Common reducing subspaces of several weighted shifts with operator weights

By Caixing Gu

(Received Mar. 16, 2016)
(Revised Jan. 31, 2017)

Abstract

We characterize common reducing subspaces of several weighted shifts with operator weights. As applications, we study the common reducing subspaces of the multiplication operators by powers of coordinate functions on Hilbert spaces of holomorphic functions in several variables. The identification of reducing subspaces also leads to structure theorems for the commutants of von Neumann algebras generated by these multiplication operators. This general approach applies to weighted Hardy spaces, weighted Bergman spaces, Drury-Arveson spaces and Dirichlet spaces of the unit ball or polydisk uniformly.

1. Introduction.

Let H be a complex Hilbert space and let $B(H)$ be the algebra of all bounded linear operators on H. Let $\Omega \subset B(H)$ be a set of operators. A closed subspace X is an invariant subspace of Ω, if for every $T \in \Omega, T$ maps X into X. The space X is a reducing subspace of Ω, if X is invariant under both T and T^{*} for every $T \in \Omega$. The space X is a minimal invariant (or reducing) subspace of Ω if the only invariant (or reducing) subspaces contained in X are X and $\{0\}$. The set Ω is irreducible if the only reducing subspaces of Ω are $\{0\}$ and the whole space H.

The Beurling invariant subspace theorem [3] for the unweighted unilateral shifts of multiplicity one, and its extension to higher multiplicity [9] (called the Beurling-Lax-Halmos invariant subspace theorem), are two of the fundamental results in modern operator theory. Despite the substantial advances [2] and [7], the structure of invariant subspaces of the Bergman shift is still an active research area. In fact this problem is as difficult as the invariant subspace problem (of whether every bounded linear operator on a separable Hilbert space of dimension greater than one has a nontrivial invariant subspace); see for example [8]. There also have been extensions of the Beurling invariant subspace theorem on the Hardy space of the polydisk [10], [11] and [22].

On the other hand, there is a nice description of reducing subspaces of powers of weighted shifts with scalar weights [21]. This paper and its predecessor [23], where reducing subspaces of some analytic Toeplitz operators on the Bergman space of the unit disk were studied, have also been inspirational in the last fifteen years for establishing

[^0]structure of reducing subspaces of Toeplitz operators with Blaschke product symbols on the Bergman space of the unit disk; see a recent monograph [6] and extensive references therein. The structure of the reducing subspace lattice for unweighted unilateral shifts was described in $[\mathbf{9}]$ and $[\mathbf{1 6}]$. The reducing subspaces of some analytic Toeplitz operators on the Hardy space of the unit disk were studied as early as in $[\mathbf{1 6}]$ and $[\mathbf{1}]$.

Recently, the reducing subspaces of some analytic Toeplitz operators on the Bergman space of the bidisk and polydisk were characterized in [15], [18], [14], and [19]. In [5], the author recovered the results from [21] and some results from [15] by studying the reducing subspaces of weighted shifts with operator weights.

In this paper, we characterize the common reducing subspaces of several commuting weighted shifts with operator weights as wandering invariant subspaces of the shifts with additional structures. As applications, we study the common reducing subspaces of multiplication operators by powers of coordinate functions on Hilbert spaces of holomorphic functions in several variables.

The identification of reducing subspaces also leads to structure theorems for the commutants of von Neumann algebras generated by these multiplication operators. This general approach applies to weighted Hardy spaces, weighted Bergman spaces, DruryArveson spaces, and Dirichlet spaces of the unit ball or polydisk uniformly. Below we give three sample results that are contained in Theorem 8.1, Theorem 5.4, and Theorem 9.5 respectively.

Let \mathbb{C} denote the set of complex numbers. Let \mathbb{B}^{d} be the unit ball of \mathbb{C}^{d},

$$
\mathbb{B}^{d}=\left\{z=\left(z_{1}, \ldots, z_{d}\right) \in \mathbb{C}^{d}:\left|z_{1}\right|^{2}+\cdots+\left|z_{d}\right|^{2}<1\right\}
$$

and let \mathbb{S}^{d} be the unit sphere,

$$
\mathbb{S}^{d}=\left\{z=\left(z_{1}, \ldots, z_{d}\right) \in \mathbb{C}^{d}:\left|z_{1}\right|^{2}+\cdots+\left|z_{d}\right|^{2}=1\right\}
$$

The Hardy space $H^{2}\left(\mathbb{B}^{d}\right)$ is the Hilbert space of holomorphic functions in \mathbb{B}^{d} such that

$$
\|f(z)\|^{2}=\sup _{0<r<1} \int_{\mathbb{S}^{d}}|f(r \zeta)|^{2} d \sigma(\zeta), \quad f \in H^{2}\left(\mathbb{B}^{d}\right)
$$

where $d \sigma(\zeta)$ is the normalized area measure on \mathbb{S}^{d}. For a multi-index $N=\left(N_{1}, \ldots, N_{d}\right)$, $z^{N}=z_{1}^{N_{1}} \cdots z_{d}^{N_{d}}$. Let $T_{z^{N}}$ be the multiplication operator by z^{N}, that is

$$
T_{z^{N}} f(z)=z^{N} f(z), \quad f \in H^{2}\left(\mathbb{B}^{d}\right)
$$

In this paper, for an index set $I, v_{i} \in H$, $\operatorname{Span}\left\{v_{i}: i \in I\right\}$ always means the closed linear span of $\left\{v_{i}: i \in I\right\}$ in H.

Theorem A. Let $N=(M, M)$. Let $J_{N}=\left\{\left(\beta_{1}, \beta_{2}\right): 0 \leq \beta_{1}<M\right.$ or $0 \leq$ $\left.\beta_{2}<M\right\}$. Then any minimal reducing subspace X of $T_{z^{N}}$ on $H^{2}\left(\mathbb{B}^{2}\right)$ is of the form Span $\left\{f\left(z_{1}, z_{2}\right)\left(z_{1} z_{2}\right)^{k M}: k \geq 0\right\}$, where either there exists $\gamma=\left(\gamma_{1}, \gamma_{2}\right) \in J_{N}$ such that

$$
f(z)=a z_{1}^{\gamma_{1}} z_{2}^{\gamma_{2}}+b z_{1}^{\gamma_{2}} z_{2}^{\gamma_{1}}, \quad a, b \in \mathbb{C},
$$

or there exists $0 \leq l<M$ such that

$$
f\left(z_{1}, z_{2}\right)=a z_{1}^{l} z_{2}^{l}+b z_{1}^{l+1} z_{2}^{l}+c z_{1}^{l} z_{2}^{l+1}, \quad a, b, c \in \mathbb{C} .
$$

Furthermore, any reducing subspace of $T_{z^{N}}$ on $H^{2}\left(\mathbb{B}^{2}\right)$ is an orthogonal sum of minimal reducing subspaces.

The Bergman space $L_{a}^{2}\left(\mathbb{B}^{d}\right)$ is the Hilbert space of holomorphic functions in \mathbb{B}^{d} such that

$$
\|f(z)\|^{2}=\int_{\mathbb{B}^{d}}|f(\zeta)|^{2} d v(\zeta), \quad f \in L_{a}^{2}\left(\mathbb{B}^{d}\right)
$$

where $d v(\zeta)$ is the normalized volume measure on \mathbb{B}^{d}. Let \mathbb{D} be the open unit disk, and let \mathbb{D}^{d} be the polydisk. The Bergman space $L_{a}^{2}\left(\mathbb{D}^{d}\right)$ is the Hilbert space of holomorphic functions in \mathbb{D}^{d} such that

$$
\|f(z)\|^{2}=\int_{\mathbb{D}^{d}}|f(\zeta)|^{2} d A\left(\zeta_{1}\right) \cdots d A\left(\zeta_{d}\right), \quad f \in L_{a}^{2}\left(\mathbb{D}^{d}\right)
$$

where $d A\left(\zeta_{1}\right) \cdots d A\left(\zeta_{d}\right)$ is the normalized product measure on \mathbb{D}^{d}, with $d A\left(\zeta_{1}\right)$ being the normalized area measure of the unit disk \mathbb{D}. The following result can also be derived from the discussion of type I weight sequences in $[\mathbf{1 4}]$. The special case $L_{a}^{2}\left(\mathbb{D}^{2}\right)$ with $N_{1}=N_{2}$ is contained in Theorem 2.4 [15].

Theorem B. Let $N=\left(N_{1}, \ldots, N_{d}\right)$ be a multi-index such that $N \geq(1, \ldots, 1)$. By an abuse of notation, set $N-1=\left(N_{1}-1, \ldots, N_{d}-1\right)$. Let

$$
\widehat{N}=\{\beta: 0 \leq \beta \leq N-1\}, \text { and } L=\prod_{i=1}^{d} N_{i},
$$

where L is the cardinality of the index set \widehat{N}. Then
(i) For each $\beta=\left(\beta_{1}, \ldots, \beta_{d}\right) \in \widehat{N}, \operatorname{Span}\left\{z_{1}^{\beta_{1}+k_{1} N_{1}} \cdots z_{d}^{\beta_{d}+k_{d} N_{d}}: k=\left(k_{1}, \ldots, k_{d}\right) \geq 0\right\}$ is a common minimal reducing subspace of the tuple $\left(T_{z_{1}^{N_{1}}}, \ldots, T_{z_{d}^{N_{d}}}\right)$ on $L_{a}^{2}\left(\mathbb{B}^{\bar{d}}\right)$ or $L_{a}^{2}\left(\mathbb{D}^{d}\right)$.
(ii) Those L minimal common reducing subspaces are the only minimal common reducing subspaces of the tuple $\left(T_{z_{1}^{N_{1}}}, \ldots, T_{z_{d}^{N_{d}}}\right)$ on $L_{a}^{2}\left(\mathbb{B}^{d}\right)$ or $L_{a}^{2}\left(\mathbb{D}^{d}\right)$.
(iii) There are exactly $2^{L}-1$ common reducing subspaces of the tuple $\left(T_{z_{1}^{N_{1}}}, \ldots, T_{z_{d}^{N_{d}}}\right)$ on $L_{a}^{2}\left(\mathbb{B}^{d}\right)$ or $L_{a}^{2}\left(\mathbb{D}^{d}\right)$.

The Dirichlet space $\mathcal{D}\left(\mathbb{D}^{d}\right)$ on the polydisk \mathbb{D}^{d} is not as widely studied. Here we define $\mathcal{D}\left(\mathbb{D}^{2}\right)$ and refer to $[\mathbf{1 3}]$ for the general case. The Dirichlet space $\mathcal{D}\left(\mathbb{D}^{2}\right)$ is the Hilbert space of holomorphic functions on the bidisk \mathbb{D}^{2} such that

$$
\left\|f\left(z_{1}, z_{2}\right)\right\|_{\mathcal{D}}^{2}=\int_{\mathbb{T}^{2}}\left|f\left(\zeta_{1}, \zeta_{2}\right)\right|^{2} d m\left(\zeta_{1}\right) d m\left(\zeta_{2}\right)+\int_{\mathbb{D} \times \mathbb{T}}\left|\frac{\partial f\left(\zeta_{1}, \zeta_{2}\right)}{\partial \zeta_{1}}\right|^{2} d A\left(\zeta_{1}\right) d m\left(\zeta_{2}\right)
$$

$$
+\int_{\mathbb{T} \times \mathbb{D}}\left|\frac{\partial f\left(\zeta_{1}, \zeta_{2}\right)}{\partial \zeta_{2}}\right|^{2} d m\left(\zeta_{1}\right) d A\left(\zeta_{2}\right)+\int_{\mathbb{D}^{2}}\left|\frac{\partial^{2} f\left(\zeta_{1}, \zeta_{2}\right)}{\partial \zeta_{2} \partial \zeta_{1}}\right|^{2} d A\left(\zeta_{1}\right) d A\left(\zeta_{2}\right)
$$

where $d m\left(\zeta_{1}\right)$ is the normalized Lebesgue measure of the unit circle \mathbb{T}. The first integral is $\left\|f\left(z_{1}, z_{2}\right)\right\|_{H^{2}\left(\mathbb{D}^{2}\right)}^{2}$, which is the norm of $f\left(z_{1}, z_{2}\right)$ in the Hardy space $H^{2}\left(\mathbb{D}^{2}\right)$ of the bidisk. Our definition of the norm in $\mathcal{D}\left(\mathbb{D}^{2}\right)$ is equivalent to the norm defined in [13], where the Möbius invariance of the fourth integral was studied. Our choice of the norm leads to a reproducing kernel of product form for $\mathcal{D}\left(\mathbb{D}^{d}\right)$ as in (15) below.

Let $N=\left(N_{1}, N_{2}\right)$ and let $W^{*}\left(z_{1}^{N_{1}} z_{2}^{N_{2}}\right)$ be the von Neumann algebra generated by the analytic Toeplitz operator $T_{z_{1}^{N_{1}} z_{2}^{N_{2}}}$ on $\mathcal{D}\left(\mathbb{D}^{2}\right)$, and let $v\left(z_{1}^{N_{1}} z_{2}^{N_{2}}\right)$ be the commutant of $W^{*}\left(z_{1}^{N_{1}} z_{2}^{N_{2}}\right)$. We have the following structure theorem of $v\left(z_{1}^{N_{1}} z_{2}^{N_{2}}\right)$. Let $M_{n}(\mathbb{C})$ denote the algebra of $n \times n$ matrices.

Theorem C. The following two statements hold.
(i) If $N_{1} \neq N_{2}$, then $v\left(z_{1}^{N_{1}} z_{2}^{N_{2}}\right)$ on $\mathcal{D}\left(\mathbb{D}^{2}\right)$ is $*$-isomorphic to

$$
\left[\bigoplus_{i=1}^{\infty} \mathbb{C}\right] \bigoplus\left[\bigoplus_{i=1}^{\infty} M_{2}(\mathbb{C})\right]
$$

(ii) If $N_{1}=N_{2}$, then $v\left(z_{1}^{N_{1}} z_{2}^{N_{2}}\right)$ on $\mathcal{D}\left(\mathbb{D}^{2}\right)$ is $*$-isomorphic to

$$
\left[\bigoplus_{i=1}^{N_{1}} \mathbb{C}\right] \bigoplus\left[\bigoplus_{i=1}^{\infty} M_{2}(\mathbb{C})\right]
$$

2. Reducing subspaces of weighted shifts with operator weights.

We first introduce a tuple of d-variable unilateral weighted shifts with operator weights. Here we extend the results for the case $d=1$ by the author [5] to the case $d>1$. The classical reference for weighted shifts with scalar weights is [12]. Let Z_{+}be set of nonnegative integers and

$$
Z_{+}^{d}=\left\{\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right): \alpha_{i} \in Z_{+}, 1 \leq i \leq d\right\}
$$

We write $\alpha \geq 0$ if $\alpha \in Z_{+}^{d}$. More generally, for $\beta=\left(\beta_{1}, \ldots, \beta_{d}\right), \alpha \geq \beta$ means $\alpha_{i} \geq \beta_{i}$ for all $1 \leq i \leq d$. We write $\alpha>\beta$ if $\alpha \geq \beta$ and $\alpha \neq \beta$.

Let $\varepsilon_{i}=(0, \ldots, 1, \ldots, 0)$ be the multi-index having 1 at i-th component and 0 elsewhere, and let 0 be the multi-index $(0,0, \ldots, 0)$. Let $l^{2}\left(Z_{+}^{d}\right)$ be the complex Hilbert space with the standard basis $\left\{e_{\alpha}: \alpha \in Z_{+}^{d}\right\}$. Let E be a complex Hilbert space. Let $l_{d}^{2}(E)$ denote the tensor product Hilbert space $l^{2}\left(Z_{+}^{d}\right) \otimes E$. That is, $l_{d}^{2}(E)$ is the E-valued $l^{2}\left(Z_{+}^{d}\right)$ space such that

$$
l_{d}^{2}(E)=\left\{y=\sum_{\alpha \geq 0} y_{\alpha} e_{\alpha}: y_{\alpha} \in E \text { and }\|y\|^{2}=\sum_{\alpha \geq 0}\left\|y_{\alpha}\right\|^{2}<\infty\right\}
$$

We identify E as a subspace of $l_{d}^{2}(E)$ by mapping y to $y e_{0}$ for $y \in E$. By an abuse of
notation, we just write y instead of $y e_{0}$ for $y \in E$.
Let $\Phi=\left\{\Phi_{\alpha, i}: \alpha \in Z_{+}^{d}, i=1, \ldots, d\right\}$ be a bounded set of invertible operators in $B(E)$ such that

$$
\begin{equation*}
\Phi_{\alpha+\varepsilon_{i}, j} \Phi_{\alpha, i}=\Phi_{\alpha+\varepsilon_{j}, i} \Phi_{\alpha, j}, \quad \alpha \in Z_{+}^{d}, i \neq j, 1 \leq i, j \leq d \tag{1}
\end{equation*}
$$

Note that we do not assume $\Phi_{\alpha, i} \Phi_{\beta, i}=\Phi_{\beta, i} \Phi_{\alpha, i}$ for $\alpha, \beta \in Z_{+}^{d}$.
Definition 2.1. A tuple of d-variable unilateral weighted shifts is a family of d bounded operators on $l_{d}^{2}(E)$ with $S_{\Phi}=\left(S_{1}, \ldots, S_{d}\right)$ defined by

$$
\begin{equation*}
S_{i}\left[y e_{\alpha}\right]=\left[\Phi_{\alpha, i} y\right] e_{\alpha+\varepsilon_{i}}, \quad \alpha \in Z_{+}^{d}, i=1, \ldots, d, y \in E . \tag{2}
\end{equation*}
$$

Condition (1) on $\Phi_{\alpha, i}$ implies that S_{Φ} is a tuple of commuting operators, since for $i \neq j, y \in E$,

$$
\begin{aligned}
& S_{j} S_{i}\left[y e_{\alpha}\right]=S_{j}\left[\Phi_{\alpha, i} y\right] e_{\alpha+\varepsilon_{i}}=\left[\Phi_{\alpha+\varepsilon_{i}, j} \Phi_{\alpha, i} y\right] e_{\alpha+\varepsilon_{i}+\varepsilon_{j}}, \text { and } \\
& S_{i} S_{j}\left[y e_{\alpha}\right]=S_{i}\left[\Phi_{\alpha, j} y\right] e_{\alpha+\varepsilon_{j}}=\left[\Phi_{\alpha+\varepsilon_{j}, i} \Phi_{\alpha, j} y\right] e_{\alpha+\varepsilon_{j}+\varepsilon_{i}} .
\end{aligned}
$$

As in the scalar case, the norm of S_{i} can be determined by

$$
\begin{align*}
\left\|S_{i} \sum_{\alpha \geq 0} y_{\alpha} e_{\alpha}\right\|^{2} & =\left\|\sum_{\alpha \geq 0}\left[\Phi_{\alpha, i} y_{\alpha}\right] e_{\alpha+\varepsilon_{i}}\right\|^{2} \\
& =\sum_{\alpha \geq 0}\left\|\Phi_{\alpha, i} y_{\alpha}\right\|^{2} \leq \sup _{\alpha \geq 0}\left\|\Phi_{\alpha, i}\right\|^{2} \sum_{\alpha \geq 0}\left\|y_{\alpha}\right\|^{2} . \tag{3}
\end{align*}
$$

Then S_{i} is a bounded operator if and only if $\sup _{\alpha \geq 0}\left\|\Phi_{\alpha, i}\right\|<\infty$ and $\left\|S_{i}\right\|=$ $\sup _{\alpha \geq 0}\left\|\Phi_{\alpha, i}\right\|$. Hence, if Φ is a bounded set in $B(E)$, then S_{Φ} is a tuple of bounded operators on $l_{d}^{2}(E)$. Note also

$$
\begin{aligned}
S_{i}^{*}\left[y e_{\alpha}\right] & =\left[\Phi_{\alpha-\varepsilon_{i}, i}^{*} y\right] e_{\alpha-\varepsilon_{i}} \quad \text { if } \alpha_{i} \geq 1, i=1, \ldots, d, \text { and } \\
S_{i}^{*}\left[y e_{\alpha}\right] & =0 \quad \text { if } \alpha_{i}=0, i=1, \ldots, d, y \in E .
\end{aligned}
$$

Therefore $\bigcap_{i=1}^{d} \operatorname{ker}\left(S_{i}^{*}\right)=E$.
In this section we study the reducing subspace of S_{Φ}, which is a common reducing subspace of S_{i} for all $1 \leq i \leq d$. We will often write S instead of S_{Φ}. Let

$$
\begin{equation*}
A_{i}=\prod_{0 \leq k \leq \alpha_{i}-1} \Phi_{\alpha_{1} \varepsilon_{1}+\cdots+\alpha_{i-1} \varepsilon_{i-1}+k \varepsilon_{i}, i}, \quad W_{\alpha}=A_{d} A_{d-1} \cdots A_{1} \tag{4}
\end{equation*}
$$

where some factors in the product could be missing and $W_{0}=I$.
Then $\Phi_{\alpha, i}=W_{\alpha+\epsilon_{i}} W_{\alpha}^{-1}$ and $S^{\alpha}\left[y e_{0}\right]=\left[W_{\alpha} y\right] e_{\alpha}$ for $y \in E$, where $S^{\alpha}=S_{1}^{\alpha_{1}} \cdots S_{d}^{\alpha_{d}}$.
Lemma 2.2. For a closed subspace E_{0} of E, let $V\left(E_{0}\right)$ be defined by

$$
\begin{equation*}
V\left(E_{0}\right)=\operatorname{Span}\left\{S_{\Phi}^{\alpha} x: \alpha \geq 0, x \in E_{0}\right\} \tag{5}
\end{equation*}
$$

Then $V\left(E_{0}\right)$ is a reducing subspace of S_{Φ} if and only if E_{0} is an invariant subspace of the sequence of operators $\Omega=\left\{W_{\alpha-\epsilon_{i}}^{-1} \Phi_{\alpha-\epsilon_{i}, i}^{*} \Phi_{\alpha-\varepsilon_{i}, i} W_{\alpha-\epsilon_{i}}: \alpha \geq \varepsilon_{i}, 1 \leq i \leq d\right\}$. Equivalently, E_{0} is an invariant subspace of $\Omega_{1}=\left\{W_{\alpha}^{*} W_{\alpha}: \alpha \geq 0\right\}$.

