On bifurcations of cusps

By Zbigniew Szafraniec

(Received Nov. 8, 2017)

Abstract

Let F_{t}, where $t \in \mathbb{R}$, be an analytic family of plane-to-plane mappings with F_{0} having a critical point at the origin. The paper presents effective algebraic methods of computing the number of those cusp points of F_{t}, where $0<|t| \ll 1$, emanating from the origin at which F_{t} has a positive/negative local topological degree.

1. Introduction.

Mappings between surfaces are a natural object of study in the theory of singularities. Whitney [29] proved that critical points of such a generic mapping are folds and cusps. There are several results concerning relations between the topology of surfaces and the topology of the critical locus of a mapping (see [8], [18], [24], [28], [29]). Singularities of map germs of the plane into the plane were studied in $[\mathbf{1 0}],[\mathbf{1 1}],[\mathbf{1 3}],[\mathbf{2 1}],[\mathbf{2 2}],[\mathbf{2 5}]$.

Let F_{t}, where $t \in \mathbb{R}$, be an analytic family of plane-to-plane mappings with F_{0} having a critical point at the origin. Under some natural assumptions there is a finite family of cusp points of F_{t} bifurcating from the origin. There are important results [7, Section $6.3]$, [10, Theorem 3.1], [14, Section 6], [22, Proposition 7.1] concerning the parity of the number of those points.

In this paper we show how to compute the number of cusps of F_{t} which are represented by germs having either positive or negative local topological degree (see Theorem 6.8).

The paper is organized as follows. In Sections 2 and 3, we collect some useful facts. The curve in $\mathbb{R} \times \mathbb{R}^{2}$ consisting of points (t, x), where x is a cusp point of F_{t}, is defined by three analytic equations, so that it is not a complete intersection. In Section 4 we show how to adopt in this case some more general techniques from [23] concerning curves in \mathbb{R}^{n} defined by m equations, where $m \geq n$.

In Sections 5 and 6, we prove the main result. In Section 7 we present examples computed by a computer. We have implemented our algorithm with the help of Singular [6]. We have also used a computer program written by Łȩcki [19].

2. Mappings between surfaces.

Let $(M, \partial M)$ and $(N, \partial N)$ be compact oriented connected surfaces, and let $f: M \rightarrow$ N be a smooth mapping such that $f^{-1}(\partial N)=\partial M$. Assume that

[^0](i) every point in M is either a fold point, a cusp point or a regular point, and there are only a finite number of cusps which all belong to $M \backslash \partial M$,
(ii) the 1-dimensional manifold consisting of fold points is transverse to ∂M, so that $f \mid \partial M: \partial M \rightarrow \partial N$ is locally stable, i.e. its critical points are non-degenerate.

We shall write M^{-}for the closure in M of the set of regular points at which f does reverse the orientation.

If $p \in M \backslash \partial M$ is a cusp point, we define $\mu(p)$ to be the local topological degree of the germ $f:(M, p) \rightarrow(N, f(p))$. Put

$$
\operatorname{cusp} \operatorname{deg}(f)=\sum \mu(p)
$$

where p runs through the set of all cusp points of f.
Fukuda and Ishikawa [10] have generalized the results by Èliašberg [8] and Quine [24] concerning surfaces without boundary, proving

Theorem 2.1. Let M, N and f be as above and $\partial M \neq \emptyset$. Then

$$
\operatorname{cusp} \operatorname{deg}(f)=2 \chi\left(M^{-}\right)+(\operatorname{deg} f \mid \partial M) \chi(N)-\chi(M)-\# C(f \mid \partial M) / 2,
$$

where $C(f \mid \partial M)$ is the set of critical points of $f \mid \partial M$.
In fact, in $[\mathbf{1 0}]$ there is a stronger assumption that both $f: M \rightarrow N$ and $f \mid \partial M$: $\partial M \rightarrow \partial N$ are C^{∞}-stable mappings. However, if f satisfies (i), (ii), then there exists a C^{∞}-stable perturbation \tilde{f}, which is arbitrary close to f in C^{∞}-Whitney topology, such that all corresponding numbers associated to f and \tilde{f} which appear in the above theorem stay the same.

Let $f=\left(f_{1}, f_{2}\right): U \rightarrow \mathbb{R}^{2}$, where $U \subset \mathbb{R}^{2}$ is open, be a smooth mapping. Set $J=\partial\left(f_{1}, f_{2}\right) / \partial\left(x_{1}, x_{2}\right), G_{i}=\partial\left(f_{i}, J\right) / \partial\left(x_{1}, x_{2}\right), i=1,2$. Applying the same arguments as in the proof of [17, Proposition 2, p. 815] one gets

Proposition 2.2. The set of all common solutions in U of the system of equations $J=G_{1}=G_{2}=\partial\left(G_{1}, J\right) / \partial\left(x_{1}, x_{2}\right)=\partial\left(G_{2}, J\right) / \partial\left(x_{1}, x_{2}\right)=0$ is empty if and only if the set of critical points of f consists of either fold or cusp points.

If that is the case, then the set of cusp points is discrete and equals $\left\{J=G_{1}=G_{2}=\right.$ $0\}$.

3. Families of germs.

In this section we recall some useful facts concerning 1-parameter families of real analytic germs.

For $r>0$, let $D^{n}(r)=\left\{x \in \mathbb{R}^{n} \mid\|x\| \leq r\right\}$, and $S^{n-1}(r)=\partial D^{n}(r)$. We shall write $(t, x)=\left(t, x_{1}, \ldots, x_{n}\right) \in \mathbb{R} \times \mathbb{R}^{n}$. Assume $J(t, x): \mathbb{R} \times \mathbb{R}^{n}, \mathbf{0} \rightarrow \mathbb{R}, 0$ is an analytic function defined in a neighbourhood of the origin having a critical point at $\mathbf{0}$. We shall write

$$
L_{0}=\left\{x \in S^{n-1}(r) \mid J(0, x)=0\right\}
$$

$$
M_{t}^{-}=\left\{x \in D^{n}(r) \mid J(t, x) \leq 0\right\}
$$

where $0<|t| \ll r \ll 1$.
Let $F: \mathbb{R} \times \mathbb{R}^{n}, \mathbf{0} \rightarrow \mathbb{R}^{n}, \mathbf{0}$ be an analytic mapping. Put $F_{t}(x)=F(t, x)$. Suppose that there exists a small $r>0$ such that $F_{0}^{-1}(\mathbf{0}) \cap D^{n}(r)=\{\mathbf{0}\}$. For $0<\delta \ll r$, put $\tilde{S}_{t}^{n-1}(\delta)=F_{t}^{-1}\left(S^{n-1}(\delta)\right) \cap D^{n}(r)$ and $\tilde{D}_{t}^{n}(\delta)=F_{t}^{-1}\left(D^{n}(\delta)\right) \cap D^{n}(r)$. We shall write

$$
\begin{gathered}
\tilde{L}_{0}=\left\{x \in \tilde{S}_{0}^{n-1}(\delta) \mid J(0, x)=0\right\}, \\
\tilde{M}_{t}^{-}=\left\{x \in \tilde{D}_{t}^{n}(\delta) \mid J(t, x) \leq 0\right\},
\end{gathered}
$$

where $0<|t| \ll \delta \ll 1$.
Lemma 3.1. We have $\chi\left(\tilde{M}_{t}^{-}\right)=\chi\left(M_{t}^{-}\right)$and $\chi\left(\tilde{L}_{0}\right)=\chi\left(L_{0}\right)$.
Proof. There exist small positive $\delta_{1}<\delta_{2}, r_{1}<r_{2}$ and t_{0}, such that for $0<|t|<$ t_{0} we have

$$
\begin{gathered}
\left\{x \in \tilde{D}_{t}^{n}\left(\delta_{1}\right) \mid J(t, x) \leq 0\right\} \subset\left\{x \in D\left(r_{1}\right) \mid J(t, x) \leq 0\right\} \\
\subset\left\{x \in \tilde{D}_{t}^{n}\left(\delta_{2}\right) \mid J(t, x) \leq 0\right\} \subset\left\{x \in D\left(r_{2}\right) \mid J(t, x) \leq 0\right\}
\end{gathered}
$$

and inclusions

$$
\begin{gathered}
\left\{x \in \tilde{D}_{t}^{n}\left(\delta_{1}\right) \mid J(t, x) \leq 0\right\} \subset\left\{x \in \tilde{D}_{t}^{n}\left(\delta_{2}\right) \mid J(t, x) \leq 0\right\}, \\
\left\{x \in D\left(r_{1}\right) \mid J(t, x) \leq 0\right\} \subset\left\{x \in D\left(r_{2}\right) \mid J(t, x) \leq 0\right\}
\end{gathered}
$$

induce isomorphisms of corresponding homology groups. Then

$$
\begin{gathered}
\chi\left(\tilde{M}_{t}^{-}\right)=\chi\left(\left\{x \in \tilde{D}_{t}^{n}\left(\delta_{1}\right) \mid J(t, x) \leq 0\right\}\right) \\
=\chi\left(\left\{x \in D\left(r_{2}\right) \mid J(t, x) \leq 0\right\}\right)=\chi\left(M_{t}^{-}\right)
\end{gathered}
$$

