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Abstract. In connection with generalized cluster algebras we introduce

a certain generalization of the celebrated Rogers dilogarithm, which we call
the Rogers dilogarithms of higher degree. We show that there is an identity
of these generalized Rogers dilogarithms associated with any period of seeds
of a generalized cluster algebra.

1. Introduction.

It is widely known that the (Euler) dilogarithm

Li2(x) =

∞∑
n=1

xn

n2
= −

∫ x

0

log(1− y)

y
dy (1.1)

appears and plays important roles in several branches of mathematics (e.g., [Lew81],

[Kir95], [Zag07]). The function is remarkable in the sense that it satisfies a variety of

functional equations, which are generally called dilogarithm identities.

The quantum dilogarithm [FV93], [FK94]

Ψq(x) =
∞∏
k=0

(1 + q2k+1x)−1, (1.2)

is regarded as a quantum analogue of the dilogarithm, and it is as important as the

classical (i.e., nonquantum) one (1.1). It is related to its classical counterpart in the

asymptotic limit as follows:

Ψq(x) ∼ exp

(
−Li2(−x)

log q2

)
, q → 1−. (1.3)

The classical and quantum dilogarithms are intimately related to the cluster algebras

[FZ02], [FZ07] and quantum cluster algebras [FG09a], [FG09b], respectively. This

connection was discovered via the quantization of the moduli space of Riemann surfaces

[FC99], [FG09a], [FG09b]. Then, it was also spotlighted through the Donaldson-

Thomas theory [KS08], [Nag11], [Kel11], and through the Y -systems in conformal
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field theory [Cha05], [Nak11a], [Nak11b]. In particular, we reached to the following

very general theorem.

Theorem 1.1. (I). There is a dilogarithm identity associated with any period of

seeds of a cluster algebra [Nak11b].

(II). There is a quantum dilogarithm identity associated with any period of seeds of a

quantum cluster algebra [Kel11], [KN11].

A heuristic (but not rigorous) derivation of Statements (I) from Statement (II) was

also given in [KN11].

Recently Chekhov and Shapiro introduced generalized cluster algebras [CS14]. As

the name suggests it is a generalization of cluster algebras. In fact, it is a very natural

generalization so that all nice properties of cluster algebras are shown or expected to hold

[Rup13], [Nak15b]. Naturally one can further define the quantum generalized cluster

algebras as well [Nak15a]. For ordinary quantum cluster algebras, the quantum dilog-

arithm (1.2) plays a key role to control their mutations [FG09a], [FG09b]. Likewise,

for generalized quantum cluster algebras, a generalization of the quantum dilogarithm,

called the quantum dilogarithms of higher degree play the same role, and they look as

follows: (This notation is used only here.)

ΨP
q (x) =

∞∏
k=0

P (q2k+1x)−1, (1.4)

where P (x) is an arbitrary monic polynomial in x with unit constant; furthermore, here

we assume that all coefficients of P (x) are nonnegative real numbers.

In the simplest case degP (x) = 1, we have P (x) = 1 + x and it reduces to the

ordinary one (1.2). (In [Nak15a] P (x) is assumed to be reciprocal, but this assumption

can be removed with slight change of mutations therein. See [NR16].) Then, it is rather

straightforward to generalize Statement (II) in Theorem 1.1 in the following way:

Theorem 1.2. (II’). There is a quantum dilogarithm identity of higher degree

associated with any period of seeds of a quantum generalized cluster algebra [Nak15a].

Under this circumstance it is just natural to expect the following generalization of

Statement (I), which is also the classical counterpart of Statement (II’):

(I’). There is a dilogarithm identity of higher degree associated with any period of seeds

of a generalized cluster algebra.

In fact, a classical counterpart of the function (1.4) was already introduced in [Nak15a],

and it looks as follows: (This notation is used only here.)

LiP2 (x) = −
∫ −x

0

logP (y)

y
dy. (1.5)

Two functions in (1.4) and (1.5) are related in the same way as (1.3):
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ΨP
q (x) ∼ exp

(
−LiP2 (−x)

log q2

)
, q → 1−. (1.6)

Now let us explain the obstacle to establish Statement (I’) we have been confronted

with so far. In the ordinary case the derivation of Statement (I) in [Nak11b] is not as

straightforward as its quantum counterpart (II). The reason is that the dilogarithm nat-

urally concerning with the identities in Statement (I) is not exactly the Euler dilogarithm

(1.1); rather, it is the Rogers dilogarithm defined by

L(x) = −1

2

∫ x

0

{
log(1− y)

y
+

log y

1− y

}
dy, (1.7)

where two dilogarithms are related by

L(x) = Li2(x) +
1

2
log x · log(1− x). (1.8)

Then, the main issue is to set the proper definition of the Rogers dilogarithms of higher

degree so as to match the desired Statement (I’), which is not a priori clear.

In this paper we resolve this problem, and we give a proper definition of the Rogers

dilogarithms of higher degree. The key idea is to generalize the Rogers dilogarithm, not

through the familiar definition (1.7), but through a less familiar expression,

L

(
x

1 + x

)
=

1

2

∫ x

0

{
log(1 + y)

y
− log y

1 + y

}
dy, (0 ≤ x). (1.9)

Then, for the same polynomial P (x) in (1.5), we define the corresponding Rogers dilog-

arithm of higher degree as follows: (This notation is used only here.)

LP

(
xdegP

P (x)

)
=

1

2

∫ x

0

{
logP (y)

y
− log y

P (y)
P ′(y)

}
dy, (0 ≤ x). (1.10)

Once this part is cleared, it is rather straightforward to follow the argument of the

proof of Statement (I), and we prove Statement (I’), which is our main result (Theorems

4.7 and 4.8). To complete the picture, we also give a heuristic derivation of Statement

(I’) from Statement (II’) following [KN11].

The function (1.10) may formally reduce to (the analytic continuation of) the ordi-

nary one (1.9) if we factorize the polynomial P (x) into polynomials of degree one with

complex coefficients. However, we need to correctly choose the path of the analytic con-

tinuation of (1.9) very carefully, and that makes the things very complicated. Therefore,

it is natural to keep the function (1.10) as a single package.

The organization of the paper is as follows. In Section 2 the connection between

the Rogers dilogarithm and cluster algebras is reviewed. In Section 3 we introduce the

Rogers dilogarithms of higher degree and prove the constancy condition. In Section 4

we show that there is a dilogarithm identity of higher degree associated with any period

of a generalized cluster algebra. In Section 5 we give a proof of Theorem 4.4, which is

the key theorem for our main result. In Section 6 some explicit examples are given. In

Appendix, as independent reading, we give a heuristic (but not rigorous) derivation of



1272

1272 T. Nakanishi

our dilogarithm identity of higher degree from the quantum one.

Acknowledgements. The author would like to thank the referee for useful com-

ments and suggestions.

2. Rogers dilogarithm and cluster algebras.

In this section we quickly recall and summarize some known properties of the Rogers

dilogarithm and its relation to cluster algebras, which we will generalize in this paper.

The whole section may serve as a useful guide to show where we are heading. Here we do

not provide any proof, but the main theorems will be reproved in a more general setting

in the later sections.

2.1. Rogers dilogarithm.

The Euler dilogarithm Li2(x) was originally defined by the following power series

with convergence radius 1 (see [Lew81], [Kir95], [Zag07] for backgrounds):

Li2(x) =
∞∑

n=1

xn

n2
. (2.1)

We have

Li2(0) = 0, Li2(1) = ζ(2) =
π2

6
, (2.2)

where ζ(s) is the Riemann zeta function. We also have the integral expression

Li2(x) = −
∫ x

0

log(1− y)

y
dy = −

∫ −x

0

log(1 + y)

y
dy, (x ≤ 1). (2.3)

The integrals in (2.3) can be extended on the whole complex plane C. However, there

is a branch point at x = 1, and the function Li2(x) becomes multivalued on C. Here

we restrict our attention only on the region x ≤ 1 so that there is no ambiguity of

multivaluedness.

The Rogers dilogarithm L(x) is defined by

L(x) = −1

2

∫ x

0

{
log(1− y)

y
+

log y

1− y

}
dy, (0 ≤ x ≤ 1), (2.4)

= Li2(x) +
1

2
log x · log(1− x). (2.5)

Again, we restrict our attention only on the region 0 ≤ x ≤ 1, and there is no ambiguity

of multivaluedness.

By (2.2), we have

L(0) = 0, L(1) =
π2

6
. (2.6)

We also have
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L(x) + L(1− x) = L(1), (0 ≤ x ≤ 1). (2.7)

The following equalities hold:

L

(
x

1 + x

)
=

1

2

∫ x

0

{
log(1 + y)

y
− log y

1 + y

}
dy, (0 ≤ x), (2.8)

= −Li2(−x)−
1

2
log x · log(1 + x). (2.9)

These equalities are less well-known than (2.4) and (2.5), but they are crucial for our

purpose. They are easily proven by taking the derivative. Since the function x/(1+x) is

monotonic on R≥0 and yields a bijection from R≥0 to [0, 1), one may view (2.8) and (2.9)

as an alternative definition of L(x) on [0, 1], where L(1) is defined by the limit x → ∞
in (2.8).

In view of the form (2.8), it is useful to rephrase the equality (2.7) as

L

(
x

1 + x

)
+ L

(
1

1 + x

)
= L(1), (0 ≤ x). (2.10)

Note that there is a duality of the variables in (2.10):

1

1 + x
=

x

1 + x

∣∣∣∣
x=x−1

. (2.11)

2.2. Constancy condition.

Let G be any multiplicative abelian group. Let G⊗G be its tensor product over Z,
that is, the additive abelian group with generators f ⊗ g (f, g ∈ G) and relations

(fg)⊗ h = f ⊗ h+ g ⊗ h, f ⊗ (gh) = f ⊗ g + f ⊗ h. (2.12)

Note that 1⊗ h = h⊗ 1 = 0. Let S2G be the symmetric subgroup of G⊗G, namely, the

subgroup generated by all f ⊗ g+ g⊗ f (f, g ∈ G). We define the wedge product of G as∧2
G = G⊗G/S2G.

Let C = C([0, 1],R+) be the set of all positive-real-valued and differentiable functions

on the interval [0, 1] in R. Regarding it as a multiplicative abelian group, we have the

wedge product
∧2 C.

The following theorem is the starting point of deducing identities satisfied by the

Rogers dilogarithm.

