©2019 The Mathematical Society of Japan J. Math. Soc. Japan Vol. 71, No. 2 (2019) pp. 555–567 doi: 10.2969/jmsj/79217921

On bifurcations of cusps

By Zbigniew SZAFRANIEC

(Received Nov. 8, 2017)

Abstract. Let F_t , where $t \in \mathbb{R}$, be an analytic family of plane-to-plane mappings with F_0 having a critical point at the origin. The paper presents effective algebraic methods of computing the number of those cusp points of F_t , where $0 < |t| \ll 1$, emanating from the origin at which F_t has a positive/negative local topological degree.

1. Introduction.

Mappings between surfaces are a natural object of study in the theory of singularities. Whitney [29] proved that critical points of such a generic mapping are folds and cusps. There are several results concerning relations between the topology of surfaces and the topology of the critical locus of a mapping (see [8], [18], [24], [28], [29]). Singularities of map germs of the plane into the plane were studied in [10], [11], [13], [21], [22], [25].

Let F_t , where $t \in \mathbb{R}$, be an analytic family of plane-to-plane mappings with F_0 having a critical point at the origin. Under some natural assumptions there is a finite family of cusp points of F_t bifurcating from the origin. There are important results [7, Section 6.3], [10, Theorem 3.1], [14, Section 6], [22, Proposition 7.1] concerning the parity of the number of those points.

In this paper we show how to compute the number of cusps of F_t which are represented by germs having either positive or negative local topological degree (see Theorem 6.8).

The paper is organized as follows. In Sections 2 and 3, we collect some useful facts. The curve in $\mathbb{R} \times \mathbb{R}^2$ consisting of points (t, x), where x is a cusp point of F_t , is defined by three analytic equations, so that it is not a complete intersection. In Section 4 we show how to adopt in this case some more general techniques from [23] concerning curves in \mathbb{R}^n defined by m equations, where $m \ge n$.

In Sections 5 and 6, we prove the main result. In Section 7 we present examples computed by a computer. We have implemented our algorithm with the help of SINGULAR [6]. We have also used a computer program written by Lęcki [19].

2. Mappings between surfaces.

Let $(M, \partial M)$ and $(N, \partial N)$ be compact oriented connected surfaces, and let $f : M \to N$ be a smooth mapping such that $f^{-1}(\partial N) = \partial M$. Assume that

²⁰¹⁰ Mathematics Subject Classification. Primary 14P15; Secondary 58K05.

Key Words and Phrases. singularities, bifurcations, cusps.

- (i) every point in M is either a fold point, a cusp point or a regular point, and there are only a finite number of cusps which all belong to $M \setminus \partial M$,
- (ii) the 1-dimensional manifold consisting of fold points is transverse to ∂M , so that $f|\partial M: \partial M \to \partial N$ is locally stable, i.e. its critical points are non-degenerate.

We shall write M^- for the closure in M of the set of regular points at which f does reverse the orientation.

If $p \in M \setminus \partial M$ is a cusp point, we define $\mu(p)$ to be the local topological degree of the germ $f: (M, p) \to (N, f(p))$. Put

$$\operatorname{cusp}\, \deg\,(f) = \sum \mu(p),$$

where p runs through the set of all cusp points of f.

Fukuda and Ishikawa [10] have generalized the results by Eliašberg [8] and Quine [24] concerning surfaces without boundary, proving

THEOREM 2.1. Let M, N and f be as above and $\partial M \neq \emptyset$. Then

$$\operatorname{cusp} \operatorname{deg}(f) = 2\chi(M^{-}) + (\operatorname{deg} f | \partial M)\chi(N) - \chi(M) - \#C(f | \partial M)/2,$$

where $C(f|\partial M)$ is the set of critical points of $f|\partial M$.

In fact, in [10] there is a stronger assumption that both $f: M \to N$ and $f|\partial M :$ $\partial M \to \partial N$ are C^{∞} -stable mappings. However, if f satisfies (i), (ii), then there exists a C^{∞} -stable perturbation \tilde{f} , which is arbitrary close to f in C^{∞} -Whitney topology, such that all corresponding numbers associated to f and \tilde{f} which appear in the above theorem stay the same.

Let $f = (f_1, f_2) : U \to \mathbb{R}^2$, where $U \subset \mathbb{R}^2$ is open, be a smooth mapping. Set $J = \partial(f_1, f_2) / \partial(x_1, x_2)$, $G_i = \partial(f_i, J) / \partial(x_1, x_2)$, i = 1, 2. Applying the same arguments as in the proof of [17, Proposition 2, p. 815] one gets

PROPOSITION 2.2. The set of all common solutions in U of the system of equations $J = G_1 = G_2 = \partial(G_1, J)/\partial(x_1, x_2) = \partial(G_2, J)/\partial(x_1, x_2) = 0$ is empty if and only if the set of critical points of f consists of either fold or cusp points.

If that is the case, then the set of cusp points is discrete and equals $\{J = G_1 = G_2 = 0\}$.

3. Families of germs.

In this section we recall some useful facts concerning 1-parameter families of real analytic germs.

For r > 0, let $D^n(r) = \{x \in \mathbb{R}^n \mid ||x|| \leq r\}$, and $S^{n-1}(r) = \partial D^n(r)$. We shall write $(t, x) = (t, x_1, \dots, x_n) \in \mathbb{R} \times \mathbb{R}^n$. Assume $J(t, x) : \mathbb{R} \times \mathbb{R}^n, \mathbf{0} \to \mathbb{R}, 0$ is an analytic function defined in a neighbourhood of the origin having a critical point at **0**. We shall write

$$L_0 = \{ x \in S^{n-1}(r) \, | \, J(0,x) = 0 \},\$$

$$M_t^- = \{ x \in D^n(r) \, | \, J(t,x) \le 0 \},\$$

where $0 < |t| \ll r \ll 1$.

Let $F : \mathbb{R} \times \mathbb{R}^n, \mathbf{0} \to \mathbb{R}^n, \mathbf{0}$ be an analytic mapping. Put $F_t(x) = F(t, x)$. Suppose that there exists a small r > 0 such that $F_0^{-1}(\mathbf{0}) \cap D^n(r) = \{\mathbf{0}\}$. For $0 < \delta \ll r$, put $\tilde{S}_t^{n-1}(\delta) = F_t^{-1}(S^{n-1}(\delta)) \cap D^n(r)$ and $\tilde{D}_t^n(\delta) = F_t^{-1}(D^n(\delta)) \cap D^n(r)$. We shall write

$$\tilde{L}_0 = \{ x \in \tilde{S}_0^{n-1}(\delta) \, | \, J(0,x) = 0 \}, \tilde{M}_t^- = \{ x \in \tilde{D}_t^n(\delta) \, | \, J(t,x) \le 0 \},$$

where $0 < |t| \ll \delta \ll 1$.

LEMMA 3.1. We have $\chi(\tilde{M}_t^-) = \chi(M_t^-)$ and $\chi(\tilde{L}_0) = \chi(L_0)$.