The proof of the second assertion is similar.
Define a mapping $d_{0}: \mathbb{R}^{n}, \mathbf{0} \rightarrow \mathbb{R}^{n}, \mathbf{0}$ by

$$
d_{0}(x)=\left(\frac{\partial J}{\partial x_{1}}(0, x), \ldots, \frac{\partial J}{\partial x_{n}}(0, x)\right)
$$

and mappings $d_{1}, d_{2}: \mathbb{R} \times \mathbb{R}^{n}, \mathbf{0} \rightarrow \mathbb{R} \times \mathbb{R}^{n}, \mathbf{0}$, by

$$
\begin{aligned}
d_{1}(t, x) & =\left(\frac{\partial J}{\partial t}(t, x), \frac{\partial J}{\partial x_{1}}(t, x), \ldots, \frac{\partial J}{\partial x_{n}}(t, x)\right), \\
d_{2}(t, x) & =\left(J(t, x), \frac{\partial J}{\partial x_{1}}(t, x), \ldots, \frac{\partial J}{\partial x_{n}}(t, x)\right),
\end{aligned}
$$

respectively. Applying directly results by Fukui $[\mathbf{1 2}]$ and Khimshiasvili $[15],[16]$ we get
Theorem 3.2. Suppose that the origin is isolated in $d_{0}^{-1}(\mathbf{0}), d_{1}^{-1}(\mathbf{0})$ and $d_{2}^{-1}(\mathbf{0})$, so that the local topological degrees $\operatorname{deg}_{\mathbf{0}}\left(d_{0}\right), \operatorname{deg}_{\mathbf{0}}\left(d_{1}\right)$ and $\operatorname{deg}_{\mathbf{0}}\left(d_{2}\right)$ are defined.

Then both $J(0, x)$ and $J(t, x)$ have an isolated critical point at the origin. If $0 \neq t$ is sufficiently close to zero, then we have

$$
\chi\left(\tilde{M}_{t}^{-}\right)=\chi\left(M_{t}^{-}\right)=1-\left(\operatorname{deg}_{\mathbf{0}}\left(d_{0}\right)+\operatorname{deg}_{\mathbf{0}}\left(d_{1}\right)+\operatorname{sign}(t) \cdot \operatorname{deg}_{\mathbf{0}}\left(d_{2}\right)\right) / 2 .
$$

If n is even, then we have $\chi\left(\tilde{L}_{0}\right)=\chi\left(L_{0}\right)=2 \cdot\left(1-\operatorname{deg}_{\mathbf{0}}\left(d_{0}\right)\right)$, and if n is odd, then $\chi\left(\tilde{L}_{0}\right)=0$. In particular, if $n=2$, then \tilde{L}_{0} is finite and $\# \tilde{L}_{0}=2 \cdot\left(1-\operatorname{deg}_{\mathbf{0}}\left(d_{0}\right)\right)$.

It is proper to add that there exists an efficient computer program which can compute the local topological degree (see [19]).

4. Number of half-branches.

In this section we shall show how to adopt some techniques developed in [23], [26], $[\mathbf{2 7}]$ so as to compute the number of half-branches of an analytic set of dimension ≤ 1 emanating from a singular point.

Let $\mathcal{O}_{n+1}=\mathbb{R}\left\{t, x_{1}, \ldots, x_{n}\right\}$ denote the ring of germs at the origin of real analytic functions. If I is an ideal in \mathcal{O}_{n+1}, let $V(I) \subset \mathbb{R} \times \mathbb{R}^{n}$ denote the germ of zeros of I near the origin, and let $V_{\mathbb{C}}(I) \subset \mathbb{C} \times \mathbb{C}^{n}$ denote the germ of complex zeros of I.

REmark 4.1. If I is proper, then $\operatorname{dim}_{\mathbb{R}} \mathcal{O}_{n+1} / I<\infty$ if and only if $V_{\mathbb{C}}(I)=\{\mathbf{0}\}$.
Let $w_{1}, \ldots, w_{m} \in \mathcal{O}_{n+1}$, where $m \geq n$, be germs vanishing at the origin. We shall write $\left\langle w_{1}, \ldots, w_{m}\right\rangle$ for the ideal in \mathcal{O}_{n+1} generated by w_{1}, \ldots, w_{m}.

Let $W \subset \mathcal{O}_{n+1}$ denote the ideal generated by w_{1}, \ldots, w_{m} and all $n \times n$-minors of the Jacobian matrix of the mapping germ $\left(w_{1}, \ldots, w_{m}\right): \mathbb{R} \times \mathbb{R}^{n}, \mathbf{0} \rightarrow \mathbb{R}^{m}, \mathbf{0}$. The ideal W is proper if and only if the rank of this matrix at the origin is $\leq n-1$.

If $V(W)=\{\mathbf{0}\}$, then by the implicit function theorem the germ $V\left(w_{1}, \ldots, w_{m}\right)$ is of dimension ≤ 1, so that this set is locally a union of a finite family of half-branches emanating from the origin. We shall say that $V\left(w_{1}, \ldots, w_{m}\right)$ is a curve having an algebraically isolated singularity at the origin if W is proper and $\operatorname{dim}_{\mathbb{R}} \mathcal{O}_{n+1} / W<\infty$.

From now on we shall assume that $m=3$ and $n=2$. Let $M(3,3)$ denote the space of all 3×3-matrices with coefficients in \mathbb{R}. By [23, Theorem 3.8] and comments in [23, p. 1012] we have

Theorem 4.2. Assume that $V\left(w_{1}, w_{2}, w_{3}\right)$ is a curve having an algebraically isolated singularity at the origin. There exists a proper algebraic subset $\Sigma \subset M(3,3)$ such that for every non-singular matrix $\left[a_{s j}\right] \in M(3,3) \backslash \Sigma$ and $g_{s}=a_{s, 1} w_{1}+a_{s, 2} w_{2}+a_{s, 3} w_{3}$, where $1 \leq s \leq 3$, the set $V\left(g_{1}, g_{2}\right)$ is a curve having an algebraically isolated singularity at the origin and $V\left(w_{1}, w_{2}, w_{3}\right)=V\left(g_{1}, g_{2}, g_{3}\right) \subset V\left(g_{1}, g_{2}\right)$.

If that is the case and $J_{p}=\left\langle g_{1}, g_{2}, g_{3}^{p}\right\rangle$, where $p=1,2$, then we have $J_{2} \subset J_{1}$ and $\operatorname{dim}_{\mathbb{R}}\left(J_{1} / J_{2}\right)<\infty$.

If $V\left(w_{1}, w_{2}\right)$ is a curve having an algebraically isolated singularity at the origin, then one can take $g_{s}=w_{s}$.

From now on we shall assume that

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{R}} \mathcal{O}_{3} /\left\langle t, g_{1}, g_{2}\right\rangle<\infty \tag{1}
\end{equation*}
$$

As $\operatorname{dim}_{\mathbb{R}}\left(J_{1} / J_{2}\right)<\infty$ and $g_{3}(\mathbf{0})=0$, then by the Nakayama lemma $\xi=\min \left\{s \mid t^{s} \cdot g_{3} \in\right.$ $\left.J_{2}\right\}$ is finite. (In $[\mathbf{2 7}]$ there are presented effective methods for computing this number.) Let $k>\xi$ be an even positive integer.