Proof. By the definition, $V\left(E_{0}\right)$ is invariant for S. The space $V\left(E_{0}\right)$ is also invariant for $S^{*}=\left(S_{1}^{*}, \ldots, S_{d}^{*}\right)$, if and only if $S_{i}^{*} S^{\alpha} x \in V\left(E_{0}\right)$ for any $x \in E_{0}, \alpha \geq 0$, and $1 \leq i \leq d$. For $\alpha=0, S_{i}^{*} x=0$. If $\alpha \geq \varepsilon_{i}$, then

$$
S_{i}^{*} S^{\alpha} x e_{0}=S_{i}^{*}\left[W_{\alpha} x e_{\alpha}\right]=\left[\Phi_{\alpha-\epsilon_{i}, i}^{*} W_{\alpha} x\right] e_{\alpha-\epsilon_{i}} .
$$

By (5), $S_{i}^{*} S^{\alpha} x \in V\left(E_{0}\right)$ if and only if there exists $y \in E_{0}$ such that

$$
\begin{equation*}
S_{i}^{*} S^{\alpha} x e_{0}=\left[\Phi_{\alpha-\epsilon_{i}, i}^{*} W_{\alpha} x\right] e_{\alpha-\epsilon_{i}}=S^{\alpha-\epsilon_{i}} y=\left[W_{\alpha-\epsilon_{i}} y\right] e_{\alpha-\epsilon_{i}} . \tag{6}
\end{equation*}
$$

Since $W_{\alpha}=\Phi_{\alpha-\epsilon_{i}, i} W_{\alpha-\epsilon_{i}}$,

$$
W_{\alpha-\epsilon_{i}}^{-1} \Phi_{\alpha-\epsilon_{i}, i}^{*} \Phi_{\alpha-\epsilon_{i}, i} W_{\alpha-\epsilon_{i}} x=W_{\alpha-\epsilon_{i}}^{-1} \Phi_{\alpha-\epsilon_{i}, i}^{*} W_{\alpha} x=y \in E_{0} .
$$

Therefore E_{0} is invariant for Ω.
Note that for $x \in E_{0}$, since

$$
S_{\Phi}^{* \alpha} S_{\Phi}^{\alpha} x e_{0}=W_{\alpha}^{*} W_{\alpha} x e_{0},
$$

$S_{\Phi}^{* \alpha} S_{\Phi}^{\alpha} x e_{0} \in V\left(E_{0}\right)$ implies that E_{0} is invariant for $W_{\alpha}^{*} W_{\alpha}$. Thus E_{0} is invariant for Ω_{1}.
Assume E_{0} is invariant for Ω_{1}, we now prove E_{0} is invariant for Ω. By assumption $W_{\alpha}^{*} W_{\alpha}$ is invertible and positive, so E_{0} being invariant for $W_{\alpha}^{*} W_{\alpha}$ implies that

$$
W_{\alpha}^{*} W_{\alpha} E_{0}=E_{0} \text { and }\left[W_{\alpha}^{*} W_{\alpha}\right]^{-1} E_{0}=E_{0}
$$

Using $\Phi_{\alpha-\varepsilon_{i}, i}=W_{\alpha} W_{\alpha-\varepsilon_{i}}^{-1}$, we have

$$
\begin{aligned}
W_{\alpha-\epsilon_{i}}^{-1} \Phi_{\alpha-\epsilon_{i}, i}^{*} \Phi_{\alpha-\varepsilon_{i}, i} W_{\alpha-\epsilon_{i}} & =W_{\alpha-\epsilon_{i}}^{-1} W_{\alpha-\varepsilon_{i}}^{*-1} W_{\alpha}^{*} W_{\alpha} W_{\alpha-\varepsilon_{i}}^{-1} W_{\alpha-\epsilon_{i}} \\
& =\left[W_{\alpha-\varepsilon_{i}}^{*} W_{\alpha-\epsilon_{i}}\right]^{-1} W_{\alpha}^{*} W_{\alpha} .
\end{aligned}
$$

Therefore E_{0} is invariant for Ω. The proof is complete.
Remark 2.3. The space E_{0} is also invariant for other operators involving $\Phi_{\alpha, i}$ and W_{α} by considering the invariance of X for $S^{* \alpha} S^{\beta}$ for any $\alpha, \beta \geq 0$. The operator $W_{\alpha-\epsilon_{i}}^{-1} \Phi_{\alpha-\epsilon_{i}, i}^{*} \Phi_{\alpha-\varepsilon_{i}, i} W_{\alpha-\epsilon_{i}}=\Phi_{\alpha-\epsilon_{i}, i}^{*} \Phi_{\alpha-\varepsilon_{i}, i}$ under the commuting condition $\left[\Phi_{\alpha-\epsilon_{i}, i}^{*} \Phi_{\alpha-\varepsilon_{i}, i}\right] W_{\alpha-\epsilon_{i}}=W_{\alpha-\epsilon_{i}}\left[\Phi_{\alpha-\epsilon_{i}, i}^{*} \Phi_{\alpha-\varepsilon_{i}, i}\right]$. So $\Omega=\left\{\Phi_{\alpha-\epsilon_{i}, i}^{*} \Phi_{\alpha-\varepsilon_{i}, i}: \alpha \geq \varepsilon_{i}, 1 \leq\right.$ $i \leq d\}$.

Theorem 2.4. \quad A closed subspace X is a (common) reducing subspace of S_{Φ} if and only if

$$
\begin{equation*}
X=\operatorname{Span}\left\{S_{\Phi}^{\alpha} x: \alpha \geq 0, x \in E_{0}\right\} \tag{7}
\end{equation*}
$$

where

$$
E_{0}=\bigcap_{i=1}^{d} X \ominus S_{i} X=\bigcap_{i=1}^{d} \operatorname{ker}\left(S_{i}^{*} \mid X\right) \subseteq E
$$

and $E_{0} \subseteq E$ is an invariant subspace of the sequence of operators $\Omega_{1}=\left\{W_{\alpha}^{*} W_{\alpha}: \alpha \geq 0\right\}$. Furthermore, X is a minimal reducing subspace of S_{Φ} if and only if E_{0} is a minimal invariant subspace of Ω_{1}.

Proof. By Lemma 2.2, we only need to prove that if X is a reducing subspace of S, then X is given by (7) for some $E_{0} \subseteq E$. Set $E_{0}=\bigcap_{i=1}^{d} X \ominus S_{i} X$. We first prove that $E_{0} \subset E$. Let $f \in X \ominus S_{i} X$, then

$$
\left\langle S_{i}^{*} f, g\right\rangle=\left\langle f, S_{i} g\right\rangle=0 \quad \text { for all } g \in X, 1 \leq i \leq d
$$

Since X is also invariant for $S_{i}^{*}, S_{i}^{*} f \in X$. Hence $S_{i}^{*} f=0$ and $f \in \bigcap_{i=1}^{d} \operatorname{ker}\left(S_{i}^{*}\right)=E$. This proves that $E_{0} \subseteq E$. We claim

$$
X=V\left(E_{0}\right):=\operatorname{Span}\left\{S_{\Phi}^{\alpha} x: \alpha \geq 0, x \in E_{0}=\bigcap_{i=1}^{d} X \ominus S_{i} X\right\}
$$

Since $E_{0} \subseteq X, X \supseteq V\left(E_{0}\right)$. Let $y \in X \ominus V\left(E_{0}\right)$. We need to show that $y=0$. Write

$$
y=\sum_{\alpha \geq 0} y_{\alpha} e_{\alpha}, \quad y_{\alpha} \in E .
$$

Since X is invariant for $S^{* \beta}$ for any $\beta \geq 0, S^{* \beta} y \in X$. For all $x \in E_{0}=\bigcap_{i=1}^{d} X \ominus S_{i} X$ and $\beta \geq 0$, note that $y \in X \ominus V\left(E_{0}\right)$ implies

$$
0=\left\langle y, S^{\beta} x\right\rangle=\left\langle S^{* \beta} y, x\right\rangle
$$

That is, $S^{* \beta} y \in X \ominus\left[\bigcap_{i=1}^{d} X \ominus S_{i} X\right]$. Set

$$
M_{X}=X \ominus\left[\bigcap_{i=1}^{d} X \ominus S_{i} X\right] \quad \text { and } \quad M=\left\{y=\sum_{\alpha \geq 0, \alpha \neq 0} f_{\alpha} e_{\alpha}: f_{\alpha} \in E\right\} .
$$

Then

$$
M_{X}=\operatorname{Span}\left\{S_{i} X: 1 \leq i \leq d\right\} \subseteq M
$$

and $M_{X}^{\perp} \supseteq M^{\perp}=l_{d}^{2}(E) \ominus M=E$. Note that

$$
\begin{aligned}
S^{* \beta} y & =\sum_{\alpha \geq 0} S^{* \beta} y_{\alpha} e_{\alpha}=\sum_{\alpha \geq \beta} S^{* \beta} y_{\alpha} e_{\alpha} \\
& =S^{* \beta} y_{\beta} e_{\beta}+\sum_{\alpha \geq \beta, \alpha \neq \beta} S^{* \beta} y_{\alpha} e_{\alpha}
\end{aligned}
$$

and

$$
S^{* \beta} y_{\beta} e_{\beta} \in E, \quad \sum_{\alpha \geq \beta, \alpha \neq \beta} S^{* \beta} y_{\alpha} e_{\alpha} \in M
$$

Thus $S^{* \beta} y \in M_{X}$ implies that

$$
0=S^{* \beta} y_{\beta} e_{\beta}=\left[W_{\beta}^{*} y_{\beta}\right] e_{0}
$$

By assumption W_{β} is invertible, so $y_{\beta}=0$ for $\beta \geq 0$. In conclusion $y=0$. The proof is complete.

By the above theorem, the lattice of reducing subspaces of S_{Φ} is completely determined by the lattice of invariant subspaces of Ω_{1}. This topics has been discussed extensively in literature, and many results are known, in particular when Ω_{1} is a set of finite matrices, see the book [17].

It is well-known that the weighted shifts with nonzero scalar weights are irreducible.
Corollary 2.5. The tuple of weighted shifts $S_{\Phi}=\left(S_{1}, \ldots, S_{d}\right)$ on $l_{d}^{2}(E)$ with operator weights is irreducible if and only if $\Omega_{1}=\left\{W_{\alpha}^{*} W_{\alpha}: \alpha \geq 0\right\}$ is irreducible.

A simple but remarkable fact is that $\left(S_{1}^{k_{1}}, \ldots, S_{d}^{k_{d}}\right)$ with $k_{i} \geq 1$ for $i=1, \ldots, d$, is again a tuple of commuting weighted shifts with operator weights. The above theorem also applies to $\left(S_{1}^{k_{1}}, \ldots, S_{d}^{k_{d}}\right)$. This idea will become clear when we apply the above theorem to multiplication operators by powers of coordinator functions.
3. Multiplication operators on weighted Hardy spaces of several variables.

Let $z \in \mathbb{C}^{d}$ be the multivariable,

$$
z=\left(z_{1}, \ldots, z_{d}\right), \quad \bar{z}=\left(\overline{z_{1}}, \ldots, \overline{z_{d}}\right)
$$

An analytic polynomial $p(z)$ is of the form

$$
p(z)=\sum_{|\alpha|=0}^{m} c_{\alpha} z^{\alpha}, \quad c_{\alpha} \in \mathbb{C}
$$

where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \geq 0,|\alpha|=\alpha_{1}+\cdots+\alpha_{d}$, and $z^{\alpha}=z_{1}^{\alpha_{1}} \cdots z_{d}^{\alpha_{d}}$. It is known from [12] that several weighted shifts with nonzero scalar weights is unitarily equivalently to multiplications by z_{i} on weighted Hardy spaces with positive scalar weights. In this section, we introduce weighted Hardy spaces of multivariable z with operator weights. We show that multiplications by z_{i} on those weighted Hardy spaces are the weighted shift S_{Φ} studied in the last section. First note that for $A \in B(H)$ and $h \in H$,

$$
\langle A h, A h\rangle=\left\langle A^{*} A h, h\right\rangle=\left\langle\sqrt{A^{*} A} h, \sqrt{A^{*} A} h\right\rangle
$$

and $\sqrt{A^{*} A} \geq 0$. Thus in the definition of weighted Hardy spaces we will use positive operators. Let $\Delta=\left\{W_{\alpha}: \alpha \geq 0\right\}$ be a bounded set of invertible positive operators in
$B(E)$. The weighted Hardy space $H_{\Delta}^{2}(E)$ is defined by

$$
\begin{equation*}
H_{\Delta}^{2}(E)=\left\{f(z)=\sum_{\alpha \geq 0} f_{\alpha} z^{\alpha}: f_{\alpha} \in E, \quad\|f(z)\|^{2}=\sum_{\alpha \geq 0}\left\|W_{\alpha} f_{\alpha}\right\|^{2}<\infty\right\} . \tag{8}
\end{equation*}
$$

Then the multiplication operator $M_{z_{i}}$ by z_{i} on $H_{\Delta}^{2}(E)$ for $1 \leq i \leq d$, denoted by $M_{z}=$ $\left(M_{z_{1}}, \ldots, M_{z_{d}}\right)$, can be identified with the weighted shift S_{Φ} on $l_{d}^{2}(E)$ with

$$
\Phi=\left\{\Phi_{\alpha, i}=W_{\alpha+\varepsilon_{i}} W_{\alpha}^{-1}: \alpha \geq 0,1 \leq i \leq d\right\}
$$

(Note that $W_{\alpha+\varepsilon_{i}} W_{\alpha}^{-1}$ is not necessary positive since no commuting condition is imposed on W_{α}.) More precisely, let U be the linear operator from $l_{d}^{2}(E)$ onto $H_{\Delta}^{2}(E)$ defined by

$$
U\left[y e_{\alpha}\right]=\left[W_{\alpha}^{-1} y\right] z^{\alpha}, \quad \alpha \geq 0, y \in E .
$$

Then

$$
\begin{aligned}
\left\|U\left(\sum_{\alpha \geq 0} y_{\alpha} e_{\alpha}\right)\right\|_{H_{\Delta}^{2}(E)}^{2} & =\left\|\sum_{\alpha \geq 0}\left[W_{\alpha}^{-1} y_{\alpha}\right] z^{\alpha}\right\|_{H_{\Delta}^{2}(E)}^{2}=\sum_{\alpha \geq 0}\left\|W_{\alpha} W_{\alpha}^{-1} y_{\alpha}\right\|_{E}^{2} \\
& =\sum_{\alpha \geq 0}\left\|y_{\alpha}\right\|_{E}^{2}=\left\|\sum_{\alpha \geq 0} y_{\alpha} e_{\alpha}\right\|_{l_{d}^{2}(E)}^{2} .
\end{aligned}
$$

Thus U is an onto isometry. Furthermore,

$$
\begin{aligned}
M_{z_{i}} U y e_{\alpha} & =M_{z_{i}}\left(W_{\alpha}^{-1} y z^{\alpha}\right)=W_{\alpha}^{-1} y z^{\alpha+\varepsilon_{i}} \\
U S_{i} y e_{\alpha} & =U\left(\Phi_{\alpha, i} y e_{\alpha+\varepsilon_{i}}\right)=W_{\alpha+\varepsilon_{i}}^{-1} \Phi_{\alpha, i} y z^{\alpha+\varepsilon_{i}} \\
& =W_{\alpha+\varepsilon_{i}}^{-1} W_{\alpha+\varepsilon_{i}} W_{\alpha}^{-1} y z^{\alpha+\varepsilon_{i}}=W_{\alpha}^{-1} y z^{\alpha+\varepsilon_{i}} .
\end{aligned}
$$

Therefore

$$
M_{z} U=\left(M_{z_{1}} U, \ldots, M_{z_{d}} U\right)=U S_{\Phi}=\left(U S_{1}, \ldots, U S_{d}\right) .
$$

By (3), M_{z} is a tuple of commuting bounded operators if and only if

$$
\begin{equation*}
\left\|M_{z_{i}}\right\|=\sup _{\alpha \geq 0}\left\|\Phi_{\alpha, i}\right\|=\sup _{\alpha \geq 0}\left\|W_{\alpha+\varepsilon_{i}} W_{\alpha}^{-1}\right\|<\infty, \quad 1 \leq i \leq d \tag{9}
\end{equation*}
$$

which we shall assume. Note that (1) is automatically satisfied, since by $\Phi_{\alpha, i}=$ $W_{\alpha+\varepsilon_{i}} W_{\alpha}^{-1}$, for $i \neq j$,

$$
\begin{aligned}
& \Phi_{\alpha+\varepsilon_{i}, j} \Phi_{\alpha, i}=W_{\alpha+\varepsilon_{i}+\varepsilon_{j}} W_{\alpha+\varepsilon_{i}}^{-1} W_{\alpha+\varepsilon_{i}} W_{\alpha}^{-1}=W_{\alpha+\varepsilon_{i}+\varepsilon_{j}} W_{\alpha}^{-1} \\
& \Phi_{\alpha+\varepsilon_{j}, i} \Phi_{\alpha, j}=W_{\alpha+\varepsilon_{j}+\varepsilon_{i}} W_{\alpha+\varepsilon_{j}}^{-1} W_{\alpha+\varepsilon_{j}} W_{\alpha}^{-1}=W_{\alpha+\varepsilon_{j}+\varepsilon_{i}} W_{\alpha}^{-1}
\end{aligned}
$$

The reducing subspaces (or minimal reducing subspaces) of M_{z} and S_{Φ} are in one to one correspondence. Now Theorem 2.4 can be reformulated as the following theorem which generalizes a similar result [5] in one variable case.

Theorem 3.1. Any common reducing subspace X of M_{z} on $H_{\Delta}^{2}(E)$ is of the form $H_{\Delta}^{2}\left(E_{0}\right)$, where

$$
E_{0}=\bigcap_{i=1}^{d} X \ominus M_{z_{i}} X=\bigcap_{i=1}^{d} \operatorname{ker}\left(M_{z_{i}}^{*} \mid X\right) \subseteq E,
$$

and $E_{0} \subseteq E$ is an invariant subspace of $\Omega=\left\{W_{\alpha}: \alpha \geq 0\right\}$. Furthermore $H_{\Delta}^{2}\left(E_{0}\right)$ is a minimal reducing subspace of M_{z} if and only if E_{0} is a minimal invariant subspace of Ω.

Proof. By Theorem 2.4,

$$
\Omega_{1}=\left\{W_{\alpha}^{*} W_{\alpha}: \alpha \geq 0\right\}
$$

But here we assume W_{α} is positive, so $W_{\alpha}^{*} W_{\alpha}=W_{\alpha}^{2}$. The space E_{0} is invariant for W_{α}^{2} if and only if it is invariant for W_{α}.

If E is a finite dimensional complex Hilbert space and $E_{0} \subseteq E$ is a nontrivial invariant subspace of $\Omega=\left\{W_{\alpha}: \alpha \geq 0\right\}$, then E_{0} contains a minimal invariant subspace of Ω. Since W_{α} is positive, E_{0} is in fact a reducing subspace of Ω and it is an orthogonal sum of several minimal reducing subspaces of Ω.

Corollary 3.2. Assume $N=\operatorname{dim}(E)<\infty$. Then any nontrivial reducing subspace of M_{z} on $H_{\Delta}^{2}(E)$ contains a minimal reducing subspace. Furthermore it is a direct sum of at most N minimal reducing subspaces of M_{z}.

As mentioned in [21], there are operators which possess many reducing subspaces but have no minimal reducing subspaces at all. For example, the operator of multiplication by z on the Lebesgue space $L^{2}(\mathbb{D}, d A)$, where $d A$ is the area measure on the unit disk \mathbb{D}, is one. In view of the above corollary, if $\operatorname{dim}(E)<\infty$, then the only question remaining is how to describe the minimal reducing subspaces of Ω.