PROOF. There exist small positive $\delta_1 < \delta_2$, $r_1 < r_2$ and t_0 , such that for $0 < |t| < t_0$ we have

$$\{ x \in D_t^n(\delta_1) \, | \, J(t,x) \le 0 \} \subset \{ x \in D(r_1) \, | \, J(t,x) \le 0 \}$$

$$\subset \{ x \in \tilde{D}_t^n(\delta_2) \, | \, J(t,x) \le 0 \} \subset \{ x \in D(r_2) \, | \, J(t,x) \le 0 \},$$

and inclusions

$$\{ x \in \tilde{D}_t^n(\delta_1) \, | \, J(t,x) \le 0 \} \subset \{ x \in \tilde{D}_t^n(\delta_2) \, | \, J(t,x) \le 0 \}, \\ \{ x \in D(r_1) \, | \, J(t,x) \le 0 \} \subset \{ x \in D(r_2) \, | \, J(t,x) \le 0 \}$$

induce isomorphisms of corresponding homology groups. Then

$$\chi(\tilde{M}_t^-) = \chi(\{x \in \tilde{D}_t^n(\delta_1) \mid J(t, x) \le 0\}) = \chi(\{x \in D(r_2) \mid J(t, x) \le 0\}) = \chi(M_t^-).$$

The proof of the second assertion is similar.

Define a mapping $d_0 : \mathbb{R}^n, \mathbf{0} \to \mathbb{R}^n, \mathbf{0}$ by

$$d_0(x) = \left(\frac{\partial J}{\partial x_1}(0,x),\ldots,\frac{\partial J}{\partial x_n}(0,x)\right),$$

and mappings $d_1, d_2 : \mathbb{R} \times \mathbb{R}^n, \mathbf{0} \to \mathbb{R} \times \mathbb{R}^n, \mathbf{0}$, by

$$d_1(t,x) = \left(\frac{\partial J}{\partial t}(t,x), \frac{\partial J}{\partial x_1}(t,x), \dots, \frac{\partial J}{\partial x_n}(t,x)\right),$$
$$d_2(t,x) = \left(J(t,x), \frac{\partial J}{\partial x_1}(t,x), \dots, \frac{\partial J}{\partial x_n}(t,x)\right),$$

respectively. Applying directly results by Fukui [12] and Khimshiasvili [15], [16] we get

THEOREM 3.2. Suppose that the origin is isolated in $d_0^{-1}(\mathbf{0})$, $d_1^{-1}(\mathbf{0})$ and $d_2^{-1}(\mathbf{0})$, so that the local topological degrees $\deg_{\mathbf{0}}(d_0)$, $\deg_{\mathbf{0}}(d_1)$ and $\deg_{\mathbf{0}}(d_2)$ are defined.

Then both J(0,x) and J(t,x) have an isolated critical point at the origin. If $0 \neq t$ is sufficiently close to zero, then we have

$$\chi(\tilde{M}_t^-) = \chi(M_t^-) = 1 - (\deg_0(d_0) + \deg_0(d_1) + \operatorname{sign}(t) \cdot \deg_0(d_2))/2$$

If n is even, then we have $\chi(\tilde{L}_0) = \chi(L_0) = 2 \cdot (1 - \deg_{\mathbf{0}}(d_0))$, and if n is odd, then $\chi(\tilde{L}_0) = 0$. In particular, if n = 2, then \tilde{L}_0 is finite and $\#\tilde{L}_0 = 2 \cdot (1 - \deg_{\mathbf{0}}(d_0))$.

It is proper to add that there exists an efficient computer program which can compute the local topological degree (see [19]).

4. Number of half-branches.

In this section we shall show how to adopt some techniques developed in [23], [26], [27] so as to compute the number of half-branches of an analytic set of dimension ≤ 1 emanating from a singular point.

Let $\mathcal{O}_{n+1} = \mathbb{R}\{t, x_1, \dots, x_n\}$ denote the ring of germs at the origin of real analytic functions. If I is an ideal in \mathcal{O}_{n+1} , let $V(I) \subset \mathbb{R} \times \mathbb{R}^n$ denote the germ of zeros of I near the origin, and let $V_{\mathbb{C}}(I) \subset \mathbb{C} \times \mathbb{C}^n$ denote the germ of complex zeros of I.

REMARK 4.1. If I is proper, then $\dim_{\mathbb{R}} \mathcal{O}_{n+1}/I < \infty$ if and only if $V_{\mathbb{C}}(I) = \{\mathbf{0}\}$.

Let $w_1, \ldots, w_m \in \mathcal{O}_{n+1}$, where $m \ge n$, be germs vanishing at the origin. We shall write $\langle w_1, \ldots, w_m \rangle$ for the ideal in \mathcal{O}_{n+1} generated by w_1, \ldots, w_m .

Let $W \subset \mathcal{O}_{n+1}$ denote the ideal generated by w_1, \ldots, w_m and all $n \times n$ -minors of the Jacobian matrix of the mapping germ $(w_1, \ldots, w_m) : \mathbb{R} \times \mathbb{R}^n, \mathbf{0} \to \mathbb{R}^m, \mathbf{0}$. The ideal W is proper if and only if the rank of this matrix at the origin is $\leq n-1$.

If $V(W) = \{\mathbf{0}\}$, then by the implicit function theorem the germ $V(w_1, \ldots, w_m)$ is of dimension ≤ 1 , so that this set is locally a union of a finite family of half-branches emanating from the origin. We shall say that $V(w_1, \ldots, w_m)$ is a curve having an algebraically isolated singularity at the origin if W is proper and $\dim_{\mathbb{R}} \mathcal{O}_{n+1}/W < \infty$.

From now on we shall assume that m = 3 and n = 2. Let M(3,3) denote the space of all 3×3 -matrices with coefficients in \mathbb{R} . By [23, Theorem 3.8] and comments in [23, p. 1012] we have

THEOREM 4.2. Assume that $V(w_1, w_2, w_3)$ is a curve having an algebraically isolated singularity at the origin. There exists a proper algebraic subset $\Sigma \subset M(3,3)$ such that for every non-singular matrix $[a_{sj}] \in M(3,3) \setminus \Sigma$ and $g_s = a_{s,1}w_1 + a_{s,2}w_2 + a_{s,3}w_3$, where $1 \leq s \leq 3$, the set $V(g_1, g_2)$ is a curve having an algebraically isolated singularity at the origin and $V(w_1, w_2, w_3) = V(g_1, g_2, g_3) \subset V(g_1, g_2)$.

If that is the case and $J_p = \langle g_1, g_2, g_3^p \rangle$, where p = 1, 2, then we have $J_2 \subset J_1$ and $\dim_{\mathbb{R}}(J_1/J_2) < \infty$.

If $V(w_1, w_2)$ is a curve having an algebraically isolated singularity at the origin, then one can take $g_s = w_s$.