Theorem 2.1 ([FS95, Proposition 1]). Let f1, . . . , fm ∈ C be differentiable func-

tions on the interval [0, 1] which especially takes values in the interval (0, 1). Suppose

that they satisfy the following relation in
∧2 C: (Constancy condition)

m∑
t=1

ft ∧ (1− ft) = 0. (2.13)

Then, the sum of the Rogers dilogarithm
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m∑
t=1

L(ft(u)) (2.14)

is constant as a function of u ∈ [0, 1].

In view of the form (2.8), it is useful to rephrase Theorem 2.1 as follows:

Theorem 2.2 (cf. [Cha05, Equation (2.3)]). Let y1, . . . , ym ∈ C. Suppose that

they satisfy the following the relation in
∧2 C: (Constancy condition)

m∑
t=1

yt ∧ (1 + yt) = 0. (2.15)

Then, the sum of the Rogers dilogarithm

m∑
t=1

L

(
yt(u)

1 + yt(u)

)
(2.16)

is constant as a function of u ∈ [0, 1].

2.3. Seed mutations.

To make use of wonderful Theorem 2.2, it is essential to find a family of functions

y1, . . . , ym ∈ C which satisfy the constancy condition (2.15). This is where cluster algebras

take part. See [FZ07] for a general reference on cluster algebras.

First we recall the notion of a semifield, following [FZ07].

Definition 2.3. A multiplicative abelian group P is called a semifield if it is

endowed with a binary operation ⊕ which is commutative, associative, and distributative,

i.e., a(b⊕ c) = ab⊕ ac. The operation ⊕ is called the addition.

Here we mainly use the following examples.

Example 2.4. (1) The set R+ of all positive real numbers is a semifield, where

the product and the addition are given by the usual ones.

(2) Let y = (yi)
n
i=1 be an n-tuple of formal commutative variables. We say that a

rational function f(y) in y with coefficients in Q has a subtraction-free expression if it is

represented as f(y) = P (y)/Q(y) such that P (y) and Q(y) are nonzero polynomials in y

with nonnegative integer coefficients. Let Q+(y) be the set of all rational functions in y

having subtraction-free expressions. Then, Q+(y) is a semifield, where the product and

the addition are given by the usual ones for rational functions. We call it the universal

semifield of y.

(3) Let y = (yi)
n
i=1 be an n-tuple of formal commutative variables. Let

Trop(y) =
{ n∏

i=1

yai
i | ai ∈ Z

}
. (2.17)

Then, Trop(y) is a semifield, where the product is given by the usual one for Laurent
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monomials, while the addition is given by the following tropical sum:

n∏
i=1

yai
i ⊕

n∏
i=1

ybii =
n∏

i=1

y
min(ai,bi)
i . (2.18)

We call it the tropical semifield of y.

Let P be any semifield. By regarding it as an abelian multiplicative group, let Z[P]
be its group ring. It is known that Z[P] is a domain [FZ02], i.e., there is no divisor.

Thus, the field of the fractions of Z[P] is well-defined, and it is denoted by Q(P) here.
We say that an (integer) square matrix B is skew-symmetrizable if there is a diagonal

matrix R = diag(r1, . . . , rn) of the same size with positive (integer) diagonal entries

r1, . . . , rn such that RB is skew-symmetric, i.e., (RB)T = −RB. Also we call such

R a skew-symmetrizer of B. Note that if RB is skew-symmetric, then BR−1 is also

skew-symmetric.

Now let us give two most important notions in cluster algebras, namely, a seed and

its mutation. (We do not give the definition of a cluster algebra itself, because it is not

essential in this paper.)

Definition 2.5. Let us fix a positive integer n ∈ Z+ and a semifield P, which are

called the rank and the coefficient semifield (of a cluster algebra under consideration).

Let w = (wi)
n
i=1 be an n-tuple of formal commutative variables, and let F = (Q(P))(w)

be the rational function field of w with coefficients in Q(P). We call F the ambient field.

(1). Let (B, x, y) be a triplet such that

• B = (bij)
n
i,j=1 is a skew-symmetrizable integer matrix of size n,

• x = (xi)
n
i=1 is an n-tuple of algebraically independent elements of F ,

• y = (yi)
n
i=1 is an n-tuple of elements of P.

We call such (B, x, y) a seed, and call B, x, and y the exchange matrix, the x-variables,

and the y-variables of a seed (B, x, y), respectively. Also, we set

ŷi = yi

n∏
j=1

x
bji
j ∈ F , i = 1, . . . , n, (2.19)

and call them the ŷ-variables of a seed (B, x, y).

(2). For any seed (B, x, y) and any k = 1, . . . , n, we define a new seed (B′, x′, y′) =

µk(B, x, y), called the mutation of (B, x, y) at k, as follows:

b′ij =

{
−bij i = k or j = k

bij + [−bik]+bkj + bik[bkj ]+ i, j ̸= k,
(2.20)

x′
i =


x−1
k

 n∏
j=1

x
[−bjk]+
j

 1 + ŷk
1⊕ yk

i = k

xi i ̸= k,

(2.21)
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y′i =

{
y−1
k i = k

yiy
[bki]+
k (1⊕ yk)

−bki i ̸= k.
(2.22)

Here and elsewhere, for any integer a, we define

[a]+ = max(a, 0). (2.23)

The following facts can be easily checked:

(1). The mutation µk is an involution, i.e., µk(µk(B, x, y)) = (B, x, y).

(2). If R is a skew-symmetrizer of B, then R is also a skew-symmetrizer of B′.

(3). The ŷ-variables transform in F as the y-variables; namely,

ŷ′i =

{
ŷ−1
k i = k

ŷiŷ
[bki]+
k (1 + ŷk)

−bki i ̸= k.
(2.24)

2.4. Dilogarithm identities.

In this section we specialize the coefficient semifield P in Definition 2.5 as P = Q+(y)

in Example 2.4 (2) with generators y = (yi)
n
i=1. Let us choose a seed (B, x, y), where B

and x are arbitrary, but we especially choose y to be the generators of Q+(y). Let us

call (B, x, y) the initial seed, and consider a sequence of mutations starting from it:

(B, x, y) = (B[1], x[1], y[1])
µk1→ (B[2], x[2], y[2])

µk2→

· · ·
µkm→ (B[m+ 1], x[m+ 1], y[m+ 1]).

(2.25)

Let R = diag(r1, . . . , rn) be a common symmetrizer of B[1], . . . , B[m + 1], and let

r be the least common multiple of r1, . . . , rn. We set r̃i = r/ri ∈ Z+.

Definition 2.6. We say that the sequence (2.25) is σ-periodic for a permutation

σ of {1, . . . , n} if

bσ(i)σ(j)[m+ 1] = bij , xσ(i)[m+ 1] = xi, yσ(i)[m+ 1] = yi, (i, j = 1, . . . , n).

(2.26)

The following fact connects cluster algebras and dilogarithm identities.

Theorem 2.7 ([Nak11b, Proposition 6.3 and Section 6.5]). Suppose that the se-

quence (2.25) is σ-periodic for some permutation σ. Then, it satisfies the following

“constancy condition” in the wedge product
∧2 Q+(y), where we regard Q+(y) as a mul-

tiplicative abelian group:

m∑
t=1

r̃kt (ykt [t] ∧ (1 + ykt [t])) = 0. (2.27)

Combining Theorems 2.2 and 2.7, we obtain the first half of the dilogarithm identity

associated with any period of seeds.
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Theorem 2.8 ([Nak11b, Theorems 6.4 and 6.8]). Suppose that the sequence (2.25)

is σ-periodic for some permutation σ. Let

φ : Q+(y)→ R+ (2.28)

be any semifield homomorphism. Then, the following sum does not depend on the choice

of φ:

m∑
t=1

r̃ktL

(
φ

(
ykt [t]

1 + ykt [t]

))
. (2.29)

Remark 2.9. Theorem 6.8 in [Nak11b] was proved under the assumption of

the sign-coherence property of the c-vectors, which is now proved by [GHKK18]. See

Theorem 2.10 below.

The second half of the dilogarithm identity is about the constant value of (2.29). To

describe it, we introduce the semifield homomorphism (tropicalization map)

π :Q+(y)→Trop(y)

yi 7→ yi.
(2.30)

We then apply the map π to each y-variable yi[t] in (2.25), and express it as

π(yi[t]) =

n∏
j=1

y
cji[t]
j . (2.31)

Thus, we have a family of square matrices C[t] = (cij [t])
n
i,j=1 for t = 1, . . . ,m+ 1, which

are called the C-matrices for the sequence (2.25). Alternatively, they can be directly

defined through the following system of recursion relations [FZ07]:

(initial condition)

cij [1] = δij , (2.32)

(recursion relation)

cij [t+ 1] =

{
−cikt [t] j = kt

cij [t] + [−cikt [t]]+bktj [t] + cikt [t][bktj [t]]+ j ̸= kt.
(2.33)

The ith column vector ci[t] = (cji[t])
n
j=1 of the matrix C[t] is called the c-vector of yi[t].

By the definition of (2.31), it is the “exponent vector” of the tropical y-variable π(yi[t]).

The following property is fundamental in the theory of cluster algebras, and it is

originally conjectured by [FZ07] and proved in full generality recently:

Theorem 2.10 ((Sign coherence) [GHKK18, Corollary 5.5]). Each c-vector ci[t]

is a nonzero vector, and all its components are either nonnegative or nonpositive.

Accordingly, we set the tropical sign ε(yi[t]) ∈ {±1} of yi[t] as 1 (resp. −1) if all
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components of ci[t] is nonnegative (resp. nonpositive). For simplicity, let us write

εt = ε(ykt [t]). (2.34)

Now, continuing from Theorem 2.8, we can state the second half of the dilogarithm

identity.

Theorem 2.11 ([Nak11b, Theorems 6.4 and 6.8]). Under the assumption of The-

orem 2.8, we have the following equality for any choice of φ in (2.28):

m∑
t=1

r̃ktL

(
φ

(
ykt [t]

1 + ykt [t]

))
=

m∑
t=1

1− εt
2

r̃ktL(1). (2.35)

Using (2.10), we also have an alternative form of the identity (2.35), which is

constant-term free.

Theorem 2.12 ([KN11, Theorem 2.9]). The identity (2.35) is equivalent to the

following one:

m∑
t=1

εtr̃ktL

(
φ

(
(ykt [t])

εt

1 + (ykt [t])
εt

))
= 0. (2.36)

We are going to generalize Theorems 2.11 and 2.12 based on generalized cluster

algebras.

3. Rogers dilogarithms of higher degree.

In this section we introduce the Rogers dilogarithms of higher degree. Then, we

prove the constancy condition which is parallel to Theorem 2.2.