Now we shall adopt to our case some arguments presented in [27, pp. 529-531]. There are germs $h_{1}, h_{2}, h_{3} \in \mathcal{O}_{3}$ such that

$$
t^{\xi} g_{3}=h_{1} g_{1}+h_{2} g_{2}+h_{3} g_{3}^{2}
$$

Let $Y_{\mathbb{C}}=V_{\mathbb{C}}\left(g_{1}, g_{2}\right) \backslash V_{\mathbb{C}}\left(g_{3}\right)$. By (1), the germ t^{k} does not vanish at points in $V_{\mathbb{C}}\left(g_{1}, g_{2}\right) \backslash$ $\{\mathbf{0}\}$. If $\left(t, x_{1}, x_{2}\right)=(t, x) \in Y_{\mathbb{C}}$ lies sufficiently close to the origin, then $\left|h_{3}(t, x)\right|<M$ for some $M>0, g_{1}(t, x)=g_{2}(t, x)=0$ and $g_{3}(t, x) \neq 0$. Hence

$$
\left|g_{3}(t, x)\right| \geq|t|^{\xi} / M>|t|^{k} .
$$

Then the origin is isolated in both $V_{\mathbb{C}}\left(g_{3} \pm t^{k}, g_{1}, g_{2}\right)$.
Take $(t, x) \in V\left(g_{1}, g_{2}\right) \backslash\{\mathbf{0}\}$ near the origin. By $(1), t \neq 0$. If $g_{3}(t, x) \neq 0$, then $g_{3}(t, x) \pm t^{k}$ has the same sign as $g_{3}(t, x)$. If $g_{3}(t, x)=0$, then $g_{3}(t, x)+t^{k}>0$ and $g_{3}(t, x)-t^{k}<0$. Write b_{+}(resp. $\left.b_{-}, b_{0}\right)$ for the number of half-branches of $V\left(g_{1}, g_{2}\right)$ on which g_{3} is positive (resp. g_{3} is negative, g_{3} vanishes). Put

$$
H_{ \pm}=\left(\frac{\partial\left(g_{3} \pm t^{k}, g_{1}, g_{2}\right)}{\partial\left(t, x_{1}, x_{2}\right)}, g_{1}, g_{2}\right): \mathbb{R}^{3}, \mathbf{0} \rightarrow \mathbb{R}^{3}, \mathbf{0}
$$

By [26, Theorem 3.1] or [27, Theorem 2.3], the origin is isolated in both $H_{ \pm}^{-1}(\mathbf{0})$ and

$$
\begin{aligned}
& b_{+}+b_{0}-b_{-}=2 \operatorname{deg}_{\mathbf{0}}\left(H_{+}\right), \\
& b_{+}-b_{0}-b_{-}=2 \operatorname{deg}_{\mathbf{0}}\left(H_{-}\right) .
\end{aligned}
$$

Theorem 4.3. If $\operatorname{dim}_{\mathbb{R}} \mathcal{O}_{3} /\left\langle t, g_{1}, g_{2}\right\rangle<\infty$, then the number b_{0} of half-branches of $V\left(w_{1}, w_{2}, w_{3}\right)$ emanating from the origin equals $\operatorname{deg}_{\mathbf{0}}\left(H_{+}\right)-\operatorname{deg}_{\mathbf{0}}\left(H_{-}\right)$.

Proof. As the matrix $\left[a_{s j}\right]$ is non-singular, then $V\left(w_{1}, w_{2}, w_{3}\right)=V\left(g_{1}, g_{2}, g_{3}\right)$. Of course, b_{0} equals the number of half-branches of $V\left(g_{1}, g_{2}, g_{3}\right)$. Moreover,

$$
b_{0}=\frac{1}{2}\left(\left(b_{+}+b_{0}-b_{1}\right)-\left(b_{+}-b_{0}-b_{1}\right)\right)=\operatorname{deg}_{\mathbf{0}}\left(H_{+}\right)-\operatorname{deg}_{\mathbf{0}}\left(H_{-}\right) .
$$

Now we shall explain how to compute the number of half-branches of $V\left(w_{1}, w_{2}, w_{3}\right)$ in the region where $t>0$.

Proposition 4.4. Put $g_{i}^{\prime}(t, x)=g_{i}\left(t^{2}, x\right)$. Then $\operatorname{dim}_{\mathbb{R}} \mathcal{O}_{3} /\left\langle t, g_{1}^{\prime}, g_{2}^{\prime}\right\rangle<\infty$ and $V\left(g_{1}^{\prime}, g_{2}^{\prime}\right)$ has an isolated singularity at the origin.

Proof. By (1), as $V_{\mathbb{C}}\left(t, g_{1}, g_{2}\right)=\{\mathbf{0}\}$ then $V_{\mathbb{C}}\left(t, g_{1}^{\prime}, g_{2}^{\prime}\right)=\{\mathbf{0}\}$. By Remark 4.1, $\operatorname{dim}_{\mathbb{R}} \mathcal{O}_{3} /\left\langle t, g_{1}^{\prime}, g_{2}^{\prime}\right\rangle<\infty$. We have

$$
\frac{\partial\left(g_{i}^{\prime}, g_{j}^{\prime}\right)}{\partial\left(t, x_{p}\right)}(t, x)=2 t \frac{\partial\left(g_{i}, g_{j}\right)}{\partial\left(t, x_{p}\right)}\left(t^{2}, x\right), \quad \frac{\partial\left(g_{i}^{\prime}, g_{j}^{\prime}\right)}{\partial\left(x_{1}, x_{2}\right)}(t, x)=\frac{\partial\left(g_{i}, g_{j}\right)}{\partial\left(x_{1}, x_{2}\right)}\left(t^{2}, x\right)
$$

and then $V\left(g_{1}^{\prime}, g_{2}^{\prime}\right)$ is a curve having an algebraically isolated singularity at the origin.
Remark 4.5. Let $J_{p}^{\prime}=\left\langle g_{1}^{\prime}, g_{2}^{\prime},\left(g_{3}^{\prime}\right)^{p}\right\rangle$. Put $\xi^{\prime}=\min \left\{s \mid t^{s} \cdot g_{3}^{\prime} \subset J_{2}^{\prime}\right\}$. Of course, $\xi^{\prime} \leq 2 \cdot \xi$.

Applying the same methods as above, one can compute the number b_{0}^{\prime} of halfbranches of $V\left(g_{1}^{\prime}, g_{2}^{\prime}, g_{3}^{\prime}\right)$. Obviously $b_{0}^{\prime} / 2$ equals the number of half-branches of $V\left(w_{1}, w_{2}, w_{3}\right)$ lying in the region where $t>0$.

Other methods of computing the number of half-branches were presented in [1], [2] [3], [4], [5], [9], [20]. According to Khimshiashvili [15], [16], if a germ $f: \mathbb{R}^{2}, \mathbf{0} \rightarrow \mathbb{R}, 0$ has an isolated critical point at the origin, then the number of real half-branches in $f^{-1}(0)$ equals $2 \cdot\left(1-\operatorname{deg}_{\mathbf{0}}(\nabla f)\right)$, where $\nabla f: \mathbb{R}^{2}, \mathbf{0} \rightarrow \mathbb{R}^{2}, \mathbf{0}$ is the gradient of f.

5. Mappings between curves.

In this section we give sufficient conditions for a mapping between some smooth plane curves to have only non-degenerate critical points.

Let $f=\left(f_{1}, f_{2}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a smooth mapping. Put $g=f_{1}^{2}+f_{2}^{2}$. Assume that $\delta^{2}>0$ is a regular value of g and $P=g^{-1}\left(\delta^{2}\right)$ is non-empty, so that P is a smooth curve. Obviously, $P=f^{-1}\left(S^{1}(\delta)\right)$ and $f \mid P: P \rightarrow S^{1}(\delta)$ is a smooth mapping between 1-dimensional manifolds.

At any $p \in P$ the gradient $\nabla g(p)=\left(\partial g / \partial x_{1}(p), \partial g / \partial x_{2}(p)\right)$ is a non-zero vector perpendicular to P, and the vector $T(p)=\left(-\partial g / \partial x_{2}(p), \partial g / \partial x_{1}(p)\right)$ obtained by rotating $\nabla g(p)$ counterclockwise by an angle of $\pi / 2$ is tangent to P. This way $T: P \rightarrow \mathbb{R}^{2}$ is a non-vanishing tangent vector field along P.

