented by germs having either positive or negative local topological degree (see Theorem

6.8).

The paper is organized as follows. In Sections 2 and 3, we collect some useful facts.

The curve in R×R2 consisting of points (t, x), where x is a cusp point of Ft, is defined by

three analytic equations, so that it is not a complete intersection. In Section 4 we show

how to adopt in this case some more general techniques from [23] concerning curves in

Rn defined by m equations, where m ≥ n.

In Sections 5 and 6, we prove the main result. In Section 7 we present examples

computed by a computer. We have implemented our algorithm with the help of Singular

[6]. We have also used a computer program written by  Lȩcki [19].

2. Mappings between surfaces.

Let (M,∂M) and (N, ∂N) be compact oriented connected surfaces, and let f : M →
N be a smooth mapping such that f−1(∂N) = ∂M . Assume that
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(i) every point in M is either a fold point, a cusp point or a regular point, and there

are only a finite number of cusps which all belong to M \ ∂M ,

(ii) the 1-dimensional manifold consisting of fold points is transverse to ∂M , so that

f |∂M : ∂M → ∂N is locally stable, i.e. its critical points are non-degenerate.

We shall write M− for the closure in M of the set of regular points at which f does

reverse the orientation.

If p ∈ M \ ∂M is a cusp point, we define µ(p) to be the local topological degree of

the germ f : (M,p) → (N, f(p)). Put

cusp deg (f) =
∑

µ(p),

where p runs through the set of all cusp points of f .

Fukuda and Ishikawa [10] have generalized the results by Èliašberg [8] and Quine

[24] concerning surfaces without boundary, proving

Theorem 2.1. Let M,N and f be as above and ∂M ̸= ∅. Then

cusp deg (f) = 2χ(M−) + (deg f |∂M)χ(N) − χ(M) − #C(f |∂M)/2,

where C(f |∂M) is the set of critical points of f |∂M .

In fact, in [10] there is a stronger assumption that both f : M → N and f |∂M :

∂M → ∂N are C∞-stable mappings. However, if f satisfies (i), (ii), then there exists a

C∞-stable perturbation f̃ , which is arbitrary close to f in C∞-Whitney topology, such

that all corresponding numbers associated to f and f̃ which appear in the above theorem

stay the same.

Let f = (f1, f2) : U → R2, where U ⊂ R2 is open, be a smooth mapping. Set

J = ∂(f1, f2)/∂(x1, x2), Gi = ∂(fi, J)/∂(x1, x2), i = 1, 2. Applying the same arguments

as in the proof of [17, Proposition 2, p. 815] one gets

Proposition 2.2. The set of all common solutions in U of the system of equations

J = G1 = G2 = ∂(G1, J)/∂(x1, x2) = ∂(G2, J)/∂(x1, x2) = 0 is empty if and only if the

set of critical points of f consists of either fold or cusp points.

If that is the case, then the set of cusp points is discrete and equals {J = G1 = G2 =

0}.

3. Families of germs.

In this section we recall some useful facts concerning 1-parameter families of real

analytic germs.

For r > 0, let Dn(r) = {x ∈ Rn | ||x|| ≤ r}, and Sn−1(r) = ∂Dn(r). We shall

write (t, x) = (t, x1, . . . , xn) ∈ R× Rn. Assume J(t, x) : R× Rn,0 → R, 0 is an analytic

function defined in a neighbourhood of the origin having a critical point at 0. We shall

write

L0 = {x ∈ Sn−1(r) |J(0, x) = 0},
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M−
t = {x ∈ Dn(r) | J(t, x) ≤ 0},

where 0 < |t| ≪ r ≪ 1.

Let F : R × Rn,0 → Rn,0 be an analytic mapping. Put Ft(x) = F (t, x). Suppose

that there exists a small r > 0 such that F−1
0 (0) ∩ Dn(r) = {0}. For 0 < δ ≪ r, put

S̃n−1
t (δ) = F−1

t (Sn−1(δ)) ∩Dn(r) and D̃n
t (δ) = F−1

t (Dn(δ)) ∩Dn(r). We shall write

L̃0 = {x ∈ S̃n−1
0 (δ) | J(0, x) = 0},

M̃−
t = {x ∈ D̃n

t (δ) | J(t, x) ≤ 0},

where 0 < |t| ≪ δ ≪ 1.

Lemma 3.1. We have χ(M̃−
t ) = χ(M−

t ) and χ(L̃0) = χ(L0).