3.1. Rogers dilogarithms of higher degree.

Let d be any positive integer, and let z = (zs)
d
s=0 such that z0 = zd = 1 and

z1, . . . , zd−1 ∈ R≥0 are arbitrary. Let Pd,z(x) be the polynomial in a single variable x

defined by

Pd,z(x) =
d∑

s=0

zsx
s. (3.1)

Below we assume the following generic condition for z:

The polynomial Pd,z(x) has no root on R except for x = −1. (3.2)

In [Nak15b] the (Euler) dilogarithm Li2;d,z(x) of degree d with coefficients z is defined

as follows (cf. (2.3)):

Li2;d,z(x) = −
∫ −x

0

logPd,z(y)

y
dy, (x ≤ 1). (3.3)



1279

Rogers dilogarithms of higher degree 1279

By the condition (3.2), there is no ambiguity of multivaluedness in the region x ≤ 1.

In view of (2.8) and (2.9) we define the Rogers dilogarithm Ld,z(x) of degree d with

coefficients z as follows:

Ld,z

(
xd

Pd,z(x)

)
=

1

2

∫ x

0

{
logPd,z(y)

y
− log y

Pd,z(y)
P ′
d,z(y)

}
dy, (0 ≤ x), (3.4)

= −Li2;d,z(−x)−
1

2
log x · logPd,z(x), (3.5)

where P ′
d,z(x) denotes the derivative of Pd,z(x). Since the function xd/Pd,z(x) is mono-

tonic on R≥0 and yields a bijection from R≥0 to [0, 1), (3.4) and (3.5) unambiguously

determine the function Ld,z(x) on [0, 1], where Ld,z(1) is defined by the limit x → ∞
in (3.4).

For the above z = (zs)
d
s=0, we define its reverse z∗ as

z∗ = (z∗s )
d
s=0, z∗s = zd−s. (3.6)

Clearly, it holds that (z∗)∗ = z. Also, we have

Pd,z∗(x−1) = x−dPd,z(x), (3.7)

P ′
d,z∗(x)|x=x−1 = −x2−dP ′

d,z(x) + dx1−dPd,z(x). (3.8)

By (3.7), a ̸= 0 is a root of Pd,z∗(x) if and only if a−1 is a root of Pd,z(x). Thus, z
∗ also

satisfies the generic condition (3.2).

The following is the counterpart of the equalities (2.10) and (2.11):

Proposition 3.1. We have the equalities

Ld,z

(
xd

Pd,z(x)

)
+ Ld,z∗

(
1

Pd,z(x)

)
= Ld,z(1) = Ld,z∗(1), (0 ≤ x), (3.9)

1

Pd,z(x)
=

xd

Pd,z∗(x)

∣∣∣
x=x−1

. (3.10)

Proof. The equality (3.10) is immediate from (3.7). Let us show (3.9). First, we

show that the left-hand side of (3.9) does not depend on x. To do it, we apply (3.10) in

the second term of the left-hand side of (3.9), then take the derivative with respect to x.

Then, by (3.4), we obtain

1

2

(
logPd,z(x)

x
− log x

Pd,z(x)
P ′
d,z(x)

)
− 1

2
x−2

(
logPd,z∗(x−1)

x−1
− log x−1

Pd,z∗(x−1)

(
P ′
d,z∗(x)

∣∣∣
x=x−1

))
.

(3.11)

Then, using (3.7) and (3.8), it is easy to check that (3.11) vanishes. Thus, the left-hand

side of (3.9) is a constant C with respect to x. Then, taking x → ∞ in it, we have

C = Ld,z(1), while setting x = 0, we have C = Ld,z∗(1). □



1280

1280 T. Nakanishi

Let us also introduce the function L̃d,z(x) by

L̃d,z(x) := Ld,z

(
xd

Pd,z(x)

)
, (0 ≤ x). (3.12)

Then, by (3.10), the equality (3.9) is written as

L̃d,z(x) + L̃d,z∗(x−1) = L̃d,z(∞) = L̃d,z∗(∞), (0 ≤ x), (3.13)

where L̃d,z(∞) := limx→∞ L̃d,z(x). Though we are attached to the function Ld,z(x),

since it is more directly related to the classic Rogers dilogarithm L(x), all results in this

paper are more simply described with the function L̃d,z(x) as (3.13). So, from now on,

we mainly use the function L̃d,z(x) instead of Ld,z(x).

3.2. Constancy condition.

Recall that C = C([0, 1],R+) is the set of all positive-real-valued and differentiable

functions on the interval [0, 1] as defined in Section 2.2.

Theorem 3.2 (cf. Theorem 2.2). Let y1, . . . , ym ∈ C, and, for t = 1, . . . ,m, let

Pdt,zt(x) be a degree dt polynomial in x whose coefficients zt satisfy the generic condition

(3.2). Suppose that they satisfy the following relation in
∧2 C: (Constancy condition)

m∑
t=1

yt ∧ Pdt,zt(yt) = 0. (3.14)

Then, the sum of the Rogers dilogarithms of higher degree

m∑
t=1

L̃dt,zt (yt(u)) (3.15)

is constant as a function of u ∈ [0, 1].

Proof. The proof essentially repeats the one for Theorem 2.1 due to [FS95],

whose idea originates in [Blo78]. By (3.4), for each t = 1, . . . ,m, we have

d

du
L̃dt,zt (yt(u)) =

1

2

(
logPdt,zt(yt(u)) ·

d

du
log yt(u)

− log yt(u) ·
d

du
logPdt,zt(yt(u))

)
.

(3.16)

On the other hand, by the assumption of (3.14),

m∑
t=1

yt ⊗ Pdt,zt(yt) =
k∑

i=1

(gi ⊗ hi + hi ⊗ gi) (3.17)

for some k ≥ 1 and gi, hi ∈ C. For any u, v ∈ [0, 1], we have an additive group ho-

momorphism Ψu,v : C ⊗ C → R, f ⊗ g 7→ log f(u) · log g(v). Applying it on (3.17), we

have
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m∑
t=1

log yt(u) · logPdt,zt(yt(v)) =
k∑

i=1

(
log gi(u) · log hi(v) + log hi(u) · log gi(v)

)
. (3.18)

Then, taking the derivative for u and setting v = u, we have

m∑
t=1

d

du
log yt(u) · logPdt,zt(yt(u))

=

k∑
i=1

(
d

du
log gi(u) · log hi(u) +

d

du
log hi(u) · log gi(u)

)
.

(3.19)

Similarly, taking the derivative for v and setting v = u, we have

m∑
t=1

log yt(u) ·
d

du
logPdt,zt(yt(u))

=
k∑

i=1

(
log gi(u) ·

d

du
log hi(u) + log hi(u) ·

d

du
log gi(u)

)
.

(3.20)

Note that the right-hand sides of (3.19) and (3.20) are identical. Thus, by (3.16), (3.19),

and (3.20), we obtain the equality

d

du

m∑
t=1

L̃dt,zt (yt(u)) = 0. (3.21)

□

4. Identities associated with periods of generalized cluster algebras.

In this section we show Statement (II’) in Section 1; that is, there is a dilogarithm

identity of higher degree associated with any period of seeds of a generalized cluster

algebra.

4.1. Seed mutations for generalized cluster algebras.

Generalized cluster algebras were introduced by [CS14]. Here we present the defi-

nitions of a seed and its mutation for a generalized cluster algebra, following [Nak15b],

[NR16]. (Again, we do not give the definition of a generalized cluster algebra itself,

because it is not essential in this paper.)

Definition 4.1. Let us fix a positive integer n and a semifield P, which are called

the rank and the coefficient semifield (of a generalized cluster algebra under considera-

tion). In addition, we also fix an n-tuple d = (di)
n
i=1 of positive integers, which is called

the mutation degree. For the simplest choice d = (1, . . . , 1), it reduces to the ordinary

cluster algebra case. Let w = (wi)
n
i=1 be an n-tuple of formal commutative variables and

let F = (Q(P))(w) be the rational function field of w with coefficients in Q(P), which is

called the ambient field.

(1). Let (B, x, y, z) be a quartet such that

• B = (bij)
n
i,j=1 is a skew-symmetrizable integer matrix of size n,
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• x = (xi)
n
i=1 is an n-tuple of algebraically independent elements of F ,

• y = (yi)
n
i=1 is an n-tuple of elements of P.

• z = (zi,s | i = 1, . . . , n; s = 0, . . . , di) is a collection of elements of P such that

zi,0 = zi,di = 1 for any i = 1, . . . , n.

Here we call such (B, x, y, z) a seed, and call B, x, y, and z the exchange matrix, the

x-variables, the y-variables, and z-variables of a seed (B, x, y, z), respectively. Also,

we set

ŷi = yi

n∏
j=1

x
bji
j ∈ F , i = 1, . . . , n (4.1)

as before, and call them the ŷ-variables of a seed (B, x, y, z).

(2). For any seed (B, x, y, z) and any k = 1, . . . , n, we define a new seed

(B′, x′, y′, z′) = µk(B, x, y, z), called the mutation of (B, x, y, z) at k, as follows:

b′ij =

{
−bij i = k or j = k

bij + dk([−bik]+bkj + bik[bkj ]+) i, j ̸= k,
(4.2)

x′
i =


x−1
k

 n∏
j=1

x
[−bjk]+
j

dk

Pdk,zk(ŷk)

Pdk,zk(yk)|P
i = k

xi i ̸= k,

(4.3)

y′i =

y−1
k i = k

yi

(
y
[bki]+
k

)dk

(Pdk,zk(yk)|P)−bki i ̸= k.
(4.4)

z′i,s = zi,di−s. (4.5)

Here and elsewhere, for the z-variables z = (zi,s)i=1,...,n;s=0,...,di , we set

zk := (zk,s)
dk
s=0, (4.6)

and

Pdk,zk(ŷk) =

dk∑
s=0

zk,sŷ
s
k, Pdk,zk(yk)|P =

dk⊕
s=0

zk,sy
s
k. (4.7)

The following facts can be easily checked:

(1) The mutation µk is an involution, i.e., µk(µk(B, x, y, z)) = (B, x, y, z).

(2) If R is a skew-symmetrizer of B, then R is also a skew-symmetrizer of B′.

(3) The ŷ-variables in (4.1) transform in F as the y-variables, namely,

ŷ′i =

ŷ−1
k i = k

ŷi

(
ŷ
[bki]+
k

)dk

(Pdk,zk(ŷk))
−bki i ̸= k.

(4.8)
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4.2. Dilogarithm identities.

Let n and d = (di)
n
i=1 be the ones in Section 4.1. Let Q+(y, z) be the uni-

versal semifield with generators (formal commutative variables) y = (yi)
n
i=1 and z =

(zi,s)i=1,...,n;s=0,...,di as defined in Example 2.4 (2). However, in accordance with our sit-

uation, zi,0 and zi,di (i = 1, . . . , n) are specialized to the identity element 1. For example,

in the case d = (1, . . . , 1), we have Q+(y, z) = Q+(y).