Take $p \in P$. There exists a smooth mapping $x(t)=\left(x_{1}(t), x_{2}(t)\right): \mathbb{R} \rightarrow P$ such that $x(0)=p$ and $x^{\prime}(t)=T(x(t))$. Hence

$$
\begin{align*}
& x_{1}^{\prime}(t)=-\left.2 \cdot\left(f_{1} \frac{\partial f_{1}}{\partial x_{2}}+f_{2} \frac{\partial f_{2}}{\partial x_{2}}\right)\right|_{(x(t))} \\
& x_{2}^{\prime}(t)=\left.2 \cdot\left(f_{1} \frac{\partial f_{1}}{\partial x_{1}}+f_{2} \frac{\partial f_{2}}{\partial x_{1}}\right)\right|_{(x(t))} \tag{2}
\end{align*}
$$

As $g(x(t))=\delta^{2}$, then $f(x(t))=(\delta \cos \theta(t), \delta \sin \theta(t))$ for some smooth function $\theta: \mathbb{R}, 0 \rightarrow \mathbb{R}$. Of course, $(\delta \cos \theta(0), \delta \sin \theta(0))=f(x(0))=f(p)$. Applying the complex numbers notation we can write

$$
\begin{equation*}
\delta \cdot e^{\mathbf{i} \theta}=f_{1}(x(t))+\mathbf{i} f_{2}(x(t)), \text { where } \mathbf{i}=\sqrt{-1} \tag{3}
\end{equation*}
$$

Put $J=\partial\left(f_{1}, f_{2}\right) / \partial\left(x_{1}, x_{2}\right)$ and $G_{j}=\partial\left(f_{j}, J\right) / \partial\left(x_{1}, x_{2}\right)$, where $j=1,2$.
Lemma 5.1. A point $p \in P$ is a critical point of $f \mid P: P \rightarrow S^{1}(\delta)$ if and only if $J(p)=0$.

Proof. By (2), the derivative of the equation (3) equals

$$
\begin{gathered}
\mathbf{i} \delta \theta^{\prime} \cdot e^{\mathbf{i} \theta}=\left(\frac{\partial f_{1}}{\partial x_{1}} x_{1}^{\prime}+\frac{\partial f_{1}}{\partial x_{2}} x_{2}^{\prime}\right)+\mathbf{i} \cdot\left(\frac{\partial f_{2}}{\partial x_{1}} x_{1}^{\prime}+\frac{\partial f_{2}}{\partial x_{2}} x_{2}^{\prime}\right) \\
=2 \mathbf{i}\left(f_{1}+\mathbf{i} f_{2}\right) \cdot J=2 \mathbf{i} \delta \cdot e^{\mathbf{i} \theta} \cdot J .
\end{gathered}
$$

So $p \in P$ is a critical point of $f \mid P$ if and only if $\theta^{\prime}(0)=0$, i.e. if $J(p)=0$.
Lemma 5.2. Suppose that $p \in P$ is a critical point of $f \mid P: P \rightarrow S^{1}(\delta)$. Then

$$
\operatorname{sign}\left(\theta^{\prime \prime}(0)\right)=\left.\operatorname{sign}\left(f_{1} \cdot G_{1}+f_{2} \cdot G_{2}\right)\right|_{p}
$$

In particular, a point $p \in P$ is a non-degenerate critical point of $f \mid P: P \rightarrow S^{1}(\delta)$ if and only if $J(p)=0$ and $\left.\left(f_{1} \cdot G_{1}+f_{2} \cdot G_{2}\right)\right|_{p} \neq 0$.

Proof. Since $\theta^{\prime}(0)=0$ and $J(p)=0$, after computing the second derivative of (3) the same way as above one gets

$$
\begin{gathered}
\left.\mathbf{i} \delta \theta^{\prime \prime} \cdot e^{\mathbf{i} \theta}\right|_{0}=\left.2 \mathbf{i} \delta \cdot e^{\mathbf{i} \theta} \cdot\left(\frac{\partial J}{\partial x_{1}} x_{1}^{\prime}+\frac{\partial J}{\partial x_{2}} x_{2}^{\prime}\right)\right|_{0} \\
=\left.4 \mathbf{i} \delta \cdot e^{\mathbf{i} \theta(0)} \cdot\left(f_{1} \cdot G_{1}+f_{2} \cdot G_{2}\right)\right|_{p} .
\end{gathered}
$$

Lemma 5.3. Let $f=\left(f_{1}, f_{2}\right): \mathbb{R}^{2}, \mathbf{0} \rightarrow \mathbb{R}^{2}, \mathbf{0}$ be an analytic mapping such that $J(\mathbf{0})=0$, and the origin is isolated in both $f^{-1}(\mathbf{0})$ and $\nabla J^{-1}(\mathbf{0})$.

If $0<\delta \ll r \ll 1$, then $\tilde{S}^{1}(\delta)=D(r) \cap f^{-1}\left(S^{1}(\delta)\right)$ is diffeomorphic to a circle, $\tilde{D}^{2}(\delta)=D(r) \cap f^{-1}\left(D^{2}(\delta)\right)$ is diffeomorphic to a disc, and $f: \tilde{S}^{1}(\delta) \rightarrow S^{1}(\delta)$ has only non-degenerate critical points. Moreover the one-dimensional set $J^{-1}(0)$ consisting of critical points of f is transverse to $\tilde{S}^{1}(\delta)$.

Proof. If the origin is isolated in $J^{-1}(0)$, then $f \mid \mathbb{R}^{2} \backslash\{\mathbf{0}\}$ is a submersion near the origin, and so $f: \tilde{S}^{1}(\delta) \rightarrow S^{1}(\delta)$ has no critical points.

In the other case, $J^{-1}(0) \backslash\{\mathbf{0}\}$ is locally a finite union of analytic half-branches emanating from the origin. Let B be one of them. The gradient $\nabla J(p)$ is a non-zero vector perpendicular to $T_{p} B$ at any $p \in B$.

The origin is isolated in $f^{-1}(\mathbf{0})$. By the curve selection lemma one can assume that $\left(f_{1}^{2}+f_{2}^{2}\right) \mid B$ has no critical points, so that ∇J and

$$
\nabla\left(f_{1}^{2}+f_{2}^{2}\right)=\left(2 f_{1} \frac{\partial f_{1}}{\partial x_{1}}+2 f_{2} \frac{\partial f_{2}}{\partial x_{1}}, 2 f_{1} \frac{\partial f_{1}}{\partial x_{2}}+2 f_{2} \frac{\partial f_{2}}{\partial x_{2}}\right)
$$

are linearly independent along B. Then

$$
0 \neq \nabla J \times \nabla\left(f_{1}^{2}+f_{2}^{2}\right)=2 f_{1} \frac{\partial\left(J, f_{1}\right)}{\partial\left(x_{1}, x_{2}\right)}+2 f_{2} \frac{\partial\left(J, f_{2}\right)}{\partial\left(x_{1}, x_{2}\right)}=-2\left(f_{1} \cdot G_{1}+f_{2} \cdot G_{2}\right)
$$

along B. By previous lemmas, $f: \tilde{S}^{1}(\delta) \rightarrow S^{1}(\delta)$ has only non-degenerate critical points. Other assertions are rather obvious.

6. Families of self-maps of \mathbb{R}^{2}.

In this section we investigate 1-parameter families of plane-to-plane analytic mappings.

Let $F=\left(f_{1}, f_{2}\right): \mathbb{R} \times \mathbb{R}^{2}, \mathbf{0} \rightarrow \mathbb{R}^{2}, \mathbf{0}$ be an analytic mapping defined in a neighbourhood of the origin. We shall write $F_{t}\left(x_{1}, x_{2}\right)=F\left(t, x_{1}, x_{2}\right)$ for t near zero. Define three germs $\mathbb{R} \times \mathbb{R}^{2}, \mathbf{0} \rightarrow \mathbb{R}$ by

$$
J=\frac{\partial\left(f_{1}, f_{2}\right)}{\partial\left(x_{1}, x_{2}\right)}, \quad G_{i}=\frac{\partial\left(f_{i}, J\right)}{\partial\left(x_{1}, x_{2}\right)}, i=1,2
$$

Put $J_{t}\left(x_{1}, x_{2}\right)=J\left(t, x_{1}, x_{2}\right)$.
From now on we shall also assume that

$$
\begin{align*}
& \operatorname{dim}_{\mathbb{R}} \mathcal{O}_{3} /\left\langle t, f_{1}, f_{2}\right\rangle<\infty, \operatorname{dim}_{\mathbb{R}} \mathcal{O}_{3} /\left\langle t, G_{1}, G_{2}\right\rangle<\infty \\
& J(\mathbf{0})=0, \operatorname{dim}_{\mathbb{R}} \mathcal{O}_{3} /\left\langle t, \frac{\partial J}{\partial x_{1}}, \frac{\partial J}{\partial x_{2}}\right\rangle<\infty \tag{4}
\end{align*}
$$

i.e. the origin is isolated in both $\left(\{0\} \times \mathbb{C}^{2}\right) \cap V_{\mathbb{C}}\left(f_{1}, f_{2}\right)$ and $\left(\{0\} \times \mathbb{C}^{2}\right) \cap V_{\mathbb{C}}\left(G_{1}, G_{2}\right)$, and J_{0} has an algebraically isolated critical point at the origin.