Proof. There exist small positive δ1 < δ2, r1 < r2 and t0, such that for 0 < |t| <
t0 we have

{x ∈ D̃n
t (δ1) | J(t, x) ≤ 0} ⊂ {x ∈ D(r1) | J(t, x) ≤ 0}

⊂ {x ∈ D̃n
t (δ2) | J(t, x) ≤ 0} ⊂ {x ∈ D(r2) | J(t, x) ≤ 0},

and inclusions

{x ∈ D̃n
t (δ1) | J(t, x) ≤ 0} ⊂ {x ∈ D̃n

t (δ2) | J(t, x) ≤ 0},
{x ∈ D(r1) | J(t, x) ≤ 0} ⊂ {x ∈ D(r2) | J(t, x) ≤ 0}

induce isomorphisms of corresponding homology groups. Then

χ(M̃−
t ) = χ({x ∈ D̃n

t (δ1) |J(t, x) ≤ 0})

= χ({x ∈ D(r2) | J(t, x) ≤ 0}) = χ(M−
t ).

The proof of the second assertion is similar. □

Define a mapping d0 : Rn,0 → Rn,0 by

d0(x) =

(
∂J

∂x1
(0, x), . . . ,

∂J

∂xn
(0, x)

)
,

and mappings d1, d2 : R× Rn,0 → R× Rn,0, by

d1(t, x) =

(
∂J

∂t
(t, x),

∂J

∂x1
(t, x), . . . ,

∂J

∂xn
(t, x)

)
,

d2(t, x) =

(
J(t, x),

∂J

∂x1
(t, x), . . . ,

∂J

∂xn
(t, x)

)
,

respectively. Applying directly results by Fukui [12] and Khimshiasvili [15], [16] we get

Theorem 3.2. Suppose that the origin is isolated in d−1
0 (0), d−1

1 (0) and d−1
2 (0),

so that the local topological degrees deg0(d0), deg0(d1) and deg0(d2) are defined.
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Then both J(0, x) and J(t, x) have an isolated critical point at the origin. If 0 ̸= t

is sufficiently close to zero, then we have

χ(M̃−
t ) = χ(M−

t ) = 1 − (deg0(d0) + deg0(d1) + sign(t) · deg0(d2))/2.

If n is even, then we have χ(L̃0) = χ(L0) = 2 · (1 − deg0(d0)), and if n is odd, then

χ(L̃0) = 0. In particular, if n = 2, then L̃0 is finite and #L̃0 = 2 · (1 − deg0(d0)).

It is proper to add that there exists an efficient computer program which can compute

the local topological degree (see [19]).

4. Number of half-branches.

In this section we shall show how to adopt some techniques developed in [23], [26],

[27] so as to compute the number of half-branches of an analytic set of dimension ≤ 1

emanating from a singular point.

Let On+1 = R{t, x1, . . . , xn} denote the ring of germs at the origin of real analytic

functions. If I is an ideal in On+1, let V (I) ⊂ R×Rn denote the germ of zeros of I near

the origin, and let VC(I) ⊂ C× Cn denote the germ of complex zeros of I.

Remark 4.1. If I is proper, then dimR On+1/I < ∞ if and only if VC(I) = {0}.

Let w1, . . . , wm ∈ On+1, where m ≥ n, be germs vanishing at the origin. We shall

write ⟨w1, . . . , wm⟩ for the ideal in On+1 generated by w1, . . . , wm.

Let W ⊂ On+1 denote the ideal generated by w1, . . . , wm and all n × n-minors of

the Jacobian matrix of the mapping germ (w1, . . . , wm) : R× Rn,0 → Rm,0. The ideal

W is proper if and only if the rank of this matrix at the origin is ≤ n− 1.

If V (W ) = {0}, then by the implicit function theorem the germ V (w1, . . . , wm) is

of dimension ≤ 1, so that this set is locally a union of a finite family of half-branches

emanating from the origin. We shall say that V (w1, . . . , wm) is a curve having an alge-

braically isolated singularity at the origin if W is proper and dimR On+1/W < ∞.