4. Hilbert spaces of holomorphic functions of several variables.

Let $\omega=\left\{\omega_{\alpha}: \alpha \geq 0\right\}$ be a set of positive numbers. Let \mathbb{C} denote the set of complex numbers viewed as an one dimensional Hilbert space. Let H_{ω}^{2} be the weighted Hardy space as in [12]

$$
\begin{equation*}
H_{\omega}^{2}=\left\{f(z)=\sum_{\alpha \geq 0} f_{\alpha} z^{\alpha}: f_{\alpha} \in \mathbb{C}, \quad\|f(z)\|^{2}=\sum_{\alpha \geq 0} \omega_{\alpha}\left|f_{\alpha}\right|^{2}<\infty\right\} . \tag{10}
\end{equation*}
$$

Considering $E=\mathbb{C}$ and $\Delta=\left\{\sqrt{\omega_{\alpha}}: \alpha \geq 0\right\}$ in Section 3, we have $H_{\omega}^{2}=H_{\Delta}^{2}(\mathbb{C})$. By (9), we assume

$$
\left\|M_{z_{i}}\right\|=\sup _{\alpha \geq 0} \sqrt{\frac{\omega_{\alpha+\varepsilon_{i}}}{\omega_{\alpha}}}<\infty, \quad 1 \leq i \leq d .
$$

Let $N=\left(N_{1}, \ldots, N_{d}\right) \in Z_{+}^{d}$ be such that $N \geq(1, \ldots, 1)$. By an abuse of notation, set $N-1=\left(N_{1}-1, \ldots, N_{d}-1\right)$. Let $L=\prod_{i=1}^{d} N_{i}, E$ be the L-dimensional subspace of H_{ω}^{2} defined by

$$
E=\left\{\sum_{0 \leq \beta \leq N-1} f_{\beta} z^{\beta}: f_{\beta} \in \mathbb{C}\right\}
$$

and $\left\{z^{\beta} / \sqrt{\omega_{\beta}}: 0 \leq \beta \leq N-1\right\}$ be the standard basis of E. For two multi-indices $k=\left(k_{1}, \ldots, k_{d}\right)$ and $N=\left(N_{1}, \ldots, N_{d}\right)$, let $k N$ denote the multi-index $k N=$ $\left(k_{1} N_{1}, \ldots, k_{d} N_{d}\right)$. Let $\Delta=\left\{W_{k}: k \geq 0\right\}$ be the set of diagonal operators where W_{k} is the diagonal matrix (with respect to the standard basis of E) defined by

$$
\begin{equation*}
W_{k}\left(\frac{z^{\beta}}{\sqrt{\omega_{\beta}}}\right)=\frac{\sqrt{\omega_{\beta+k N}}}{\sqrt{\omega_{\beta}}}\left(\frac{z^{\beta}}{\sqrt{\omega_{\beta}}}\right), \quad 0 \leq \beta \leq N-1, k \geq 0 . \tag{11}
\end{equation*}
$$

Then the tuple $M_{z}=\left(M_{z_{1}^{N_{1}}}, \ldots, M_{z_{d}^{N_{d}}}\right)$ on H_{ω}^{2} can be identified with $M_{z}=$ $\left(M_{z_{1}}, \ldots, M_{z_{d}}\right)$ on $H_{\Delta}^{2}(E)$. To see this, we write

$$
\sum_{\alpha \geq 0} f_{\alpha} z^{\alpha}=\sum_{k \geq 0}\left(\sum_{0 \leq \beta \leq N-1} f_{\beta+k N} z^{\beta}\right) z^{k N}
$$

Let U be the linear operator from H_{ω}^{2} onto $H_{\Delta}^{2}(E)$ defined by

$$
U \sum_{\alpha \geq 0} f_{\alpha} z^{\alpha}=\sum_{k \geq 0} g_{k} z^{k} \quad \text { where } \quad g_{k}=\sum_{0 \leq \beta \leq N-1} f_{\beta+k N} z^{\beta} \in E .
$$

Since U maps $z^{k N}$ in H_{ω}^{2} into z^{k} in $H_{\Delta}^{2}(E)$, it is easy to see that $U M_{z^{N}}=M_{z} U$. We now verify that U is an onto isometry.

$$
\begin{aligned}
\left\|U \sum_{\alpha \geq 0} f_{\alpha} z^{\alpha}\right\|_{H_{\Delta}^{2}(E)}^{2} & =\left\|\sum_{k \geq 0} g_{k} z^{k}\right\|_{H_{\Delta}^{2}(E)}^{2}=\sum_{k \geq 0}\left\|W_{k} g_{k}\right\|_{E}^{2}=\sum_{k \geq 0}\left\|W_{k} \sum_{0 \leq \beta \leq N-1} f_{\beta+k N} z^{\beta}\right\|_{E}^{2} \\
& =\sum_{k \geq 0} \sum_{0 \leq \beta \leq N-1}\left\|W_{k} f_{\beta+k N} z^{\beta}\right\|_{E}^{2}=\sum_{k \geq 0} \sum_{0 \leq \beta \leq N-1}\left\|\frac{\sqrt{\omega_{\beta+k N}}}{\sqrt{\omega_{\beta}}} f_{\beta+k N} z^{\beta}\right\|_{E}^{2} \\
& =\sum_{k \geq 0} \sum_{0 \leq \beta \leq N-1} \omega_{\beta}\left|\frac{\sqrt{\omega_{\beta+k N}}}{\sqrt{\omega_{\beta}}} f_{\beta+k N}\right|^{2}=\sum_{k \geq 0} \sum_{0 \leq \beta \leq N-1} \omega_{\beta+k N}\left|f_{\beta+k N}\right|^{2} \\
& =\left\|\sum_{\alpha \geq 0} f_{\alpha} z^{\alpha}\right\|_{H_{\omega}^{2}}^{2} .
\end{aligned}
$$

Since Δ consists of diagonal matrices, the following result, which is Lemma 6 in [5], is useful.

Lemma 4.1. (i) Let Ω be a set of invertible diagonal matrices on \mathbb{C}^{L} with respect to an orthonormal basis $\left\{e_{1}, \ldots, e_{L}\right\}$. Then any minimal invariant subspace of Ω is one dimensional.
(ii) Any invariant subspace of Ω is an orthogonal sum of several one dimensional invariant subspaces of Ω.
(iii) Let $v=\sum_{i=1}^{k} v_{n_{i}} e_{n_{i}}$, where all $v_{n_{i}}$ are nonzero. Then $\operatorname{Span}\{v\}$ is invariant for Ω if and only if each diagonal matrix in Ω restricted to $\operatorname{Span}\left\{e_{n_{1}}, \ldots, e_{n_{k}}\right\}$ is a constant multiple of the identity matrix.

Combining Theorem 3.1 and Lemma 4.1, we immediately have the following theorem, which contains Theorem A and Theorem D in [21], and Theorem 6 in $[\mathbf{1 4}]$ as special cases. This theorem can also be derived from the work of $[\mathbf{1 4}]$. Set

$$
\widehat{N}=\{\beta: 0 \leq \beta \leq N-1\}
$$

Theorem 4.2. (i) A reducing subspace of $\left(M_{z_{1}^{N_{1}}}, \ldots, M_{z_{d}^{N_{d}}}\right)$ on H_{ω}^{2} is a direct sum of at most L (singly generated) minimal reducing subspaces, where L is the cardinality of the index set \widehat{N}. That is, $L=\prod_{i=1}^{d} N_{i}$.
(ii) A minimal reducing subspace of $\left(M_{z_{1}^{N_{1}}}, \ldots, M_{z_{d}^{N_{d}}}\right)$ on H_{ω}^{2} is of the form

$$
\operatorname{Span}\left\{p(z) z^{k N}: k \geq 0\right\}
$$

where

$$
\begin{equation*}
p(z)=\sum_{\gamma \in J} f_{\gamma} z^{\gamma}, \quad f_{\gamma} \in \mathbb{C}, \quad f_{\gamma} \neq 0 \text { for all } \gamma \in J \tag{12}
\end{equation*}
$$

and $J \subseteq \widehat{N}$ and $\omega_{\gamma+k N} / \omega_{\gamma}=\omega_{\delta+k N} / \omega_{\delta}$ for all $\gamma, \delta \in J$ and $k \geq 0$.
(iii) For each $\gamma \in \widehat{N}$, $\operatorname{Span}\left\{z^{\gamma} z^{k N}: k \geq 0\right\}$ is a (singly generated) minimal reducing subspace of $\left(M_{z_{1}^{N_{1}}}, \ldots, M_{z_{d}^{N_{d}}}\right)$.

Proof. Conclusion (i) is clear from (i) and (ii) of Lemma 4.1. To see (ii), we note that W_{k} as in (11) is a constant multiple of the identity on $\operatorname{the} \operatorname{Span}\left\{z^{\gamma}: \gamma \in J\right\}$ if and only if $\omega_{\gamma+k N} / \omega \gamma=\omega_{\delta+k N} / \omega_{\delta}$ for all $\gamma, \delta \in J$. The proof is complete.

We say the reducing subspaces as in (iii) are the obvious ones.
Definition 4.3. Let $\kappa(J)$ denote the cardinality of the index set J. We say $p(z)$ as in (12) is of length $\kappa(J)$ and $\operatorname{Span}\left\{p(z) z^{k N}: k \geq 0\right\}$ is a minimal reducing subspace of length $\kappa(J)$.

Thus $\kappa(J)=1$ for the reducing subspaces as in (iii) of Theorem 4.2. As we will see, in most classical function spaces, $\kappa(J)=1$, so that there are exactly L minimal reducing subspaces of $\left(M_{z_{1}^{N_{1}}}, \ldots, M_{z_{d}^{N_{d}}}\right)$ on H_{ω}^{2} and there are exactly $2^{L}-1$ reducing subspaces of $\left(M_{z_{1}^{N_{1}}}, \ldots, M_{z_{d}^{N_{d}}}\right)$.

Lemma 4.1 can be extended to the set of diagonal operators on the infinite dimensional l^{2} space. For convenience, we recall Lemma 8 and Corollary 9 from [5]. Let \mathbb{N} be the set of positive integers. In the infinite dimensional case, all subspaces are assumed to be closed.

Lemma 4.4. Let Ω be a set of injective diagonal operators on l^{2} with respect to an orthonormal basis $\left\{e_{n}: n \in \mathbb{N}\right\}$.
(i) Let $v=\sum_{i=1}^{\infty} v_{n_{i}} e_{n_{i}}$, where all $v_{n_{i}}$ are nonzero. Then $\operatorname{Span}\{v\}$ is invariant for Ω if and only if the restriction of each diagonal operator in Ω to $\operatorname{Span}\left\{e_{n_{1}}, e_{n_{2}}, \ldots\right\}$ is a constant multiple of the identity operator.
(ii) Any minimal invariant subspace of Ω is one dimensional.
(iii) Any invariant subspace of Ω is an orthogonal sum of finite or infinite many one dimensional invariant subspaces of Ω.

The following corollary tells us when the invariant subspaces of Ω are the obvious ones.

Corollary 4.5. (1) Let Ω be a set of invertible diagonal matrices on \mathbb{C}^{L} with respect to an orthonormal basis $\left\{e_{1}, \ldots, e_{L}\right\}$. The following two statements are equivalent.
(i) For any $i \neq j$, there is $A \in \Omega$ such that $A e_{i}=\lambda_{i} e_{i}, A e_{j}=\lambda_{j} e_{j}$ with $\lambda_{i} \neq \lambda_{j}$.
(ii) There are exactly L minimal invariant subspaces of Ω, namely, $\operatorname{Span}\left\{e_{i}\right\}$ for $i=1, \ldots, L$.
(2) Let Ω be a set of injective diagonal operators on l^{2} with respect to an orthonormal basis $\left\{e_{n}, n \in \mathbb{N}\right\}$. The following two statements are equivalent.
(i) For any $i, j \in \mathbb{N}$ and $i \neq j$, there is $A \in \Omega$ such that $A e_{i}=\lambda_{i} e_{i}, A e_{j}=\lambda_{j} e_{j}$ with $\lambda_{i} \neq \lambda_{j}$.
(ii) The minimal invariant subspaces of Ω are $\operatorname{Span}\left\{e_{i}\right\}$ for $i \in \mathbb{N}$.

Statement (i) holds as long as Ω contains a diagonal operator with distinct diagonals.

5. Examples.

Let \mathbb{B}^{d} be the unit ball of \mathbb{C}^{d},

$$
\mathbb{B}^{d}=\left\{z=\left(z_{1}, \ldots, z_{d}\right) \in \mathbb{C}^{d}:\left|z_{1}\right|^{2}+\cdots+\left|z_{d}\right|^{2}<1\right\}
$$

Let $w=\left(w_{1}, \ldots, w_{d}\right) \in \mathbb{B}^{d}$ and $\langle z, w\rangle$ be the inner product defined by

$$
\langle z, w\rangle=\sum_{i=1}^{d} z_{i} \overline{w_{i}}
$$

Let $\mathcal{K}_{\rho}\left(\mathbb{B}^{d}\right)$ (for $\left.\rho>0\right)$ be the Hilbert space of analytic functions on the ball \mathbb{B}^{d} with reproducing kernel

$$
K(z, w)=\frac{1}{(1-\langle z, w\rangle)^{\rho}}
$$

This scale of spaces contains the Bergman space $L_{a}^{2}\left(\mathbb{B}^{d}\right)(\rho=d+1)$, the Hardy space $H^{2}\left(\mathbb{B}^{d}\right)(\rho=d)$, and the Drury-Arveson space $H_{d}^{2}\left(\mathbb{B}^{d}\right)(\rho=1)$. By the expansion formula,

$$
\begin{aligned}
K(z, w) & =\frac{1}{(1-\langle z, w\rangle)^{\rho}}=\sum_{i=0}^{\infty} \frac{\Gamma(\rho+i)}{i!\Gamma(\rho)}\langle z, w\rangle^{i} \\
& =\sum_{i=0}^{\infty} \frac{\Gamma(\rho+i)}{i!\Gamma(\rho)} \sum_{|\alpha|=i} \frac{i!}{\alpha!} z^{\alpha} \bar{w}^{\alpha}=\sum_{\alpha \geq 0} \frac{\Gamma(\rho+|\alpha|)}{\alpha!\Gamma(\rho)} z^{\alpha} \bar{w}^{\alpha}
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\mathcal{K}_{\rho}\left(\mathbb{B}^{d}\right)=H_{\omega}^{2} \quad \text { with } \quad \omega=\left\{\omega_{\alpha}=\frac{\alpha!\Gamma(\rho)}{\Gamma(\rho+|\alpha|)}: \alpha \geq 0\right\} \tag{13}
\end{equation*}
$$

Let $\mathcal{D}\left(\mathbb{B}^{d}\right)$ denote the holomorphic Dirichlet space on \mathbb{B}^{d} with reproducing kernel

$$
K(z, w)=-\frac{1}{\langle z, w\rangle} \ln (1-\langle z, w\rangle)
$$

Note that

$$
\begin{aligned}
K(z, w) & =-\frac{1}{\langle z, w\rangle} \ln (1-\langle z, w\rangle)=\sum_{n=0}^{\infty} \frac{1}{n+1}\langle z, w\rangle^{n} \\
& =\sum_{n=0}^{\infty} \frac{1}{n+1} \sum_{|\alpha|=n} \frac{n!z^{\alpha} \bar{w}^{\alpha}}{\alpha!}=\sum_{\alpha \geq 0} \frac{|\alpha|!z^{\alpha} \bar{w}^{\alpha}}{\alpha!(|\alpha|+1)}
\end{aligned}
$$

Therefore

$$
\mathcal{D}\left(\mathbb{B}^{d}\right)=H_{\omega}^{2} \quad \text { with } \quad \omega=\left\{\omega_{\alpha}=\frac{\alpha!(|\alpha|+1)}{|\alpha|!}: \alpha \geq 0\right\}
$$

Let \mathbb{D} be the unit disk and \mathbb{D}^{d} be the polydisk. We use $\mathcal{K}_{\rho}\left(\mathbb{D}^{d}\right)$ (for $\rho>0$) to denote the Hilbert space of analytic functions on the polydisk \mathbb{D}^{d} with reproducing kernel

$$
K(z, w)=\frac{1}{\prod_{i=1}^{d}\left(1-z_{i} \overline{w_{i}}\right)^{\rho}}
$$

This scale of spaces contains the Bergman space $L_{a}^{2}\left(\mathbb{D}^{d}\right)(\rho=2)$ and Hardy space $H^{2}\left(\mathbb{D}^{d}\right)$
($\rho=1$). When $\rho>1, \mathcal{K}_{\rho}\left(\mathbb{D}^{d}\right)$ is often called the weighted Bergman space on polydisk. By the expansion formula,

$$
\begin{aligned}
K(z, w) & =\frac{1}{\prod_{i=1}^{d}\left(1-z_{i} \overline{w_{i}}\right)^{\rho}}=\prod_{i=1}^{d}\left(\sum_{\alpha_{i}=0}^{\infty} \frac{\Gamma\left(\rho+\alpha_{i}\right)}{\alpha_{i}!\Gamma(\rho)}\left(z_{i} \bar{w}_{i}\right)^{\alpha_{i}}\right) \\
& =\sum_{\alpha \geq 0} \prod_{i=1}^{d} \frac{\Gamma\left(\rho+\alpha_{i}\right)}{\alpha_{i}!\Gamma(\rho)} z^{\alpha} \bar{w}^{\alpha} .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\mathcal{K}_{\rho}\left(\mathbb{D}^{d}\right)=H_{\omega}^{2} \quad \text { with } \quad \omega=\left\{\omega_{\alpha}=\prod_{i=1}^{d} \frac{\alpha_{i}!\Gamma(\rho)}{\Gamma\left(\rho+\alpha_{i}\right)}: \alpha \geq 0\right\} \tag{14}
\end{equation*}
$$

Let $\mathcal{D}\left(\mathbb{D}^{d}\right)$ denote the holomorphic Dirichlet space on \mathbb{D}^{d} with reproducing kernel

$$
\begin{equation*}
K(z, w)=(-1)^{d} \prod_{i=1}^{d} \frac{1}{z_{i} \overline{w_{i}}} \ln \left(1-z_{i} \overline{w_{i}}\right) \tag{15}
\end{equation*}
$$

Note that

$$
\begin{aligned}
K(z, w) & =(-1)^{d} \prod_{i=1}^{d} \frac{1}{z_{i} \overline{w_{i}}} \ln \left(1-z_{i} \overline{w_{i}}\right)=\prod_{i=1}^{d}\left(\sum_{\alpha_{i}=0}^{\infty} \frac{1}{\alpha_{i}+1}\left(z_{i} \overline{w_{i}}\right)^{\alpha_{i}}\right) \\
& =\sum_{\alpha \geq 0} \frac{1}{\prod_{i=1}^{d}\left(\alpha_{i}+1\right)} z^{\alpha} \bar{w}^{\alpha} .
\end{aligned}
$$

Therefore

$$
\mathcal{D}\left(\mathbb{D}^{d}\right)=H_{\omega}^{2} \quad \text { with } \quad \omega=\left\{\omega_{\alpha}=\prod_{i=1}^{d}\left(\alpha_{i}+1\right): \alpha \geq 0\right\}
$$

Let $N=\left(N_{1}, \ldots, N_{d}\right) \in Z_{+}^{d}$ be such that $N \geq(1, \ldots, 1)$.
Lemma 5.1. We use notations as above. Let $\gamma, \delta \geq 0$ be two multi-indices. Then for ω_{α} as in (13) with $d \geq 2$,

$$
\frac{\omega_{\gamma+k N}}{\omega_{\gamma}}=\frac{\omega_{\delta+k N}}{\omega_{\delta}} \quad \text { for all } k \geq 0
$$

if and only if $\gamma=\delta$.
Proof. Note that $\omega_{\gamma+k N} / \omega_{\gamma}=\omega_{\delta+k N} / \omega_{\delta}$ is the same as

$$
\frac{\omega_{\gamma+k N}}{\omega_{\delta+k N}}=\frac{\omega_{\gamma}}{\omega_{\delta}} \quad \text { or } \quad \frac{(\gamma+k N)!\Gamma(\rho+|\delta+k N|)}{(\delta+k N)!\Gamma(\rho+|\gamma+k N|)}=\frac{\omega_{\gamma}}{\omega_{\delta}} .
$$

Note that the limit of

$$
\frac{(\gamma+k N)!\Gamma(\rho+|\delta+k N|)}{(\delta+k N)!\Gamma(\rho+|\gamma+k N|)} \approx k_{1}^{\gamma_{1}-\delta_{1}} k_{1}^{|\delta|-|\gamma|}
$$

as $k_{1} \rightarrow \infty$, is 0 or ∞ unless

$$
\gamma_{1}+|\delta|=\delta_{1}+|\gamma| .
$$

Similarly

$$
\gamma_{i}+|\delta|=\delta_{i}+|\gamma|, \quad i=1, \ldots, d
$$

This implies that $\gamma=\delta$ since $d \geq 2$.
REmARK 5.2. The above lemma also holds when $d=1$ and $\rho \neq 1$, see the lemma below.

Lemma 5.3. We use notations as above. Let $\gamma, \delta \geq 0$ be two multi-indices. Assume $\rho \neq 1$. Then for ω_{α} as in (14),

$$
\frac{\omega_{\gamma+k N}}{\omega_{\gamma}}=\frac{\omega_{\delta+k N}}{\omega_{\delta}} \quad \text { for all } k \geq 0
$$

if and only if $\gamma=\delta$.
Proof. Note that $\omega_{\gamma+k N} / \omega_{\gamma}=\omega_{\delta+k N} / \omega_{\delta}$ is the same as

$$
\frac{\omega_{\gamma+k N}}{\omega_{\delta+k N}}=\frac{\omega_{\gamma}}{\omega_{\delta}} \quad \text { or } \quad \prod_{i=1}^{d} \frac{\left(\gamma_{i}+k_{i} N_{i}\right)!\Gamma(\rho) \Gamma\left(\rho+\delta_{i}+k_{i} N_{i}\right)}{\left(\delta_{i}+k_{i} N_{i}\right)!\Gamma(\rho) \Gamma\left(\rho+\gamma_{i}+k_{i} N_{i}\right)}=\frac{\omega_{\gamma}}{\omega_{\delta}} .
$$

Equivalently, for each $i=1, \ldots, d$,

$$
\frac{\left(\gamma_{i}+k_{i} N_{i}\right)!\Gamma\left(\rho+\delta_{i}+k_{i} N_{i}\right)}{\left(\delta_{i}+k_{i} N_{i}\right)!\Gamma\left(\rho+\gamma_{i}+k_{i} N_{i}\right)}=\frac{\left(\gamma_{i}\right)!\Gamma\left(\rho+\delta_{i}\right)}{\left(\delta_{i}\right)!\Gamma\left(\rho+\gamma_{i}\right)} .
$$

Taking limit of the above expression as $k_{i} \rightarrow \infty$, we see that both sides of the above expression are equal to one. That is,

$$
\frac{\left(\gamma_{i}+k_{i} N_{i}\right)!\Gamma\left(\rho+\delta_{i}+k_{i} N_{i}\right)}{\left(\delta_{i}+k_{i} N_{i}\right)!\Gamma\left(\rho+\gamma_{i}+k_{i} N_{i}\right)}=1 \quad \text { for all } k_{i} \geq 0 .
$$

Without loss of generality, assume $\gamma_{i}=\delta_{i}+l$ for some $l>0$. Then

$$
\frac{\left(1+\delta_{i}+k_{i} N_{i}\right) \cdots\left(l+\delta_{i}+k_{i} N_{i}\right)}{\left(\rho+\delta_{i}+k_{i} N_{i}\right) \cdots\left(\rho+l-1+\delta_{i}+k_{i} N_{i}\right)}=1 \quad \text { for all } k_{i} \geq 0
$$

which is impossible unless $\rho=1$. Hence $\gamma_{i}=\delta_{i}$ and $\gamma=\delta$.
Theorem 5.4. The tuple $\left(M_{z_{1}^{N_{1}}}, \ldots, M_{z_{d}^{N_{d}}}\right)$ on $\mathcal{K}_{\rho}\left(\mathbb{B}^{d}\right), \mathcal{K}_{\rho}\left(\mathbb{D}^{d}\right)(\rho \neq 1), \mathcal{D}\left(\mathbb{B}^{d}\right)$, and $\mathcal{D}\left(\mathbb{D}^{d}\right)$ has only the obvious L (singly generated) minimal reducing subspaces of length one.