Lemma 6.1. Let $Q=\mathcal{O}_{3} /\left\langle t, J, G_{1}, G_{2}\right\rangle$. Then $\operatorname{dim}_{\mathbb{R}} Q<\infty$, i.e. the origin is isolated in $\left(\{0\} \times \mathbb{C}^{2}\right) \cap V_{\mathbb{C}}\left(J, G_{1}, G_{2}\right)$.

Proof. Of course $\left\langle t, G_{1}, G_{2}\right\rangle \subset\left\langle t, J, G_{1}, G_{2}\right\rangle$. Then $\operatorname{dim}_{\mathbb{R}} Q \leq \operatorname{dim}_{\mathbb{R}} \mathcal{O}_{3} /\left\langle t, G_{1}, G_{2}\right\rangle<$ ∞.

We shall write $g=f_{1}^{2}+f_{2}^{2}$ and $g_{t}\left(x_{1}, x_{2}\right)=g\left(t, x_{1}, x_{2}\right)$. There exists a small $r_{0}>0$ such that $F_{0}^{-1}(\mathbf{0}) \cap D^{2}\left(r_{0}\right)=\{\mathbf{0}\}$. For $|t| \ll \delta \ll r_{0}$, put $\tilde{S}_{t}^{1}(\delta)=F_{t}^{-1}\left(S^{1}(\delta)\right) \cap D^{2}\left(r_{0}\right)$ and $\tilde{D}_{t}^{2}(\delta)=F_{t}^{-1}\left(D^{2}(\delta)\right) \cap D^{2}\left(r_{0}\right)$. If δ^{2} is a regular value of $g_{0} \mid D^{2}\left(r_{0}\right)$, then it is also a regular value of $g_{t} \mid D^{2}\left(r_{0}\right)$. If that is the case, then $\tilde{S}_{t}^{1}(\delta)$ is diffeomorphic to $\tilde{S}_{0}^{1}(\delta) \simeq S^{1}(1)$. By the same argument, $\tilde{D}_{t}^{2}(\delta)$ is diffeomorphic to $\tilde{D}_{0}^{2}(\delta) \simeq D^{2}(1)$.

By Lemmas 5.2, 5.3 we get
Lemma 6.2. Critical points of $F_{0}: \tilde{S}_{0}^{1}(\delta) \rightarrow S^{1}(\delta)$ are non-degenerate, and $C\left(F_{0} \mid \tilde{S}_{0}^{1}(\delta)\right)=\tilde{S}_{0}^{1}(\delta) \cap\left\{J_{0}=0\right\}$.

For t near zero, critical points of $F_{t}: \tilde{S}_{t}^{1}(\delta) \rightarrow S^{1}(\delta)$ are non-degenerate too, and the number of critical points $\# C\left(F_{t} \mid \tilde{S}_{t}^{1}(\delta)\right)$ equals $\#\left(\tilde{S}_{0}^{1}(\delta) \cap\left\{J_{0}=0\right\}\right)$. Moreover the set of critical points of F_{t}, i.e. $J_{t}^{-1}(0)$, is transverse to $\tilde{S}_{t}^{1}(\delta)$.

Let I denote the ideal in the ring \mathcal{O}_{3} generated by J, G_{1}, G_{2}, and let $V(I) \subset \mathbb{R} \times \mathbb{R}^{2}$ denote a representative of the germ of zeros of I near the origin. By Lemma 6.1, there exists $0<\delta \ll 1$ such that $\{0\} \times \tilde{D}_{0}^{2}(\delta) \cap V(I)=\{\mathbf{0}\}$, and $\{t\} \times \tilde{S}_{t}^{1}(\delta) \cap V(I)=\emptyset$ for t sufficiently close to zero. Put $\Sigma_{t}=\left\{x \in \tilde{D}_{t}^{2}(\delta) \mid(t, x) \in V(I)\right\}$. Hence $\Sigma_{0}=\{\mathbf{0}\}$ and Σ_{t} is contained in the interior of $\tilde{D}_{t}^{2}(\delta)$.

Let I^{\prime} denote the ideal in \mathcal{O}_{3} generated by germs $J, G_{1}, G_{2}, \partial\left(G_{1}, J\right) / \partial\left(x_{1}, x_{2}\right)$ and $\partial\left(G_{2}, J\right) / \partial\left(x_{1}, x_{2}\right)$. Suppose that $V\left(I^{\prime}\right)=\{\mathbf{0}\}$. Hence $\{t\} \times \tilde{D}^{2}(\delta) \cap V\left(I^{\prime}\right)$ is empty for $0 \neq t$ close to zero. By Proposition 2.2 one gets

Lemma 6.3. Suppose that $0<\delta \ll 1$ and $0 \neq t$ is sufficiently close to zero. Then the set of critical points of $F_{t}: \tilde{D}_{t}^{2}(\delta) \rightarrow D^{2}(\delta)$ consists of fold points, and a finite family Σ_{t} of cusp points.

Remark 6.4. By [10, Theorem 3.1], if $0 \neq t$ is sufficiently close to zero, then $\# \Sigma_{t} \leq \operatorname{dim}_{\mathbb{R}} Q$ and $\# \Sigma_{t} \equiv \operatorname{dim}_{\mathbb{R}} Q \bmod 2$.

For $t \neq 0$ we shall write $\Sigma_{t}^{ \pm}=\left\{x \in \Sigma_{t} \mid \mu_{t}(x)= \pm 1\right\}$, where $\mu_{t}(x)$ is the local topological degree of F_{t} at x. Put cusp $\operatorname{deg}\left(F_{t}\right)=\sum_{x \in \Sigma_{t}} \mu_{t}(x)=\# \Sigma_{t}^{+}-\# \Sigma_{t}^{-}$. By Lemmas 5.3, 6.2, 6.3 and Theorem 2.1 we get

Proposition 6.5. Suppose that $0<\delta \ll 1$, and $0 \neq t$ is sufficiently close to zero. Then
(i) the pair $\left(\tilde{D}_{t}^{2}(\delta), \tilde{S}_{t}^{1}(\delta)\right)$ is diffeomorphic to $\left(D^{2}(1), S^{1}(1)\right)$, and $F_{t}: \tilde{D}_{t}^{2}(\delta) \rightarrow D^{2}(\delta)$ is a mapping such that $F_{t}^{-1}\left(S^{1}(\delta)\right)=\tilde{S}_{t}^{1}(\delta)$,
(ii) every point in $\tilde{D}_{t}^{2}(\delta)$ is either a fold point, a cusp point or a regular point, and there is a finite family of cusps which all belong to $\tilde{D}_{t}^{2}(\delta) \backslash \tilde{S}_{t}^{2}(\delta)$,
(iii) $F_{t} \mid \tilde{S}_{t}^{1}: \tilde{S}_{t}^{1}(\delta) \rightarrow S_{t}^{1}(\delta)$ is locally stable, and the set of critical points of F_{t}, i.e. $J_{t}^{-1}(0)$, is transverse to $\tilde{S}_{t}^{1}(\delta)$,
(iv) $\operatorname{cusp} \operatorname{deg}\left(F_{t}\right)=2 \chi\left(\tilde{M}_{t}^{-}\right)+\operatorname{deg}\left(F_{t} \mid \tilde{S}_{t}^{1}(\delta)\right)-1-\# C\left(F_{t} \mid \tilde{S}_{t}^{1}(\delta)\right) / 2$

$$
=2 \chi\left(\tilde{M}_{t}^{-}\right)+\operatorname{deg}_{0}\left(F_{0}\right)-\# C\left(F_{0} \mid \tilde{S}_{0}^{1}(\delta)\right) / 2-1,
$$

where $\tilde{M}_{t}^{-}=\left\{x \in \tilde{D}_{t}^{2}(\delta) \mid J_{t}(x) \leq 0\right\}$.
Let $d_{1}, d_{2}: \mathbb{R} \times \mathbb{R}^{2}, \mathbf{0} \rightarrow \mathbb{R} \times \mathbb{R}^{2}, \mathbf{0}$ be defined as in Section 3.
Theorem 6.6. Let $F=\left(f_{1}, f_{2}\right): \mathbb{R} \times \mathbb{R}^{2}, \mathbf{0} \rightarrow \mathbb{R}^{2}, \mathbf{0}$ be an analytic mapping defined in a neighbourhood of the origin such that (4) holds. Suppose that the origin is isolated in $V\left(I^{\prime}\right), d_{1}^{-1}(\mathbf{0})$ and $d_{2}^{-1}(\mathbf{0})$.