From now on we specialize the coefficient semifield P in Definition 4.1 as P =

Q+(y, z). Let us choose a seed (B, x, y, z), where B and x are arbitrary, but we es-

pecially choose y and z to be the generators y and z of Q+(y, z). Let us call (B, x, y, z)

the initial seed, and consider a sequence of mutations starting from it:

(B, x, y, z) = (B[1], x[1], y[1], z[1])
µk1→ (B[2], x[2], y[2], z[2])

µk2→ · · ·

· · ·
µkm→ (B[m+ 1], x[m+ 1], y[m+ 1], z[m+ 1]).

(4.9)

Let R = diag(r1, . . . , rn) be a common skew-symmetrizer of B[1], . . . , B[m+1], and

let r be the least common multiple of r1, . . . , rn. We set r̃i = r/ri ∈ Z+.

Definition 4.2. We say that the sequence (4.9) is σ-periodic for a permutation σ

of {1, . . . , n} if

bσ(i)σ(j)[m+ 1] = bij , xσ(i)[m+ 1] = xi, yσ(i)[m+ 1] = yi, (i, j = 1, . . . , n).

(4.10)

Proposition 4.3. If the sequence (4.9) is σ-periodic, then we have

rσ(i) = ri, (i = 1, . . . , n). (4.11)

Proof. Without losing generality, one can assume that B = B[1] is decomposed

into a block diagonal form such that each block is indecomposable. By (2.20), mutations

preserve the block diagonal form. Moreover, by (2.22) and the assumption yσ(i)[m +

1] = yi, σ only permutes the indices in the same block. On the other hand, for each

indecomposable block (bij)
q
i,j=p, its skew-symmetrizer is unique up to a multiplicative

constant. In particular, there is a unique minimal skew-symmetrizer diag(r′p, . . . , r
′
q) of

the block. Then, by the assumption bσ(i)σ(j)[m + 1] = bij , diag(r
′
σ(p), . . . , r

′
σ(q)) is also

the minimal skew-symmetrizer of the block. Therefore, we have r′σ(i) = r′i (i = p, . . . , q).

Thus, rσ(i) = ri (i = p, . . . , q) holds. □

The following fact connects generalized cluster algebras and dilogarithm identities

of higher degree.

Theorem 4.4 (cf. Theorem 2.7). Suppose that the sequence (4.9) is σ-periodic for

some permutation σ. Then, it satisfies the following “constancy condition” in the wedge

product
∧2 Q+(y, z), where we regard Q+(y, z) as a multiplicative abelian group:

m∑
t=1

r̃kt

(
ykt [t] ∧ Pdkt ,zkt [t]

(ykt [t])
)
= 0. (4.12)
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Our proof of Theorem 4.4 relies on some detailed results on the y-variables obtained

in [Nak15b], and it will be given in Section 5.

Admitting Theorem 4.4, we give the first half of the dilogarithm identity of higher

degree associated with any period of seeds.

Theorem 4.5 (cf. Theorem 2.8). Suppose that the sequence (4.9) is σ-periodic for

some permutation σ. Let

φ : Q+(y, z)→ R+ (4.13)

be any semifield homomorphism such that φ(zi) = (φ(zi,s))
di
s=0 satisfies the generic con-

dition (3.2) for any i = 1, . . . , n. Then, the following sum only depend on the images of

the z-variables φ(zi,s), and does not depend on the images of the y-variables φ(yi):

m∑
t=1

r̃ktL̃dkt ,φ(zkt [t])
(φ (ykt [t])) . (4.14)

Proof. The argument is standard (e.g., the proof of [Nak11b, Theorem 6.4]).

Suppose that there are two semifield homomorphisms φ0 and φ1 from Q+(y, z) to R+

such that φ0(zi,s) = φ1(zi,s). Then, we can interpolate them by a family of semifield

homomorphisms φu (u ∈ [0, 1]),

φu : Q+(y, z)→ R+

yi 7→ (1− u)φ0(yi) + uφ1(yi)

zi,s 7→ φ0(zi,s) = φ1(zi,s).

(4.15)

Let us introduce positive-real-valued and differentiable functions Yt ∈ C (t = 1, . . . ,m)

on the interval [0, 1] defined by

Yt(u) = φu(ykt [t]). (4.16)

Applying the family of homomorphisms φu (u ∈ [0, 1]) to (4.12), we have the constancy

condition in
∧2 C:

m∑
t=1

r̃kt

(
Yt ∧ Pdk,φ0(zkt [t])

(Yt)
)
= 0, (4.17)

where we used the fact that φu(zkt [t]) = φ0(zkt [t]) for any u ∈ [0, 1]. Then, by Theorem

3.2, the dilogarithm sum

m∑
t=1

r̃ktL̃dt,φ0(zkt [t])
(Yt(u)) (4.18)

is constant as a function of u ∈ [0, 1]. In particular, setting u = 0 and 1, we have

m∑
t=1

r̃ktL̃dt,φ0(zkt [t])
(φ0(ykt [t])) =

m∑
t=1

r̃ktL̃dt,φ0(zkt [t])
(φ1(ykt [t])) , (4.19)
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which is the desired result. □

The second half of the dilogarithm identity of higher degree is about the constant

value of (4.14). To describe it, we introduce the semifield homomorphism (tropicalization

map)

π :Q+(y, z)→Trop(y, z)

yi 7→ yi
zi,s 7→ zi,s.

(4.20)

Here, Trop(y, z) is the tropical semifield with generators y = (yi)
n
i=1 and z =

(zi,s)i=1,...,n;s=0,...,di
as defined in Example 2.4 (3), but again zi,0 and zi,di

(i = 1, . . . , n)

are specialized to the identity element 1.

We then apply the map π to each y-variable yi[t] in (4.9). It is known that the image

π(yi[t]) does not depend on z-variables z [Nak15b, Lemma 3.6]; thus, it is expressed as

π(yi[t]) =
n∏

j=1

y
cji[t]
j . (4.21)

Thus, we have a family of square matrices C[t] = (cij [t])
n
i,j=1 for t = 1, . . . ,m+ 1, which

are called the C-matrices for the sequence (4.9). Alternatively, they can be directly

defined through the following system of recursion relations [Nak15b, Propostition 3.8]:

(initial condition)

cij [1] = δij , (4.22)

(recursion relation)

cij [t+ 1] =

{
−cikt [t] j = kt

cij [t] + dkt([−cikt [t]]+bktj [t] + cikt [t][bktj [t]]+) j ̸= kt.
(4.23)

The ith column vector ci[t] = (cji[t])
n
j=1 of the matrix C[t] is called the c-vector of y[t]i.

By the definition of (4.21), it is the “exponent vector” of the tropical y-variable π(yi[t]).

It is known that the sign-coherence property of the c-vectors still holds for generalized

cluster algebras.

Theorem 4.6 ([Nak15b, Theorem 3.20]). Each c-vector ci[t] is a nonzero vector,

and all its components are either nonnegative or nonpositive.

Accordingly, we set the tropical sign ε(yi[t]) ∈ {±1} of yi[t] as 1 (resp. −1) if all

components of ci[t] is nonnegative (resp. nonpositive). For simplicity, let us write

εt = ε(ykt [t]). (4.24)

Now, continuing from Theorem 4.5, we can state the second half of the dilogarithm

identity of higher degree.
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Theorem 4.7 (cf. Theorem 2.11). Under the assumption of Theorem 4.5, we have

the following equality for any choice of φ in (4.13):

m∑
t=1

r̃ktL̃dkt ,φ(zkt [t])
(φ (ykt [t])) =

m∑
t=1

r̃kt

1− εt
2

L̃dkt ,φ(zkt [t])
(∞). (4.25)

Proof. Again, the argument is standard (e.g., the proof of [Nak11b, Theorem

6.4]). Let φ be any such semifield homomorphism. Then, we consider a family of semifield

homomorphism φu (u ∈ (0, 1]) as follows:

φu : Q+(y, z)→ R+

yi 7→ uφ(yi)

zi,s 7→ φ(zi,s).

(4.26)

First, we claim the following behavior of y-variables in the limit u→ 0:

lim
u→0

φu(ykt [t]) =

{
0 εt = 1

∞ εt = −1.
(4.27)

This follows from the forthcoming expression of the y-variables (5.3), together with the

sign-coherence property in Theorem 4.6 and the fact that all polynomials Fj [t](y, z) in

(5.3) have the constant term 1 [Nak15b, Proposition 3.19].

On the other hand, by Theorem 4.5, one can replace φ(ykt [t]) in the left side of

(4.25) with φu(ykt [t]) for any u ∈ (0, 1] without changing the sum therein. Then, by

taking the limit u→ 0, we obtain the right-hand side of (4.25) thanks to (4.27). □

Using (3.9), we also have an alternative form of the identity (4.25), which is constant-

term free.

Theorem 4.8 (cf. Theorem 2.12). The identity (4.25) is equivalent to the following

one:

m∑
t=1

εtr̃ktL̃dkt ,φ((zkt [t])
◦) (φ ((ykt [t])

εt)) = 0, (4.28)

where

(zkt
[t])◦ =

{
zkt [t] εt = 1

(zkt [t])
∗ εt = −1.

(4.29)

Remark 4.9. One can force to set some of φ(zi,s) to be 0, and Theorems 4.7 and

4.8 still hold by continuity.

5. Proof of Theorem 4.4.

In this section we give a proof of Theorem 4.4, which is the core of this paper. The

proof here uses the same argument in the “second proof” of [Nak11b, Proposition 6.3]
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therein, whose idea originates in [FG09a, Proposition 6.3] and [FG09b, Proposition

2.14]. Interestingly, even though the statement of Theorem 4.4 only involves y- and z-

variables, the proof requires F -polynomials as well, which are the specializations of the

accompanying x-variables.

Let us recall the notion of the F -polynomials for generalized cluster algebras

[Nak15b] in our context.

Definition 5.1. Let us consider the sequence (4.9). Apply the tropicalization

map of (4.20) to all y-variables involving in the mutation of x-variables (4.3). Then, it

is known [Nak15b, Proposition 3.3] that the resulting x-variable xi[t] is expressed as a

Laurent polynomial Xi[t](x, y, z) ∈ Z[x±1, y, z]. By specializing x1 = . . . = xn = 1 in

Xi[t](x, y, z), we obtain a polynomial Fi[t](y, z) ∈ Z[y, z], which is called the F -polynomial

of xi[t].