Proof. The results follow from proceeding lemmas. The Hardy space on the polydisk is the only exception. The proofs for the Dirichlet spaces are the same.

Theorem 2.4 in $[\mathbf{1 5}]$ corresponds to the special case of the above theorem on $\mathcal{K}_{\rho}\left(\mathbb{D}^{d}\right)$ for $d=2, \rho>1$ and $N_{1}=N_{2}$. A description of minimal reducing subspaces of $\left(M_{z_{1}^{N_{1}}}, \ldots, M_{z_{d}^{N_{d}}}\right)$ on $\mathcal{K}_{\rho}\left(\mathbb{D}^{d}\right)$ for $\rho=1$ readily follows from Theorem 4.2 by noting that $\omega_{\alpha}=1$ for all $\alpha \geq 0$. See also a related result for the case $\rho=1$ in Theorem 9.1.

6. Product of weighted shifts.

In this section we demonstrate a more subtle observation that the product of several commuting weighted shifts (with operator weights) is again a weighted shift with operator weights. In the remaining part of the paper except the last section, $k \in Z_{+}$is not a multiindex. For $N=\left(N_{1}, \ldots, N_{d}\right), k N=\left(k N_{1}, \ldots, k N_{d}\right)$. Recall $S_{\Phi}=\left(S_{1}, \ldots, S_{d}\right)$ is defined on $l_{d}^{2}(E)$ by

$$
\begin{equation*}
S_{i}\left[y e_{\alpha}\right]=\left[\Phi_{\alpha, i} y\right] e_{\alpha+\varepsilon_{i}}, \quad \alpha \in Z_{+}^{d}, \quad i=1, \ldots, d, y \in E . \tag{16}
\end{equation*}
$$

Let $J_{0}=\left\{\alpha: \alpha \geq 0\right.$ and $\left.\min \left\{\alpha_{i}: i=1, \ldots, d\right\}=0\right\}$ and

$$
\widehat{E}=\operatorname{Span}\left\{y e_{\alpha}: y \in E, \alpha \in J_{0}\right\}=\operatorname{ker}\left(\prod_{i=1}^{d} S_{i}^{*}\right) .
$$

Let $\left\{g_{k}\right\}_{k=0}^{\infty}$ be the standard basis of l^{2} and

$$
l^{2}(\widehat{E})=\left\{y=\sum_{k=0}^{\infty} y_{k} g_{k}: y_{k} \in \widehat{E} \text { and }\|y\|^{2}=\sum_{k=0}^{\infty}\left\|y_{k}\right\|^{2}<\infty\right\} .
$$

Again we identify \widehat{E} with the subspace $\left\{y g_{0}, y \in \widehat{E}\right\}$.
Proposition 6.1. The operator $\prod_{i=1}^{d} S_{i}$ is unitarily equivalent to a weighted shift S_{Ψ} defined on $l^{2}(\widehat{E})$ with $\Psi=\left\{\Psi_{k}: k \geq 0\right\}$, where $\Psi_{k} \in B(\widehat{E})$ is defined by

$$
\begin{array}{r}
\Psi_{k}\left(y e_{\beta}\right)=\left[\left(\Phi_{\beta+k(1, \ldots, 1)+\varepsilon_{1}+\cdots+\varepsilon_{d-1}, d} \cdots \Phi_{\beta+k(1, \ldots, 1)+\varepsilon_{1}, 2} \Phi_{\beta+k(1, \ldots, 1), 1}\right) y\right] e_{\beta} \\
y \in E, \beta \in J_{0} \tag{17}
\end{array}
$$

Proof. Let U be the isometry from $l_{d}^{2}(E)$ into $l^{2}(\widehat{E})$ defined by

$$
U y e_{\alpha}=\left[y e_{\alpha-k(1, \ldots, 1)}\right] g_{k}, \text { where } k=\min \left\{\alpha_{i}: i=1, \ldots, d\right\}, \alpha \geq 0 .
$$

Then U is an onto isometry. Note that for $y \in E, \alpha \geq 0$,

$$
\begin{aligned}
U\left(\prod_{i=1}^{d} S_{i}\right) y e_{\alpha} & =U\left[\left(\Phi_{\alpha+\varepsilon_{1}+\cdots+\varepsilon_{d-1}, d} \cdots \Phi_{\alpha+\varepsilon_{1}, 2} \Phi_{\alpha, 1}\right) y\right] e_{\alpha+(1, \ldots, 1)} \\
& =\left[\left\{\left(\Phi_{\alpha+\varepsilon_{1}+\cdots+\varepsilon_{d-1}, d} \cdots \Phi_{\alpha+\varepsilon_{1}, 2} \Phi_{\alpha, 1}\right) y\right\} e_{\alpha+(1, \ldots, 1)-(k+1)(1, \ldots, 1)}\right] g_{k+1}
\end{aligned}
$$

$$
=\left[\left\{\left(\Phi_{\alpha+\varepsilon_{1}+\cdots+\varepsilon_{d-1}, d} \cdots \Phi_{\alpha+\varepsilon_{1}, 2} \Phi_{\alpha, 1}\right) y\right\} e_{\alpha-k(1, \ldots, 1)}\right] g_{k+1}
$$

since $k=\min \left\{\alpha_{i}, i=1, \ldots, d\right\}$ implies that $k+1=\min \left\{\alpha_{i}+1: i=1, \ldots, d\right\}$. On the other hand, by (17) with $\beta=\alpha-k(1, \ldots, 1)$,

$$
\begin{aligned}
S_{\Psi} U\left[y e_{\alpha}\right] & =S_{\Psi}\left(\left[y e_{\alpha-k(1, \ldots, 1)}\right] g_{k}\right) \\
& =\left[\Psi_{k}\left(y e_{\alpha-k(1, \ldots, 1)}\right)\right] g_{k+1} \\
& =\left[\left\{\left(\Phi_{\alpha+\varepsilon_{1}+\cdots+\varepsilon_{d-1}, d} \cdots \Phi_{\alpha+\varepsilon_{1}, 2} \Phi_{\alpha, 1}\right) y\right\} e_{\alpha-k(1, \ldots, 1)}\right] g_{k+1}
\end{aligned}
$$

Therefore,

$$
U\left(\prod_{i=1}^{d} S_{i}\right)=S_{\Psi} U
$$

The proof is complete.
By Theorem 2.4 with $d=1$, we have the following result. Let $T:=\prod_{i=1}^{d} S_{i}$. Set

$$
\begin{equation*}
V_{k}=\Psi_{k-1} \cdots \Psi_{1} \Psi_{0} \tag{18}
\end{equation*}
$$

Corollary 6.2. A closed subspace X is a reducing subspace of $\prod_{i=1}^{d} S_{i}$ if and only if

$$
\begin{equation*}
X=\operatorname{Span}\left\{T^{k} x: k \geq 0, x \in \widehat{E_{0}}=X \ominus T X=\operatorname{ker}\left(T^{*} \mid X\right)\right\} \tag{19}
\end{equation*}
$$

where $\widehat{E_{0}} \subseteq \widehat{E}$ is an invariant subspace of the sequence of operators $V=\left\{V_{k}^{*} V_{k}: k \geq 0\right\}$ and V_{k} is defined by (17) and (18). Furthermore, X is a minimal reducing subspace of T if and only if $\widehat{E_{0}}$ is a minimal invariant subspace of V.

Because $M_{z}=\left(M_{z_{1}}, \ldots, M_{z_{d}}\right)$, we use T_{z} to denote the multiplication operator by z on $H_{\Delta}^{2}(E)$ as in (8). That is,

$$
T_{z}=\prod_{i=1}^{d} M_{z_{i}}
$$

Let $\widehat{E} \subset H_{\Delta}^{2}(E)$ be the subspace given by

$$
\widehat{E}=\left\{f(z)=\sum_{\alpha \in J_{0}} f_{\alpha} z^{\alpha}: f_{\alpha} \in E, \quad\|f(z)\|^{2}=\sum_{\alpha \in J_{0}}\left\|W_{\alpha} f_{\alpha}\right\|^{2}<\infty\right\}=\operatorname{ker}\left(T_{z}^{*}\right)
$$

Let $\Psi_{k} \in B(\widehat{E})$ be given by

$$
\begin{aligned}
\Psi_{k}\left(y z^{\beta}\right) & =\left[\left(\Phi_{\beta+k(1, \ldots, 1)+\varepsilon_{1}+\cdots+\varepsilon_{d-1}, d} \cdots \Phi_{\beta+k(1, \ldots, 1)+\varepsilon_{1}, 2} \Phi_{\beta+k(1, \ldots, 1), 1}\right) y\right] z^{\beta} \\
& =\left[\binom{W_{\beta+k(1, \ldots, 1)+(1, \ldots, 1)} W_{\beta+k(1, \ldots, 1)+\varepsilon_{1}+\cdots+\varepsilon_{d-1}}^{-1} W^{-1}}{\cdots W_{\beta+k(1, \ldots, 1)+\varepsilon_{1}+\varepsilon_{2}} W_{\beta+k(1, \ldots, 1)+\varepsilon_{1}}^{-1} W_{\alpha+k(1, \ldots, 1)+\varepsilon_{1}} W_{\alpha+k(1, \ldots, 1)}} y\right] z^{\beta}
\end{aligned}
$$

$$
\begin{equation*}
=\left[\left(W_{\beta+(k+1)(1, \ldots, 1)} W_{\beta+k(1, \ldots, 1)}^{-1}\right) y\right] z^{\beta}, \quad y \in E, \beta \in J_{0} \tag{20}
\end{equation*}
$$

Note that Ψ_{k} is not necessarily positive because no commuting condition is imposed on W_{α}. Let V_{k} be defined by

$$
\begin{equation*}
V_{k}\left(y z^{\beta}\right)=\left[\Psi_{k-1} \cdots \Psi_{1} \Psi_{0}\right]\left(y z^{\beta}\right)=\left[\left(W_{\beta+k(1, \ldots, 1)} W_{\beta}^{-1}\right) y\right] z^{\beta}, \quad y \in E, \beta \in J_{0} \tag{21}
\end{equation*}
$$

Then the proceeding corollary takes the following form on $H_{\Delta}^{2}(E)$.
Corollary 6.3. A closed subspace X of $H_{\Delta}^{2}(E)$ is a reducing subspace of T_{z} if and only if

$$
\begin{equation*}
X=\operatorname{Span}\left\{T_{z}^{k} x: k \geq 0, x \in \widehat{E_{0}}=X \ominus T_{z} X=\operatorname{ker}\left(T_{z}^{*} \mid X\right)\right\}, \tag{22}
\end{equation*}
$$

where $\widehat{E_{0}} \subseteq \widehat{E}$ is an invariant subspace of the sequence of operators $V=\left\{V_{k}^{*} V_{k}: k \geq 0\right\}$ and V_{k} is given by (21). Furthermore, X is a minimal reducing subspace of T if and only if $\widehat{E_{0}}$ is a minimal invariant subspace of V.

7. Reducing subspaces of multiplication operators on $\boldsymbol{H}_{\boldsymbol{\omega}}^{\mathbf{2}}$.

Let $N=\left(N_{1}, \ldots, N_{d}\right) \in Z_{+}^{d}$ and $N \geq(1, \ldots, 1)$. Let $T_{z^{N}}$ denote the multiplication operator by z^{N} on H_{ω}^{2} as in (10). That is,

$$
T_{z^{N}}=\prod_{i=1}^{d} M_{z_{i}^{N_{i}}}
$$

Let

$$
J_{N}=\left\{\alpha: \alpha \geq 0 \text { and } \min \left\{\alpha_{i}-N_{i}: i=1, \ldots, d\right\}<0\right\}
$$

and $\widehat{E} \subset H_{\omega}^{2}$ be the subspace given by

$$
\widehat{E}=\left\{f(z)=\sum_{\alpha \in J_{N}} f_{\alpha} z^{\alpha}: f_{\alpha} \in \mathbb{C}, \quad\|f(z)\|^{2}=\sum_{\alpha \in J_{N}} \omega_{\alpha}\left|f_{\alpha}\right|^{2}<\infty\right\}=\operatorname{ker}\left(T_{z^{N}}^{*}\right) .
$$

Let

$$
\begin{equation*}
\Psi_{k}\left(\frac{z^{\beta}}{\sqrt{\omega_{\beta}}}\right)=\frac{\sqrt{\omega_{\beta+k N}}}{\sqrt{\omega_{\beta}}}\left(\frac{z^{\beta}}{\sqrt{\omega_{\beta}}}\right), \quad \beta \in J_{N}, k \geq 0 . \tag{23}
\end{equation*}
$$

Theorem 7.1. (i) If a closed subspace X of H_{ω}^{2} is a reducing subspace of $T_{z^{N}}$, then

$$
\begin{equation*}
X=\operatorname{Span}\left\{T_{z^{N}}^{k} x: k \geq 0, x \in \widehat{E_{0}}\right\} \tag{24}
\end{equation*}
$$

where

$$
\widehat{E_{0}}=X \ominus T_{z^{N}} X=\operatorname{ker}\left(T_{z^{N}}^{*} \mid X\right),
$$

and $\widehat{E_{0}} \subseteq \widehat{E}$ is an invariant subspace of $\Psi=\left\{\Psi_{k}: k \geq 0\right\}$ defined by (23).
(ii) Any reducing subspace of $T_{z^{N}}$ on H_{ω}^{2} is a direct sum of (singly generated) minimal reducing subspaces.
(iii) Any minimal reducing subspace of $T_{z^{N}}$ on H_{ω}^{2} is of the form $\operatorname{Span}\left\{f(z) z^{k N}: k \geq\right.$ $0\}$, where

$$
\begin{equation*}
f(z)=\sum_{\gamma \in J} f_{\gamma} z^{\gamma}, \quad f_{\gamma} \neq 0 \text { for all } \gamma \in J, \tag{25}
\end{equation*}
$$

and $J \subseteq J_{N}$ and $\omega_{\gamma+k N} / \omega_{\gamma}=\omega_{\delta+k N} / \omega_{\delta}$ for all $\gamma, \delta \in J, k \geq 0$.
Proof. Note that in this case Ψ_{k} in (23) is a diagonal operator (with positive diagonals). Therefore $\widehat{E_{0}} \subseteq \widehat{E}$ is an invariant subspace of the sequence of operators $\left\{\Psi_{k}^{2}: k \geq 0\right\}$ if and only if $\widehat{E_{0}}$ is invariant for $\Psi=\left\{\Psi_{k}: k \geq 0\right\}$. So (i) follows from Corollary 6.3. Items (ii) and (iii) follow from Corollary 6.3 and Lemma 4.4.

Since $\omega_{\alpha}=1$ for all $\alpha \geq 0$ on $\mathcal{K}_{\rho}\left(\mathbb{D}^{d}\right)$ for $\rho=1$ (the Hardy space of polydisk), any minimal reducing subspace of $T_{z^{N}}$ on $\mathcal{K}_{1}\left(\mathbb{D}^{d}\right)$ is described as in (iii) above where J is an arbitrary subset of J_{N}.

The above theorem formally looks the same as Theorem 4.2. But the condition on ω_{α} is less restrictive because k is not a multi-index, and the index set J_{N} is infinite, so in general there are many J such that $\kappa(J)>1$ as we demonstrate below. However, here we only make a couple of observations and also work out the details for a few clean cases.

Let $P(d)$ denote the permutation group of $\{1,2, \ldots, d\}$. For $\sigma \in P(d)$ and a multiindex $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{d}\right)$,

$$
\gamma_{\sigma}=\left(\gamma_{\sigma(1)}, \gamma_{\sigma(2)}, \ldots, \gamma_{\sigma(d)}\right) .
$$

Then we have the following proposition.
Proposition 7.2. Assume $N=(M, M, \ldots, M)$. Given $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{d}\right) \in J_{N}$, let

$$
\begin{equation*}
f(z)=\sum_{\sigma \in P(d)} f_{\sigma} z^{\gamma_{\sigma}}, \quad f_{\sigma} \in \mathbb{C} \text { for all } \sigma \in P(d) \tag{26}
\end{equation*}
$$

Then Span $\left\{f(z) z^{k N}: k \geq 0\right\}$ is a minimal reducing subspace of $T_{z^{N}}$ on $\mathcal{K}_{\rho}\left(\mathbb{B}^{d}\right), \mathcal{K}_{\rho}\left(\mathbb{D}^{d}\right)$ $(\rho \neq 1), \mathcal{D}\left(\mathbb{B}^{d}\right)$ and $\mathcal{D}\left(\mathbb{D}^{d}\right)$.

Proof. We just prove for $T_{z^{N}}$ on $\mathcal{K}_{\rho}\left(\mathbb{B}^{d}\right)$. Recall that

$$
\omega=\left\{\omega_{\alpha}=\frac{\alpha!\Gamma(\rho)}{\Gamma(\rho+|\alpha|)}: \alpha \geq 0\right\} .
$$

Thus for given $\gamma \in J_{N}$ and for any $\sigma \in P(d)$,

$$
\begin{aligned}
\frac{\omega_{\gamma+k N}}{\omega_{\gamma}} & =\frac{\prod_{i=1}^{d}\left(\gamma_{i}+k M\right)!\Gamma\left(\rho+\sum_{i=1}^{d} \gamma_{i}\right)}{\prod_{i=1}^{d} \gamma_{i}!\Gamma\left(\rho+\sum_{i=1}^{d} \gamma_{i}+d k M\right)} \\
\frac{\omega_{\gamma_{\sigma}+k N}}{\omega_{\gamma_{\sigma}}} & =\frac{\prod_{i=1}^{d}\left(\gamma_{\sigma(i)}+k M\right)!\Gamma\left(\rho+\sum_{i=1}^{d} \gamma_{\sigma(i)}\right)}{\prod_{i=1}^{d} \gamma_{\sigma(i)}!\Gamma\left(\rho+\sum_{i=1}^{d} \gamma_{\sigma(i)}+d k M\right)}
\end{aligned}
$$

Since $\sum_{i=1}^{d} \gamma_{\sigma(i)}=\sum_{i=1}^{d} \gamma_{i}$ and $\prod_{i=1}^{d} \gamma_{\sigma(i)}!=\prod_{i=1}^{d} \gamma_{i}!$,

$$
\frac{\omega_{\gamma+k N}}{\omega_{\gamma}}=\frac{\omega_{\gamma_{\sigma}+k N}}{\omega_{\gamma_{\sigma}}}
$$

The result now follows from the proceeding theorem.
The space Span $\left\{f(z) z^{k N}: k \geq 0\right\}$ above is the closed linear span in different spaces accordingly. In (26), we allow the coefficients f_{σ} to be zero. Furthermore, $\gamma_{\sigma_{1}}$ could be same as $\gamma_{\sigma_{2}}$ for two different permutations σ_{1} and σ_{2}. The length of $f(z)$ in (26) is d ! if γ_{i} are distinct for $i=1, \ldots, d$ and all f_{σ} are not zero. It turns out we can prove the converse of the above proposition if ρ is not a positive integer. The proof of the following lemma is more streamlined by comparing the roots of polynomials as Lemma 7 in [19], where reducing subspaces on weighted Bergman spaces on \mathbb{D}^{3} are discussed.

Lemma 7.3. Assume $N=(M, M, \ldots, M)$. Let ω be on $\mathcal{K}_{\rho}\left(\mathbb{B}^{d}\right)$, where ρ is not a positive integer, or ω be on $\mathcal{K}_{\rho}\left(\mathbb{D}^{d}\right)(\rho \neq 1)$. For $\gamma, \delta \in J_{N}, \omega_{\gamma+k N} / \omega_{\gamma}=\omega_{\delta+k N} / \omega_{\delta}$ for all $k \geq 0$ if and only if there exists a permutation $\sigma \in P(d)$ such that $\delta=\gamma_{\sigma}$.