From now on we shall assume that

$$\dim_{\mathbb{R}} \mathcal{O}_3/\langle t, g_1, g_2 \rangle < \infty. \tag{1}$$

As $\dim_{\mathbb{R}}(J_1/J_2) < \infty$ and $g_3(\mathbf{0}) = 0$, then by the Nakayama lemma $\xi = \min\{s \mid t^s \cdot g_3 \in J_2\}$ is finite. (In [27] there are presented effective methods for computing this number.) Let $k > \xi$ be an even positive integer.

Now we shall adopt to our case some arguments presented in [27, pp. 529–531]. There are germs $h_1, h_2, h_3 \in \mathcal{O}_3$ such that

$$t^{\xi}g_3 = h_1g_1 + h_2g_2 + h_3g_3^2.$$

Let $Y_{\mathbb{C}} = V_{\mathbb{C}}(g_1, g_2) \setminus V_{\mathbb{C}}(g_3)$. By (1), the germ t^k does not vanish at points in $V_{\mathbb{C}}(g_1, g_2) \setminus \{\mathbf{0}\}$. If $(t, x_1, x_2) = (t, x) \in Y_{\mathbb{C}}$ lies sufficiently close to the origin, then $|h_3(t, x)| < M$ for some M > 0, $g_1(t, x) = g_2(t, x) = 0$ and $g_3(t, x) \neq 0$. Hence

$$|g_3(t,x)| \ge |t|^{\xi}/M > |t|^k$$

Then the origin is isolated in both $V_{\mathbb{C}}(g_3 \pm t^k, g_1, g_2)$.

Take $(t,x) \in V(g_1,g_2) \setminus \{0\}$ near the origin. By (1), $t \neq 0$. If $g_3(t,x) \neq 0$, then $g_3(t,x) \pm t^k$ has the same sign as $g_3(t,x)$. If $g_3(t,x) = 0$, then $g_3(t,x) + t^k > 0$ and $g_3(t,x) - t^k < 0$. Write b_+ (resp. b_- , b_0) for the number of half-branches of $V(g_1,g_2)$ on which g_3 is positive (resp. g_3 is negative, g_3 vanishes). Put

$$H_{\pm} = \left(\frac{\partial(g_3 \pm t^k, g_1, g_2)}{\partial(t, x_1, x_2)}, g_1, g_2\right) : \mathbb{R}^3, \mathbf{0} \to \mathbb{R}^3, \mathbf{0}.$$

By [26, Theorem 3.1] or [27, Theorem 2.3], the origin is isolated in both $H_{\pm}^{-1}(0)$ and

$$b_{+} + b_{0} - b_{-} = 2 \deg_{0}(H_{+}),$$

$$b_{+} - b_{0} - b_{-} = 2 \deg_{0}(H_{-}).$$

THEOREM 4.3. If $\dim_{\mathbb{R}} \mathcal{O}_3/\langle t, g_1, g_2 \rangle < \infty$, then the number b_0 of half-branches of $V(w_1, w_2, w_3)$ emanating from the origin equals $\deg_{\mathbf{0}}(H_+) - \deg_{\mathbf{0}}(H_-)$.

PROOF. As the matrix $[a_{sj}]$ is non-singular, then $V(w_1, w_2, w_3) = V(g_1, g_2, g_3)$. Of course, b_0 equals the number of half-branches of $V(g_1, g_2, g_3)$. Moreover,

$$b_0 = \frac{1}{2}((b_+ + b_0 - b_1) - (b_+ - b_0 - b_1)) = \deg_{\mathbf{0}}(H_+) - \deg_{\mathbf{0}}(H_-).$$

Now we shall explain how to compute the number of half-branches of $V(w_1, w_2, w_3)$ in the region where t > 0.

PROPOSITION 4.4. Put $g'_i(t,x) = g_i(t^2,x)$. Then $\dim_{\mathbb{R}} \mathcal{O}_3/\langle t,g'_1,g'_2 \rangle < \infty$ and $V(g'_1,g'_2)$ has an isolated singularity at the origin.

PROOF. By (1), as $V_{\mathbb{C}}(t, g_1, g_2) = \{\mathbf{0}\}$ then $V_{\mathbb{C}}(t, g'_1, g'_2) = \{\mathbf{0}\}$. By Remark 4.1, $\dim_{\mathbb{R}} \mathcal{O}_3/\langle t, g'_1, g'_2 \rangle < \infty$. We have

$$\frac{\partial(g'_i,g'_j)}{\partial(t,x_p)}(t,x) = 2t\frac{\partial(g_i,g_j)}{\partial(t,x_p)}(t^2,x), \quad \frac{\partial(g'_i,g'_j)}{\partial(x_1,x_2)}(t,x) = \frac{\partial(g_i,g_j)}{\partial(x_1,x_2)}(t^2,x),$$

and then $V(g'_1, g'_2)$ is a curve having an algebraically isolated singularity at the origin. \Box

REMARK 4.5. Let $J'_p = \langle g'_1, g'_2, (g'_3)^p \rangle$. Put $\xi' = \min\{s \mid t^s \cdot g'_3 \subset J'_2\}$. Of course, $\xi' \leq 2 \cdot \xi$.

Applying the same methods as above, one can compute the number b'_0 of halfbranches of $V(g'_1, g'_2, g'_3)$. Obviously $b'_0/2$ equals the number of half-branches of $V(w_1, w_2, w_3)$ lying in the region where t > 0.

Other methods of computing the number of half-branches were presented in [1], [2] [3], [4], [5], [9], [20]. According to Khimshiashvili [15], [16], if a germ $f : \mathbb{R}^2, \mathbf{0} \to \mathbb{R}, \mathbf{0}$ has an isolated critical point at the origin, then the number of real half-branches in $f^{-1}(0)$ equals $2 \cdot (1 - \deg_0(\nabla f))$, where $\nabla f : \mathbb{R}^2, \mathbf{0} \to \mathbb{R}^2, \mathbf{0}$ is the gradient of f.

5. Mappings between curves.

In this section we give sufficient conditions for a mapping between some smooth plane curves to have only non-degenerate critical points.

Let $f = (f_1, f_2) : \mathbb{R}^2 \to \mathbb{R}^2$ be a smooth mapping. Put $g = f_1^2 + f_2^2$. Assume that $\delta^2 > 0$ is a regular value of g and $P = g^{-1}(\delta^2)$ is non-empty, so that P is a smooth curve. Obviously, $P = f^{-1}(S^1(\delta))$ and $f|P : P \to S^1(\delta)$ is a smooth mapping between 1-dimensional manifolds.

At any $p \in P$ the gradient $\nabla g(p) = (\partial g/\partial x_1(p), \partial g/\partial x_2(p))$ is a non-zero vector perpendicular to P, and the vector $T(p) = (-\partial g/\partial x_2(p), \partial g/\partial x_1(p))$ obtained by rotating $\nabla g(p)$ counterclockwise by an angle of $\pi/2$ is tangent to P. This way $T: P \to \mathbb{R}^2$ is a non-vanishing tangent vector field along P.