From now on we shall assume that m = 3 and n = 2. Let M(3, 3) denote the space

of all 3 × 3-matrices with coefficients in R. By [23, Theorem 3.8] and comments in [23,

p. 1012] we have

Theorem 4.2. Assume that V (w1, w2, w3) is a curve having an algebraically iso-

lated singularity at the origin. There exists a proper algebraic subset Σ ⊂ M(3, 3) such

that for every non-singular matrix [asj ] ∈ M(3, 3) \Σ and gs = as,1w1 + as,2w2 + as,3w3,

where 1 ≤ s ≤ 3, the set V (g1, g2) is a curve having an algebraically isolated singularity

at the origin and V (w1, w2, w3) = V (g1, g2, g3) ⊂ V (g1, g2).

If that is the case and Jp = ⟨g1, g2, gp3⟩, where p = 1, 2, then we have J2 ⊂ J1 and

dimR(J1/J2) < ∞.

If V (w1, w2) is a curve having an algebraically isolated singularity at the origin, then

one can take gs = ws.

From now on we shall assume that
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dimR O3/⟨t, g1, g2⟩ < ∞. (1)

As dimR(J1/J2) < ∞ and g3(0) = 0, then by the Nakayama lemma ξ = min{s | ts · g3 ∈
J2} is finite. (In [27] there are presented effective methods for computing this number.)

Let k > ξ be an even positive integer.

Now we shall adopt to our case some arguments presented in [27, pp. 529–531].

There are germs h1, h2, h3 ∈ O3 such that

tξg3 = h1g1 + h2g2 + h3g
2
3 .

Let YC = VC(g1, g2)\VC(g3). By (1), the germ tk does not vanish at points in VC(g1, g2)\
{0}. If (t, x1, x2) = (t, x) ∈ YC lies sufficiently close to the origin, then |h3(t, x)| < M for

some M > 0, g1(t, x) = g2(t, x) = 0 and g3(t, x) ̸= 0. Hence

|g3(t, x)| ≥ |t|ξ/M > |t|k.

Then the origin is isolated in both VC(g3 ± tk, g1, g2).

Take (t, x) ∈ V (g1, g2) \ {0} near the origin. By (1), t ̸= 0. If g3(t, x) ̸= 0, then

g3(t, x) ± tk has the same sign as g3(t, x). If g3(t, x) = 0, then g3(t, x) + tk > 0 and

g3(t, x) − tk < 0. Write b+ (resp. b−, b0) for the number of half-branches of V (g1, g2) on

which g3 is positive (resp. g3 is negative, g3 vanishes). Put

H± =

(
∂(g3 ± tk, g1, g2)

∂(t, x1, x2)
, g1, g2

)
: R3,0 → R3,0.

By [26, Theorem 3.1] or [27, Theorem 2.3], the origin is isolated in both H−1
± (0) and

b+ + b0 − b− = 2 deg0(H+),

b+ − b0 − b− = 2 deg0(H−).

Theorem 4.3. If dimR O3/⟨t, g1, g2⟩ < ∞, then the number b0 of half-branches of

V (w1, w2, w3) emanating from the origin equals deg0(H+) − deg0(H−).

Proof. As the matrix [asj ] is non-singular, then V (w1, w2, w3) = V (g1, g2, g3).

Of course, b0 equals the number of half-branches of V (g1, g2, g3). Moreover,

b0 =
1

2
((b+ + b0 − b1) − (b+ − b0 − b1)) = deg0(H+) − deg0(H−). □

Now we shall explain how to compute the number of half-branches of V (w1, w2, w3)

in the region where t > 0.

Proposition 4.4. Put g′i(t, x) = gi(t
2, x). Then dimR O3/⟨t, g′1, g′2⟩ < ∞ and

V (g′1, g
′
2) has an isolated singularity at the origin.

Proof. By (1), as VC(t, g1, g2) = {0} then VC(t, g′1, g
′
2) = {0}. By Remark 4.1,

dimR O3/⟨t, g′1, g′2⟩ < ∞. We have
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∂(g′i, g
′
j)

∂(t, xp)
(t, x) = 2t

∂(gi, gj)

∂(t, xp)
(t2, x),

∂(g′i, g
′
j)

∂(x1, x2)
(t, x) =

∂(gi, gj)

∂(x1, x2)
(t2, x),

and then V (g′1, g
′
2) is a curve having an algebraically isolated singularity at the origin. □

Remark 4.5. Let J ′
p = ⟨g′1, g′2, (g′3)p⟩. Put ξ′ = min{s | ts · g′3 ⊂ J ′

2}. Of course,

ξ′ ≤ 2 · ξ.