We use the following known properties of the F -polynomials, which generalize the

ones for ordinary cluster algebras by [FZ07].

Proposition 5.2. (1). ([Nak15b, Proposition 3.12]) The F -polynomials satisfy

the following system of recursion relations:

(initial condition)

Fi[1](y, z) = 1, (5.1)

(recursion relation)

Fi[t+ 1](y, z) =



Fkt [t](y, z)
−1

 n∏
j=1

y
[−cjkt [t]]+
j Fj [t](y, z)

[−bjkt [t]]+

dkt

× Pdkt ,zkt [t]

 n∏
j=1

y
cjkt [t]
j Fj [t](y, z)

bjkt [t]

 i = kt

Fi[t](y, z) i ̸= kt.

(5.2)

(2). ([Nak15b, Theorem 3.22]) The following equality holds:

(Separation formula)

yi[t] =
n∏

j=1

y
cji[t]
j Fj [t](y, z)

bji[t]. (5.3)

We note that due to the above recursion, Fi[t](y, z) are also viewed as elements in

Q+(y, z).

We also need the following periodicity property of the F -polynomials.

Proposition 5.3. Suppose that the sequence (4.9) is σ-periodic for some permu-

tation σ. Then, the F -polynomials obey the same periodicity, i.e.,

Fσ(i)[m+ 1](y, z) = Fi[1](y, z) = 1. (5.4)
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Therefore, Fi[m+ 1](y, z) = 1 for any i = 1, . . . , n.

Proof. This is because the F -polynomials are defined by the tropicalization and

specialization from the x-variables in (4.9). □

To each seed Σ[t] = (B[t], x[t], y[t], z[t]) (t = 1, . . . ,m+ 1) in the sequence (4.9), we

attach the following element in
∧2 Q+(y, z):

V [t] :=
n∑

i=1

r̃i (Fi[t] ∧ yi[t]) +
1

2

n∑
i,j=1

bij [t]r̃j (Fi[t] ∧ Fj [t]) . (5.5)

Note that V [1] = 0 due to the initial condition (5.1).

The next result is crucial in our proof of Theorem 4.4.

Lemma 5.4. The following equality holds:

V [t+ 1]− V [t] = r̃kt

(
ykt [t] ∧ Pdkt ,zkt [t]

(ykt [t])
)
. (5.6)

Proof. We prove it by the direct and straightforward calculation. To make the

calculation a little more transparent, we separate the quantity V [t] in (5.5) into two

parts,

V1[t] =
n∑

i=1

r̃i (Fi[t] ∧ yi[t]) , V2[t] =
1

2

n∑
i,j=1

bij [t]r̃j (Fi[t] ∧ Fj [t]) , (5.7)

and calculate the difference Vi[t + 1] − Vi[t] separately. After a careful calculation, we

obtain the following results.

V1[t+ 1]− V1[t] = r̃kt

((
n∏

i=1

Fi[t]
bikt [t]

)
∧ Pdkt ,zkt [t]

(ykt [t])

)

+ dkt r̃kt

(
ykt [t] ∧

(
n∏

i=1

y
[−cikt [t]]+
i

))
+ r̃kt

(
ykt [t] ∧ Pdkt ,zkt [t]

(ykt [t])
)
,

(5.8)

V2[t+ 1]− V2[t] = −r̃kt

((
n∏

i=1

Fi[t]
bikt [t]

)
∧ Pdkt ,zkt [t]

(ykt [t])

)

− dkt r̃kt

((
n∏

i=1

(Fi[t])
bikt [t]

)
∧

(
n∏

i=1

y
[−cikt [t]]+
i

))
.

(5.9)

To obtain them, we used (4.2), (4.4), (5.2), and also the skew-symmetric property

bij [t]r̃j = −bji[t]r̃i. (5.10)

Summing up (5.8) and (5.9) and using (5.3), we have



1289

Rogers dilogarithms of higher degree 1289

V [t+ 1]− V [t] = dkt r̃kt

((
n∏

i=1

y
cikt [t]
i

)
∧

(
n∏

i=1

y
[−cikt [t]]+
i

))
+ r̃kt

(
ykt [t] ∧ Pdkt ,zkt [t]

(ykt [t])
)
.

(5.11)

Then, the proof of the lemma completes by showing the first term in the right-hand side

of (5.11) vanishes. Indeed, using the equality a = [a]+ − [−a]+, we have(
n∏

i=1

y
cikt [t]
i

)
∧

(
n∏

i=1

y
[−cikt [t]]+
i

)
=

(
n∏

i=1

y
[cikt [t]]+
i

)
∧

(
n∏

i=1

y
[−cikt [t]]+
i

)
. (5.12)

Then, either the first or the second component in the right-hand side of (5.12) is 1 due to

the sign-coherence property of the c-vectors in Theorem 4.6. Thus, the right-hand side

of (5.12) vanishes as desired. □

Let us complete the proof of Theorem 4.4.

Proof of Theorem 4.4. Due to the assumption of the periodicity (4.10) and

the resulting periodicities of the skew-symmetrizer (4.11) and the F -polynomials (5.4),

we have the periodicity of V [t], i.e.,

V [m+ 1] = V [1] = 0. (5.13)

On the other hand, by Lemma 5.4, we have

V [m+ 1] = V [m+ 1]− V [1] =
m∑
t=1

r̃kt

(
ykt

[t] ∧ Pdkt ,zkt [t]
(ykt

[t])
)
. (5.14)

Combining (5.13) and (5.14), we obtain the constancy condition (4.12). □

6. Examples.

Here we provide three examples of periodicities in generalized cluster algebras which

are not regarded as the periodicities in ordinary cluster algebras. In all of them the

permutation σ in Definition 4.2 is the trivial one. So far, we do not know any example

of a periodicity with a nontrivial permutation σ which is not regarded as a periodicity

in an ordinary cluster algebra. (For ordinary cluster algebras there are plenty examples

of periodicities with nontrivial permutations. See e.g. [IIK+13, Theorem 7.1].)

6.1. Involution periodicity.

Let (B, x, y, z) be any seed with any rank n and any mutation degree d. Due to the

involution property of the mutation µk, the mutation sequence

(B, x, y, z) = (B[1], x[1], y[1], z[1])
µk→ (B[2], x[2], y[2], z[2])

µk→ (B[3], x[3], y[3], z[3]).

(6.1)

is periodic, i.e., σ-periodic with σ = id. The data for the associated dilogarithm identity

is given as follows:
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yk[1] = yk, yk[2] = y−1
k , (6.2)

ε1 = 1, ε2 = −1, (6.3)

zk[1] = zk, zk[2] = z∗k. (6.4)

Thus, the dilogarithm identity in the form (4.25) is

r̃kL̃dk,zk (yk) + r̃kL̃dk,z∗
k

(
y−1
k

)
= r̃kL̃dk,z∗

k
(∞), (6.5)

where for notational simplicity we omit the evaluation homomorphism φ : Q+(y, z)→ R+

by identifying yk and zk with their images in R+ by φ. The identity (6.5) coincides with

(3.4). Meanwhile, the dilogarithm identity in the form (4.28) becomes trivial.

r̃kL̃dk,zk (yk)− r̃kL̃dk,zk (yk) = 0. (6.6)

6.2. Six term relation for type B2/C2.

Let n = 2 and d = (2, 1). We consider an initial seed (B, x, y, z) with

B =

(
0−1
1 0

)
, z1 = (1, α, 1), z2 = (1, 1). (6.7)

We choose r1 = r2 = 1, so that r̃1 = r̃2 = 1. Then, the following sequence of alternative

mutations is known to be periodic [Nak15b, Section 2.3]:

(B, x, y, z) = (B[1], x[1], y[1], z[1])
µ1→ (B[2], x[2], y[2], z[2])

µ2→

· · · µ2→ (B[7], x[7], y[7], z[7]).
(6.8)

The data for the associated dilogarithm identity is given as follows:

y1[1] = y1, y2[2] = y2(1 + αy1 + y21), y1[3] = y−1
1 (1 + y2 + αy1y2 + y21y2),

y2[4] = y−2
1 y−1

2 (1 + 2y2 + y22 + αy1y2 + αy1y
2
2 + y21y

2
2),

y1[5] = y−1
1 y−1

2 (1 + y2), y2[6] = y−1
2 ,

(6.9)

ε1 = ε2 = 1, ε3 = · · · = ε6 = −1, (6.10)

z1[1] = z1[3] = z1[5] = z1, z2[2] = z2[4] = z2[6] = z2. (6.11)

Then, the dilogarithm identity in the form (4.28) is explicitly written as follows:

L̃2,z1 (y1) + L̃
(
y2(1 + αy1 + y21)

)
− L̃2,z1

(
y1(1 + y2 + αy1y2 + y21y2)

−1
)

− L̃
(
y21y2(1 + 2y2 + y22 + αy1y2 + αy1y

2
2 + y21y

2
2)

−1
)

− L̃2,z1

(
y1y2(1 + y2)

−1
)
− L̃ (y2) = 0,

(6.12)

where L̃(x) := L̃(x)1,z2 = L(x/(1 + x)) for the ordinary Rogers dilogarithm L(x).