Then there exists $r>0$ such that the set of critical points of $F_{t}: D^{2}(r) \rightarrow \mathbb{R}^{2}$, where $0 \neq t$ is sufficiently close to zero, consists of fold points, and a finite family Σ_{t} of cusp points. Moreover, the origin is isolated in $F_{0}^{-1}(\mathbf{0})$ and

$$
\operatorname{cusp} \operatorname{deg}\left(F_{t}\right)=\operatorname{deg}_{\mathbf{0}}\left(F_{0}\right)-\operatorname{deg}_{\mathbf{0}}\left(d_{1}\right)-\operatorname{sign}(t) \cdot \operatorname{deg}_{\mathbf{0}}\left(d_{2}\right) .
$$

Proof. For any small $\delta>0$ there is $r>0$ such that $D^{2}(r) \subset \tilde{D}_{0}^{2}(\delta) \backslash \tilde{S}_{0}^{1}(\delta)$, so that also $D^{2}(r) \subset \tilde{D}_{t}^{2}(\delta) \backslash \tilde{S}_{t}^{1}(\delta)$ if $|t|$ is small.

By Lemma 6.3, the set of critical points of $F_{t} \mid \tilde{D}_{t}^{2}(\delta)$ consists of fold points, and a finite family Σ_{t} of cusp points. Because $\Sigma_{0}=\{\mathbf{0}\}$ then Σ_{t} is the set of cusp points of $F_{t} \mid D^{2}(r)$.

By (4), the germ $d_{0}=\nabla J_{0}: \mathbb{R}^{2}, \mathbf{0} \rightarrow \mathbb{R}^{2}, \mathbf{0}$ has an isolated zero at the origin. By Theorem 3.2 and Lemma 6.2, we have

$$
\# C\left(F_{t} \mid \tilde{S}_{t}^{1}(\delta)\right)=\#\left(\tilde{S}_{0}^{1}(\delta) \cap\left\{J_{0}=0\right\}\right)=2 \cdot\left(1-\operatorname{deg}_{\mathbf{0}}\left(d_{0}\right)\right)
$$

for $0 \neq t$ sufficiently close to zero. Our assertion is then a consequence of Proposition 6.5 and Theorem 3.2.

Put $J^{\prime}=J\left(t^{2}, x_{1}, x_{2}\right), G_{i}^{\prime}=G_{i}\left(t^{2}, x_{1}, x_{2}\right), i=1,2$.
Lemma 6.7. Suppose that $V\left(I^{\prime}\right)=\{\mathbf{0}\}$. Then $\operatorname{dim} V\left(J, G_{1}, G_{2}\right) \leq 1$ and $\operatorname{dim} V\left(J^{\prime}, G_{1}^{\prime}, G_{2}^{\prime}\right) \leq 1$.

Moreover, if $\operatorname{dim}_{\mathbb{R}} \mathcal{O}_{3} / I^{\prime}<\infty$, then $V\left(J^{\prime}, G_{1}^{\prime}, G_{2}^{\prime}\right)$, as well as $V\left(J, G_{1}, G_{2}\right)$, is a curve having an algebraically isolated singularity at the origin.

Proof. We have

$$
\{\mathbf{0}\}=V\left(I^{\prime}\right)=V\left(J, G_{1}, G_{2}\right) \cap V\left(\frac{\partial\left(G_{1}, J\right)}{\partial\left(x_{1}, x_{2}\right)}, \frac{\partial\left(G_{2}, J\right)}{\partial\left(x_{1}, x_{2}\right)}\right)
$$

so by the implicit function theorem $\operatorname{dim} V\left(J, G_{1}, G_{2}\right) \leq 1$. Of course, $\left(t, x_{1}, x_{2}\right) \in$ $V\left(J^{\prime}, G_{1}^{\prime}, G_{2}^{\prime}\right)$ if and only if $\left(t^{2}, x_{1}, x_{2}\right) \in V\left(J, G_{1}, G_{2}\right)$. Hence $\operatorname{dim} V\left(J^{\prime}, G_{1}^{\prime}, G_{2}^{\prime}\right) \leq 1$ too.

The ideal

$$
K=\left\langle J^{\prime}, G_{1}^{\prime}, G_{2}^{\prime}, \frac{\partial\left(G_{1}^{\prime}, J^{\prime}\right)}{\partial\left(x_{1}, x_{2}\right)}, \frac{\partial\left(G_{2}^{\prime}, J^{\prime}\right)}{\partial\left(x_{1}, x_{2}\right)}\right\rangle \subset \mathcal{O}_{3}
$$

is contained in the ideal L generated by $J^{\prime}, G_{1}^{\prime}, G_{2}^{\prime}$ and all 2×2-minors of the derivative matrix of $\left(J^{\prime}, G_{1}^{\prime}, G_{2}^{\prime}\right)$.

As $\operatorname{dim}_{\mathbb{R}} \mathcal{O}_{3} / I^{\prime}<\infty$, by the local Nullstellensatz, the origin is isolated in the set of complex zeros of I^{\prime}. Since

$$
\frac{\partial\left(G_{i}^{\prime}, J^{\prime}\right)}{\partial\left(x_{1}, x_{2}\right)}\left(t, x_{1}, x_{2}\right)=\frac{\partial\left(G_{i}, J\right)}{\partial\left(x_{1}, x_{2}\right)}\left(t^{2}, x_{1}, x_{2}\right)
$$

the origin is isolated in the set of complex zeros of K. Hence $\operatorname{dim}_{\mathbb{R}} \mathcal{O}_{3} / L \leq \operatorname{dim}_{\mathbb{R}} \mathcal{O}_{3} / K<$ ∞, and then $V\left(J^{\prime}, G_{1}^{\prime}, G_{2}^{\prime}\right)$ is a curve having an algebraically isolated singularity at the origin. The proof of the last assertion is similar.

Suppose that the origin is isolated in $V\left(I^{\prime}\right)$. Let b_{0} (resp. b_{0}^{\prime}) be the number of half branches in $V\left(J, G_{1}, G_{2}\right)$ (resp. $\left.V\left(J^{\prime}, G_{1}^{\prime}, G_{2}^{\prime}\right)\right)$ emanating from the origin.

By Lemma 6.1, no half-branch is contained in $\{0\} \times \mathbb{R}^{2}$. Then by the curve selection lemma the family of half-branches is a finite union of graphs of continuous functions $t \mapsto x^{i}(t) \in \mathbb{R}^{2}$, where t belongs either to $(-\epsilon, 0]$ or to $[0, \epsilon), 0<\epsilon \ll 1, x^{i}(0)=\mathbf{0}$, $1 \leq i \leq b_{0}$ (resp. $1 \leq i \leq b_{0}^{\prime}$), and those graphs meet only at the origin.