Applying the same methods as above, one can compute the number b′0 of half-

branches of V (g′1, g
′
2, g

′
3). Obviously b′0/2 equals the number of half-branches of

V (w1, w2, w3) lying in the region where t > 0.

Other methods of computing the number of half-branches were presented in [1], [2]

[3], [4], [5], [9], [20]. According to Khimshiashvili [15], [16], if a germ f : R2,0 → R, 0
has an isolated critical point at the origin, then the number of real half-branches in

f−1(0) equals 2 · (1 − deg0(∇f)), where ∇f : R2,0 → R2,0 is the gradient of f .

5. Mappings between curves.

In this section we give sufficient conditions for a mapping between some smooth

plane curves to have only non-degenerate critical points.

Let f = (f1, f2) : R2 → R2 be a smooth mapping. Put g = f2
1 + f2

2 . Assume that

δ2 > 0 is a regular value of g and P = g−1(δ2) is non-empty, so that P is a smooth

curve. Obviously, P = f−1(S1(δ)) and f |P : P → S1(δ) is a smooth mapping between

1-dimensional manifolds.

At any p ∈ P the gradient ∇g(p) = (∂g/∂x1(p), ∂g/∂x2(p)) is a non-zero vector

perpendicular to P , and the vector T (p) = (−∂g/∂x2(p), ∂g/∂x1(p)) obtained by rotating

∇g(p) counterclockwise by an angle of π/2 is tangent to P . This way T : P → R2 is a

non-vanishing tangent vector field along P .

Take p ∈ P . There exists a smooth mapping x(t) = (x1(t), x2(t)) : R → P such that

x(0) = p and x′(t) = T (x(t)). Hence

x′
1(t) = −2 ·

(
f1

∂f1
∂x2

+ f2
∂f2
∂x2

)∣∣∣∣
(x(t))

,

x′
2(t) = 2 ·

(
f1

∂f1
∂x1

+ f2
∂f2
∂x1

)∣∣∣∣
(x(t))

. (2)

As g(x(t)) = δ2, then f(x(t)) = (δ cos θ(t), δ sin θ(t)) for some smooth function

θ : R, 0 → R. Of course, (δ cos θ(0), δ sin θ(0)) = f(x(0)) = f(p). Applying the complex

numbers notation we can write

δ · eiθ = f1(x(t)) + if2(x(t)), where i =
√
−1. (3)

Put J = ∂(f1, f2)/∂(x1, x2) and Gj = ∂(fj , J)/∂(x1, x2), where j = 1, 2.

Lemma 5.1. A point p ∈ P is a critical point of f |P : P → S1(δ) if and only if

J(p) = 0.



561(213)

On bifurcations of cusps 561

Proof. By (2), the derivative of the equation (3) equals

i δ θ′ · eiθ =

(
∂f1
∂x1

x′
1 +

∂f1
∂x2

x′
2

)
+ i ·

(
∂f2
∂x1

x′
1 +

∂f2
∂x2

x′
2

)
= 2i(f1 + if2) · J = 2i δ · eiθ · J.

So p ∈ P is a critical point of f |P if and only if θ′(0) = 0, i.e. if J(p) = 0. □

Lemma 5.2. Suppose that p ∈ P is a critical point of f |P : P → S1(δ). Then

sign (θ′′(0)) = sign (f1 ·G1 + f2 ·G2)|p .

In particular, a point p ∈ P is a non-degenerate critical point of f |P : P → S1(δ) if and

only if J(p) = 0 and (f1 ·G1 + f2 ·G2)|p ̸= 0.

Proof. Since θ′(0) = 0 and J(p) = 0, after computing the second derivative of

(3) the same way as above one gets

i δ θ′′ · eiθ
∣∣
0

= 2i δ · eiθ ·
(

∂J

∂x1
x′
1 +

∂J

∂x2
x′
2

)∣∣∣∣
0

= 4 i δ · eiθ(0) · (f1 ·G1 + f2 ·G2)|p . □

Lemma 5.3. Let f = (f1, f2) : R2,0 → R2,0 be an analytic mapping such that

J(0) = 0, and the origin is isolated in both f−1(0) and ∇J−1(0).

If 0 < δ ≪ r ≪ 1, then S̃1(δ) = D(r) ∩ f−1(S1(δ)) is diffeomorphic to a circle,

D̃2(δ) = D(r) ∩ f−1(D2(δ)) is diffeomorphic to a disc, and f : S̃1(δ) → S1(δ) has only

non-degenerate critical points. Moreover the one-dimensional set J−1(0) consisting of

critical points of f is transverse to S̃1(δ).