Proof. We first prove this lemma on $\mathcal{K}_{\rho}\left(\mathbb{B}^{d}\right)$. If $\omega_{\gamma+k N} / \omega_{\gamma}=\omega_{\delta+k N} / \omega_{\delta}$ for all $k \geq 0$, then

$$
\begin{equation*}
\frac{\omega_{\gamma+k N}}{\omega_{\gamma+(k+1) N}}=\frac{\omega_{\delta+k N}}{\omega_{\delta+(k+1) N}} \quad \text { for all } k \geq 0 \tag{27}
\end{equation*}
$$

Equivalently

$$
\frac{\prod_{j=1}^{d M}(\rho+|\gamma|+d k M+j-1)}{\prod_{i=1}^{d} \prod_{j=1}^{M}\left(\gamma_{i}+k M+j\right)}=\frac{\prod_{j=1}^{d M}(\rho+|\delta|+d k M+j-1)}{\prod_{i=1}^{d} \prod_{j=1}^{M}\left(\delta_{i}+k M+j\right)}
$$

We define $G(\lambda)$ by replacing k with λ,

$$
\begin{aligned}
G(\lambda) & =p(\lambda)-q(\lambda), \text { where } \\
p(\lambda) & =\prod_{j=1}^{d M}(\rho+|\gamma|+d \lambda M+j-1) \prod_{i=1}^{d} \prod_{j=1}^{M}\left(\delta_{i}+\lambda M+j\right), \text { and } \\
q(\lambda) & =\prod_{j=1}^{d M}(\rho+|\delta|+d \lambda M+j-1) \prod_{i=1}^{d} \prod_{j=1}^{M}\left(\gamma_{i}+\lambda M+j\right) .
\end{aligned}
$$

Then $G(\lambda) \equiv 0$ and the roots of the two polynomials $p(\lambda)$ and $q(\lambda)$ are the same. In particular,

$$
\begin{align*}
& \text { either } \quad \frac{\rho+|\gamma|+d M-1}{d M}=\frac{\gamma_{i}+j}{M} \text { for some } i \text { and } j, \tag{28}\\
& \frac{\rho+|\delta|+d M-1}{d M}=\frac{\delta_{i}+j}{M} \quad \text { for some } i \text { and } j, \tag{29}\\
& \text { or } \quad \frac{\rho+|\gamma|+d M-1}{d M}=\frac{\rho+|\delta|+d M-1}{d M} . \tag{30}
\end{align*}
$$

Both sides of (30) are the largest roots (in absolute value) of $p(\lambda)$ and $q(\lambda)$ containing ρ. If ρ is not a positive integer, (28) or (29) can not happen. So (30) implies that

$$
\sum_{i=1}^{d} \delta_{i}=\sum_{i=1}^{d} \gamma_{i}
$$

Now (27) implies that

$$
\begin{equation*}
G_{1}(\lambda)=\prod_{i=1}^{d} \prod_{j=1}^{M}\left(\delta_{i}+\lambda M+j\right)-\prod_{i=1}^{d} \prod_{j=1}^{M}\left(\gamma_{i}+\lambda M+j\right) \equiv 0 . \tag{31}
\end{equation*}
$$

Therefore

$$
\left\{\frac{\delta_{i}+j}{M}: 1 \leq i \leq d, 1 \leq j \leq M\right\}=\left\{\frac{\gamma_{i}+j}{M}: 1 \leq i \leq d, 1 \leq j \leq M\right\}
$$

This implies that $\delta=\gamma_{\sigma}$ for some permutation $\sigma \in P(d)$.
We now prove on $\mathcal{K}_{\rho}\left(\mathbb{D}^{d}\right)$ where $\rho \neq 1$. We will be brief. If $\omega_{\gamma+k N} / \omega_{\gamma}=\omega_{\delta+k N} / \omega_{\delta}$ for all $k \geq 0$, then

$$
\begin{equation*}
\frac{\prod_{i=1}^{d} \prod_{j=1}^{M}\left(\rho+\gamma_{i}+k M+j-1\right)}{\prod_{i=1}^{d} \prod_{j=1}^{M}\left(\gamma_{i}+k M+j\right)}=\frac{\prod_{i=1}^{d} \prod_{j=1}^{M}\left(\rho+\delta_{i}+k M+j-1\right)}{\prod_{i=1}^{d} \prod_{j=1}^{M}\left(\delta_{i}+k M+j\right)} \tag{32}
\end{equation*}
$$

Then the roots of the two polynomials are the same, equivalently $F_{1}=F_{2}$ where

$$
\begin{aligned}
& F_{1}=\left\{\rho+\gamma_{i}+j-1, \delta_{i}+j: 1 \leq i \leq d, 1 \leq j \leq M\right\} \\
& F_{2}=\left\{\rho+\delta_{i}+j-1, \gamma_{i}+j: 1 \leq i \leq d, 1 \leq j \leq M\right\} .
\end{aligned}
$$

Without loss of generality, assume $\gamma_{d}=\max \left\{\gamma_{i}: 1 \leq i \leq d\right\}$. Let $\delta_{l}=\max \left\{\delta_{i}: 1 \leq i \leq\right.$ $d\}$. Note that

$$
\begin{aligned}
& \max F_{1}=\max \left\{\rho+\gamma_{d}+M-1, \delta_{l}+M\right\}, \\
& \max F_{2}=\max \left\{\rho+\delta_{l}+M-1, \gamma_{d}+M\right\} .
\end{aligned}
$$

We claim $\delta_{l}=\gamma_{d}$. Assume $\delta_{l}>\gamma_{d}$. Then, in the case $\rho>1$,

$$
\max F_{2}=\rho+\delta_{l}+M-1>\max F_{1},
$$

which is a contradiction. In the case $0<\rho<1$,

$$
\max F_{1}=\delta_{l}+M>\max F_{2},
$$

which is a contradiction. Similarly $\delta_{l}<\gamma_{d}$ will also lead to contradictions. Thus $\delta_{l}=\gamma_{d}$. By using a permutation, we can assume $\delta_{d}=\gamma_{d}$. Now (32) becomes a new equation with d replaced by $d-1$. Continuing this process, we see that $\delta=\gamma_{\sigma}$ for some $\sigma \in P(d)$.

The case of ρ being a positive integer is most interesting since $\mathcal{K}_{\rho}\left(\mathbb{B}^{d}\right)$ contains the Hardy space, the Bergman space, and the Drury-Arveson space. Unfortunately, in this case, if $\omega_{\gamma+k N} / \omega_{\gamma}=\omega_{\delta+k N} / \omega_{\delta}$ for all $k \geq 0$, we can only establish that $|\gamma|=|\delta|$ or $|\gamma|=|\delta| \pm 1$. If $|\gamma|=|\delta|$, then $\delta=\gamma_{\sigma}$ for some $\sigma \in P(d)$. We will resolve the case $|\gamma|=|\delta| \pm 1$ when $d=2$. But first we prove a similar lemma on Dirichlet spaces.

Lemma 7.4. Assume $N=(M, M, \ldots, M)$. Let ω be on $\mathcal{D}\left(\mathbb{B}^{d}\right)$ or $\mathcal{D}\left(\mathbb{D}^{d}\right)$. For $\gamma, \delta \in J_{N}$, then $\omega_{\gamma+k N} / \omega_{\gamma}=\omega_{\delta+k N} / \omega_{\delta}$ for all $k \geq 0$ if and only if there exists a permutation $\sigma \in P(d)$ such that $\delta=\gamma_{\sigma}$.

Proof. When $d=1$, we need to prove $\gamma=\delta$. We skip this short proof, assume now $d \geq 2$. Since the proof on $\mathcal{D}\left(\mathbb{B}^{d}\right)$ is similar to the attempted (but failed) proof of the previous lemma on $\mathcal{K}_{\rho}\left(\mathbb{B}^{d}\right)$ for $\rho=1$, we include the details to demonstrate the subtlety. Recall

$$
\omega_{\alpha}=\frac{\alpha!(|\alpha|+1)}{|\alpha|!}, \quad \alpha \geq 0 .
$$

If $\omega_{\gamma+k N} / \omega_{\gamma}=\omega_{\delta+k N} / \omega_{\delta}$ for all $k \geq 0$, then

$$
\frac{\omega_{\gamma+k N}}{\omega_{\gamma+(k+1) N}}=\frac{\omega_{\delta+k N}}{\omega_{\delta+(k+1) N}} \quad \text { for all } k \geq 0
$$

Equivalently,

$$
\begin{align*}
& \frac{(|\gamma|+d k M+1) \prod_{j=1}^{d M}(|\gamma|+d k M+j)}{(|\gamma|+d k M+d M+1) \prod_{i=1}^{d} \prod_{j=1}^{M}\left(\gamma_{i}+k M+j\right)} \\
& \quad=\frac{(|\delta|+d k M+1) \prod_{j=1}^{d M}(|\delta|+d k M+j)}{(|\delta|+d k M+d M+1) \prod_{i=1}^{d} \prod_{j=1}^{M}\left(\delta_{i}+k M+j\right)} . \tag{33}
\end{align*}
$$

We define $G(\lambda)$ by replacing k with $\lambda, G(\lambda)=p(\lambda)-q(\lambda)$, where

$$
\begin{aligned}
& p(\lambda)=(|\gamma|+d \lambda M+1)(|\delta|+d \lambda M+d M+1) \prod_{j=1}^{d M}(|\gamma|+d \lambda M+j) \prod_{i=1}^{d} \prod_{j=1}^{M}\left(\delta_{i}+\lambda M+j\right), \\
& q(\lambda)=(|\delta|+d \lambda M+1)(|\gamma|+d \lambda M+d M+1) \prod_{j=1}^{d M}(|\delta|+d \lambda M+j) \prod_{i=1}^{d} \prod_{j=1}^{M}\left(\gamma_{i}+\lambda M+j\right) .
\end{aligned}
$$

Then $G(\lambda) \equiv 0$ and the roots of the two polynomials $p(\lambda)$ and $q(\lambda)$ are the same. By multiplying all the roots of $p(\lambda)$ and $q(\lambda)$ by $-d M$, we have

$$
E_{1} \cup F_{1} \cup G_{1}=E_{2} \cup F_{2} \cup G_{2},
$$

where

$$
\begin{aligned}
& E_{1}=\{|\gamma|+j: 1 \leq j \leq d M\}, \quad F_{1}=\{|\gamma|+1,|\delta|+d M+1\}, \\
& G_{1}=\left\{d\left(\delta_{i}+j\right): 1 \leq i \leq d, 1 \leq j \leq M\right\}, \\
& E_{2}=\{|\delta|+j: 1 \leq j \leq d M\}, \quad F_{2}=\{|\delta|+1,|\gamma|+d M+1\}, \\
& G_{2}=\left\{d\left(\gamma_{i}+j\right): 1 \leq i \leq d, 1 \leq j \leq M\right\} .
\end{aligned}
$$

We claim $|\gamma|=|\delta|$. Assume to the contrary, $|\gamma|<|\delta|$. Note that $|\delta|+d M$ from E_{2} does not belong to $E_{1} \cup F_{1}$, so $|\delta|+d M \in G_{1}$. That is

$$
\begin{equation*}
|\delta|+d M=d\left(\delta_{i}+j\right) \quad \text { for some } i, j \tag{34}
\end{equation*}
$$

Note that $|\delta|+1$ belongs to both E_{2} and F_{2}. Since E_{1} consists of consecutive integers which can only has at most one $|\delta|+1$ and $|\delta|+1 \notin F_{1}$, so there is another $|\delta|+1$ in G_{1}. That is

$$
\begin{equation*}
|\delta|+1=d\left(\delta_{i^{\prime}}+j^{\prime}\right) \quad \text { for some } i^{\prime}, j^{\prime} \tag{35}
\end{equation*}
$$

Equations (34) and (35) can not hold at the same time for $d \geq 2$. Similarly, $|\gamma|>|\delta|$ will also lead to a contradiction. Therefore $|\gamma|=|\delta|$. Now (33) simplifies to

$$
\prod_{i=1}^{d} \prod_{j=1}^{M}\left(\gamma_{i}+k M+j\right)=\prod_{i=1}^{d} \prod_{j=1}^{M}\left(\delta_{i}+k M+j\right) \quad \text { for all } k \geq 0
$$

As in (31), this implies that $\delta=\gamma_{\sigma}$ for some permutation $\sigma \in P(d)$. The proof on $\mathcal{D}\left(\mathbb{D}^{d}\right)$ is similar and much simpler.

On $\mathcal{K}_{\rho}\left(\mathbb{B}^{d}\right)$ when ρ is an integer, the sets F_{1} and F_{2} are absent, so we are unable to conclude $|\gamma|=|\delta|$. A little reflection can establish that $|\gamma|=|\delta|$ or $|\gamma|=|\delta| \pm 1$ as we will do in the case $d=2$ in next section. The following theorem follows from Theorem 7.1, Proposition 7.2, Lemma 7.3, and Lemma 7.4.

Theorem 7.5. Assume $N=(M, M, \ldots, M)$. Then any minimal reducing subspace X of $T_{z^{N}}$ on $\mathcal{K}_{\rho}\left(\mathbb{B}^{d}\right)(\rho$ is not a positive integer $), \mathcal{K}_{\rho}\left(\mathbb{D}^{d}\right)(\rho \neq 1), \mathcal{D}\left(\mathbb{B}^{d}\right)$, and $\mathcal{D}\left(\mathbb{D}^{d}\right)$, is of the form Span $\left\{f(z) z^{k N}: k \geq 0\right\}$, where there exists $\gamma \in J_{N}$ such that

$$
f(z)=\sum_{\sigma \in P(d)} f_{\sigma} z^{\gamma_{\sigma}}, \quad f_{\sigma} \in \mathbb{C}
$$

Thus the length of a minimal reducing subspace of $T_{z^{N}}$ can be any integer between 1 and d!.

Note that $f(z)$ is a homogenous polynomial of degree $|\gamma|$. Theorem 1.1 in [15] corresponds to the special case of the above theorem on $\mathcal{K}_{\rho}\left(\mathbb{D}^{d}\right)$ for $d=2$ and $\rho>1$.

8. On spaces of holomorphic functions of two variables.

To compare with the previous theorem immediately, we first state the following theorem, then prove the lemma needed for the proof of this theorem.

Theorem 8.1. Let $N=(M, M)$. Assume ρ is a positive integer. Then any minimal reducing subspace X of $T_{z^{N}}$ on $\mathcal{K}_{\rho}\left(\mathbb{B}^{2}\right)$ is of the form $\operatorname{Span}\left\{f(z) z^{k N}: k \geq 0\right\}$, where either there exists $\gamma=\left(\gamma_{1}, \gamma_{2}\right) \in J_{N}$ such that

$$
\begin{equation*}
f(z)=a z_{1}^{\gamma_{1}} z_{2}^{\gamma_{2}}+b z_{1}^{\gamma_{2}} z_{2}^{\gamma_{1}}, \quad a, b \in \mathbb{C} \tag{36}
\end{equation*}
$$

or there exists $0 \leq l<M$ such that

$$
\begin{equation*}
f(z)=a z_{1}^{l+1} z_{2}^{l+1}+b z_{1}^{l+1} z_{2}^{l}+c z_{1}^{l} z_{2}^{l+1}, \quad a, b, c \in \mathbb{C} \tag{37}
\end{equation*}
$$

on the Drury-Arveson space ($\rho=1$), or

$$
\begin{equation*}
f(z)=a z_{1}^{l} z_{2}^{l}+b z_{1}^{l+1} z_{2}^{l}+c z_{1}^{l} z_{2}^{l+1}, \quad a, b, c \in \mathbb{C} \tag{38}
\end{equation*}
$$

on the Hardy space $(\rho=2)$, or

$$
\begin{equation*}
f(z)=a_{1} z_{1}^{\rho-1+l} z_{2}^{l}+a_{2} z_{1}^{l} z_{2}^{\rho-1+l}+b_{1} z_{1}^{\rho-2+l} z_{2}^{l}+b_{2} z_{1}^{l} z_{2}^{\rho-2+l}, \quad a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{C} \tag{39}
\end{equation*}
$$

on the Bergman space $(\rho=3)$ and $\mathcal{K}_{\rho}\left(\mathbb{B}^{2}\right)$ with $\rho>3$. Thus the length of a minimal reducing subspace of $T_{z^{N}}$ can be 1, 2, and 3 on the Drury-Arveson space and the Hardy space, and the length of a minimal reducing subspace of $T_{z^{N}}$ can be $1,2,3$, and 4 on the Bergman space $(\rho=3)$ and on $\mathcal{K}_{\rho}\left(\mathbb{B}^{2}\right)$ with $\rho>3$.

The above theorem follows from the following lemma.
Lemma 8.2. Let $N=(M, M)$. Assume ρ is a positive integer. Let ω be on $\mathcal{K}_{\rho}\left(\mathbb{B}^{2}\right)$. Let $\gamma=\left(\gamma_{1}, \gamma_{2}\right), \delta=\left(\delta_{1}, \delta_{2}\right) \in J_{N}$ be such that $|\delta|<|\gamma|$. Then $\omega_{\gamma+k N} / \omega_{\gamma}=\omega_{\delta+k N} / \omega_{\delta}$ for all $k \geq 0$ if and only if (modulo permutations)

$$
\begin{equation*}
\left(\gamma_{1}, \gamma_{2}\right)=\left(\delta_{1}, \rho-1+\delta_{1}\right), \quad\left(\delta_{1}, \delta_{2}\right)=\left(\delta_{1}, \rho-2+\delta_{1}\right) \tag{40}
\end{equation*}
$$

Proof. As in the proofs of Lemmas 7.3 and 7.4, $\omega_{\gamma+k N} / \omega_{\gamma}=\omega_{\delta+k N} / \omega_{\delta}$ for all $k \geq 0$ if and only if

$$
\begin{equation*}
E_{1} \cup F_{1} \cup G_{1}=E_{2} \cup F_{2} \cup G_{2} \tag{41}
\end{equation*}
$$

where

$$
\begin{array}{ll}
E_{1}=\{\rho-1+|\gamma|+j: 1 \leq j \leq 2 M\}, \quad F_{1}=\left\{2\left(\delta_{1}+j\right): 1 \leq j \leq M\right\}, \\
G_{1}=\left\{2\left(\delta_{2}+j\right): 1 \leq j \leq M\right\}, & \\
E_{2}=\{\rho-1+|\delta|+j: 1 \leq j \leq 2 M\}, \quad F_{2}=\left\{2\left(\gamma_{1}+j\right): 1 \leq j \leq M\right\}, \\
G_{2}=\left\{2\left(\gamma_{2}+j\right): 1 \leq j \leq M\right\} . &
\end{array}
$$

Since E_{1} consists of consecutive integers, and F_{1} and G_{1} consist of consecutive even integers, $|\gamma|=|\delta|+1$. By using permutations, we may assume $\gamma_{1} \leq \gamma_{2}$ and $\delta_{1} \leq \delta_{2}$. Now (41) becomes

$$
\begin{equation*}
E_{1}^{\prime} \cup F_{1} \cup G_{1}=E_{2}^{\prime} \cup F_{2} \cup G_{2}, \tag{42}
\end{equation*}
$$

where

$$
E_{1}^{\prime}=\{\rho-1+|\gamma|+2 M\}, \quad E_{2}^{\prime}=\{\rho+|\delta|\} .
$$

Case (1): $\rho-1+|\gamma|+2 M=\max G_{1}=2\left(\delta_{2}+M\right)$. In this case, $2\left(\delta_{2}+M\right)$ appears twice in the left side of (42); hence

$$
2\left(\delta_{2}+M\right)=2\left(\gamma_{1}+M\right)=2\left(\gamma_{2}+M\right)
$$

That is, $\delta_{2}=\gamma_{1}=\gamma_{2}$. By $|\gamma|=|\delta|+1, \delta_{1}=\delta_{2}-1$. By $\rho-1+|\gamma|+2 M=2\left(\delta_{2}+M\right)$, $\rho-1+2 \gamma_{1}=2 \gamma_{1}$, and $\rho=1$. This corresponds to (40) (modulo permutations) for $\rho=1$.

Case (2): $\rho-1+|\gamma|+2 M>\max G_{1}=2\left(\delta_{2}+M\right)$. In this case,

$$
\rho-1+|\gamma|+2 M=2\left(\gamma_{2}+M\right) .
$$

That is, $\gamma_{2}=\rho-1+\gamma_{1}$. It also follows that $\rho-1+|\gamma|+2 M=2\left(\delta_{2}+M\right)+2$ since otherwise $\rho-1+|\gamma|+2 M-2=2\left(\gamma_{2}+M-1\right)$ belongs to the right side of (42) $\left(G_{2}\right)$, but does not belong to the left side of (42). Hence $\delta_{2}=\gamma_{2}-1=\rho-2+\gamma_{1}$. Now $|\gamma|=|\delta|+1$ yields $\gamma_{1}=\delta_{1}$. Therefore (40) holds.

Case (3): $\rho-1+|\gamma|+2 M<\max G_{1}=2\left(\delta_{2}+M\right)$. Here,

$$
2\left(\delta_{2}+M\right)=\max G_{1}=\max G_{2}=2\left(\gamma_{2}+M\right) .
$$

Now $|\gamma|=|\delta|+1$ yields $\gamma_{1}=\delta_{1}+1$. Then (42) becomes

$$
\left\{\rho-1+|\gamma|+2 M, 2\left(\delta_{1}+1\right)\right\}=\left\{\rho+|\delta|, 2\left(\gamma_{1}+M\right)\right\} .
$$

In particular $2\left(\delta_{1}+1\right)=\rho+|\delta|$. That is, $\delta_{1}=\rho+\delta_{2}$, which is excluded by our assumption $\delta_{1} \leq \delta_{2}$.

The proof is complete.
We next discuss reducing subspaces of $T_{z^{N}}$ where $N=\left(N_{1}, N_{2}, \ldots, N_{d}\right)$ and some of N_{i} are distinct. If $\omega_{\gamma+k N} / \omega_{\gamma}=\omega_{\delta+k N} / \omega_{\delta}$ for all $k \geq 0$, the relationship between γ and δ could be complicated for $d \geq 3$ as shown in [19] on $\mathcal{K}_{\rho}\left(\mathbb{D}^{d}\right)$. In particular, the reducing subspaces of $T_{z^{N}}$ for $N=\left(N_{1}, N_{2}, N_{3}\right)$ with distinct N_{i} on $\mathcal{K}_{\rho}\left(\mathbb{D}^{d}\right)$ for $d=3, \rho>1$ are completely worked out there. Here we will discuss Dirichlet spaces $\mathcal{D}\left(\mathbb{B}^{d}\right)$ or $\mathcal{D}\left(\mathbb{D}^{d}\right)$ for $d=2$, and the answers are still relatively compact. Surprisingly the answers are quite different. Let $\operatorname{GCD}\left(N_{1}, N_{2}\right)$ denote the greatest common factor of N_{1} and N_{2}.