Hence, if $0<t \ll 1$, then we have

$$
\begin{gathered}
b_{0}=\# \Sigma_{t}+\# \Sigma_{-t}=\# \Sigma_{t}^{+}+\# \Sigma_{t}^{-}+\# \Sigma_{-t}^{+}+\Sigma_{-t}^{-} \\
b_{0}^{\prime} / 2=\# \Sigma_{t}=\# \Sigma_{t}^{+}+\# \Sigma_{t}^{-}
\end{gathered}
$$

By Theorem 6.6, we have

$$
\begin{gathered}
\operatorname{deg}_{\mathbf{0}}\left(F_{0}\right)-\operatorname{deg}_{\mathbf{0}}\left(d_{1}\right)-\operatorname{deg}_{\mathbf{0}}\left(d_{2}\right)=\# \Sigma_{t}^{+}-\# \Sigma_{t}^{-} \\
\operatorname{deg}_{\mathbf{0}}\left(F_{0}\right)-\operatorname{deg}_{\mathbf{0}}\left(d_{1}\right)+\operatorname{deg}_{\mathbf{0}}\left(d_{2}\right)=\# \Sigma_{-t}^{+}-\# \Sigma_{-t}^{-} .
\end{gathered}
$$

Then we have
Theorem 6.8. Suppose that assumptions of Theorem 6.6 hold. Then numbers $\# \Sigma_{ \pm t}^{ \pm}$, where $t>0$ is small, are determined by $b_{0}, b_{0}^{\prime}, \operatorname{deg}_{\mathbf{0}}\left(F_{0}\right), \operatorname{deg}_{\mathbf{0}}\left(d_{1}\right)$ and $\operatorname{deg}_{\mathbf{0}}\left(d_{2}\right)$.

Moreover, if $\operatorname{dim} \mathcal{O}_{3} / I^{\prime}<\infty$, then $V\left(J, G_{1}, G_{2}\right)$ and $V\left(J^{\prime}, G_{1}^{\prime}, G_{2}^{\prime}\right)$ are curves having an algebraically isolated singularity at the origin. In that case one can apply Theorem 4.3 so as to compute b_{0} and b_{0}^{\prime}. In particular, if $\operatorname{dim}_{\mathbb{R}} \mathcal{O}_{3} / I^{\prime \prime}<\infty$, where

$$
I^{\prime \prime}=\left\langle G_{1}, G_{2}, \frac{\partial\left(G_{1}, G_{2}\right)}{\partial\left(t, x_{1}\right)}, \frac{\partial\left(G_{1}, G_{2}\right)}{\partial\left(t, x_{2}\right)}, \frac{\partial\left(G_{1}, G_{2}\right)}{\partial\left(x_{1}, x_{2}\right)}\right\rangle
$$

then $V\left(G_{1}, G_{2}\right)$ is a curve having an algebraically isolated singularity at the origin. In that case one can take $g_{1}=G_{1}, g_{2}=G_{2}, g_{3}=J$.

7. Examples.

Examples presented in this section were calculated with the help of Singular [6] and the computer program written by Andrzej Lȩcki [19].

Example 7.1. Let $F=\left(f_{1}, f_{2}\right)=\left(x_{1}^{3}+x_{2}^{2}+t x_{1}, x_{1} x_{2}\right)$. Since $\operatorname{dim}_{\mathbb{R}} \mathcal{O}_{3} /\left\langle t, f_{1}, f_{2}\right\rangle=$ $5, \operatorname{dim}_{\mathbb{R}} \mathcal{O}_{3} /\left\langle t, G_{1}, G_{2}\right\rangle=7$ and $\operatorname{dim}_{\mathbb{R}} \mathcal{O}_{3} /\left\langle t, \partial J / \partial x_{1}, \partial J / \partial x_{2}\right\rangle=2$, (4) holds. Moreover, we have $\operatorname{dim}_{\mathbb{R}} \mathcal{O}_{3} / I^{\prime}=8, \operatorname{dim}_{\mathbb{R}} \mathcal{O}_{3} /\left\langle\partial J / \partial t, \partial J / \partial x_{1}, \partial J / \partial x_{2}\right\rangle=1$, and $\operatorname{dim}_{\mathbb{R}} \mathcal{O}_{3} /\langle J$, $\left.\partial J / \partial x_{1}, \partial J / \partial x_{2}\right\rangle=3$. Then the origin is isolated in $V\left(I^{\prime}\right), d_{1}^{-1}(\mathbf{0})$ and $d_{2}^{-1}(\mathbf{0})$. Using the computer program by Lȩcki one can compute $\operatorname{deg}_{\mathbf{0}}\left(F_{0}\right)=-1, \operatorname{deg}_{\mathbf{0}}\left(d_{1}\right)=+1$ and $\operatorname{deg}_{\mathbf{0}}\left(d_{2}\right)=-1$. By Theorem 6.6, cusp $\operatorname{deg}\left(F_{t}\right)=\operatorname{sign}(t)-2$ for $0 \neq t$ sufficiently close to zero.

By Lemma 6.7, the set $V\left(J, G_{1}, G_{2}\right)$, as well as $V\left(J^{\prime}, G_{1}^{\prime}, G_{2}^{\prime}\right)$, is a curve having an algebraically isolated singularity at the origin. Hence we can apply techniques presented in Section 4 so as to compute the number of half-branches of those curves.

One can verify that $\operatorname{dim}_{\mathbb{R}} \mathcal{O}_{3} / I^{\prime \prime}=8$, so that $V\left(G_{1}, G_{2}\right)$ is a curve with an algebraically isolated singularity at the origin.

Put $J_{p}=\left\langle G_{1}, G_{2}, J^{p}\right\rangle$, where $p=1,2$. In that case $\xi=2$, and so $k=4$. As $\operatorname{dim}_{\mathbb{R}} \mathcal{O}_{3} /\left\langle t, G_{1}, G_{2}\right\rangle<\infty$, then (1) holds. Set

$$
H_{ \pm}=\left(\frac{\partial\left(J \pm t^{4}, G_{1}, G_{2}\right)}{\partial\left(t, x_{1}, x_{2}\right)}, G_{1}, G_{2}\right): \mathbb{R}^{3}, \mathbf{0} \rightarrow \mathbb{R}^{3}, \mathbf{0}
$$

One can compute $\operatorname{deg}_{\mathbf{0}}\left(H_{+}\right)=+2, \operatorname{deg}_{\mathbf{0}}\left(H_{-}\right)=-2$. By Theorem 4.3, $V\left(J, G_{1}, G_{2}\right)$ is a union of four half-branches emanating from the origin, i.e. $b_{0}=4$.

Now we shall apply the same techniques so as to compute the number of halfbranches of $V\left(J^{\prime}, G_{1}^{\prime}, G_{2}^{\prime}\right)$. By Proposition 4.4, $V\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ is a curve with an algebraically isolated singularity at the origin. Put $J_{p}^{\prime}=\left\langle G_{1}^{\prime}, G_{2}^{\prime},\left(J^{\prime}\right)^{p}\right\rangle$, where $p=1,2$. By Remark $4.5, \xi^{\prime} \leq 4$ and so one can take $k=6$. Let

$$
H_{ \pm}^{\prime}=\left(\frac{\partial\left(J^{\prime} \pm t^{6}, G_{1}^{\prime}, G_{2}^{\prime}\right)}{\partial\left(t, x_{1}, x_{2}\right)}, G_{1}^{\prime}, G_{2}^{\prime}\right): \mathbb{R}^{3}, \mathbf{0} \rightarrow \mathbb{R}^{3}, \mathbf{0}
$$

One can compute $\operatorname{deg}_{\mathbf{0}}\left(H_{+}^{\prime}\right)=+1, \operatorname{deg}_{\mathbf{0}}\left(H_{-}^{\prime}\right)=-1$. Then $V\left(J^{\prime}, G_{1}^{\prime}, G_{2}^{\prime}\right)$ is a union of two half-branches emanating from the origin, i.e. $b_{0}^{\prime} / 2=1$. Hence, if $0<t \ll 1$, then $\# \Sigma_{t}^{+}=0, \# \Sigma_{t}^{-}=1, \# \Sigma_{-t}^{+}=0$ and $\# \Sigma_{-t}^{-}=3$.