Take $p \in P$. There exists a smooth mapping $x(t) = (x_1(t), x_2(t)) : \mathbb{R} \to P$ such that x(0) = p and x'(t) = T(x(t)). Hence

$$\begin{aligned} x_1'(t) &= -2 \cdot \left(f_1 \frac{\partial f_1}{\partial x_2} + f_2 \frac{\partial f_2}{\partial x_2} \right) \Big|_{(x(t))}, \\ x_2'(t) &= 2 \cdot \left(f_1 \frac{\partial f_1}{\partial x_1} + f_2 \frac{\partial f_2}{\partial x_1} \right) \Big|_{(x(t))}. \end{aligned}$$
(2)

As $g(x(t)) = \delta^2$, then $f(x(t)) = (\delta \cos \theta(t), \delta \sin \theta(t))$ for some smooth function $\theta : \mathbb{R}, 0 \to \mathbb{R}$. Of course, $(\delta \cos \theta(0), \delta \sin \theta(0)) = f(x(0)) = f(p)$. Applying the complex numbers notation we can write

$$\delta \cdot e^{\mathbf{i}\theta} = f_1(x(t)) + \mathbf{i}f_2(x(t)), \text{ where } \mathbf{i} = \sqrt{-1}.$$
(3)

Put $J = \partial(f_1, f_2) / \partial(x_1, x_2)$ and $G_j = \partial(f_j, J) / \partial(x_1, x_2)$, where j = 1, 2.

LEMMA 5.1. A point $p \in P$ is a critical point of $f|P : P \to S^1(\delta)$ if and only if J(p) = 0.

PROOF. By (2), the derivative of the equation (3) equals

$$\mathbf{i}\,\delta\,\theta'\cdot e^{\mathbf{i}\theta} = \left(\frac{\partial f_1}{\partial x_1}\,x_1' + \frac{\partial f_1}{\partial x_2}\,x_2'\right) + \mathbf{i}\cdot \left(\frac{\partial f_2}{\partial x_1}\,x_1' + \frac{\partial f_2}{\partial x_2}\,x_2'\right)$$
$$= 2\mathbf{i}(f_1 + \mathbf{i}f_2)\cdot J = 2\mathbf{i}\,\delta\cdot e^{\mathbf{i}\theta}\cdot J.$$

So $p \in P$ is a critical point of f|P if and only if $\theta'(0) = 0$, i.e. if J(p) = 0.

LEMMA 5.2. Suppose that $p \in P$ is a critical point of $f|P: P \to S^1(\delta)$. Then

$$\operatorname{sign}(\theta''(0)) = \operatorname{sign}(f_1 \cdot G_1 + f_2 \cdot G_2)|_p.$$

In particular, a point $p \in P$ is a non-degenerate critical point of $f|P: P \to S^1(\delta)$ if and only if J(p) = 0 and $(f_1 \cdot G_1 + f_2 \cdot G_2)|_p \neq 0$.

PROOF. Since $\theta'(0) = 0$ and J(p) = 0, after computing the second derivative of (3) the same way as above one gets

$$\mathbf{i}\,\delta\,\theta''\cdot e^{\mathbf{i}\theta}\big|_{0} = 2\mathbf{i}\,\delta\cdot e^{\mathbf{i}\theta}\cdot \left(\frac{\partial J}{\partial x_{1}}\,x_{1}'+\frac{\partial J}{\partial x_{2}}\,x_{2}'\right)\Big|_{0}$$
$$= 4\,\mathbf{i}\,\delta\cdot e^{\mathbf{i}\theta(0)}\cdot (f_{1}\cdot G_{1}+f_{2}\cdot G_{2})\big|_{p}\,.$$

LEMMA 5.3. Let $f = (f_1, f_2) : \mathbb{R}^2, \mathbf{0} \to \mathbb{R}^2, \mathbf{0}$ be an analytic mapping such that $J(\mathbf{0}) = 0$, and the origin is isolated in both $f^{-1}(\mathbf{0})$ and $\nabla J^{-1}(\mathbf{0})$.

If $0 < \delta \ll r \ll 1$, then $\tilde{S}^1(\delta) = D(r) \cap f^{-1}(S^1(\delta))$ is diffeomorphic to a circle, $\tilde{D}^2(\delta) = D(r) \cap f^{-1}(D^2(\delta))$ is diffeomorphic to a disc, and $f : \tilde{S}^1(\delta) \to S^1(\delta)$ has only non-degenerate critical points. Moreover the one-dimensional set $J^{-1}(0)$ consisting of critical points of f is transverse to $\tilde{S}^1(\delta)$.

PROOF. If the origin is isolated in $J^{-1}(0)$, then $f|\mathbb{R}^2 \setminus \{\mathbf{0}\}$ is a submersion near the origin, and so $f: \tilde{S}^1(\delta) \to S^1(\delta)$ has no critical points.

In the other case, $J^{-1}(0) \setminus \{0\}$ is locally a finite union of analytic half-branches emanating from the origin. Let *B* be one of them. The gradient $\nabla J(p)$ is a non-zero vector perpendicular to $T_p B$ at any $p \in B$.

The origin is isolated in $f^{-1}(\mathbf{0})$. By the curve selection lemma one can assume that $(f_1^2 + f_2^2)|B$ has no critical points, so that ∇J and

$$\nabla(f_1^2 + f_2^2) = \left(2f_1\frac{\partial f_1}{\partial x_1} + 2f_2\frac{\partial f_2}{\partial x_1}, 2f_1\frac{\partial f_1}{\partial x_2} + 2f_2\frac{\partial f_2}{\partial x_2}\right)$$

are linearly independent along B. Then

$$0 \neq \nabla J \times \nabla (f_1^2 + f_2^2) = 2f_1 \frac{\partial(J, f_1)}{\partial(x_1, x_2)} + 2f_2 \frac{\partial(J, f_2)}{\partial(x_1, x_2)} = -2(f_1 \cdot G_1 + f_2 \cdot G_2)$$

along B. By previous lemmas, $f : \tilde{S}^1(\delta) \to S^1(\delta)$ has only non-degenerate critical points. Other assertions are rather obvious.

 \square

6. Families of self-maps of \mathbb{R}^2 .

In this section we investigate 1-parameter families of plane-to-plane analytic mappings.