Lemma 8.3. Assume $N=\left(N_{1}, N_{2}\right)$. Write

$$
N_{1}=N_{1}^{\prime} M, \quad N_{2}=N_{2}^{\prime} M, \quad M=\operatorname{GCD}\left(N_{1}, N_{2}\right)
$$

Let ω be on $\mathcal{D}\left(\mathbb{D}^{2}\right)$. Let $\gamma=\left(\gamma_{1}, \gamma_{2}\right), \delta=\left(\delta_{1}, \delta_{2}\right) \in J_{N}$ and $\gamma \neq \delta$. Then $\omega_{\gamma+k N} / \omega_{\gamma}=$ $\omega_{\delta+k N} / \omega_{\delta}$ for all $k \geq 0$ if and only if there exist positive integers l and m such that $\min \{l, m\} \leq M, l \neq m$ and

$$
\begin{equation*}
\left(\gamma_{1}, \gamma_{2}\right)=\left(l N_{1}^{\prime}-1, m N_{2}^{\prime}-1\right), \quad\left(\delta_{1}, \delta_{2}\right)=\left(m N_{1}^{\prime}-1, l N_{2}^{\prime}-1\right) . \tag{43}
\end{equation*}
$$

Proof. Let ω be on $\mathcal{D}\left(\mathbb{D}^{2}\right)$. Recall $\omega_{\alpha}=\left(\alpha_{1}+1\right)\left(\alpha_{2}+1\right)$. If $\omega_{\gamma+k N} / \omega_{\gamma}=$ $\omega_{\delta+k N} / \omega_{\delta}$ for all $k \geq 0$ and $G(k)=\omega_{\gamma+k N} \omega_{\delta}-\omega_{\delta+k N} \omega_{\gamma}=0$, then with k replaced by λ,

$$
\begin{aligned}
G(\lambda) & =p(\lambda)-q(\lambda), \text { where } \\
p(\lambda) & =\left(\gamma_{1}+\lambda N_{1}+1\right)\left(\gamma_{2}+\lambda N_{2}+1\right)\left(\delta_{1}+1\right)\left(\delta_{2}+1\right), \\
q(\lambda) & =\left(\delta_{1}+\lambda N_{1}+1\right)\left(\delta_{2}+\gamma N_{2}+1\right)\left(\gamma_{1}+1\right)\left(\gamma_{2}+1\right),
\end{aligned}
$$

$G(\lambda) \equiv 0$, and the roots of the two polynomials $p(\lambda)$ and $q(\lambda)$ are the same. Multiplying the roots by $-N_{1}^{\prime} N_{2}^{\prime} M$, we have

$$
\left\{\left(\gamma_{1}+1\right) N_{2}^{\prime},\left(\gamma_{2}+1\right) N_{1}^{\prime}\right\}=\left\{\left(\delta_{1}+1\right) N_{2}^{\prime},\left(\delta_{2}+1\right) N_{1}^{\prime}\right\} .
$$

Thus

$$
\left(\gamma_{1}+1\right) N_{2}^{\prime}=\left(\delta_{2}+1\right) N_{1}^{\prime}, \quad\left(\gamma_{2}+1\right) N_{1}^{\prime}=\left(\delta_{1}+1\right) N_{2}^{\prime} .
$$

Since N_{1}^{\prime} and N_{2}^{\prime} are coprime, there exist integers l and m such that (43) holds.
The case for $\mathcal{D}\left(\mathbb{B}^{2}\right)$ is more difficult, but the result is simple.
Lemma 8.4. Assume $N=\left(N_{1}, N_{2}\right)$ with $N_{1} \neq N_{2}$. Let ω be on $\mathcal{D}\left(\mathbb{B}^{2}\right)$. Let γ, δ be two multi-indices in J_{N}. If $\omega_{\gamma+k N} / \omega_{\gamma}=\omega_{\delta+k N} / \omega_{\delta}$ for all $k \geq 0$, then $\gamma=\delta$.

Proof. Let ω be on $\mathcal{D}\left(\mathbb{B}^{2}\right)$. Write

$$
N_{1}=N_{1}^{\prime} M, \quad N_{2}=N_{2}^{\prime} M, \quad M=\operatorname{GCD}\left(N_{1}, N_{2}\right) .
$$

If $\omega_{\gamma+k N} / \omega_{\gamma}=\omega_{\delta+k N} / \omega_{\delta}$ for all $k \geq 0$, then as in (33), $G(\lambda) \equiv 0$ and the roots of the two polynomials $p(\lambda)$ and $q(\lambda)$ are the same, where

$$
\begin{aligned}
& G(\lambda)=p(\lambda)-q(\lambda), \\
& p(\lambda)=(|\gamma|+\lambda|N|+1)(|\delta|+(\lambda+1)|N|+1) \prod_{j=1}^{|N|}(|\gamma|+\lambda|N|+j) \prod_{i=1}^{2} \prod_{j=1}^{N_{i}}\left(\delta_{i}+\lambda N_{i}+j\right), \\
& q(\lambda)=(|\delta|+\lambda|N|+1)(|\gamma|+(\lambda+1)|N|+1) \prod_{j=1}^{|N|}(|\delta|+\lambda|N|+j) \prod_{i=1}^{2} \prod_{j=1}^{N_{i}}\left(\gamma_{i}+\lambda N_{i}+j\right) .
\end{aligned}
$$

By multiplying all the roots of $p(\lambda)$ and $q(\lambda)$ by $-\left(N_{1}^{\prime}+N_{2}^{\prime}\right) N_{1}^{\prime} N_{2}^{\prime} M$, we have

$$
E_{1} \cup F_{1} \cup G_{1}=E_{2} \cup F_{2} \cup G_{2},
$$

where

$$
\begin{aligned}
& E_{1}=\left\{(|\gamma|+j) N_{1}^{\prime} N_{2}^{\prime}: 1 \leq j \leq|N|\right\}, \\
& F_{1}=\left\{(|\gamma|+1) N_{1}^{\prime} N_{2}^{\prime},(|\delta|+|N|+1) N_{1}^{\prime} N_{2}^{\prime}\right\}, \\
& G_{1}=\left\{\left(\delta_{1}+j\right)\left(N_{1}^{\prime}+N_{2}^{\prime}\right) N_{2}^{\prime}: 1 \leq j \leq N_{1}\right\} \cup\left\{\left(\delta_{2}+j\right)\left(N_{1}^{\prime}+N_{2}^{\prime}\right) N_{1}^{\prime}: 1 \leq j \leq N_{2}\right\}, \\
& E_{2}=\left\{(|\delta|+j) N_{1}^{\prime} N_{2}^{\prime}: 1 \leq j \leq|N|\right\}, \\
& F_{2}=\left\{(|\delta|+1) N_{1}^{\prime} N_{2}^{\prime},(|\gamma|+|N|+1) N_{1}^{\prime} N_{2}^{\prime}\right\}, \\
& G_{2}=\left\{\left(\gamma_{1}+j\right)\left(N_{1}^{\prime}+N_{2}^{\prime}\right) N_{2}^{\prime}: 1 \leq j \leq N_{1}\right\} \cup\left\{\left(\gamma_{2}+j\right)\left(N_{1}^{\prime}+N_{2}^{\prime}\right) N_{1}^{\prime}: 1 \leq j \leq N_{2}\right\} .
\end{aligned}
$$

We claim $|\gamma|=|\delta|$. Assume to the contrary, $|\gamma|<|\delta|$. Note that $(|\delta|+|N|) N_{1}^{\prime} N_{2}^{\prime}>$ $\max E_{1}$, so $(|\delta|+|N|) N_{1}^{\prime} N_{2}^{\prime}$ from E_{2} does not belong to $E_{1} \cup F_{1}$. Hence $(|\delta|+|N|) N_{1}^{\prime} N_{2}^{\prime} \in$ G_{1}. That is,

$$
\begin{array}{rlrl}
\text { either } \begin{aligned}
(|\delta|+|N|) N_{1}^{\prime} N_{2}^{\prime} & =\left(\delta_{1}+j\right)\left(N_{1}^{\prime}+N_{2}^{\prime}\right) N_{2}^{\prime}
\end{aligned} & \text { for some } j \\
\text { or }(|\delta|+|N|) N_{1}^{\prime} N_{2}^{\prime} & =\left(\delta_{2}+j\right)\left(N_{1}^{\prime}+N_{2}^{\prime}\right) N_{1}^{\prime} & \text { for some } j .
\end{array}
$$

In either case, since N_{1}^{\prime} and $N_{1}^{\prime}+N_{2}^{\prime}$ are coprime and N_{2}^{\prime} and $N_{1}^{\prime}+N_{2}^{\prime}$ are coprime,

$$
\begin{equation*}
|\delta|+|N|=a\left(N_{1}^{\prime}+N_{2}^{\prime}\right) \quad \text { for some integer } a . \tag{44}
\end{equation*}
$$

Note that $(|\delta|+|N|+1) N_{1}^{\prime} N_{2}^{\prime}>\max E_{2}$, so $(|\delta|+|N|+1) N_{1}^{\prime} N_{2}^{\prime}$ from F_{1} does not belong to $E_{2} \cup F_{2}$. Thus $(|\delta|+|N|+1) N_{1}^{\prime} N_{2}^{\prime} \in G_{2}$. That is,

$$
\begin{aligned}
& \text { either }(|\delta|+|N|+1) N_{1}^{\prime} N_{2}^{\prime}=\left(\gamma_{1}+j\right)\left(N_{1}^{\prime}+N_{2}^{\prime}\right) N_{2}^{\prime} \quad \text { for some } j \\
& \text { or }(|\delta|+|N|+1) N_{1}^{\prime} N_{2}^{\prime}=\left(\gamma_{2}+j\right)\left(N_{1}^{\prime}+N_{2}^{\prime}\right) N_{1}^{\prime} \quad \text { for some } j \text {. }
\end{aligned}
$$

In either case

$$
\begin{equation*}
|\delta|+|N|+1=b\left(N_{1}^{\prime}+N_{2}^{\prime}\right) \quad \text { for some integer } b . \tag{45}
\end{equation*}
$$

Equations (44) and (45) can not hold at the same time since $N_{1}^{\prime}+N_{2}^{\prime}>1$. Similarly, $|\gamma|>|\delta|$ will also lead to a contradiction. Therefore $|\gamma|=|\delta|$. Now we have $G_{1}=G_{2}$. Thus

$$
\begin{aligned}
& \left(\delta_{1}+N_{1}\right)\left(N_{1}^{\prime}+N_{2}^{\prime}\right) N_{2}^{\prime}=\left(\gamma_{2}+N_{2}\right)\left(N_{1}^{\prime}+N_{2}^{\prime}\right) N_{1}^{\prime}, \\
& \left(\delta_{2}+N_{2}\right)\left(N_{1}^{\prime}+N_{2}^{\prime}\right) N_{1}^{\prime}=\left(\gamma_{1}+N_{1}\right)\left(N_{1}^{\prime}+N_{2}^{\prime}\right) N_{2}^{\prime} .
\end{aligned}
$$

Since N_{1}^{\prime} and N_{2}^{\prime} are coprime, there exist integers l and m such that

$$
\left(\gamma_{1}, \gamma_{2}\right)=\left(l N_{1}^{\prime}, m N_{2}^{\prime}\right), \quad\left(\delta_{1}, \delta_{2}\right)=\left(m N_{1}^{\prime}, l N_{2}^{\prime}\right) .
$$

But $\gamma_{1}+\gamma_{2}=\delta_{1}+\delta_{2}$ or $l N_{1}^{\prime}+m N_{2}^{\prime}=m N_{1}^{\prime}+l N_{2}^{\prime}$ implies that $l=m$.
The following theorem together with Theorem 7.5 gives a complete description of reducing subspaces of $T_{z^{N}}$ on $\mathcal{D}\left(\mathbb{D}^{d}\right)$ or $\mathcal{D}\left(\mathbb{B}^{d}\right)$ for $d=2$. Note $k N=\left(k N_{1}, k N_{2}\right)$ in the theorem.

Theorem 8.5. Assume $N=\left(N_{1}, N_{2}\right)$ with $N_{1} \neq N_{2}$. Write

$$
N_{1}=N_{1}^{\prime} M, \quad N_{2}=N_{2}^{\prime} M, \quad M=\operatorname{GCD}\left(N_{1}, N_{2}\right) .
$$

(i) Any minimal reducing subspace X of $T_{z^{N}}$ on $\mathcal{D}\left(\mathbb{D}^{2}\right)$ is of the form $\operatorname{Span}\left\{f(z) z^{k N}\right.$: $k \geq 0\}$, where either $f(z)=z^{\gamma}$ for some $\gamma=\left(\gamma_{1}, \gamma_{2}\right) \in J_{N}$ or

$$
f(z)=a z^{\gamma}+b z^{\delta}, \quad a, b \in \mathbb{C} \text { and } a b \neq 0
$$

with

$$
\left(\gamma_{1}, \gamma_{2}\right)=\left(l N_{1}^{\prime}-1, m N_{2}^{\prime}-1\right), \quad\left(\delta_{1}, \delta_{2}\right)=\left(m N_{1}^{\prime}-1, l N_{2}^{\prime}-1\right),
$$

for some positive integers l and m such that $\min \{l, m\} \leq M$ and $l \neq m$.
(ii) Any minimal reducing subspace X of $T_{z^{N}}$ on $\mathcal{D}\left(\mathbb{B}^{2}\right)$ is of the form $\operatorname{Span}\left\{z^{\gamma} z^{k N}\right.$: $k \geq 0\}$ for some $\gamma=\left(\gamma_{1}, \gamma_{2}\right) \in J_{N}$.

Next we characterize reducing subspaces of $T_{z^{N}}$ on $\mathcal{K}_{\rho}\left(\mathbb{D}^{d}\right)$ for $d=2$. The case $\rho>1$ is treated in Theorem $2.4(\rho=2)$ and Theorem $3.2(\rho>1$ and $\rho \neq 2)$ in [18]. We include a self-contained exposition for completeness. We give a slightly improved and unified proof for both $\rho>1$ and $\rho<1$ by extending some ideas from [18]. We first state the result, which is presented slightly differently from [18], then we prove the lemma. Part (i) of Theorem 8.6 is similar to Part (i) Theorem 8.5. Indeed we will state a unified Theorem 9.5 for a result related to von Neumann algebras on $\mathcal{D}\left(\mathbb{D}^{d}\right)$ and $\mathcal{K}_{\rho}\left(\mathbb{D}^{d}\right)$ for $d=2$.

Theorem 8.6. Assume $N=\left(N_{1}, N_{2}\right)$ with $N_{1} \neq N_{2}$. Write

$$
N_{1}=N_{1}^{\prime} M, \quad N_{2}=N_{2}^{\prime} M, \quad M=\operatorname{GCD}\left(N_{1}, N_{2}\right) .
$$

(i) Any minimal reducing subspace X of $T_{z^{N}}$ on $\mathcal{K}_{\rho}\left(\mathbb{D}^{2}\right)$ for $\rho=2$ is of the form Span $\left\{f(z) z^{k N}: k \geq 0\right\}$, where either $f(z)=z^{\gamma}$ for some $\gamma=\left(\gamma_{1}, \gamma_{2}\right) \in J_{N}$ or

$$
f(z)=a z^{\gamma}+b z^{\delta}, \quad a, b \in \mathbb{C} \text { and } a b \neq 0
$$

with

$$
\left(\gamma_{1}, \gamma_{2}\right)=\left(l N_{1}^{\prime}-1, m N_{2}^{\prime}-1\right), \quad\left(\delta_{1}, \delta_{2}\right)=\left(m N_{1}^{\prime}-1, l N_{2}^{\prime}-1\right),
$$

for some positive integers l and m such that $\min \{l, m\} \leq M$ and $l \neq m$.
(ii) Any minimal reducing subspace X of $T_{z^{N}}$ on $\mathcal{K}_{\rho}\left(\mathbb{D}^{2}\right)$ for $\rho \neq 1,2$ is of the form Span $\left\{z^{\gamma} z^{k N}: k \geq 0\right\}$ for some $\gamma=\left(\gamma_{1}, \gamma_{2}\right) \in J_{N}$.

Lemma 8.7. Assume $N=\left(N_{1}, N_{2}\right)$ with $N_{1} \neq N_{2}$. Write

$$
N_{1}=N_{1}^{\prime} M, \quad N_{2}=N_{2}^{\prime} M, \quad M=\operatorname{GCD}\left(N_{1}, N_{2}\right)
$$

Let ω be on $\mathcal{K}_{\rho}\left(\mathbb{D}^{2}\right)$. Let γ, δ be two multi-indices in J_{N}. If $\omega_{\gamma+k N} / \omega_{\gamma}=\omega_{\delta+k N} / \omega_{\delta}$ for all $k \geq 0$, then $\gamma=\delta$ in the case $\rho \neq 1,2$. In the case $\rho=1$, $\omega_{\gamma+k N} / \omega_{\gamma}=\omega_{\delta+k N} / \omega_{\delta}$ for all $k \geq 0$. In the case $\rho=2$, if $\omega_{\gamma+k N} / \omega_{\gamma}=\omega_{\delta+k N} / \omega_{\delta}$ for all $k \geq 0$, then either $\gamma=\delta$ or

$$
\begin{equation*}
\left(\gamma_{1}, \gamma_{2}\right)=\left(l N_{1}^{\prime}-1, m N_{2}^{\prime}-1\right), \quad\left(\delta_{1}, \delta_{2}\right)=\left(m N_{1}^{\prime}-1, l N_{2}^{\prime}-1\right), \tag{46}
\end{equation*}
$$

for some positive integers l and m such that $\min \{l, m\} \leq M$ and $l \neq m$.
Proof. As Lemma 5.3,

$$
\frac{\omega_{\gamma+k N}}{\omega_{\delta+k N}} \rightarrow 1 \text { as } k \rightarrow \infty
$$

Assume $\omega_{\gamma+k N} / \omega_{\gamma}=\omega_{\delta+k N} / \omega_{\delta}$ for all $k \geq 0$, then

$$
\frac{\omega_{\gamma+k N}}{\omega_{\delta+k N}}=\frac{\omega_{\gamma}}{\omega_{\delta}}=1 \quad \text { for all } k \geq 0
$$

Assume $\rho \neq 1,2$. We will prove $\gamma=\delta$. Note that if $\gamma_{1}=\delta_{1}$, then it follows from $\omega_{\gamma}=\omega_{\delta}$ that $\delta_{2}=\gamma_{2}$. Thus, by symmetry, we can assume $\gamma_{1}<\delta_{1}$. We claim that $\gamma_{2}>\delta_{2}$. If $\gamma_{2}<\delta_{2}$, then $\omega_{\gamma+k N}=\omega_{\delta+k N}$ for all $k \geq 0$ implies that

$$
\begin{aligned}
\prod_{i=1}^{\delta_{1}-\gamma_{1}} & \left(\gamma_{1}+\lambda N_{1}+i\right) \prod_{j=1}^{\delta_{2}-\gamma_{2}}\left(\gamma_{2}+\lambda N_{2}+j\right) \\
& =\prod_{i=1}^{\delta_{1}-\gamma_{1}}\left(\rho+\gamma_{1}+\lambda N_{1}+i-1\right) \prod_{j=1}^{\delta_{2}-\gamma_{2}}\left(\rho+\gamma_{2}+\lambda N_{2}+j-1\right)
\end{aligned}
$$

Then the roots of the two polynomials are the same. In particular, the sum of the roots of the polynomial on the left side minus the sum of the roots of the polynomial on the right side is zero. That is,

$$
-\frac{1}{N_{1}}(1-\rho)\left(\delta_{1}-\gamma_{1}\right)-\frac{1}{N_{2}}(1-\rho)\left(\delta_{2}-\gamma_{2}\right)=0,
$$

which is impossible. So we have $\gamma_{1}<\delta_{1}$ and $\gamma_{2}>\delta_{2}$. Now $\omega_{\gamma+k N}=\omega_{\delta+k N}$ for all $k \geq 0$ implies that

$$
\begin{aligned}
\prod_{i=1}^{\delta_{1}-\gamma_{1}} & \left(\rho+\gamma_{1}+\lambda N_{1}+i-1\right) \prod_{j=1}^{\gamma_{2}-\delta_{2}}\left(\delta_{2}+\lambda N_{2}+j\right) \\
& =\prod_{i=1}^{\delta_{1}-\gamma_{1}}\left(\gamma_{1}+\lambda N_{1}+i\right) \prod_{j=1}^{\gamma_{2}-\delta_{2}}\left(\rho+\delta_{2}+\lambda N_{2}+j-1\right)
\end{aligned}
$$

Then the roots of the two polynomials are the same. As before, by considering the sum of the roots, we have

$$
\begin{align*}
-\frac{1}{N_{1}}(\rho-1)\left(\delta_{1}-\gamma_{1}\right)+\frac{1}{N_{2}}(\rho-1)\left(\gamma_{2}-\delta_{2}\right) & =0 \\
\text { or }\left(\delta_{1}-\gamma_{1}\right) N_{2}^{\prime}-\left(\gamma_{2}-\delta_{2}\right) N_{1}^{\prime} & =0 \tag{47}
\end{align*}
$$

By multiplying the roots by $-N_{1}^{\prime} N_{2}^{\prime} M$, we have

$$
F_{1} \cup G_{1}=F_{2} \cup G_{2}
$$

where

$$
\begin{aligned}
& F_{1}=\left\{\left(\rho+\gamma_{1}+i-1\right) N_{2}^{\prime}: 1 \leq i \leq \delta_{1}-\gamma_{1}\right\}, \quad G_{1}=\left\{\left(\delta_{2}+j\right) N_{1}^{\prime}: 1 \leq j \leq \gamma_{2}-\delta_{2}\right\}, \\
& F_{2}=\left\{\left(\gamma_{1}+i\right) N_{2}^{\prime}: 1 \leq i \leq \delta_{1}-\gamma_{1}\right\}, \quad G_{2}=\left\{\left(\rho+\delta_{2}+j-1\right) N_{1}^{\prime}: 1 \leq j \leq \gamma_{2}-\delta_{2}\right\} .
\end{aligned}
$$

In the case $0<\rho<1$, note that

$$
\begin{aligned}
& \max F_{1} \cup G_{1}=\max \left\{\left(\rho+\delta_{1}-1\right) N_{2}^{\prime}, \gamma_{2} N_{1}^{\prime}\right\} \\
& \max F_{2} \cup G_{2}=\max \left\{\delta_{1} N_{2}^{\prime},\left(\rho+\gamma_{2}-1\right) N_{1}^{\prime}\right\}
\end{aligned}
$$

Thus

$$
\begin{equation*}
\gamma_{2} N_{1}^{\prime}=\delta_{1} N_{2}^{\prime} . \tag{48}
\end{equation*}
$$

Similarly, $\min F_{1} \cup G_{1}=\min F_{2} \cup G_{2}$ implies that

$$
\begin{equation*}
\left(\rho+\delta_{2}\right) N_{1}^{\prime}=\left(\rho+\gamma_{1}\right) N_{2}^{\prime} . \tag{49}
\end{equation*}
$$

Equations (47), (48), and (49) imply that $\rho N_{1}^{\prime}=\rho N_{2}^{\prime}$, which is a contradiction.
In the case $\rho>1, \max F_{1} \cup G_{1}=\max F_{2} \cup G_{2}$ implies that

$$
\begin{equation*}
\left(\rho+\delta_{1}-1\right) N_{2}^{\prime}=\left(\rho+\gamma_{2}-1\right) N_{1}^{\prime} \tag{50}
\end{equation*}
$$

and $\min F_{1} \cup G_{1}=\min F_{2} \cup G_{2}$ implies that

$$
\begin{equation*}
\left(\gamma_{1}+1\right) N_{2}^{\prime}=\left(\delta_{2}+1\right) N_{1}^{\prime} . \tag{51}
\end{equation*}
$$

Equations (47), (50), and (51) imply that $(\rho-2) N_{1}^{\prime}=(\rho-2) N_{2}^{\prime}$, which is a contradiction if $\rho \neq 2$.