6.3. Eight term relation for type G2.

Let n = 2 and d = (3, 1). We consider an initial seed (B, x, y, z) with
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B =

(
0−1
1 0

)
, z1 = (1, α, β, 1), z2 = (1, 1). (6.13)

We choose r1 = r2 = 1, so that r̃1 = r̃2 = 1. Then, the following sequence of alternative

mutations is known to be periodic [NR16, Example 3.7]:

(B, x, y, z) = (B[1], x[1], y[1], z[1])
µ1→ (B[2], x[2], y[2], z[2])

µ2→

· · · µ2→ (B[9], x[9], y[9], z[9]).
(6.14)

The data for the associated dilogarithm identity is given as follows:

y1[1] = y1, y2[2] = y2(1 + αy1 + βy21 + y31),

y1[3] = y−1
1 (1 + y2 + αy1y2 + βy21y2 + y31y2),

y2[4] = y−3
1 y−1

2 (1 + 3y2 + 3y22 + y32 + 2αy1y2 + 4αy1y
2
2 + 2αy1y

3
2

+ βy21y2 + α2y21y
2
2 + 3βy21y

2
2 + α2y21y

3
2 + 2βy21y

3
2

+ αβy31y
2
2 + 2αβy31y

3
2 + 3y31y

2
2 + 2y31y

3
2

+ αy41y
2
2 + 2αy41y

3
2 + β2y41y

3
2 + 2βy51y

3
2 + y61y

3
2),

y1[5] = y−2
1 y−1

2 (1 + 2y2 + y22 + αy1y2 + αy1y
2
2 + βy21y

2
2 + y31y

2
2),

y2[6] = y−3
1 y−2

2 (1 + 3y2 + 3y22 + y32 + αy1y2 + 2αy1y
2
2 + αy1y

3
2

+ βy21y
2
2 + βy21y

3
2 + y31y

3
2),

y1[7] = y−1
1 y−1

2 (1 + y2), y2[8] = y−1
2 ,

(6.15)

ε1 = ε2 = 1, ε3 = · · · = ε8 = −1, (6.16)

z1[1] = z1[5] = z1, z1[3] = z1[7] = z∗1 , z2[2] = z2[4] = z2[6] = z2[8] = z2. (6.17)

Then, the dilogarithm identity in the form (4.28) is explicitly written as follows:

L̃3,z1 (y1) + L̃
(
y2(1 + αy1 + βy21 + y31)

)
− L̃3,z1

(
y1(1 + y2 + αy1y2 + βy21y2 + y31y2)

−1
)

− L̃
(
y31y2(1 + 3y2 + 3y22 + y32 + 2αy1y2 + 4αy1y

2
2 + 2αy1y

3
2

+ βy21y2 + α2y21y
2
2 + 3βy21y

2
2 + α2y21y

3
2 + 2βy21y

3
2

+ αβy31y
2
2 + 2αβy31y

3
2 + 3y31y

2
2 + 2y31y

3
2

+ αy41y
2
2 + 2αy41y

3
2 + β2y41y

3
2 + 2βy51y

3
2 + y61y

3
2)

−1
)

− L̃3,z∗
1

(
y21y2(1 + 2y2 + y22 + αy1y2 + αy1y

2
2 + βy21y

2
2 + y31y

2
2)

−1
)

− L̃
(
y31y

2
2(1 + 3y2 + 3y22 + y32 + αy1y2 + 2αy1y

2
2 + αy1y

3
2

+ βy21y
2
2 + βy21y

3
2 + y31y

3
2)

−1
)

− L̃3,z1

(
y1y2(1 + y2)

−1
)
− L̃ (y2) = 0.

(6.18)
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A. Derivation of classical dilogarithm identity from quantum one.

This appendix serves as independent reading.

Here we complete the picture by showing how the classical dilogarithm identity of

higher degree in Theorem 4.8 is obtained from its quantum counterpart in [Nak15a,

Theorem 4.1]. This is a generalization of the argument in [KN11] for the ordinary

cluster algebras with skew-symmetric exchange matrices. (Thus, this presentation is new

even for the ordinary cluster algebras with skew-symmetrizable exchange matrices.)

We rely on the saddle point method, which is standard in quantum mechanics (e.g.,

[Tak08, p. 95]). However, as in [KN11], we stress that the derivation here is only

heuristic, and not functional-analytically rigorous; for example, the uniqueness of the

solution of the saddle point equations, the specification of the integration contour through

the saddle point, and the total validity of the method are not pursued. Nevertheless, we

believe that the derivation presented here is useful for the readers. (At least it is better

than nothing.)

Here we follow and generalize the calculations especially in Section 4 and Appendix

A of [KN11]. Since this is a rather complicated subject, we try to write it in a self-

contained way at a reasonable level, but not completely, and we ask the readers to refer

to [KN11] (and also [Nak15a]) for further details.

A.1. Quantum dilogarithms of higher degree.

For any positive integer d, the quantum dilogarithm of degree d with coefficients

z = (zs)
d
s=0, where z0 = zd = 1, is defined as [Nak15a]

Ψd,z,q(x) =

∞∏
k=0

Pd,z(q
2k+1x)−1, (A.1)

where Pd,z(x) is the polynomial in (3.1), whose coefficients zs’s are nonnegative real

numbers which satisfy the generic condition (3.2), and q ∈ C with |q| < 1. Then, the

power series (A.1) converges for any x ∈ C. Below let us concentrate on the region x ≥ 0.

The function Ψd,z,q(x) is related to the dilogarithm of higher degree Li2;d,z(x) in (3.3)

in the asymptotic limit as follows [Nak15a]:

Ψd,z,q(x) ∼ exp

(
−Li2;d,z(−x)

log q2

)
, q → 1−. (A.2)

A.2. Quantum Y -seed and mutations.

Let us recall the notions of a quantum Y -seed and its mutation in generalized cluster

algebras following [Nak15a] with slight modification.

Definition A.1. As in the classical case, first we fix the rank n and the mutation

degree d = (di)
n
i=1. Then, we consider a triplet (B, Y, z) such that

• B = (bij)
n
i,j=1 is a skew-symmetrizable integer matrix of size n,

• Y = (Yi)
n
i=1 is an n-tuple of noncommutative formal variables obeying the relation

YiYj = q
2bji
j YjYi, qi := qri , (A.3)
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where R = diag(r1, . . . , rn) is a skew-symmetrizer of B,

• z = (zi,s | i = 1, . . . , n; s = 0, . . . , di) is a collection of commutative formal variables

with zi,0 = zi,di = 1 for any i = 1, . . . , n; furthermore, zi,s’s commute with Yj ’s.

We call such (B, Y, z) a quantum Y -seed, and call Y = (Yi)
n
i=1 the quantum y-variables

of (B, Y, z).

It is convenient to extend the above quantum y-variables to a family of noncommu-

tative variables Y α (α ∈ Zn) with the relations

q⟨α,β⟩Y αY β = Y α+β , ⟨α, β⟩ =:
n∑

i,j=1

αiribijβj , (A.4)

where we identify Yi = Y ei for the ith unit vector ei of Zn.

Definition A.2. For any quantum Y -seed (B, Y, z) and any k = 1, . . . , n, we

define a new seed (B′, Y ′, z′) = µk(B, Y, z), called the mutation of (B, Y, z) at k, as

follows:

Y ′
i =


Y −1
k i = k

Y ei+dk[bki]+ek

|bki|∏
m=1

(
dk∑
s=0

zk,sq
−sgn(bki)(2m−1)s
k Y s

k

)−sgn(bki)

i ̸= k,
(A.5)

where sgn(a) = 1,−1, 0 if a > 0, a < 0, a = 0, respectively, while B′ and z′ are defined

by (4.2) and (4.5), respectively.

Indeed, it is easy to check that the following relation holds for the same skew-

symmetrizer R:

Y ′
i Y

′
j = q

2b′ji
j Y ′

jY
′
i . (A.6)

Again, the mutation µk is an involution, i.e., µk(µk(B, Y, z)) = (B, Y, z).

Remark A.3. In [Nak15b] and [Nak15a] a skew-symmetrizer R was introduced,

not for the exchange matrix B itself, but for the matrix DB. Using this opportunity,

let us modify the convention to the one in this paper, which is simpler. For example,

Equation (3.2) in [Nak15a] is replaced with (A.3); and Equation (3.22) in [Nak15b] is

replaced with

R−1(Gt)TRCt = I. (A.7)

A.3. Quantum dilogarithm identity of higher degree.

Let us choose any quantum Y -seed (B, Y, z) as the initial seed, and consider a se-

quence of mutations starting from it:
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(B, Y, z) = (B[1], Y [1], z[1])
µk1→ (B[2], Y [2], z[2])

µk2→

· · ·
µkm→ (B[m+ 1], Y [m+ 1], z[m+ 1]),

(A.8)

where we use a common skew-symmetrizer R = diag(r1, . . . , rn) of B[1], . . . , B[m + 1]

to define the commutation relation for Y [t] all t = 1, . . . ,m+ 1.

Definition A.4. We say that the sequence (A.8) is σ-periodic for a permutation

σ of {1, . . . , n} if

bσ(i)σ(j)[m+ 1] = bij , Yσ(i)[m+ 1] = Yi, (i, j = 1, . . . , n). (A.9)

Along with the sequence (A.8), let us also consider the sequence (4.9) of the muta-

tions of the classical seed, where the initial exchange matrix B is taken to be common in

the both sequences.

Conjecture A.5. The sequence (A.8) is σ-periodic if and only if the sequence

(4.9) is σ-periodic.

The conjecture is known to be true for the ordinary case d = (1, . . . , 1) with skew-

symmetric exchange matrices, i.e., r = (1, . . . , 1) ([KN11, Proposition 3.4] and [IIK+13,

Theorem 5.1]). However, we do not rely on this conjecture in the rest of the paper.

From now on we specialize the z-variables z of the initial seed (B, Y, z) in (A.8) to be

real positive numbers such that, for each i = 1, . . . , n, zi := (zi,s)
di
s=0 satisfies the generic

condition (3.2).

Theorem A.6 ([Nak15a, Theorem 4.1]). Suppose that the sequence (A.8) is σ-

periodic for some permutation σ. Then, the following equality holds:

Ψdk1
,zk1

[1],qk1
(Y ε1ck1

[1])ε1 · · ·Ψdkm ,zkm [m],qkm
(Y εmckm [m])εm = 1, (A.10)

where zkt [t] := (zkt,s)
dkt
s=0 as before, ckt [t] is the c-vector for the sequence (4.9) defined by

(4.21), and εt is the tropical sign of ckt [t] as in (4.24).

Remark A.7. The identity (A.10) is called the quantum dilogarithm identity in

tropical form in [Nak15a] and proved only for the reciprocal case z∗i = zi therein,

where the z-variables do not mutate. However, it is straightforwardly extended to the

nonreciprocal case as above.

We will “derive” the classical dilogarithm identity (4.8) from (A.10) in the limit

q → 1. Note that we cannot simply apply the formula (A.2) to (A.10), since the quantum

y-variables therein are not real numbers, but noncommutative variables. So, our strategy,

which is standard in quantum mechanics, is as follows:

• Step 1. Represent those quantum y-variables in (A.10) by operators acting on

functions.

• Step 2. Take the expectation value of the left-hand side of (A.10), and express it

as an integral.
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• Step 3. Evaluate the integral in the limit q → 1 by the saddle point method.

This process “magically” transforms the (Euler) dilogarithms of higher degree (3.3) into

the Rogers dilogarithms of higher degree (3.12). See (A.65)–(A.69) for a preview.

A.4. Step 1: Operator representation.

We express the deformation parameter q as

q = eλ
2ℏ

√
−1, (A.11)

where ℏ is a positive real number, and λ be a complex number sufficiently close to 1 such

that Imλ > 0. Later we will take ℏ→ 0 and λ→ 1. (See [KN11, Appendix A.1] for the

explanation of introducing the parameter λ.)

Consider the Hilbert space L2(Rn). Let u = (ui)
n
i=1 denote the coordinate of Rn.