Example 7.2. Let $F=\left(f_{1}, f_{2}\right)=\left(x_{1}^{4}+x_{2}^{4}+x_{1}^{2} x_{2}^{2}+t x_{1}, x_{1} x_{2}+t x_{2}\right)$. In that case $\operatorname{dim}_{\mathbb{R}} \mathcal{O}_{3} /\left\langle t, f_{1}, f_{2}\right\rangle=8, \operatorname{dim}_{\mathbb{R}} \mathcal{O}_{3} /\left\langle t, G_{1}, G_{2}\right\rangle=24, \operatorname{dim}_{\mathbb{R}} \mathcal{O}_{3} /\left\langle t, \partial J / \partial x_{1}, \partial J / \partial x_{2}\right\rangle=$ $9, \operatorname{dim}_{\mathbb{R}} \mathcal{O}_{3} / I^{\prime}=33, \operatorname{dim}_{\mathbb{R}} \mathcal{O}_{3} /\left\langle\partial J / \partial t, \partial J / \partial x_{1}, \partial J / \partial x_{2}\right\rangle=3$, and $\operatorname{dim}_{\mathbb{R}} \mathcal{O}_{3} /\left\langle J, \partial J / \partial x_{1}\right.$, $\left.\partial J / \partial x_{2}\right\rangle=12$. Then the origin is isolated in $V\left(I^{\prime}\right), d_{1}^{-1}(\mathbf{0})$ and $d_{2}^{-1}(\mathbf{0})$. One can compute $\operatorname{deg}_{\mathbf{0}}\left(F_{0}\right)=0, \operatorname{deg}_{\mathbf{0}}\left(d_{1}\right)=+1$ and $\operatorname{deg}_{\mathbf{0}}\left(d_{2}\right)=0$. By Theorem 6.6, $\operatorname{cusp} \operatorname{deg}\left(F_{t}\right)=-1$ for $0 \neq t$ sufficiently close to zero, i.e. $\# \Sigma_{t}^{+}-\# \Sigma_{t}^{-}=-1$.

As $\operatorname{dim}_{\mathbb{R}} \mathcal{O}_{3} / I^{\prime \prime}=45$ then $V\left(G_{1}, G_{2}\right)$ is a curve having an isolated singularity at the origin. Let J_{p} be defined the same way as in the previous example. One can verify that $\xi=2$, and so $k=4$. Put

$$
H_{ \pm}=\left(\frac{\partial\left(J \pm t^{4}, G_{1}, G_{2}\right)}{\partial\left(t, x_{1}, x_{2}\right)}, G_{1}, G_{2}\right): \mathbb{R}^{3}, \mathbf{0} \rightarrow \mathbb{R}^{3}, \mathbf{0}
$$

One can compute $\operatorname{deg}_{\mathbf{0}}\left(H_{+}\right)=0, \operatorname{deg}_{\mathbf{0}}\left(H_{-}\right)=-2$. Then $V\left(J, G_{1}, G_{2}\right)$ is an union of two half-branches emanating from the origin, i.e. $b_{0}=2$.

Because $F_{t}\left(x_{1}, x_{2}\right)=F_{-t}\left(-x_{1},-x_{2}\right)$, then $b_{0}^{\prime} / 2=1$ and $\# \Sigma_{t}^{+}=\# \Sigma_{-t}^{+}, \# \Sigma_{t}^{-}=$ $\# \Sigma_{-t}^{-}$. So in this case there is no need to compute $\operatorname{deg}_{\mathbf{0}}\left(H_{ \pm}^{\prime}\right)$. Hence, if $t>0$, then $\# \Sigma_{t}^{+}=\# \Sigma_{-t}^{+}=0$ and $\# \Sigma_{t}^{-}=\# \Sigma_{-t}^{-}=1$.

References

[1] K. Aoki, T. Fukuda and T. Nishimura, On the number of branches of the zero locus of a map germ $\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{n-1}, 0\right)$, In: Topology and Computer Science, Proceedings of the Symposium held in honour of S. Kinoshita, H. Noguchi and T. Homma on the occasion of their sixtieth birthdays, 1987, 347-363.
[2] K. Aoki, T. Fukuda and T. Nishimura, An algebraic formula for the topological types of one parameter bifurcations diagrams, Archive for Rational Mechanics and Analysis, 108 (1989), 247265.
[3] F. Cucker, L. M. Pardo, M. Raimondo, T. Recio and M.-F. Roy, On the computation of the local and global analytic branches of a real algebraic curve, In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Lecture Notes in Computer Sci., Springer-Verlag, 356 (1989), 161181.
[4] J. Damon, On the number of branches for real and complex weighted homogeneous curve singularities, Topology, 30 (1991), 223-229.
[5] J. Damon, G-signature, G-degree, and symmetries of the branches of curve singularities, Topology, 30 (1991), 565-590.
[6] W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann, Singular 4-1-1, A Computer Algebra System for Polynomial Computations, http://www.singular.uni-kl.de, (2018).
[7] N. Dutertre and T. Fukui, On the topology of stable maps, J. Math. Soc. Japan, 66 (2014), 161-203.
[8] Ja. M. Èliašberg, On singularities of folding type, Math. USSR-Izv., 4 (1970), 1119-1134.
[9] T. Fukuda, K. Aoki and W. Z. Sun, On the number of branches of a plane curve germ, Kodai Math. J., 9 (1986), 179-187.
[10] T. Fukuda and G. Ishikawa, On the number of cusps of stable perturbations of a plane-to-plane singularity, Tokyo J. Math., 10 (1987), 375-384.
[11] T. Fukuda, Topological triviality of plane-to-plane singularities, In: Geometry and its applications (Yokohama, 1991), World Sci. Publ., River Edge, NJ, 1993, 29-37.
[12] T. Fukui, An algebraic formula for a topological invariant of bifurcation of 1-parameter family of function-germs, In: Stratifications, singularities, and differential equations, II, (Marseille, 1990; Honolulu, HI, 1990), Travaux en Cours, 55, Hermann, Paris 1997, 45-54.
[13] T. Gaffney and D. Mond, Cusps and double folds of germs of analytic mappings $\mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$, J. London Math. Soc., 43 (1991), 185-192.
[14] K. Ikegami and O. Saeki, Cobordism of Morse maps and its application to map germs, Math. Proc. Cambridge Philos. Soc., 147 (2009), 235-254.
[15] G. M. Khimshiashvili, On the local degree of a smooth mapping, Comm. Acad. Sci. Georgian SSR, 85 (1977), 309-311.
[16] G. M. Khimshiashvili, On the local degree of a smooth mapping, Trudy Tbilisi Math. Inst., 64 (1980), 105-124.
[17] I. Krzyżanowska and Z. Szafraniec, On polynomial mappings from the plane to the plane, J. Math. Soc. Japan, 66 (2014), 805-818.
[18] H. I. Levine, Mappings of manifolds into the plane, Amer. J. Math., 88 (1966), 357-365.
[19] A. Łȩcki and Z. Szafraniec, Applications of the Eisenbud-Levine theorem to real algebraic geometry, In: Computational Algebraic Geometry, Progr. in Math., 109, Birkhäuser Boston, Boston, MA, 1993, 177-184.
[20] J. Montaldi and D. van Straten, One-forms on singular curves and the topology of real curve singularities, Topology, 29 (1990), 501-510.
[21] J. A. Moya-Pérez and J. J. Nuño-Ballesteros, The link of a finitely determined map germ from \mathbb{R}^{2} to \mathbb{R}^{2}, J. Math. Soc. Japan, 62 (2010), 1069-1092.
[22] J. A. Moya-Pérez and J. J. Nuño-Ballesteros, Topological triviality of families of map germs from \mathbb{R}^{2} to \mathbb{R}^{2}, J. of Singularities, 6 (2012), 112-123.
[23] A. Nowel and Z. Szafraniec, On the number of branches of a real curve singularities, Bull. London Math. Soc., 43 (2011), 1004-1020.
[24] J. R. Quine, A global theorem for singularities of maps between oriented 2-manifolds, Trans. Amer. Math. Soc., 236 (1978), 307-314.
[25] J. H. Rieger, Families of maps from the plane to the plane, J. London Math. Soc., 36 (1987), 351-369.
[26] Z. Szafraniec, On the number of branches of a 1-dimensional semianalytic set, Kodai Math. J., 11 (1988), 78-85.
[27] Z. Szafraniec, A formula for the number of branches of one-dimensional semianalytic sets, Math. Proc. Cambridge Philos. Soc., 112 (1992), 527-534.
[28] R. Thom, Les singularités des applications différentiables, Ann. Inst. Fourier, Grenoble, 6 (19551956), 43-87.
[29] H. Whitney, On singularities of mappings of Euclidean spaces, I, Mappings of the plane into the plane, Annals of Math., 62 (1955), 374-410.

Zbigniew Szafraniec
Instytut Matematyki
Wydział Matematyki Fizyki i Informatyki
Uniwersytet Gdański
80-308 Gdańsk, Poland
E-mail: Zbigniew.Szafraniec@mat.ug.edu.pl

[^0]: 2010 Mathematics Subject Classification. Primary 14P15; Secondary 58K05.
 Key Words and Phrases. singularities, bifurcations, cusps.