In the case $\rho=2$, (50) or (51) imply (46), since N_{1}^{\prime} and N_{2}^{\prime} are coprime. The proof is complete.

9. Reducing subspaces and von Neumann algebras.

In this section we will use reducing subspaces of operators to reveal the structures of von Neumann algebras associated with these operators. Let \mathcal{A} be a von Neumann algebra in $B(H)$ and \mathcal{A}^{\prime} be the commutant of \mathcal{A}. A von Neumann algebra is the norm closed linear span of its projections (Proposition 13.3 [4]). Note that a projection $P_{H_{0}} \in \mathcal{A}^{\prime}$ if and only if H_{0} is a reducing subspace of \mathcal{A}. Therefore

$$
\mathcal{A}^{\prime}=\operatorname{Span}\left\{P_{H_{0}}: H_{0} \text { is any reducing subspace of } \mathcal{A}\right\} .
$$

Thus knowing reducing subspaces of \mathcal{A} will help us to identify \mathcal{A}^{\prime}. For two von Neumann algebras \mathcal{A} and $\mathcal{B}, \mathcal{A} \approx \mathcal{B}$ means \mathcal{A} is $*$-isomorphic to \mathcal{B}. Let $M_{n}(\mathbb{C})$ denote the algebra of $n \times n$ complex matrices, and let $M_{\infty}(\mathbb{C})$ denote $B(H)$ for an infinite dimensional separable complex Hilbert space. For example, let $W^{*}\left(z_{1}^{N_{1}}, \ldots, z_{d}^{N_{d}}\right)$ be the von Neumann algebra generated by $M_{z_{1}^{N_{1}}}, \ldots, M_{z_{d}^{N_{d}}}, M_{z_{1}^{N_{1}}}^{*}, \ldots, M_{z_{d}^{N_{d}}}^{*}$ in $B\left(H_{\omega}^{2}\right)$ as in (10), and let $v\left(z_{1}^{N_{1}}, \ldots, z_{d}^{N_{d}}\right)$ be the commutant of $W^{*}\left(z_{1}^{N_{1}}, \ldots, z_{d}^{N_{d}}\right)$. Theorem 5.4 implies the following result.

Theorem 9.1. Let ω be on $\mathcal{K}_{\rho}\left(\mathbb{B}^{d}\right), \mathcal{K}_{\rho}\left(\mathbb{D}^{d}\right)(\rho \neq 1), \mathcal{D}\left(\mathbb{B}^{d}\right)$, and $\mathcal{D}\left(\mathbb{D}^{d}\right)$. Then $v\left(z_{1}^{N_{1}}, \ldots, z_{d}^{N_{d}}\right)$ is abelian. In fact

$$
\begin{equation*}
v\left(z_{1}^{N_{1}}, \ldots, z_{d}^{N_{d}}\right) \approx \bigoplus_{i=1}^{L} \mathbb{C}, \text { where } L=N_{1} \cdots N_{d} \tag{52}
\end{equation*}
$$

In the case $\mathcal{K}_{\rho}\left(\mathbb{D}^{d}\right)$ for $\rho=1, v\left(z_{1}^{N_{1}}, \ldots, z_{d}^{N_{d}}\right)$ is not abelian unless $N_{1}=\cdots=N_{d}=1$. In fact

$$
\begin{equation*}
v\left(z_{1}^{N_{1}}, \ldots, z_{d}^{N_{d}}\right) \approx M_{L}(\mathbb{C}) \tag{53}
\end{equation*}
$$

To prove the above theorem, we first have to study when two reducing subspaces are equivalent in a von Neumann algebra. Again we find it is more convenient to discuss in the general framework of weighted shifts with operator weights. Let $S_{\Phi}=\left(S_{1}, \ldots, S_{d}\right)$ be a tuple of weighted shifts on $l_{d}^{2}(E)$. Let $\left\{g_{i}\right\}_{i=1}^{\infty}$ be an orthonormal basis of E. Assume $\Phi=\left\{\Phi_{\alpha, i}: \alpha \in Z_{+}^{d}, i=1, \ldots, d\right\}$ is a bounded set of invertible positive diagonal operators (with respect to the basis $\left\{g_{i}\right\}_{i=1}^{\infty}$ of E) in $B(E)$. Then by Theorem 2.4,

$$
V\left(g_{i}\right)=\operatorname{Span}\left\{S_{\Phi}^{\alpha} g_{i}: \alpha \geq 0\right\}
$$

is a (common) reducing subspace of S_{Φ}. Recall two projections P_{1} and P_{2} are equivalent in a von Neumann algebra \mathcal{A} in $B(H)$ if there exists a partial isometry U in \mathcal{A} such that $U U^{*}=P_{1}$ and $U^{*} U=P_{2}$. We say two subspaces H_{1} and H_{2} of H are equivalent in \mathcal{A} if $P_{H_{1}}$ and $P_{H_{2}}$ are equivalent in \mathcal{A}. As before, let $W^{*}\left(S_{\Phi}\right)$ be the von Neumann algebra generated by S_{Φ} and S_{Φ}^{*}, and let $v\left(S_{\Phi}\right)=\left\{W^{*}\left(S_{\Phi}\right)\right\}^{\prime}$.

Lemma 9.2. For $i \neq j$, the following are equivalent.
(i) $V\left(g_{i}\right)$ is equivalent to $V\left(g_{j}\right)$ in $v\left(S_{\Phi}\right)$.
(ii) Each $\Phi_{\alpha, i}$ in Φ restricted to Span $\left\{g_{i}, g_{j}\right\}$ is a constant multiple of the identity.
(iii) Each W_{α} (as defined in (4)) restricted to Span $\left\{g_{i}, g_{j}\right\}$ is a constant multiple of the identity.
(iv) For any $a, b \neq 0, V\left(a g_{i}+b g_{j}\right)=\operatorname{Span}\left\{S_{\Phi}^{\alpha}\left(a g_{i}+b g_{j}\right): \alpha \geq 0\right\}$ is also a reducing subspace of S_{Φ}.

Proof. We prove (i) implies (iii). Without loss of generality, assume $i=1$ and $j=2$. A partial isometry U, which maps $V\left(g_{1}\right)$ onto $V\left(g_{2}\right)$, belongs to $v\left(S_{\Phi}\right)$ if and only if $U S_{\Phi}^{\alpha}=S_{\Phi}^{\alpha} U$ and $U S_{\Phi}^{* \alpha}=S_{\Phi}^{* \alpha} U$ for every $\alpha \geq 0$. Thus $S_{\Phi}^{* \alpha} U g_{1} e_{0}=U S_{\Phi}^{* \alpha} g_{1} e_{0}=0$ for $\alpha \neq 0$ implies that $U g_{1} e_{0}=\lambda g_{2} e_{0}$ for some complex number λ with $|\lambda|=1$. Now

$$
\begin{aligned}
U S_{\Phi}^{\alpha} g_{1} e_{0} & =U\left[\left(W_{\alpha} g_{1}\right) e_{\alpha}\right], \text { and } \\
S_{\Phi}^{\alpha} U g_{1} e_{0} & =S_{\Phi}^{\alpha}\left(\lambda g_{2} e_{0}\right)=\lambda\left(W_{\alpha} g_{2}\right) e_{\alpha} .
\end{aligned}
$$

Since W_{α} is a positive diagonal operator, $W_{\alpha} g_{1}=\lambda_{1} g_{1}$ and $W_{\alpha} g_{2}=\lambda_{2} g_{2}$. Thus

$$
\begin{aligned}
\left\|U\left[\left(W_{\alpha} g_{1}\right) e_{\alpha}\right]\right\| & =\left\|\left(W_{\alpha} g_{1}\right) e_{\alpha}\right\|=\lambda_{1} \\
& =\left\|\lambda\left(W_{\alpha} g_{2}\right) e_{\alpha}\right\|=\lambda_{2} .
\end{aligned}
$$

This proves (iii). The implication (iii) to (i) is also clear by defining the partial isometry U as $U\left(S_{\Phi}^{\alpha} g_{1}\right)=S_{\Phi}^{\alpha} g_{2}$ for $\alpha \geq 0$.

The equivalence of (ii) and (iii) follows from (4). The equivalence of (iii) and (iv) follows from Lemma 4.4.

The above lemma also holds when E is a finite dimensional complex Hilbert space.
Proof of Theorem 9.1. Note that

$$
H_{\omega}^{2}=\underset{\gamma \in J_{N}}{\bigoplus} H_{\gamma} \text { where } H_{\gamma}=\operatorname{Span}\left\{z^{\gamma} z^{k N}: k=\left(k_{1}, \ldots, k_{d}\right) \geq 0\right\} .
$$

By Theorem 4.2 and Lemma 9.2, each H_{γ} is a minimal reducing subspace of $\left(M_{z_{1}^{N_{1}}}, \ldots, M_{z_{d}^{N_{d}}}\right)$. Furthermore, in the case $\rho \neq 1$, by Theorem 5.4, H_{γ} is not equivalent to H_{δ} for $\gamma \neq \delta$. By Theorem 50.19 [4], we have (52) where L is the cardinality of the index set J_{N}.

In the case $\mathcal{K}_{\rho}\left(\mathbb{D}^{d}\right)$ with $\rho=1$,

$$
H_{\omega}^{2}=\underset{\gamma \in J_{N}}{\bigoplus} H_{\gamma}
$$

Each H_{γ} is a minimal reducing subspace of $\left(M_{z_{1}^{N_{1}}}, \ldots, M_{z_{d}^{N_{d}}}\right)$. Furthermore, H_{γ} is equivalent to H_{δ} for $\gamma \neq \delta$ since W_{α} is the identity operator. Therefore $v\left(z_{1}^{N_{1}}, \ldots, z_{d}^{N_{d}}\right)$ is a homogenous von Neumann algebra. By Corollary 50.16 [4], we have (53).

Similarly, Theorem 8.1 and Theorem 7.5 also lead to the structures of various von Neumann algebras. Let $W^{*}\left(z_{1}^{M} \cdots z_{d}^{M}\right)$ be the von Neumann algebra generated by $T_{z_{1}^{M} \cdots z_{d}^{M}}$ and $T_{z_{1}^{M} \ldots z_{d}^{M}}^{*}$ in $B\left(H_{\omega}^{2}\right)$ as in (10), and let $v\left(z_{1}^{M} \cdots z_{d}^{M}\right)$ be the commutant of $W^{*}\left(z_{1}^{M} \cdots z_{d}^{M}\right)$.

Theorem 9.3. Let ω be on $\mathcal{K}_{\rho}\left(\mathbb{B}^{d}\right)$ (ρ is not a positive integer $), \mathcal{K}_{\rho}\left(\mathbb{D}^{d}\right)(\rho \neq 1)$, $\mathcal{D}\left(\mathbb{B}^{d}\right)$, and $\mathcal{D}\left(\mathbb{D}^{d}\right)$. Then $v\left(z_{1}^{M} \cdots z_{d}^{M}\right)$ is $*$-isomorphic to

$$
\left[\bigoplus_{i=1}^{M} \mathbb{C}\right] \bigoplus_{j=2}^{d}\left[\bigoplus_{i=1}^{\infty} M_{d(d-1) \cdots(d-j+2)}(\mathbb{C})\right]
$$

Proof. Write $N=(M, \ldots, M)$ and

$$
\begin{aligned}
J_{N} & =\bigcup_{j=1}^{d} J_{N, j}, \text { where } \\
J_{N, j} & =\left\{\gamma=\left(\gamma_{1}, \ldots, \gamma_{d}\right) \in J_{N}: \text { there are } j \text { distinct numbers in } \gamma_{1}, \ldots, \gamma_{d}\right\} .
\end{aligned}
$$

For $j=1$,

$$
J_{N, 1}=\left\{\gamma=\left(\gamma_{1}, \gamma_{1}, \ldots, \gamma_{1}\right): 0 \leq \gamma_{1}<M\right\},
$$

and the cardinality of $J_{N, 1}$ is M. For $j \geq 2$, write

$$
J_{N, j}=\bigcup_{\gamma \in J_{N, j}^{\prime}} J_{N, j, \gamma}
$$

where $J_{N, j}^{\prime}$ is a subset of $J_{N, j}$ and

$$
J_{N, j, \gamma}=\left\{\delta=\gamma_{\sigma}: \sigma \in P(d)\right\} .
$$

Recall $P(d)$ is the permutation group. The cardinality of $J_{N, j}^{\prime}$ is infinite and the cardinality of $J_{N, j, \gamma}$ is $d(d-1) \cdots(d-j+2)$. Write

$$
H_{\omega}^{2}=\bigoplus_{j=1}^{d}\left[\underset{\gamma \in J_{N, j}}{\bigoplus} H_{\gamma}\right]=\left[\bigoplus_{\gamma \in J_{N, 1}} H_{\gamma}\right] \bigoplus_{j=2}^{d}\left[\underset{\gamma \in J_{N, j}^{\prime}}{\bigoplus}\left(\underset{\delta \in J_{N, j, \gamma}}{\bigoplus} H_{\delta}\right)\right] .
$$

Here

$$
H_{\delta}=\operatorname{Span}\left\{z^{\delta} z^{k N}: k \geq 0\right\} .
$$

By Theorem 7.5 and Lemma 9.2, H_{δ} is equivalent to H_{β} for $\delta, \beta \in J_{N, j, \gamma}$ and $\left\{P_{H_{\beta}}: \beta \in J_{N, j, \gamma}\right\}$ is a (maximal) set of mutually equivalent minimal projections. Thus the part $\bigoplus_{\delta \in J_{N, j, \gamma}} H_{\delta}$ gives rise to $M_{d(d-1) \cdots(d-j+2)}(\mathbb{C})$. Similarly, $\bigoplus_{\gamma \in J_{N, 1}} H_{\gamma}$ gives rise to $\bigoplus_{i=1}^{M} \mathbb{C}$. The proof is complete.

Theorem 9.4. Let ω be on $\mathcal{K}_{\rho}\left(\mathbb{B}^{2}\right)$ where ρ is a positive integer.
(i) Then $v\left(z_{1}^{M} z_{2}^{M}\right)$ on the Hardy space $(\rho=2)$ is $*$-isomorphic to

$$
\left[\bigoplus_{i=1}^{M} \mathbb{C}\right] \bigoplus\left[\bigoplus_{i=1}^{\infty} M_{2}(\mathbb{C})\right] \bigoplus\left[\bigoplus_{i=1}^{M} M_{3}(\mathbb{C})\right] .
$$

(ii) Then $v\left(z_{1}^{M} z_{2}^{M}\right)$ on the Drury-Arveson space $(\rho=1)$ is $*$-isomorphic to

$$
\left[\bigoplus_{i=1}^{M} \mathbb{C}\right] \bigoplus\left[\bigoplus_{i=1}^{\infty} M_{2}(\mathbb{C})\right] \bigoplus\left[\bigoplus_{i=1}^{M-1} M_{3}(\mathbb{C})\right]
$$

(iii) Then $v\left(z_{1}^{M} z_{2}^{M}\right)$ on the Bergman space $(\rho=3)$ and on $\mathcal{K}_{\rho}\left(\mathbb{B}^{2}\right)$ with $\rho>3$ is *-isomorphic to

$$
\left[\bigoplus_{i=1}^{M} \mathbb{C}\right] \bigoplus\left[\bigoplus_{i=1}^{\infty} M_{2}(\mathbb{C})\right] \bigoplus\left[\bigoplus_{i=1}^{M} M_{4}(\mathbb{C})\right]
$$

Proof. The proof is similar to the proof of proceeding theorem by using Theorem 8.1 and Lemma 9.2. We give some brief explanations. For (i), (ii) and (iii), (36) with $\gamma_{1}=\gamma_{2}$ gives rise to $\left[\bigoplus_{i=1}^{M} \mathbb{C}\right]$ and (36) with $\gamma_{1} \neq \gamma_{2}$ gives rise to $\left[\bigoplus_{i=1}^{\infty} M_{2}(\mathbb{C})\right]$. For (i), (38) gives rise to $\left[\bigoplus_{i=1}^{M} M_{3}(\mathbb{C})\right]$. For (ii), (37) gives rise to $\left[\bigoplus_{i=1}^{M-1} M_{3}(\mathbb{C})\right]$ because $(l+1, l+1) \notin J_{N}$ for $l=M-1$. So in fact (37) hold for $0 \leq l \leq M-2$. For (iii), (39) gives rise to $\left[\bigoplus_{i=1}^{M} M_{4}(\mathbb{C})\right]$.

Theorems 8.5 and 8.6 yield the following result.
Theorem 9.5. Assume $N=\left(N_{1}, N_{2}\right)$ with $N_{1} \neq N_{2}$. Write

$$
N_{1}=N_{1}^{\prime} M, \quad N_{2}=N_{2}^{\prime} M, \quad M=\operatorname{GCD}\left(N_{1}, N_{2}\right)
$$

(i) Then $v\left(z_{1}^{N_{1}} z_{2}^{N_{2}}\right)$ on $\mathcal{D}\left(\mathbb{D}^{2}\right)$ or $\mathcal{K}_{\rho}\left(\mathbb{D}^{2}\right)$ for $\rho=2$ is $*$-isomorphic to

$$
[\underset{i=1}{\infty} \mathbb{C}] \bigoplus\left[\bigoplus_{i=1}^{\infty} M_{2}(\mathbb{C})\right]
$$

(ii) Then $v\left(z_{1}^{N_{1}} z_{2}^{N_{2}}\right)$ on $\mathcal{D}\left(\mathbb{B}^{2}\right)$ or $\mathcal{K}_{\rho}\left(\mathbb{D}^{2}\right)$ for $\rho \neq 1,2$ is $*$-isomorphic to

$$
\bigoplus_{i=1}^{\infty} \mathbb{C} .
$$

Note that by Theorem 9.3, in the case $N_{1}=N_{2}=M, v\left(z_{1}^{N_{1}} z_{2}^{N_{2}}\right)$ on $\mathcal{D}\left(\mathbb{D}^{2}\right)$ or $\mathcal{D}\left(\mathbb{B}^{2}\right)$ or $\mathcal{K}_{\rho}\left(\mathbb{D}^{2}\right)(\rho \neq 1)$ is $*$-isomorphic to

$$
\left[\bigoplus_{i=1}^{M} \mathbb{C}\right] \bigoplus\left[\bigoplus_{i=1}^{\infty} M_{2}(\mathbb{C})\right]
$$

This result is different to results in the case $N_{1} \neq N_{2}$.

10. Final remarks.

Recall that $S_{\Phi}=\left(S_{1}, \ldots, S_{d}\right)$ is a tuple of weighted shifts on $l_{d}^{2}(E)$ with operator weights $\Phi=\left\{\Phi_{\alpha, i}: \alpha \in Z_{+}^{d}, i=1, \ldots, d\right\}$. We have discussed the common reducing subspaces of S_{Φ}. We have also studied the reducing subspaces of the product $\prod_{i=1}^{d} S_{i}$, which can be viewed as a single weighted shift with operator weights. We would remark that the general approach of using weighted shifts with operator weights also allows us to
discuss the reducing subspaces of related operators such as S_{1} or the common reducing subspaces of $\left(S_{1}, S_{2} S_{3}\right)$. The operator S_{1} on $l_{d}^{2}(E)$ can be viewed as a single weighted shift with operator weights on $l^{2}(\widehat{E})$ for a Hilbert space \widehat{E}. The tuple $\left(S_{1}, S_{2} S_{3}\right)$ can be viewed as two commuting weighted shifts with operator weights on $l_{2}^{2}(\widehat{E})$ for a Hilbert space \widehat{E}.