Let $F = (f_1, f_2) : \mathbb{R} \times \mathbb{R}^2, \mathbf{0} \to \mathbb{R}^2, \mathbf{0}$ be an analytic mapping defined in a neighbourhood of the origin. We shall write $F_t(x_1, x_2) = F(t, x_1, x_2)$ for t near zero. Define three germs $\mathbb{R} \times \mathbb{R}^2, \mathbf{0} \to \mathbb{R}$ by

$$J = \frac{\partial(f_1, f_2)}{\partial(x_1, x_2)}, \ G_i = \frac{\partial(f_i, J)}{\partial(x_1, x_2)}, \ i = 1, 2.$$

Put $J_t(x_1, x_2) = J(t, x_1, x_2).$

From now on we shall also assume that

$$\dim_{\mathbb{R}} \mathcal{O}_{3} / \langle t, f_{1}, f_{2} \rangle < \infty, \quad \dim_{\mathbb{R}} \mathcal{O}_{3} / \langle t, G_{1}, G_{2} \rangle < \infty,$$

$$J(\mathbf{0}) = 0, \quad \dim_{\mathbb{R}} \mathcal{O}_{3} / \left\langle t, \frac{\partial J}{\partial x_{1}}, \frac{\partial J}{\partial x_{2}} \right\rangle < \infty,$$
(4)

i.e. the origin is isolated in both $(\{0\} \times \mathbb{C}^2) \cap V_{\mathbb{C}}(f_1, f_2)$ and $(\{0\} \times \mathbb{C}^2) \cap V_{\mathbb{C}}(G_1, G_2)$, and J_0 has an algebraically isolated critical point at the origin.

LEMMA 6.1. Let $Q = \mathcal{O}_3/\langle t, J, G_1, G_2 \rangle$. Then $\dim_{\mathbb{R}} Q < \infty$, i.e. the origin is isolated in $(\{0\} \times \mathbb{C}^2) \cap V_{\mathbb{C}}(J, G_1, G_2)$.

PROOF. Of course $\langle t, G_1, G_2 \rangle \subset \langle t, J, G_1, G_2 \rangle$. Then $\dim_{\mathbb{R}} Q \leq \dim_{\mathbb{R}} \mathcal{O}_3 / \langle t, G_1, G_2 \rangle < \infty$.

We shall write $g = f_1^2 + f_2^2$ and $g_t(x_1, x_2) = g(t, x_1, x_2)$. There exists a small $r_0 > 0$ such that $F_0^{-1}(\mathbf{0}) \cap D^2(r_0) = \{\mathbf{0}\}$. For $|t| \ll \delta \ll r_0$, put $\tilde{S}_t^1(\delta) = F_t^{-1}(S^1(\delta)) \cap D^2(r_0)$ and $\tilde{D}_t^2(\delta) = F_t^{-1}(D^2(\delta)) \cap D^2(r_0)$. If δ^2 is a regular value of $g_0|D^2(r_0)$, then it is also a regular value of $g_t|D^2(r_0)$. If that is the case, then $\tilde{S}_t^1(\delta)$ is diffeomorphic to $\tilde{S}_0^1(\delta) \simeq S^1(1)$. By the same argument, $\tilde{D}_t^2(\delta)$ is diffeomorphic to $\tilde{D}_0^2(\delta) \simeq D^2(1)$.

By Lemmas 5.2, 5.3 we get

LEMMA 6.2. Critical points of F_0 : $\tilde{S}_0^1(\delta) \to S^1(\delta)$ are non-degenerate, and $C(F_0|\tilde{S}_0^1(\delta)) = \tilde{S}_0^1(\delta) \cap \{J_0 = 0\}.$

For t near zero, critical points of $F_t : \tilde{S}_t^1(\delta) \to S^1(\delta)$ are non-degenerate too, and the number of critical points $\#C(F_t|\tilde{S}_t^1(\delta))$ equals $\#(\tilde{S}_0^1(\delta) \cap \{J_0 = 0\})$. Moreover the set of critical points of F_t , i.e. $J_t^{-1}(0)$, is transverse to $\tilde{S}_t^1(\delta)$.

Let *I* denote the ideal in the ring \mathcal{O}_3 generated by J, G_1, G_2 , and let $V(I) \subset \mathbb{R} \times \mathbb{R}^2$ denote a representative of the germ of zeros of *I* near the origin. By Lemma 6.1, there exists $0 < \delta \ll 1$ such that $\{0\} \times \tilde{D}_0^2(\delta) \cap V(I) = \{\mathbf{0}\}$, and $\{t\} \times \tilde{S}_t^1(\delta) \cap V(I) = \emptyset$ for *t* sufficiently close to zero. Put $\Sigma_t = \{x \in \tilde{D}_t^2(\delta) \mid (t, x) \in V(I)\}$. Hence $\Sigma_0 = \{\mathbf{0}\}$ and Σ_t is contained in the interior of $\tilde{D}_t^2(\delta)$.

Let I' denote the ideal in \mathcal{O}_3 generated by germs $J, G_1, G_2, \partial(G_1, J)/\partial(x_1, x_2)$ and $\partial(G_2, J)/\partial(x_1, x_2)$. Suppose that $V(I') = \{\mathbf{0}\}$. Hence $\{t\} \times \tilde{D}^2(\delta) \cap V(I')$ is empty for $0 \neq t$ close to zero. By Proposition 2.2 one gets

LEMMA 6.3. Suppose that $0 < \delta \ll 1$ and $0 \neq t$ is sufficiently close to zero. Then the set of critical points of $F_t : \tilde{D}_t^2(\delta) \to D^2(\delta)$ consists of fold points, and a finite family Σ_t of cusp points.

REMARK 6.4. By [10, Theorem 3.1], if $0 \neq t$ is sufficiently close to zero, then $\#\Sigma_t \leq \dim_{\mathbb{R}} Q$ and $\#\Sigma_t \equiv \dim_{\mathbb{R}} Q \mod 2$.

For $t \neq 0$ we shall write $\Sigma_t^{\pm} = \{x \in \Sigma_t \mid \mu_t(x) = \pm 1\}$, where $\mu_t(x)$ is the local topological degree of F_t at x. Put cusp deg $(F_t) = \sum_{x \in \Sigma_t} \mu_t(x) = \#\Sigma_t^+ - \#\Sigma_t^-$. By Lemmas 5.3, 6.2, 6.3 and Theorem 2.1 we get

PROPOSITION 6.5. Suppose that $0 < \delta \ll 1$, and $0 \neq t$ is sufficiently close to zero. Then

- (i) the pair $(\tilde{D}_t^2(\delta), \tilde{S}_t^1(\delta))$ is diffeomorphic to $(D^2(1), S^1(1))$, and $F_t : \tilde{D}_t^2(\delta) \to D^2(\delta)$ is a mapping such that $F_t^{-1}(S^1(\delta)) = \tilde{S}_t^1(\delta)$,
- (ii) every point in $\tilde{D}_t^2(\delta)$ is either a fold point, a cusp point or a regular point, and there is a finite family of cusps which all belong to $\tilde{D}_t^2(\delta) \setminus \tilde{S}_t^2(\delta)$,
- (iii) $F_t|\tilde{S}_t^1: \tilde{S}_t^1(\delta) \to S_t^1(\delta)$ is locally stable, and the set of critical points of F_t , i.e. $J_t^{-1}(0)$, is transverse to $\tilde{S}_t^1(\delta)$,
- (iv) cusp $\deg(F_t) = 2\chi(\tilde{M}_t^-) + \deg(F_t|\tilde{S}_t^1(\delta)) 1 \#C(F_t|\tilde{S}_t^1(\delta))/2$

$$= 2\chi(M_t^-) + \deg_0(F_0) - \#C(F_0|S_0^1(\delta))/2 - 1,$$

where $\tilde{M}_t^- = \{ x \in \tilde{D}_t^2(\delta) \mid J_t(x) \le 0 \}.$

Let $d_1, d_2 : \mathbb{R} \times \mathbb{R}^2, \mathbf{0} \to \mathbb{R} \times \mathbb{R}^2, \mathbf{0}$ be defined as in Section 3.