Proof. If the origin is isolated in J−1(0), then f |R2 \ {0} is a submersion near

the origin, and so f : S̃1(δ) → S1(δ) has no critical points.

In the other case, J−1(0) \ {0} is locally a finite union of analytic half-branches

emanating from the origin. Let B be one of them. The gradient ∇J(p) is a non-zero

vector perpendicular to TpB at any p ∈ B.

The origin is isolated in f−1(0). By the curve selection lemma one can assume that

(f2
1 + f2

2 )|B has no critical points, so that ∇J and

∇(f2
1 + f2

2 ) =

(
2f1

∂f1
∂x1

+ 2f2
∂f2
∂x1

, 2f1
∂f1
∂x2

+ 2f2
∂f2
∂x2

)
are linearly independent along B. Then

0 ̸= ∇J ×∇(f2
1 + f2

2 ) = 2f1
∂(J, f1)

∂(x1, x2)
+ 2f2

∂(J, f2)

∂(x1, x2)
= −2(f1 ·G1 + f2 ·G2)

along B. By previous lemmas, f : S̃1(δ) → S1(δ) has only non-degenerate critical points.

Other assertions are rather obvious. □
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6. Families of self-maps of R2.

In this section we investigate 1-parameter families of plane-to-plane analytic map-

pings.

Let F = (f1, f2) : R×R2,0 → R2,0 be an analytic mapping defined in a neighbour-

hood of the origin. We shall write Ft(x1, x2) = F (t, x1, x2) for t near zero. Define three

germs R× R2,0 → R by

J =
∂(f1, f2)

∂(x1, x2)
, Gi =

∂(fi, J)

∂(x1, x2)
, i = 1, 2.

Put Jt(x1, x2) = J(t, x1, x2).

From now on we shall also assume that

dimR O3/⟨t, f1, f2⟩ < ∞, dimR O3/⟨t, G1, G2⟩ < ∞,

J(0) = 0, dimR O3

/⟨
t,

∂J

∂x1
,
∂J

∂x2

⟩
< ∞,

(4)

i.e. the origin is isolated in both ({0} × C2) ∩ VC(f1, f2) and ({0} × C2) ∩ VC(G1, G2),

and J0 has an algebraically isolated critical point at the origin.

Lemma 6.1. Let Q = O3/⟨t, J,G1, G2⟩. Then dimR Q < ∞, i.e. the origin is

isolated in ({0} × C2) ∩ VC(J,G1, G2).

Proof. Of course ⟨t, G1, G2⟩⊂⟨t, J,G1, G2⟩. Then dimR Q≤dimR O3/⟨t, G1, G2⟩<
∞. □

We shall write g = f2
1 + f2

2 and gt(x1, x2) = g(t, x1, x2). There exists a small r0 > 0

such that F−1
0 (0) ∩D2(r0) = {0}. For |t| ≪ δ ≪ r0, put S̃1

t (δ) = F−1
t (S1(δ)) ∩D2(r0)

and D̃2
t (δ) = F−1

t (D2(δ)) ∩ D2(r0). If δ2 is a regular value of g0|D2(r0), then it is

also a regular value of gt|D2(r0). If that is the case, then S̃1
t (δ) is diffeomorphic to

S̃1
0(δ) ≃ S1(1). By the same argument, D̃2

t (δ) is diffeomorphic to D̃2
0(δ) ≃ D2(1).

By Lemmas 5.2, 5.3 we get

Lemma 6.2. Critical points of F0 : S̃1
0(δ) → S1(δ) are non-degenerate, and

C(F0|S̃1
0(δ)) = S̃1

0(δ) ∩ {J0 = 0}.
For t near zero, critical points of Ft : S̃1

t (δ) → S1(δ) are non-degenerate too, and

the number of critical points #C(Ft|S̃1
t (δ)) equals #(S̃1

0(δ) ∩ {J0 = 0}). Moreover the

set of critical points of Ft, i.e. J
−1
t (0), is transverse to S̃1

t (δ).