Let ûi and p̂i be the standard position and momentum operators on L2(Rn) (densely)

defined by

(ûif)(u) = uif(u), (p̂if)(u) =
ℏ√
−1

∂f

∂ui
(u), f ∈ L2(R2). (A.12)

Thus, we have the commutation relations

[ûi, ûj ] = [p̂i, p̂j ] = 0, [p̂i, ûj ] =
ℏ√
−1

δij . (A.13)

Let B be the initial exchange matrix of the sequence (A.8). Define

ŵi =
n∑

j=1

bjiûj , D̂i = rip̂i + ŵi, Ŷi = exp(λD̂i). (A.14)

Then, we have

[D̂i, D̂j ] = 2ℏ
√
−1rjbji, ŶiŶj = q

2bji
j Ŷj Ŷi. (A.15)

Thus, we have a representation of the initial quantum y-variables satisfying (A.3). More

generally, for any α ∈ Zn, we define

Ŷ α = exp(λαD̂), αD̂ =
n∑

i=1

αiD̂i. (A.16)

Then,

q⟨α,β⟩Ŷ αŶ β = Ŷ α+β , ⟨α, β⟩ =
n∑

i,j=1

αiribijβj , (A.17)

Thus, they give a representation of Y α’s in (A.4).

Next we describe the mutations of the quantum y-variables. Along with the sequence

(A.8) with σ-periodicity, we introduce a sequence of linear transformations
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Rn ρ1→ Rn ρ2→ · · · ρm→ Rn σ→ Rn, (A.18)

where, for t = 1, . . . ,m,

ρt : Rn → Rn, (ui)
n
i=1 7→ (u′

i)
n
i=1,

u′
i =

−ukt + dkt

n∑
j=1

[−εtbjkt [t]]+uj i = kt

ui i ̸= kt,

(A.19)

and

σ : Rn → Rn, (ui)
n
i=1 7→ (u′

i)
n
i=1, u′

i = uσ(i). (A.20)

The sequence (A.18) induces the sequence of the maps

L2(Rn)
ρ∗
1← L2(Rn)

ρ∗
2← · · · ρ

∗
m← L2(Rn)

σ∗

← L2(Rn), (A.21)

where ρ∗t (f) = f ◦ ρt and σ∗(f) = f ◦ σ for f ∈ L2(Rn).

Lemma A.8. If the sequence (A.8) is σ-periodic, the following periodicity holds:

σ ◦ ρm ◦ · · · ◦ ρ1 = id, (A.22)

ρ∗1 ◦ · · · ◦ ρ∗m ◦ σ∗ = id. (A.23)

Proof. Suppose that the sequence (A.8) is σ-periodic. Then, taking q → 1 limit,

the corresponding (classical) y-variables in the sequence (4.9) are also σ-periodic. Then,

the associated c-vectors in (4.21) are also σ-periodic. Thus, the associated g-vectors

[Nak15b], which are not explained here, are also σ-periodic due to the duality of c- and

g-vectors [Nak15b, Proposition 3.21]. On the other hand, the linear transformations ρt
and σ exactly describe the mutations of g-vectors along the sequence (4.9). Therefore,

we have the equality (A.22). The equality (A.23) follows from (A.22). □

For any invertible linear map Υ : L2(Rn) → L2(Rn) and any linear operator Ô

acting on L2(Rn), let

Ad(Υ)(Ô) := Υ ◦ Ô ◦Υ−1. (A.24)

Lemma A.9. The following formulas hold : For t = 1, . . . ,m,

Ad(ρ∗t )(ûi) =

−ûkt + dkt

n∑
j=1

[−εtbjkt [t]]+ûj i = kt

ûi i ̸= kt,

(A.25)

Ad(ρ∗t )(p̂i) =

{
−p̂kt i = kt

p̂i + dkt [−εbikt [t]]+p̂kt i ̸= kt,
(A.26)

Ad(σ∗)(ûi) = ûσ(i), Ad(σ∗)(p̂i) = p̂σ(i). (A.27)
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Proof. The equalities (A.25) and (A.27) are immediate from the definitions of ρt
and σ. The equality (A.26) is obtained by applying the chain rule for the inverse of ρt

(ρt)
−1 : Rn → Rn, (u′

i)
n
i=1 7→ (ui)

n
i=1,

ui =

−u
′
kt

+ dkt

n∑
j=1

[−εtbjkt [t]]+u
′
j i = kt

u′
i i ̸= kt.

(A.28)

□

Remark A.10. In [KN11] the separate symbols u[t] (t = 1, . . . ,m + 2) are em-

ployed for the coordinate of each space Rn in the sequence (A.21) from left to right.

Here, we do not use them for simplicity.

Let us define the following operators for t = 1, . . . ,m. (For t = 1, it is already given

in (A.14) and (A.16).)

ŵi[t] =

n∑
j=1

bji[t]ûj , D̂i[t] = rip̂i + ŵi[t], Ŷi[t] = exp(λD̂i[t]), (A.29)

Ŷ α[t] = exp(λαD̂[t]), αD̂[t] =
n∑

i=1

αiD̂i[t]. (A.30)

Then, like the t = 1 case (A.15), we have the following commutation relations: For

t = 1, . . . ,m,

[D̂i[t], D̂j [t]] = 2ℏ
√
−1rjbji[t], Ŷi[t]Ŷj [t] = q

2bji[t]
j Ŷj [t]Ŷi[t], (A.31)

q⟨α,β⟩tY α[t]Y β [t] = Y α+β [t], ⟨α, β⟩t =:
n∑

i,j=1

αiribij [t]βj . (A.32)

Lemma A.11. The following formulas hold : For t = 1, . . . ,m,

Ad(ρ∗t )(ŵi[t+ 1]) =

{
−ŵkt [t] i = kt

ŵi[t] + dkt [εtbkti[t]]+ŵkt [t] i ̸= kt,
(A.33)

Ad(ρ∗t )(rip̂i) =

{
−rkt p̂kt i = kt

rip̂i + dkt [εtbkti[t]]+rkt p̂kt i ̸= kt.
(A.34)

Proof. They follow from Lemma A.9. □

Remark A.12. A subtle difference between the second formulas of (A.26) and

(A.34) is important, since bkti[t] ̸= −bikt
[t] in general.

The conclusion of this section is given as follows:

Proposition A.13. (1) Quantum tropical mutations: For t = 1, . . . ,m,
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Ad(ρ∗t )(Ŷi[t+ 1]) =

{
Ŷkt [t]

−1 i = kt

Ŷ ei+dkt [εtbkti[t]]+ekt [t] i ̸= kt.
(A.35)

(2) For t = 1, . . . ,m,

Ad(ρ∗1) · · ·Ad(ρ∗t )(Ŷi[t+ 1]) = Ŷ ci[t+1]. (A.36)

Proof. (1). This follows from Lemma A.11. (2). Note that the second formula

of (4.23) is also written as

cij [t+ 1] = cij [t] + dkt([cikt [t]]+bktj [t] + cikt [t][−bktj [t]]+) j ̸= kt. (A.37)

In particular, for the tropical sign εt, we have [−εtcikt [t]]+ = 0. Thus, it is also equiva-

lent to

cij [t+ 1] = cij [t] + dktcikt [t][εtbktj [t]]+ j ̸= kt. (A.38)

Comparing (A.35) and (A.38), we inductively obtain the formula (A.36) for t = 1, . . . ,m.

□

A.5. Step 2: Integral expression.

In the quantum dilogarithm identity (A.10) let us replace the initial quantum y-

variables Yi with their operator representations Ŷi. Then, multiplying the left-hand side

of the equality (A.23), we obtain the following equality:

Ψdk1
,zk1

[1],qk1
(Ŷ ε1ck1

[1])ε1 · · ·Ψdkm ,zkm [m],qkm
(Ŷ εmckm [m])εmρ∗1 · · · ρ∗mσ∗ = id, (A.39)

where the composition symbol ◦ is omitted for simplicity.

Using (A.36) repeatedly, it is transformed into the following equality, which is a

generalization of the quantum dilogarithm identity in local form in [KN11]:

Ψdk1
,zk1

[1],qk1
(Ŷk1 [1]

ε1)ε1ρ∗1Ψdk2
,zk2

[2],qk2
(Ŷk2 [2]

ε2)ε2ρ∗2

· · ·Ψdkm ,zkm [m],qkm
(Ŷkm [m]εm)εmρ∗mσ∗ = id.

(A.40)

Using the Dirac’s bra-ket notation, we introduce a family of common eigenvectors

|u⟩ and |p⟩ (u, p ∈ Rn) of the position operators ûi’s and momentum operators p̂i’s,

respectively, and their complex conjugate ⟨u| and ⟨p|. They satisfy

ûi|u⟩ = ui|u⟩, p̂i|p⟩ = pi|p⟩, (A.41)

⟨u|u′⟩ =
n∏

i=1

δ(ui − u′
i), ⟨p|p′⟩ = (2πℏ)n

n∏
i=1

δ(pi − p′i), (A.42)

⟨u|p⟩ = exp

(√
−1
ℏ

up

)
, ⟨p|u⟩ = exp

(
−
√
−1
ℏ

up

)
, up =

n∑
i=1

uipi. (A.43)

In particular, we have, for vectors ⟨u| and |p⟩,
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⟨u|D̂i[t]|p⟩
⟨u|p⟩

= ripi + wi[t], wi[t] =
n∑

j=1

bji[t]uj . (A.44)

We also have the completeness property,

1 =

∫
du|u⟩⟨u|, 1 =

∫
dp

(2πℏ)n
|p⟩⟨p|. (A.45)

Let

Ô = Ψdk1
,zk1

[1],qk1
(Ŷk1 [1])

ε1ρ∗1 · · ·Ψdkm ,zkm [m],qkm
(Ŷkm [m])εmρ∗mσ∗ (A.46)

be the left-hand side of (A.40), which is actually the identity operator due to (A.40).