THEOREM 6.6. Let $F = (f_1, f_2) : \mathbb{R} \times \mathbb{R}^2, \mathbf{0} \to \mathbb{R}^2, \mathbf{0}$ be an analytic mapping defined in a neighbourhood of the origin such that (4) holds. Suppose that the origin is isolated in V(I'), $d_1^{-1}(\mathbf{0})$ and $d_2^{-1}(\mathbf{0})$.

Then there exists r > 0 such that the set of critical points of $F_t : D^2(r) \to \mathbb{R}^2$, where $0 \neq t$ is sufficiently close to zero, consists of fold points, and a finite family Σ_t of cusp points. Moreover, the origin is isolated in $F_0^{-1}(\mathbf{0})$ and

$$\operatorname{cusp} \deg(F_t) = \deg_{\mathbf{0}}(F_0) - \deg_{\mathbf{0}}(d_1) - \operatorname{sign}(t) \cdot \deg_{\mathbf{0}}(d_2).$$

PROOF. For any small $\delta > 0$ there is r > 0 such that $D^2(r) \subset \tilde{D}_0^2(\delta) \setminus \tilde{S}_0^1(\delta)$, so that also $D^2(r) \subset \tilde{D}_t^2(\delta) \setminus \tilde{S}_t^1(\delta)$ if |t| is small.

By Lemma 6.3, the set of critical points of $F_t | \tilde{D}_t^2(\delta)$ consists of fold points, and a finite family Σ_t of cusp points. Because $\Sigma_0 = \{\mathbf{0}\}$ then Σ_t is the set of cusp points of $F_t | D^2(r)$.

By (4), the germ $d_0 = \nabla J_0 : \mathbb{R}^2, \mathbf{0} \to \mathbb{R}^2, \mathbf{0}$ has an isolated zero at the origin. By Theorem 3.2 and Lemma 6.2, we have

$$#C(F_t|\tilde{S}_t^1(\delta)) = #(\tilde{S}_0^1(\delta) \cap \{J_0 = 0\}) = 2 \cdot (1 - \deg_0(d_0)),$$

for $0 \neq t$ sufficiently close to zero. Our assertion is then a consequence of Proposition 6.5 and Theorem 3.2.

Put
$$J' = J(t^2, x_1, x_2), G'_i = G_i(t^2, x_1, x_2), i = 1, 2.$$

LEMMA 6.7. Suppose that $V(I') = \{0\}$. Then dim $V(J, G_1, G_2) \leq 1$ and dim $V(J', G'_1, G'_2) \leq 1$.

Moreover, if $\dim_{\mathbb{R}} \mathcal{O}_3/I' < \infty$, then $V(J', G'_1, G'_2)$, as well as $V(J, G_1, G_2)$, is a curve having an algebraically isolated singularity at the origin.

PROOF. We have

$$\{\mathbf{0}\} = V(I') = V(J, G_1, G_2) \cap V\left(\frac{\partial(G_1, J)}{\partial(x_1, x_2)}, \frac{\partial(G_2, J)}{\partial(x_1, x_2)}\right)$$

so by the implicit function theorem dim $V(J, G_1, G_2) \leq 1$. Of course, $(t, x_1, x_2) \in V(J', G'_1, G'_2)$ if and only if $(t^2, x_1, x_2) \in V(J, G_1, G_2)$. Hence dim $V(J', G'_1, G'_2) \leq 1$ too.

The ideal

$$K = \left\langle J', G_1', G_2', \frac{\partial(G_1', J')}{\partial(x_1, x_2)}, \frac{\partial(G_2', J')}{\partial(x_1, x_2)} \right\rangle \subset \mathcal{O}_3$$

is contained in the ideal L generated by J', G'_1, G'_2 and all 2×2 -minors of the derivative matrix of (J', G'_1, G'_2) .

As $\dim_{\mathbb{R}} \mathcal{O}_3/I' < \infty$, by the local Nullstellensatz, the origin is isolated in the set of complex zeros of I'. Since

$$\frac{\partial(G'_i, J')}{\partial(x_1, x_2)}(t, x_1, x_2) = \frac{\partial(G_i, J)}{\partial(x_1, x_2)}(t^2, x_1, x_2),$$

the origin is isolated in the set of complex zeros of K. Hence $\dim_{\mathbb{R}} \mathcal{O}_3/L \leq \dim_{\mathbb{R}} \mathcal{O}_3/K < \infty$, and then $V(J', G'_1, G'_2)$ is a curve having an algebraically isolated singularity at the origin. The proof of the last assertion is similar.

Suppose that the origin is isolated in V(I'). Let b_0 (resp. b'_0) be the number of half branches in $V(J, G_1, G_2)$ (resp. $V(J', G'_1, G'_2)$) emanating from the origin.

By Lemma 6.1, no half-branch is contained in $\{0\} \times \mathbb{R}^2$. Then by the curve selection lemma the family of half-branches is a finite union of graphs of continuous functions $t \mapsto x^i(t) \in \mathbb{R}^2$, where t belongs either to $(-\epsilon, 0]$ or to $[0, \epsilon)$, $0 < \epsilon \ll 1$, $x^i(0) = 0$, $1 \le i \le b_0$ (resp. $1 \le i \le b'_0$), and those graphs meet only at the origin.

Hence, if $0 < t \ll 1$, then we have

$$b_0 = \#\Sigma_t + \#\Sigma_{-t} = \#\Sigma_t^+ + \#\Sigma_t^- + \#\Sigma_{-t}^+ + \Sigma_{-t}^-,$$

$$b'_0/2 = \#\Sigma_t = \#\Sigma_t^+ + \#\Sigma_t^-.$$

By Theorem 6.6, we have

 $On \ bifurcations \ of \ cusps$

$$\deg_{\mathbf{0}}(F_0) - \deg_{\mathbf{0}}(d_1) - \deg_{\mathbf{0}}(d_2) = \#\Sigma_t^+ - \#\Sigma_t^-, \deg_{\mathbf{0}}(F_0) - \deg_{\mathbf{0}}(d_1) + \deg_{\mathbf{0}}(d_2) = \#\Sigma_{-t}^+ - \#\Sigma_{-t}^-.$$

Then we have

THEOREM 6.8. Suppose that assumptions of Theorem 6.6 hold. Then numbers $\#\Sigma_{\pm t}^{\pm}$, where t > 0 is small, are determined by $b_0, b'_0, \deg_{\mathbf{0}}(F_0), \deg_{\mathbf{0}}(d_1)$ and $\deg_{\mathbf{0}}(d_2)$.