Let I denote the ideal in the ring O3 generated by J,G1, G2, and let V (I) ⊂ R×R2

denote a representative of the germ of zeros of I near the origin. By Lemma 6.1, there

exists 0 < δ ≪ 1 such that {0} × D̃2
0(δ) ∩ V (I) = {0}, and {t} × S̃1

t (δ) ∩ V (I) = ∅ for t

sufficiently close to zero. Put Σt = {x ∈ D̃2
t (δ) | (t, x) ∈ V (I)}. Hence Σ0 = {0} and Σt

is contained in the interior of D̃2
t (δ).

Let I ′ denote the ideal in O3 generated by germs J , G1, G2, ∂(G1, J)/∂(x1, x2) and

∂(G2, J)/∂(x1, x2). Suppose that V (I ′) = {0}. Hence {t} × D̃2(δ) ∩ V (I ′) is empty for

0 ̸= t close to zero. By Proposition 2.2 one gets
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Lemma 6.3. Suppose that 0 < δ ≪ 1 and 0 ̸= t is sufficiently close to zero. Then

the set of critical points of Ft : D̃2
t (δ) → D2(δ) consists of fold points, and a finite family

Σt of cusp points.

Remark 6.4. By [10, Theorem 3.1], if 0 ̸= t is sufficiently close to zero, then

#Σt ≤ dimR Q and #Σt ≡ dimR Q mod 2.

For t ̸= 0 we shall write Σ±
t = {x ∈ Σt | µt(x) = ±1}, where µt(x) is the local

topological degree of Ft at x. Put cusp deg(Ft) =
∑

x∈Σt
µt(x) = #Σ+

t − #Σ−
t . By

Lemmas 5.3, 6.2, 6.3 and Theorem 2.1 we get

Proposition 6.5. Suppose that 0 < δ ≪ 1, and 0 ̸= t is sufficiently close to zero.

Then

(i) the pair (D̃2
t (δ), S̃1

t (δ)) is diffeomorphic to (D2(1), S1(1)), and Ft : D̃2
t (δ) → D2(δ)

is a mapping such that F−1
t (S1(δ)) = S̃1

t (δ),

(ii) every point in D̃2
t (δ) is either a fold point, a cusp point or a regular point, and

there is a finite family of cusps which all belong to D̃2
t (δ) \ S̃2

t (δ),

(iii) Ft|S̃1
t : S̃1

t (δ) → S1
t (δ) is locally stable, and the set of critical points of Ft, i.e.

J−1
t (0), is transverse to S̃1

t (δ),

(iv) cusp deg(Ft) = 2χ(M̃−
t ) + deg(Ft|S̃1

t (δ)) − 1 − #C(Ft|S̃1
t (δ))/2

= 2χ(M̃−
t ) + deg0(F0) − #C(F0|S̃1

0(δ))/2 − 1,

where M̃−
t = {x ∈ D̃2

t (δ) | Jt(x) ≤ 0}.

Let d1, d2 : R× R2,0 → R× R2,0 be defined as in Section 3.

Theorem 6.6. Let F = (f1, f2) : R×R2,0 → R2,0 be an analytic mapping defined

in a neighbourhood of the origin such that (4) holds. Suppose that the origin is isolated

in V (I ′), d−1
1 (0) and d−1

2 (0).

Then there exists r > 0 such that the set of critical points of Ft : D2(r) → R2, where

0 ̸= t is sufficiently close to zero, consists of fold points, and a finite family Σt of cusp

points. Moreover, the origin is isolated in F−1
0 (0) and

cusp deg(Ft) = deg0(F0) − deg0(d1) − sign(t) · deg0(d2).

Proof. For any small δ > 0 there is r > 0 such that D2(r) ⊂ D̃2
0(δ) \ S̃1

0(δ), so

that also D2(r) ⊂ D̃2
t (δ) \ S̃1

t (δ) if |t| is small.

By Lemma 6.3, the set of critical points of Ft|D̃2
t (δ) consists of fold points, and a

finite family Σt of cusp points. Because Σ0 = {0} then Σt is the set of cusp points of

Ft|D2(r).

By (4), the germ d0 = ∇J0 : R2,0 → R2,0 has an isolated zero at the origin. By

Theorem 3.2 and Lemma 6.2, we have
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#C(Ft|S̃1
t (δ)) = #(S̃1

0(δ) ∩ {J0 = 0}) = 2 · (1 − deg0(d0)),

for 0 ̸= t sufficiently close to zero. Our assertion is then a consequence of Proposition

6.5 and Theorem 3.2. □

Put J ′ = J(t2, x1, x2), G′
i = Gi(t

2, x1, x2), i = 1, 2.