Choose an arbitrary position eigenvector |u[1]⟩. Then, we introduce the momentum

eigenvector |p̃[1]⟩ whose eigenvalues are given by

p̃i[1] = wi[1] :=

n∑
i=1

bji[1]uj [1]. (A.47)

Let

F (u[1], p̃[1]) :=
⟨u[1]|Ô|p̃[1]⟩
⟨u[1]|p̃[1]⟩

, (A.48)

which is actually 1. Skipping some detail (see [KN11, Sections 5.2 and A.3]), we obtain

the following integral expression, using (A.44):

F (u[1], p̃[1]) = (2πℏ)−n(m−1)

∫
dp[1] · · · dp[m− 1]du[2] . . . du[m]

×Ψdk1
,zk1

[1],qk1
(yk1 [1]

ε1)ε1 exp

(√
−1
ℏ

u[1](p[1]− p̃[1])

)
· · ·

×Ψdkm ,zkm [m],qkm
(ykm [m]εm)εm exp

(√
−1
ℏ

u[m](p[m]− p̃[m])

)
,

(A.49)

where pi[m] is determined by

rσ−1(i)p̃σ−1(i)[1] =

{
−rkmpkm [m] i = km

ripi[m] + dkm [εmbkmi[m]]+rkmpkm [m] i ̸= km,
(A.50)

while p̃i[t] (t = 2, . . . ,m) and ykt [t] (t = 1, . . . ,m) are dependent variables of the inte-

gration variables such that, for t = 1, . . . ,m− 1,

rip̃i[t+ 1] =

{
−rktpkt [t] i = kt

ripi[t] + dkt [εtbkti[t]]+rktpkt [t] i ̸= kt,
(A.51)

and, for t = 1, . . . ,m,
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ykt [t] := exp (λ(rktpkt [t] + wkt [t])) , wkt [t] =
n∑

i=1

bjkt [t]uj [t]. (A.52)

Remark A.14. The symmetry of the skew-symmetrizer (4.11) is used to obtain

the relation (A.50). Without it, the left-hand side of (A.50) is rip̃σ−1(i), which we do not

want. (Compare with the forthcoming (A.64).)

A.6. Step 3: Saddle point method.

In our parametrization of q in (A.11), the asymptotic behavior of the quantum

dilogarithms of higher degree in (A.2) is expressed as

Ψd,z,qi(x) ∼ exp

(√
−1
ℏ

1

2λ2ri
Li2;d,z(−x)

)
, ℏ→ 0+. (A.53)

We are interested in the asymptotic behavior of (A.49) in the limit ℏ→ 0+. Thus,

we may replace the quantum dilogarithms therein by the right-hand side of (A.53), and

we have

F (u[1], p̃[1]) ∼ (2πℏ)−n(m−1)

∫
dp[1] · · · dp[m− 1]du[2] · · · du[m]

× exp

(√
−1
ℏ

m∑
t=1

{
εt

2λ2rkt

Li2;dkt ,zkt [t]
(−ykt [t]

εt) + u[t](p[t]− p̃[t])

})
.

(A.54)

Remark A.15. Due to our assumption of λ ≈ 1 with Imλ > 0, ykt [t] defined by

(A.52) is a complex number close to a positive real number. Accordingly, the functions

Li2;dkt ,zkt [t]
(x) in (A.54) are analytically continued in the vicinity of the negative real

line R−.

To evaluate the integral (A.54) in the limit ℏ → 0+, we apply the saddle point

method.

To do that, we need the following formulas.

Lemma A.16.

ri
∂

∂ui[t]

(
εt

2λ2rkt

Li2;dkt ,zkt [t]
(−ykt [t]

εt)

)
= − 1

λ
log
(
Pdkt ,zkt [t]

(ykt [t]
εt)
)−bkti[t]/2

,

(A.55)

∂

∂pi[t]

(
εt

2λ2rkt

Li2;dkt ,zkt [t]
(−ykt [t]

εt)

)
= δikt

1

λ
log
(
Pdkt ,zkt [t]

(ykt [t]
εt)
)−1/2

. (A.56)

Proof. These are obtained by (3.3), (A.52), and the skew-symmetric property of

RB[t]. □

The saddle point equation of the integral (A.54) is the extremum condition of its

integrand with respect to the integral variables p[t] (t = 1, . . . ,m − 1) and u[t] (t =

2, . . . ,m).
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(a). Extremum condition for ui(t) (t = 2, . . . ,m). By differentiating the integrand

of (A.54) by ui(t) using (A.55), and multiplying ri, we have

− 1

λ
log
(
Pdkt ,zkt [t]

(ykt [t]
εt)
)−bkti[t]/2

+ ripi[t]− rip̃i[t] = 0. (A.57)

Note that, in particular,

pkt [t] = p̃kt [t]. (A.58)

By (A.57) and (A.51), we also have, for t = 2, . . . ,m− 1,

eλrip̃i[t+1] =


(eλrkt p̃kt [t])−1 i = kt

eλrip̃i[t]
(
(eλrkt p̃kt [t])[εtbkti[t]]+

)dkt

×
(
Pdkt ,zkt [t]

(ykt [t]
εt)
)−bkti[t]/2

i ̸= kt.

(A.59)

(b). Extremum condition for pi(t) (t = 1, . . . ,m−1). By differentiating the integrand

of (A.54) by pi(t) using (A.56) and (A.51), we have, for i = kt,

1

λ
log
(
Pdkt ,zkt [t]

(ykt
[t]εt)

)−1/2

+ ukt
[t]

−
n∑

j=1

dkt [εtbkti[t]]+uj [t+ 1] + ukt [t+ 1] = 0,
(A.60)

and otherwise,

ui[t]− ui[t+ 1] = 0, i ̸= tk. (A.61)

By (A.60) and (4.2) ( noticing that [−bik]+bkj + bik[bkj ]+ = [bik]+bkj + bik[−bkj ]+ ), we

also have the following equations for wi[t] =
∑n

j=1 bji[t]uj [t] for t = 1, . . . ,m− 1:

eλwi[t+1] =


(eλwkt [t])−1 i = kt

eλwi[t]
(
(eλwkt [t])[εtbkti[t]]+

)dkt

×
(
Pdkt ,zkt [t]

(ykt [t]
εt)
)−bkti[t]/2

i ̸= kt.

(A.62)

A complex (but almost positive real) solution ui[t] (t = 2, . . . ,m), pi[t] (t =

1, . . . ,m− 1) of (A.57) and (A.60) is constructed as follows.

(1). (y-variables) We have ui[1] as initial data, from which wi[1] is uniquely determined.

We set yi[1] = exp(2λwi[1]). Then, yi[t] (t = 1, . . . ,m) are determined by the

mutation sequence (4.9).

(2). (u-variables) We determine ui[t] (t = 2, . . . ,m) by the extremum condition (A.60)

and (A.61).

(3). (p-variables) Set p̃i[t] (t = 2, . . . ,m) by exp(λrip̃i[t]) = yi[t]
1/2. Then, determine

pi[t] (t = 1, . . . ,m− 1) by (A.51), and pi[m] by (A.50).
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It is necessary to check that (A.52) and (A.57) are satisfied.

The condition (A.52): By (A.60) and (A.61), we have (A.62). Thus, we have

exp(λrip̃i[t]) = exp(λwi[t]) = yi[t]
1/2. Therefore, the condition (A.52) is satisfied.

The condition (A.57): Since exp(λrip̃i[t]) = yi[t]
1/2, the condition (A.59) is satisfied.

Then, combining it with (A.51), we obtain (A.57) for t = 1, . . . ,m− 1. To obtain (A.57)

for t = m requires a little extra consideration. Extend the above construction for yi[m+1]

and p̃i[m + 1]. Then, the condition (A.59) is satisfied for t = m. Moreover, thanks to

the σ-periodicity of y-variables, we have

rσ(i)p̃σ(i)[m+ 1] = rip̃i[1]. (A.63)

Thus, we have

eλrσ−1(i)p̃σ−1(i)[1] =


(eλrkm p̃km [m])−1 i = km

eλrip̃i[m]
(
(eλrkm p̃km [m])[εtbkmi[m]]+

)dkm

×
(
Pdkm ,zkm [m](ykm [m]εm)

)−bkmi[m]/2
i ̸= km.

(A.64)

Then, combining it with (A.50), we obtain (A.57) for t = m.

Thus, this is indeed a solution of the saddle point equation.

The saddle point method claims that, under “some” condition which we do not

pursue in this paper, the integral (A.54) in the limit ℏ → 0 is approximated at the

value of the integrand at an extremum point, up to some multiplicative factor which is

irrelevant here. (See [Tak08, p. 95] for the explicit expression for the one variable case.)

Therefore, taking the above solution, ignoring the multiplicative factor, then taking the

logarithm and removing the factor
√
−1/ℏ, we have

m∑
t=1

{
εt

2λ2rkt

Li2;dkt ,zkt [t]
(−ykt [t]

εt) + u[t](p[t]− p̃[t])

}
. (A.65)

Recall that, for our solution,

pi[t]− p̃i[t] =
1

λri
log
(
Pdkt ,zkt [t]

(ykt [t]
εt)
)−bkti[t]/2

, (A.66)

wi[t] =
1

2λ
log yi[t]. (A.67)

Thus, using the skew-symmetric property bkti[t]r
−1
i = −bikt [t]r

−1
kt

, we have

n∑
i=1

ui[t](pi[t]− p̃i[t]) =
1

λ

n∑
i=1

1

ri

(
−bkti[t]

2

)
ui[t] logPdkt ,zkt [t]

(ykt [t]
εt)

=
1

2λrkt

n∑
i=1

bikt [t]ui[t] logPdkt ,zkt [t]
(ykt [t]

εt)

=
1

2λrkt

wkt [t] logPdkt ,zkt [t]
(ykt [t]

εt)

=
εt

4λ2rkt

log yi[t]
εt · logPdkt ,zkt [t]

(ykt [t]
εt).

(A.68)
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Thus, the expression (A.65) is equal to

−1
2λ2

m∑
t=1

εt
rtk

{
−Li2;dkt ,zkt [t]

(−ykt
[t]εt)− 1

2
log yi[t]

εt · logPdkt ,zkt [t]
(ykt

[t]εt)

}
, (A.69)

which exactly yields the Rogers dilogarithms of higher degree (3.5). On the other hand,

this term is 0 from the beginning. Therefore, we have the classical dilogarithm identity

of higher degree (4.28) with complex (almost real) argument. Taking λ→ 1, we recover

the identity (4.28) with real argument.

References

[Blo78] S. Bloch, Applications of the dilogarithm function in algebraic K-theory and algebraic

geometry, Proceedings of the International Symposium on Algebraic Geometry, Kinokuniya

Book Store, Tokyo, 1978, 103–114.

[Cha05] F. Chapoton, Functional identities for the Rogers dilogarithm associated to cluster Y-

systems, Bull. London Math. Soc., 37 (2005), 755–760.

[CS14] L. Chekhov and M. Shapiro, Teichmüller spaces of Riemann surfaces with orbifold points

of arbitrary order and cluster variables, Int. Math. Res. Notices, 2014 (2014), 2746–2772.

[FC99] V. V. Fock and L. Chekhov, Quantum Teichmüller space, Theor. Math. Phys., 120 (1999),

1245–1259.

[FG09a] V. V. Fock and A. B. Goncharov, Cluster ensembles, quantization and the dilogarithm,
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