Moreover, if dim $\mathcal{O}_3/I' < \infty$, then $V(J, G_1, G_2)$ and $V(J', G'_1, G'_2)$ are curves having an algebraically isolated singularity at the origin. In that case one can apply Theorem 4.3 so as to compute b_0 and b'_0 . In particular, if $\dim_{\mathbb{R}} \mathcal{O}_3/I'' < \infty$, where

$$I'' = \left\langle G_1, G_2, \frac{\partial(G_1, G_2)}{\partial(t, x_1)}, \frac{\partial(G_1, G_2)}{\partial(t, x_2)}, \frac{\partial(G_1, G_2)}{\partial(x_1, x_2)} \right\rangle,$$

then $V(G_1, G_2)$ is a curve having an algebraically isolated singularity at the origin. In that case one can take $g_1 = G_1$, $g_2 = G_2$, $g_3 = J$.

7. Examples.

Examples presented in this section were calculated with the help of SINGULAR [6] and the computer program written by Andrzej Lęcki [19].

EXAMPLE 7.1. Let $F = (f_1, f_2) = (x_1^3 + x_2^2 + tx_1, x_1x_2)$. Since $\dim_{\mathbb{R}} \mathcal{O}_3/\langle t, f_1, f_2 \rangle = 5$, $\dim_{\mathbb{R}} \mathcal{O}_3/\langle t, G_1, G_2 \rangle = 7$ and $\dim_{\mathbb{R}} \mathcal{O}_3/\langle t, \partial J/\partial x_1, \partial J/\partial x_2 \rangle = 2$, (4) holds. Moreover, we have $\dim_{\mathbb{R}} \mathcal{O}_3/I' = 8$, $\dim_{\mathbb{R}} \mathcal{O}_3/\langle \partial J/\partial t, \partial J/\partial x_1, \partial J/\partial x_2 \rangle = 1$, and $\dim_{\mathbb{R}} \mathcal{O}_3/\langle J, \partial J/\partial x_1, \partial J/\partial x_2 \rangle = 1$, and $\dim_{\mathbb{R}} \mathcal{O}_3/\langle J, \partial J/\partial x_1, \partial J/\partial x_2 \rangle = 3$. Then the origin is isolated in V(I'), $d_1^{-1}(\mathbf{0})$ and $d_2^{-1}(\mathbf{0})$. Using the computer program by Lecki one can compute $\deg_{\mathbf{0}}(F_0) = -1$, $\deg_{\mathbf{0}}(d_1) = +1$ and $\deg_{\mathbf{0}}(d_2) = -1$. By Theorem 6.6, $\operatorname{cusp} \deg(F_t) = \operatorname{sign}(t) - 2$ for $0 \neq t$ sufficiently close to zero.

By Lemma 6.7, the set $V(J, G_1, G_2)$, as well as $V(J', G'_1, G'_2)$, is a curve having an algebraically isolated singularity at the origin. Hence we can apply techniques presented in Section 4 so as to compute the number of half-branches of those curves.

One can verify that $\dim_{\mathbb{R}} \mathcal{O}_3/I'' = 8$, so that $V(G_1, G_2)$ is a curve with an algebraically isolated singularity at the origin.

Put $J_p = \langle G_1, G_2, J^p \rangle$, where p = 1, 2. In that case $\xi = 2$, and so k = 4. As $\dim_{\mathbb{R}} \mathcal{O}_3/\langle t, G_1, G_2 \rangle < \infty$, then (1) holds. Set

$$H_{\pm} = \left(\frac{\partial(J \pm t^4, G_1, G_2)}{\partial(t, x_1, x_2)}, G_1, G_2\right) : \mathbb{R}^3, \mathbf{0} \to \mathbb{R}^3, \mathbf{0}.$$

One can compute $\deg_{\mathbf{0}}(H_+) = +2$, $\deg_{\mathbf{0}}(H_-) = -2$. By Theorem 4.3, $V(J, G_1, G_2)$ is a union of four half-branches emanating from the origin, i.e. $b_0 = 4$.

Now we shall apply the same techniques so as to compute the number of halfbranches of $V(J', G'_1, G'_2)$. By Proposition 4.4, $V(G'_1, G'_2)$ is a curve with an algebraically isolated singularity at the origin. Put $J'_p = \langle G'_1, G'_2, (J')^p \rangle$, where p = 1, 2. By Remark 4.5, $\xi' \leq 4$ and so one can take k = 6. Let

$$H'_{\pm} = \left(\frac{\partial(J' \pm t^6, G'_1, G'_2)}{\partial(t, x_1, x_2)}, G'_1, G'_2\right) : \mathbb{R}^3, \mathbf{0} \to \mathbb{R}^3, \mathbf{0}.$$

One can compute $\deg_{\mathbf{0}}(H'_{+}) = +1$, $\deg_{\mathbf{0}}(H'_{-}) = -1$. Then $V(J', G'_{1}, G'_{2})$ is a union of two half-branches emanating from the origin, i.e. $b'_{0}/2 = 1$. Hence, if $0 < t \ll 1$, then $\#\Sigma_{t}^{+} = 0, \#\Sigma_{t}^{-} = 1, \#\Sigma_{-t}^{+} = 0$ and $\#\Sigma_{-t}^{-} = 3$.

EXAMPLE 7.2. Let $F = (f_1, f_2) = (x_1^4 + x_2^4 + x_1^2 x_2^2 + tx_1, x_1 x_2 + tx_2)$. In that case $\dim_{\mathbb{R}} \mathcal{O}_3/\langle t, f_1, f_2 \rangle = 8$, $\dim_{\mathbb{R}} \mathcal{O}_3/\langle t, G_1, G_2 \rangle = 24$, $\dim_{\mathbb{R}} \mathcal{O}_3/\langle t, \partial J/\partial x_1, \partial J/\partial x_2 \rangle = 9$, $\dim_{\mathbb{R}} \mathcal{O}_3/I' = 33$, $\dim_{\mathbb{R}} \mathcal{O}_3/\langle \partial J/\partial t, \partial J/\partial x_1, \partial J/\partial x_2 \rangle = 3$, and $\dim_{\mathbb{R}} \mathcal{O}_3/\langle J, \partial J/\partial x_1, \partial J/\partial x_1, \partial J/\partial x_2 \rangle = 12$. Then the origin is isolated in $V(I'), d_1^{-1}(\mathbf{0})$ and $d_2^{-1}(\mathbf{0})$. One can compute $\deg_{\mathbf{0}}(F_0) = 0$, $\deg_{\mathbf{0}}(d_1) = +1$ and $\deg_{\mathbf{0}}(d_2) = 0$. By Theorem 6.6, $\operatorname{cusp} \deg(F_t) = -1$ for $0 \neq t$ sufficiently close to zero, i.e. $\#\Sigma_t^+ - \#\Sigma_t^- = -1$.