For example, we have the following theorem which is a combination of Theorem 4.2 and Theorem 7.1.

We need to introduce notations. These notations are not only useful for describing this specific result, but is also suggestive of more general results. Assume $d \geq 3$, since we are studying the common reducing subspaces of $\left(T_{z_{1}^{N_{1}}}, T_{z_{2}^{N_{2}} z_{3}^{N_{3}}}\right)$ on H_{ω}^{2}, and let

$$
\begin{aligned}
k & =\left(k_{1}, k_{2}, k_{2}, 0, \ldots, 0\right), \quad N=\left(N_{1}, N_{2}, N_{3}, 0, \ldots, 0\right), \quad k, N \in Z_{+}^{d}, \\
k N & =\left(k_{1} N_{1}, k_{2} N_{2}, k_{2} N_{3}, 0, \ldots, 0\right) .
\end{aligned}
$$

Let $N \geq(1,1,1,0, \ldots, 0)$ be given. Set

$$
J_{N}=\left\{\alpha \geq 0: \alpha_{1}<N_{1} \text { and } \min \left\{\alpha_{2}-N_{2}, \alpha_{3}-N_{3}\right\}<0\right\}
$$

and let $\widehat{E} \subset H_{\omega}^{2}$ be the subspace given by

$$
\begin{aligned}
\widehat{E} & =\left\{f(z)=\sum_{\alpha \in J_{N}} f_{\alpha} z^{\alpha}: f_{\alpha} \in \mathbb{C}, \quad\|f(z)\|^{2}=\sum_{\alpha \in J_{N}} \omega_{\alpha}\left|f_{\alpha}\right|^{2}<\infty\right\} \\
& =\operatorname{ker}\left(T_{z_{1}^{N_{1}}}^{*}\right) \cap \operatorname{ker}\left(T_{z_{2}^{N_{2}} z_{3}^{N_{3}}}^{*}\right) .
\end{aligned}
$$

THEOREM 10.1. (i) If a closed subspace X of H_{ω}^{2} is a common reducing subspace of $\left(T_{z_{1}^{N_{1}}}, T_{z_{2}^{N_{2}} z_{3}^{N_{3}}}\right)$, then

$$
X=\operatorname{Span}\left\{T_{z_{1}^{N_{1}}}^{k_{1}} T_{z_{2}^{N_{2}} z_{3}^{N_{3}}}^{k_{2}} x:\left(k_{1}, k_{2}\right) \geq 0, x \in \widehat{E_{0}}\right\}
$$

where

$$
\widehat{E_{0}}=\left(X \ominus T_{z_{1}^{N_{1}}} X\right) \cap\left(X \ominus T_{z_{2}^{N_{2}} z_{3}^{N_{3}}} X\right) \subseteq \widehat{E}
$$

and $\widehat{E_{0}}$ is an invariant subspace of a set of diagonal operators with positive diagonals.
(ii) Any common reducing subspace of $\left(T_{z_{1}^{N_{1}}}, T_{z_{2}^{N_{2}}} z_{3}^{N_{3}}\right)$ on H_{ω}^{2} is a direct sum of (singly generated) minimal reducing subspaces.
(iii) Any minimal reducing subspace of $\left(T_{z_{1}^{N_{1}}}, T_{z_{2}^{N_{2}} z_{3}^{N_{3}}}\right)$ on H_{ω}^{2} is of the form

$$
\operatorname{Span}\left\{f(z) z_{1}^{k_{1} N_{1}} z_{2}^{k_{2} N_{2}} z_{3}^{k_{2} N_{3}}:\left(k_{1}, k_{2}\right) \geq 0\right\}=\operatorname{Span}\left\{f(z) z^{k N}: k \geq 0\right\}
$$

where

$$
f(z)=\sum_{\gamma \in J} f_{\gamma} z^{\gamma}, \quad f_{\gamma} \in \mathbb{C} \text { and } f_{\gamma} \neq 0 \text { for all } \gamma \in J
$$

and $J \subseteq J_{N}$ and $\omega_{\gamma+k N} / \omega_{\gamma}=\omega_{\delta+k N} / \omega_{\delta}$ for all $\gamma, \delta \in J, k \geq 0$. To be clear, we recall the notation:

$$
\gamma+k N=\left(\gamma_{1}+k_{1} N_{1}, \gamma_{2}+k_{2} N_{2}, \gamma_{3}+k_{2} N_{3}, \gamma_{4}, \ldots, \gamma_{d}\right) .
$$

Since ω_{α} on the polydisk is of a product form, the above idea together with theorems in last section readily yields several interesting results. We state a couple of concrete results on the Dirichlet space $\mathcal{D}\left(\mathbb{D}^{d}\right)$ with brief explanations. We will only state Part (iii). Part (i) and (ii) are similar.

Corollary 10.2. (i) The minimal reducing subspaces of $T_{z_{1}^{N_{1}}}$ on $\mathcal{K}_{\rho}\left(\mathbb{D}^{d}\right)(\rho \neq$ 1) or $\mathcal{D}\left(\mathbb{D}^{d}\right)$ for $d \geq 2$ are the obvious ones. Namely, any minimal reducing subspaces of $T_{z_{1}^{N_{1}}}$ is of the form $\operatorname{Span}\left\{f(z) z_{1}^{k_{1} N_{1}}: k_{1} \geq 0\right\}$, where

$$
f(z)=z_{1}^{\gamma_{1}} g\left(z_{2}, \ldots, z_{d}\right)
$$

for some $0 \leq \gamma_{1}<N_{1}$, and g is a holomorphic function only depending on $\left(z_{2}, \ldots, z_{d}\right)$ and $g \in \mathcal{K}_{\rho}\left(\mathbb{D}^{d-1}\right)$ or $g \in \mathcal{D}\left(\mathbb{D}^{d-1}\right)$.
(ii) Let $v\left(z_{1}^{N_{1}}\right)$ be the commutant of the von Neumann algebra generated by $T_{z_{1}^{N_{1}}}$ and $T_{z_{1}^{N_{1}}}^{*}$ on $\mathcal{K}_{\rho}\left(\mathbb{D}^{d}\right)(\rho \neq 1)$ or $\mathcal{D}\left(\mathbb{D}^{d}\right)$ for $d \geq 2$. Then

$$
v\left(z_{1}^{N_{1}}\right) \approx \bigoplus_{i=1}^{N_{1}} M_{\infty}(\mathbb{C})
$$

Proof. Note that in this case, $\omega_{\gamma+k N} / \omega_{\gamma}=\omega_{\delta+k N} / \omega_{\delta}$ is the same as $\omega_{\gamma_{1}+k_{1} N_{1}} / \omega_{\gamma_{1}}=\omega_{\delta_{1}+k_{1} N_{1}} / \omega_{\delta_{1}}$. So the result in (i) can be viewed as a special case of Theorem 5.4 with $d=1$. Thus (ii) follows from (i) and Lemma 9.2.

Corollary 10.3. Assume $N=\left(N_{1}, N_{2}\right)$. Write

$$
N_{1}=N_{1}^{\prime} M, \quad N_{2}=N_{2}^{\prime} M, \quad M=\operatorname{GCD}\left(N_{1}, N_{2}\right) .
$$

(i) Any minimal reducing subspace of $T_{z_{1}^{N_{1}} z_{2}^{N_{2}}}$ on $\mathcal{D}\left(\mathbb{D}^{d}\right)$ for $d \geq 3$ is of the form

$$
\operatorname{Span}\left\{f(z) z_{1}^{k N_{1}} z_{2}^{k N_{2}}: k \geq 0\right\}
$$

where either

$$
f(z)=z_{1}^{\gamma_{1}} z_{2}^{\gamma_{2}} g_{1}\left(z_{3}, \ldots, z_{d}\right)
$$

for $\left(\gamma_{1}, \gamma_{2}\right)$ such that $\min \left\{\gamma_{1}-N_{1}, \gamma_{2}-N_{2}\right\}<0$ or

$$
f(z)=z_{1}^{\gamma_{1}} z_{2}^{\gamma_{2}} g_{1}\left(z_{3}, \ldots, z_{d}\right)+z_{1}^{\delta_{1}} z_{2}^{\delta_{2}} g_{2}\left(z_{3}, \ldots, z_{d}\right)
$$

with $g_{1}, g_{2} \in \mathcal{D}\left(\mathbb{D}^{d-2}\right)$,

$$
\begin{equation*}
\left(\gamma_{1}, \gamma_{2}\right)=\left(l N_{1}^{\prime}-1, m N_{2}^{\prime}-1\right), \quad\left(\delta_{1}, \delta_{2}\right)=\left(m N_{1}^{\prime}-1, l N_{2}^{\prime}-1\right), \tag{54}
\end{equation*}
$$

for some positive integers l and m such that $\min \{l, m\} \leq M$ and $l \neq m$.
(ii) Let $v\left(z_{1}^{N_{1}} z_{2}^{N_{2}}\right)$ be the commutant of the von Neumann algebra generated by $T_{z_{1}^{N_{1}} z_{2}^{N_{2}}}$ and $T_{z_{1}^{N_{1}} z_{2}^{N_{2}}}$ on $\mathcal{D}\left(\mathbb{D}^{d}\right)$ for $d \geq 3$. Then

$$
v\left(z_{1}^{N_{1}} z_{2}^{N_{2}}\right) \approx \bigoplus_{i=1}^{\infty} M_{\infty}(\mathbb{C})
$$

Proof. Note that (i) follows essentially from Theorem 8.5 for $N_{1} \neq N_{2}$ and Theorem 7.5 for $N_{1}=N_{2}$. In the case $N_{1}=N_{2}$, just note that $\left(\gamma_{1}, \gamma_{2}\right)=\left(\delta_{2}, \delta_{1}\right)$ in (54). So (ii) follows from (i) and Lemma 9.2 and the fact that

$$
\left[\bigoplus_{i=1}^{\infty} M_{\infty}(\mathbb{C})\right] \bigoplus\left[\bigoplus_{i=1}^{\infty} M_{\infty}(\mathbb{C})\right] \approx \bigoplus_{i=1}^{\infty} M_{\infty}(\mathbb{C})
$$

The proof is complete.
In the previous two results, the length of a singly generated reducing subspace could be infinite if g_{1} or g_{2} is not an analytic polynomial. The next result shows that on the unit ball, the length is always finite.

Theorem 10.4. (i) Any minimal reducing subspace of $T_{z_{1}^{N_{1}}}$ on $\mathcal{K}_{\rho}\left(\mathbb{B}^{d}\right)(\rho \neq 1)$ or $\mathcal{D}\left(\mathbb{B}^{d}\right)$ for $d \geq 2$ is of the form $\operatorname{Span}\left\{f(z) z_{1}^{k_{1} N_{1}}: k_{1} \geq 0\right\}$, where

$$
f(z)=z_{1}^{\gamma_{1}} g\left(z_{2}, \ldots, z_{d}\right)
$$

for some $\gamma \geq 0$ such that $0 \leq \gamma_{1}<N_{1}$ and g is a homogenous polynomial in $\left(z_{2}, \ldots, z_{d}\right)$ of degree $|\gamma|-\gamma_{1}$.
(ii) Any minimal reducing subspaces of $T_{z_{1}^{N_{1}}}$ on $\mathcal{K}_{\rho}\left(\mathbb{B}^{d}\right)$ with $\rho=1$ for $d \geq 2$ (the Drury-Arveson space) is of the form $\operatorname{Span}\left\{f(z) z_{1}^{k_{1} N_{1}}: k_{1} \geq 0\right\}$, where either

$$
f(z)=z_{1}^{\gamma_{1}} g\left(z_{2}, \ldots, z_{d}\right)
$$

for some $\gamma \geq 0$ such that $0 \leq \gamma_{1}<N_{1}$ and g is a homogenous polynomial in $\left(z_{2}, \ldots, z_{d}\right)$ of degree $|\gamma|-\gamma_{1} \neq 0$ or

$$
\begin{equation*}
f(z)=\sum_{i=0}^{N_{1}-1} a_{i} z_{1}^{i}, \quad a_{i} \in \mathbb{C} \tag{55}
\end{equation*}
$$

(iii) Let $v\left(z_{1}^{N_{1}}\right)$ be the commutant of the von Neumann algebra generated by $T_{z_{1}^{N_{1}}}$ and $T_{z_{1}^{N_{1}}}^{*}$ on $\mathcal{K}_{\rho}\left(\mathbb{B}^{d}\right)(\rho \neq 1)$ or $\mathcal{D}\left(\mathbb{B}^{d}\right)$ for $d \geq 2$. Then

$$
\begin{equation*}
v\left(z_{1}^{N_{1}}\right) \approx \bigoplus_{i=1}^{N_{1}}\left[\bigoplus_{n=0}^{\infty} M_{r_{n, d}}(\mathbb{C})\right], \text { where } r_{n, d}=\binom{n+d-2}{d-2} \tag{56}
\end{equation*}
$$

In the case $\mathcal{K}_{\rho}\left(\mathbb{B}^{d}\right)$ with $\rho=1$ for $d \geq 2$,

$$
\begin{equation*}
v\left(z_{1}^{N_{1}}\right) \approx M_{N_{1}}(\mathbb{C}) \bigoplus \bigoplus_{i=1}^{N_{1}}\left[\bigoplus_{n=1}^{\infty} M_{r_{n, d}}(\mathbb{C})\right], \text { where } r_{n, d}=\binom{n+d-2}{d-2} \tag{57}
\end{equation*}
$$

Proof. We first prove (i). We will show that $\omega_{\gamma+k N} / \omega_{\gamma}=\omega_{\delta+k N} / \omega_{\delta}$ for all $k=\left(k_{1}, 0, \ldots, 0\right) \geq 0$ if and only if $\gamma_{1}=\delta_{1}$ and $|\gamma|=|\delta|$. Let ω_{α} be on $\mathcal{K}_{\rho}\left(\mathbb{B}^{d}\right)$. Then

$$
\omega_{\gamma+k N}=\frac{\left(\gamma_{1}+k_{1} N_{1}\right)!\gamma_{2}!\cdots \gamma_{d}!\Gamma(\rho)}{\Gamma\left(\rho+|\gamma|+k_{1} N_{1}\right)} .
$$

Thus $\omega_{\gamma+k N} / \omega_{\gamma+(k+1) N}=\omega_{\delta+k N} / \omega_{\delta+(k+1) N}$ is equivalent to

$$
\begin{equation*}
\frac{\prod_{j=1}^{N_{1}}\left(\rho+|\gamma|+k_{1} N_{1}+j-1\right)}{\prod_{j=1}^{N_{1}}\left(\gamma_{1}+k_{1} N_{1}+j\right)}=\frac{\prod_{j=1}^{N_{1}}\left(\rho+|\delta|+k_{1} N_{1}+j-1\right)}{\prod_{j=1}^{N_{1}}\left(\delta_{1}+k_{1} N_{1}+j\right)} \quad \text { for all } k \geq 0 \tag{58}
\end{equation*}
$$

If $\rho>1$, then $\rho+|\delta|+N_{1}>\delta_{1}+N_{1}$. This implies that $\gamma_{1}=\delta_{1}$ and $|\gamma|=|\delta|$. If $0<\rho<1$, the above equation also implies that $\gamma_{1}=\delta_{1}$ and $|\gamma|=|\delta|$. Therefore

$$
a z^{\gamma}+b z^{\delta}=z_{1}^{\gamma_{1}}\left(a z_{2}^{\gamma_{2}} \cdots z_{d}^{\gamma_{d}}+b z_{2}^{\delta_{2}} \cdots z_{d}^{\delta_{d}}\right)
$$

Given γ, let $J_{\gamma}=\left\{\delta \geq 0: \delta_{1}=\gamma_{1}\right.$ and $\left.|\delta|=|\gamma|\right\}$. Then

$$
f(z)=\sum_{\delta \in J_{\gamma}} f_{\delta} z^{\delta}=z_{1}^{\gamma_{1}} g\left(z_{2}, \ldots, z_{d}\right), \quad f_{\delta} \in \mathbb{C}
$$

where g is a homogenous polynomial. The number of monomial terms that can appear in g is the cardinality of the index set J_{γ}. Recall that a weak composition of an integer n into i parts is a way of writing n as the sum of a sequence of i nonnegative integers such that two sequences that differ in the order of their terms define different weak compositions. The number of weak compositions is

$$
\binom{n+i-1}{i-1}
$$

Thus the cardinality $\kappa\left(J_{\gamma}\right)$ of the index set J_{γ} is the number of weak compositions of $|\gamma|-\gamma_{1}$ into $d-1$ parts,

$$
\kappa\left(J_{\gamma}\right)=\binom{|\gamma|-\gamma_{1}+d-2}{d-2}=r_{|\gamma|-\gamma_{1}, d}
$$

The length of $f(z)$ could be any integer between 1 and $\kappa\left(J_{\gamma}\right)$.
In the case $\mathcal{K}_{\rho}\left(\mathbb{B}^{d}\right)$ with $\rho=1$ for $d \geq 2$, Equation (58) implies that either $\gamma_{1}=\delta_{1}$, $|\gamma|=|\delta|$, and $|\gamma|-\gamma_{1} \neq 0$ or $|\gamma|=\gamma_{1}$ and $|\delta|=\delta_{1}$. This proves (ii).

Relation (56) follows from (i) and Lemma 9.2 by noting that there are N_{1} values for γ_{1}, and $|\gamma|-\gamma_{1}$ could be any nonnegative integer. Relation (57) follows from (ii) and Lemma 9.2 by noting that $f(z)$ as in (55) gives rise to $M_{N_{1}}(\mathbb{C})$ and $n=|\gamma|-\gamma_{1} \neq 0$.

Acknowledgements. We thank the anonymous reviewer for his/her many helpful suggestions to improve the presentation of the paper.

References

[1] M. B. Abrahamse and J. A. Ball, Analytic Toeplitz operators with automorphic symbol II, Proc. Amer. Math. Soc., 59 (1976), 323-328.
[2] H. Bercovici, C. Foias and C. Pearcy, Dual algebra with applications to invariant subspaces and dilation theory, CBMS Regional Conference Series in Mathematics, 56, 1985.
[3] A. Beurling, On two problems concerning linear transformation in Hilbert space, Acta Math., 81 (1949), 239-255.
[4] J. B. Conway, A Course in Operator Theory, Graduate Studies in Math., 21, Amer. Math. Soc., Providence, Rhode Island, 1999.
[5] C. Gu, Reducing subspaces of weighted shifts with operator weights, Bull. Korean Math. Soc., 53 (2016), 1471-1481.
[6] K. Guo and H. Huang, Multiplication operators on the Bergman space, Lecture Notes in Math., 2145, Springer, 2015.
[7] H. Hedenmalm, B. Korenblum and K. Zhu, Theory of Bergman Spaces, GTM, 199, SpringerVerlag, 2000.
[8] H. Hedenmalm, S. Richter and K. Seip, Interpolating sequences and invariant subspaces of given index in the Bergman spaces, J. Reine Angew. Math., 477 (1996), 13-30.
[9] P. Halmos, Shifts on Hilbert spaces, J. Reine Angew. Math., 208 (1961), 102-112.
[10] K. J. Izuchi, T. Nakazi and M. Seto, Backward shift invariant subspaces in the bidisc, II, J. Operator Theory, 51 (2004), 361-376.
[11] K. J. Izuchi, K. H. Izuchi and Y. Izuchi, Wandering subspaces and the Beurling type theorem, III, J. Math. Soc. Japan, 64 (2012), 627-658.
[12] N. P. Jewell and A. R. Lubin, Commuting weighted shifts and analytic function theory in several variables, J. Operator Theory, 1 (1979), 207-223.
[13] H. T. Kaptanoğlu, Möbius-invariant Hilbert spaces in polydisk, Pacific J. Math., 163 (1994), 337-360.
[14] S. Kuwahara, Reducing subspaces of weighted Hardy spaces on polydisks, Nihonkai Math. J., 25 (2014), 77-83.
[15] Y. Lu and X. Zhou, Invariant subspaces and reducing subspaces of weighted Bergman space over the bidisk, J. Math. Soc. Japan, 62 (2010), 745-765.
[16] E. Nordgren, Reducing subspaces of analytic Toeplitz operators, Duke Math. J., 34 (1967), 175181.
[17] H. Radjavi and P. Rosenthal, Simultaneous Triangularization, Universitext, Springer-Verlag, 2000.
[18] Y. Shi and Y. Lu, Reducing subspaces for Toeplitz operators on the polydisk, Bull. Korean Math. Soc., 50 (2013), 687-696.
[19] Y. Shi and N. Zhou, Reducing subspaces of some multiplication operators on the Bergman space over polydisk, Abstract and Applied Analysis, 2015, Art. ID 209307, 12 pp.
[20] A. L. Shields, Weighted shift operators and analytic function theory, Math. Surv., 13, Amer. Math. Soc., Providence, 1974, pp. 49-128.
[21] M. Stessin and K. Zhu, Reducing subspaces of weighted shift operators, Proc. Amer. Math. Soc., 130 (2002), 2631-2639.
[22] Y. Qin and R. Yang, A characterization of submodules via the Beurling-Lax-Halmos theorem, Proc. Amer. Math. Soc., 142 (2014), 3505-3510.
[23] K. Zhu, Reducing subspaces for a class of multiplication operators, J. London Math. Soc. (2), 62 (2000), 553-568.

Caixing Gu
Department of Mathematics
California Polytechnic State University
San Luis Obispo
CA 93407, USA
E-mail: cgu@calpoly.edu

[^0]: 2010 Mathematics Subject Classification. Primary 47B37, 47B35, 47A15; Secondary 46E22, 32A35, 32A36.

 Key Words and Phrases. weighted shifts with operator weights, reducing subspaces, analytic Toeplitz operators, weighted Hardy space on unit ball, weighted Bergman spaces, Dirichlet space on polydisk.