Lemma 6.7. Suppose that V (I ′) = {0}. Then dimV (J,G1, G2) ≤ 1 and

dimV (J ′, G′
1, G

′
2) ≤ 1.

Moreover, if dimR O3/I
′ < ∞, then V (J ′, G′

1, G
′
2), as well as V (J,G1, G2), is a

curve having an algebraically isolated singularity at the origin.

Proof. We have

{0} = V (I ′) = V (J,G1, G2) ∩ V

(
∂(G1, J)

∂(x1, x2)
,
∂(G2, J)

∂(x1, x2)

)
,

so by the implicit function theorem dimV (J,G1, G2) ≤ 1. Of course, (t, x1, x2) ∈
V (J ′, G′

1, G
′
2) if and only if (t2, x1, x2) ∈ V (J,G1, G2). Hence dimV (J ′, G′

1, G
′
2) ≤ 1

too.

The ideal

K =

⟨
J ′, G′

1, G
′
2,

∂(G′
1, J

′)

∂(x1, x2)
,
∂(G′

2, J
′)

∂(x1, x2)

⟩
⊂ O3

is contained in the ideal L generated by J ′, G′
1, G

′
2 and all 2× 2-minors of the derivative

matrix of (J ′, G′
1, G

′
2).

As dimR O3/I
′ < ∞, by the local Nullstellensatz, the origin is isolated in the set of

complex zeros of I ′. Since

∂(G′
i, J

′)

∂(x1, x2)
(t, x1, x2) =

∂(Gi, J)

∂(x1, x2)
(t2, x1, x2),

the origin is isolated in the set of complex zeros of K. Hence dimR O3/L ≤ dimR O3/K <

∞, and then V (J ′, G′
1, G

′
2) is a curve having an algebraically isolated singularity at the

origin. The proof of the last assertion is similar. □

Suppose that the origin is isolated in V (I ′). Let b0 (resp. b′0) be the number of half

branches in V (J,G1, G2) (resp. V (J ′, G′
1, G

′
2)) emanating from the origin.

By Lemma 6.1, no half-branch is contained in {0}×R2. Then by the curve selection

lemma the family of half-branches is a finite union of graphs of continuous functions

t 7→ xi(t) ∈ R2, where t belongs either to (−ϵ, 0] or to [0, ϵ), 0 < ϵ ≪ 1, xi(0) = 0,

1 ≤ i ≤ b0 (resp. 1 ≤ i ≤ b′0), and those graphs meet only at the origin.

Hence, if 0 < t ≪ 1, then we have

b0 = #Σt + #Σ−t = #Σ+
t + #Σ−

t + #Σ+
−t + Σ−

−t,

b′0/2 = #Σt = #Σ+
t + #Σ−

t .

By Theorem 6.6, we have
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deg0(F0) − deg0(d1) − deg0(d2) = #Σ+
t − #Σ−

t ,

deg0(F0) − deg0(d1) + deg0(d2) = #Σ+
−t − #Σ−

−t.

Then we have

Theorem 6.8. Suppose that assumptions of Theorem 6.6 hold. Then numbers

#Σ±
±t, where t > 0 is small, are determined by b0, b

′
0, deg0(F0), deg0(d1) and deg0(d2).

Moreover, if dimO3/I
′ < ∞, then V (J,G1, G2) and V (J ′, G′

1, G
′
2) are curves having

an algebraically isolated singularity at the origin. In that case one can apply Theorem

4.3 so as to compute b0 and b′0. In particular, if dimRO3/I
′′ < ∞, where

I ′′ =

⟨
G1, G2,

∂(G1, G2)

∂(t, x1)
,
∂(G1, G2)

∂(t, x2)
,
∂(G1, G2)

∂(x1, x2)

⟩
,

then V (G1, G2) is a curve having an algebraically isolated singularity at the origin. In

that case one can take g1 = G1, g2 = G2, g3 = J .

7. Examples.

Examples presented in this section were calculated with the help of Singular [6]

and the computer program written by Andrzej  Lȩcki [19].