As dim_{\mathbb{R}} $\mathcal{O}_3/I'' = 45$ then $V(G_1, G_2)$ is a curve having an isolated singularity at the origin. Let J_p be defined the same way as in the previous example. One can verify that $\xi = 2$, and so k = 4. Put

$$H_{\pm} = \left(\frac{\partial(J \pm t^4, G_1, G_2)}{\partial(t, x_1, x_2)}, G_1, G_2\right) : \mathbb{R}^3, \mathbf{0} \to \mathbb{R}^3, \mathbf{0}.$$

One can compute $\deg_{\mathbf{0}}(H_+) = 0$, $\deg_{\mathbf{0}}(H_-) = -2$. Then $V(J, G_1, G_2)$ is an union of two half-branches emanating from the origin, i.e. $b_0 = 2$.

Because $F_t(x_1, x_2) = F_{-t}(-x_1, -x_2)$, then $b'_0/2 = 1$ and $\#\Sigma_t^+ = \#\Sigma_{-t}^+$, $\#\Sigma_t^- = \#\Sigma_{-t}^-$. So in this case there is no need to compute $\deg_0(H'_{\pm})$. Hence, if t > 0, then $\#\Sigma_t^+ = \#\Sigma_{-t}^+ = 0$ and $\#\Sigma_t^- = \#\Sigma_{-t}^- = 1$.

References

- [1] K. Aoki, T. Fukuda and T. Nishimura, On the number of branches of the zero locus of a map germ $(\mathbb{R}^n, 0) \to (\mathbb{R}^{n-1}, 0)$, In: Topology and Computer Science, Proceedings of the Symposium held in honour of S. Kinoshita, H. Noguchi and T. Homma on the occasion of their sixtieth birthdays, 1987, 347–363.
- [2] K. Aoki, T. Fukuda and T. Nishimura, An algebraic formula for the topological types of one parameter bifurcations diagrams, Archive for Rational Mechanics and Analysis, 108 (1989), 247– 265.
- [3] F. Cucker, L. M. Pardo, M. Raimondo, T. Recio and M.-F. Roy, On the computation of the local and global analytic branches of a real algebraic curve, In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Lecture Notes in Computer Sci., Springer-Verlag, **356** (1989), 161– 181.
- [4] J. Damon, On the number of branches for real and complex weighted homogeneous curve singularities, Topology, 30 (1991), 223–229.
- [5] J. Damon, G-signature, G-degree, and symmetries of the branches of curve singularities, Topology, 30 (1991), 565–590.
- [6] W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann, SINGULAR 4-1-1, A Computer Algebra System for Polynomial Computations, http://www.singular.uni-kl.de, (2018).
- [7] N. Dutertre and T. Fukui, On the topology of stable maps, J. Math. Soc. Japan, 66 (2014), 161–203.
- [8] Ja. M. Èliašberg, On singularities of folding type, Math. USSR-Izv., 4 (1970), 1119–1134.
- [9] T. Fukuda, K. Aoki and W. Z. Sun, On the number of branches of a plane curve germ, Kodai Math. J., 9 (1986), 179–187.

- [10] T. Fukuda and G. Ishikawa, On the number of cusps of stable perturbations of a plane-to-plane singularity, Tokyo J. Math., 10 (1987), 375–384.
- T. Fukuda, Topological triviality of plane-to-plane singularities, In: Geometry and its applications (Yokohama, 1991), World Sci. Publ., River Edge, NJ, 1993, 29–37.
- [12] T. Fukui, An algebraic formula for a topological invariant of bifurcation of 1-parameter family of function-germs, In: Stratifications, singularities, and differential equations, II, (Marseille, 1990; Honolulu, HI, 1990), Travaux en Cours, 55, Hermann, Paris 1997, 45–54.
- [13] T. Gaffney and D. Mond, Cusps and double folds of germs of analytic mappings C² → C², J. London Math. Soc., 43 (1991), 185–192.
- [14] K. Ikegami and O. Saeki, Cobordism of Morse maps and its application to map germs, Math. Proc. Cambridge Philos. Soc., 147 (2009), 235–254.
- [15] G. M. Khimshiashvili, On the local degree of a smooth mapping, Comm. Acad. Sci. Georgian SSR, 85 (1977), 309–311.
- [16] G. M. Khimshiashvili, On the local degree of a smooth mapping, Trudy Tbilisi Math. Inst., 64 (1980), 105–124.
- [17] I. Krzyżanowska and Z. Szafraniec, On polynomial mappings from the plane to the plane, J. Math. Soc. Japan, 66 (2014), 805–818.
- [18] H. I. Levine, Mappings of manifolds into the plane, Amer. J. Math., 88 (1966), 357–365.
- [19] A. Lęcki and Z. Szafraniec, Applications of the Eisenbud–Levine theorem to real algebraic geometry, In: Computational Algebraic Geometry, Progr. in Math., 109, Birkhäuser Boston, Boston, MA, 1993, 177–184.
- [20] J. Montaldi and D. van Straten, One-forms on singular curves and the topology of real curve singularities, Topology, 29 (1990), 501–510.
- [21] J. A. Moya-Pérez and J. J. Nuño-Ballesteros, The link of a finitely determined map germ from R² to R², J. Math. Soc. Japan, **62** (2010), 1069–1092.
- [22] J. A. Moya-Pérez and J. J. Nuño-Ballesteros, Topological triviality of families of map germs from R² to R², J. of Singularities, 6 (2012), 112–123.
- [23] A. Nowel and Z. Szafraniec, On the number of branches of a real curve singularities, Bull. London Math. Soc., 43 (2011), 1004–1020.
- [24] J. R. Quine, A global theorem for singularities of maps between oriented 2-manifolds, Trans. Amer. Math. Soc., 236 (1978), 307–314.
- [25] J. H. Rieger, Families of maps from the plane to the plane, J. London Math. Soc., 36 (1987), 351–369.
- [26] Z. Szafraniec, On the number of branches of a 1-dimensional semianalytic set, Kodai Math. J., 11 (1988), 78–85.
- [27] Z. Szafraniec, A formula for the number of branches of one-dimensional semianalytic sets, Math. Proc. Cambridge Philos. Soc., 112 (1992), 527–534.
- [28] R. Thom, Les singularités des applications différentiables, Ann. Inst. Fourier, Grenoble, 6 (1955– 1956), 43–87.
- [29] H. Whitney, On singularities of mappings of Euclidean spaces, I, Mappings of the plane into the plane, Annals of Math., 62 (1955), 374–410.

Zbigniew SZAFRANIEC

Instytut Matematyki Wydział Matematyki Fizyki i Informatyki Uniwersytet Gdański 80-308 Gdańsk, Poland E-mail: Zbigniew.Szafraniec@mat.ug.edu.pl