Example 7.1. Let F = (f1, f2) = (x3
1+x2

2+tx1, x1x2). Since dimR O3/⟨t, f1, f2⟩ =

5, dimR O3/⟨t, G1, G2⟩ = 7 and dimR O3/⟨t, ∂J/∂x1, ∂J/∂x2⟩ = 2, (4) holds. More-

over, we have dimR O3/I
′ = 8, dimR O3/⟨∂J/∂t, ∂J/∂x1, ∂J/∂x2⟩ = 1, and dimR O3/⟨J,

∂J/∂x1, ∂J/∂x2⟩ = 3. Then the origin is isolated in V (I ′), d−1
1 (0) and d−1

2 (0). Using

the computer program by  Lȩcki one can compute deg0(F0) = −1, deg0(d1) = +1 and

deg0(d2) = −1. By Theorem 6.6, cusp deg(Ft) = sign(t) − 2 for 0 ̸= t sufficiently close

to zero.

By Lemma 6.7, the set V (J,G1, G2), as well as V (J ′, G′
1, G

′
2), is a curve having an

algebraically isolated singularity at the origin. Hence we can apply techniques presented

in Section 4 so as to compute the number of half-branches of those curves.

One can verify that dimR O3/I
′′ = 8, so that V (G1, G2) is a curve with an alge-

braically isolated singularity at the origin.

Put Jp = ⟨G1, G2, J
p⟩, where p = 1, 2. In that case ξ = 2, and so k = 4. As

dimR O3/⟨t, G1, G2⟩ < ∞, then (1) holds. Set

H± =

(
∂(J ± t4, G1, G2)

∂(t, x1, x2)
, G1, G2

)
: R3,0 → R3,0.

One can compute deg0(H+) = +2, deg0(H−) = −2. By Theorem 4.3, V (J,G1, G2)

is a union of four half-branches emanating from the origin, i.e. b0 = 4.

Now we shall apply the same techniques so as to compute the number of half-

branches of V (J ′, G′
1, G

′
2). By Proposition 4.4, V (G′

1, G
′
2) is a curve with an algebraically

isolated singularity at the origin. Put J ′
p = ⟨G′

1, G
′
2, (J

′)p⟩, where p = 1, 2. By Remark

4.5, ξ′ ≤ 4 and so one can take k = 6. Let
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H ′
± =

(
∂(J ′ ± t6, G′

1, G
′
2)

∂(t, x1, x2)
, G′

1, G
′
2

)
: R3,0 → R3,0.

One can compute deg0(H ′
+) = +1, deg0(H ′

−) = −1. Then V (J ′, G′
1, G

′
2) is a union of

two half-branches emanating from the origin, i.e. b′0/2 = 1. Hence, if 0 < t ≪ 1, then

#Σ+
t = 0, #Σ−

t = 1, #Σ+
−t = 0 and #Σ−

−t = 3.

Example 7.2. Let F = (f1, f2) = (x4
1 + x4

2 + x2
1x

2
2 + tx1, x1x2 + tx2). In that

case dimR O3/⟨t, f1, f2⟩ = 8, dimR O3/⟨t, G1, G2⟩ = 24, dimR O3/⟨t, ∂J/∂x1, ∂J/∂x2⟩ =

9, dimR O3/I
′ = 33, dimR O3/⟨∂J/∂t, ∂J/∂x1, ∂J/∂x2⟩ = 3, and dimR O3/⟨J, ∂J/∂x1,

∂J/∂x2⟩ = 12. Then the origin is isolated in V (I ′), d−1
1 (0) and d−1

2 (0). One can compute

deg0(F0) = 0, deg0(d1) = +1 and deg0(d2) = 0. By Theorem 6.6, cusp deg(Ft) = −1 for

0 ̸= t sufficiently close to zero, i.e. #Σ+
t − #Σ−

t = −1.

As dimR O3/I
′′ = 45 then V (G1, G2) is a curve having an isolated singularity at the

origin. Let Jp be defined the same way as in the previous example. One can verify that

ξ = 2, and so k = 4. Put

H± =

(
∂(J ± t4, G1, G2)

∂(t, x1, x2)
, G1, G2

)
: R3,0 → R3,0.

One can compute deg0(H+) = 0, deg0(H−) = −2. Then V (J,G1, G2) is an union of two

half-branches emanating from the origin, i.e. b0 = 2.

Because Ft(x1, x2) = F−t(−x1,−x2), then b′0/2 = 1 and #Σ+
t = #Σ+

−t, #Σ−
t =

#Σ−
−t. So in this case there is no need to compute deg0(H ′

±). Hence, if t > 0, then

#Σ+
t = #Σ+

−t = 0 and #Σ−
t = #Σ−

−t = 1.
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