Examples of four dimensional cusp singularities

By Hiroyasu Tsuchinashi

(Received May 28, 2016)
(Revised Dec. 19, 2016)

Abstract

We give some examples of four dimensional cusp singularities which are not of Hilbert modular type. We construct them, using quadratic cones and subgroups of reflection groups.

Introduction.

In [8], we showed that an r-dimensional cusp singularity $\operatorname{Cusp}(C, \Gamma)$ is obtained from a pair (C, Γ) of an open cone C in \mathbf{R}^{r} and a subgroup Γ of $G L(r, \mathbf{Z})$ satisfying the following three conditions, where r is an integer greater than 1 .

1. C is strongly convex, i.e., $\overline{x y} \subset C$ for any $x, y \in C$ and $\bar{C} \cap \overline{-C}=\{0\}$.
2. C is Γ-invariant, i.e., $\gamma C=C$ for all $\gamma \in \Gamma$.
3. Γ acts on $D_{C}:=C / \mathbf{R}_{>0}$ properly discontinuously, freely and D_{C} / Γ is compact.
$\operatorname{Cusp}(C, \Gamma)$ is obtained by adding a point to the quotient of the tube domain $\mathbf{R}^{r}+$ $\sqrt{-1} C$ under the action of the semidirect product of \mathbf{Z}^{r} and Γ. In the 2-dimensional case, $\operatorname{Cusp}(C, \Gamma)$ is nothing but a Hilbert modular cusp singularity. Hilbert modular cusp singularities exist in all dimensions greater than 1 , where C is the interior of a simplicial cone and D_{C} / Γ is a real torus. It is also known that there exist other higher dimensional cusp singularities of arithmetic type (see [6] and [7, Section 3], for instance). We gave in [8] some 3-dimensional explicit examples of (C, Γ) such that D_{C} / Γ are not real tori. In 1991, Ishida [3] gave explicit 4-dimensional examples. Until quite recently no other 4 -dimensional explicit examples seem to be found. On the other hand, Vinberg [10] gave a way to obtain a subgroup Γ of $G L(r, \mathbf{R})$ acting properly discontinuously on a strongly convex open cone C in \mathbf{R}^{r}. Here Γ is generated by reflections with respect to the hyperplanes containing the $(r-1)$-dimensional faces of a polyhedral cone satisfying certain conditions. Moreover, he gave a simple necessary and sufficient condition for the cone C to be quadratic, i.e., defined by a quadratic polynomial. In this paper, using the results in $[\mathbf{1 0}]$, we give some explicit examples of 4 -dimensional pairs (C, Γ) such that Γ are subgroups of reflection groups.

In Section 1, we show that for any open strongly convex cone C in \mathbf{R}^{r}, any subgroup of $G L(r, \mathbf{Z})$ preserving C, acts on D_{C} properly discontinuously. In Section 2, we show that if a quadratic polynomial P defines a cone C in \mathbf{R}^{r} and there exists a subgroup Γ of $G L(r, \mathbf{Z})$ satisfying the above conditions, then all coefficients of P may be assumed to be

[^0]integers and $P(x) \neq 0$ for any point x in $\mathbf{Z}^{r} \backslash\{0\}$. In Section 3, we show that if a quadratic cone C contains a rational polyhedral cone satisfying certain conditions, then there exists a reflection group Γ contained in $G L(r, \mathbf{Z})$ and acting on C with compact D_{C} / Γ. In Section 4, we study the structure of exceptional sets of resolutions of $\operatorname{Cusp}(C, \Gamma)$ for pairs (C, Γ) such that Γ is a subgroup of a reflection group. Finally, we give three 4 dimensional examples of pairs (C, Γ) with quadratic C, and one with non-quadratic C and a resolution of $\operatorname{Cusp}(C, \Gamma)$ whose exceptional set consists of 4 irreducible components.

1. Groups acting on cones.

Let N be a free \mathbf{Z}-module of $\operatorname{rank} r>1$, let $M=\operatorname{Hom}(N, \mathbf{Z})$ and let $\langle\rangle:, M \times N \longrightarrow$ \mathbf{Z} be the natural pairing. For an open cone C in $N_{\mathbf{R}}=N \otimes \mathbf{R}$, let $D_{C}=C / \mathbf{R}_{>0}$ and let $p_{C}: C \longrightarrow D_{C}$ be the natural projection.

Definition. $\quad \Gamma_{C}=\{\gamma \in G L(N) \mid \gamma C=C\}$ for an open cone C in $N_{\mathbf{R}}$.
Let $C^{*}=\left\{x \in M_{\mathbf{R}} \mid\langle x, y\rangle>0\right.$ for $\left.y \in \bar{C} \backslash\{0\}\right\}$. If C is an open strongly convex cone in $N_{\mathbf{R}}$, then $\Gamma_{C^{*}}=\left\{{ }^{t} \gamma \mid \gamma \in \Gamma_{C}\right\}$, where ${ }^{t} \gamma$ is the element in $G L(M)$ satisfying $\left\langle{ }^{t} \gamma x, y\right\rangle=\langle x, \gamma y\rangle$ for any elements x and y in M and N, respectively.

THEOREM 1. If C is an open strongly convex cone in $N_{\mathbf{R}}$, then Γ_{C} acts on D_{C} properly discontinuously, i.e., $\{\gamma \in \Gamma \mid \gamma S \cap S \neq \emptyset\}$ is finite for every compact subset S of D_{C}.

Figure 1.

Proof. Let Θ^{*} be the convex hull of $C^{*} \cap M$ and let Ξ be the boundary of $\left\{y \in C \mid\langle x, y\rangle \geq 1\right.$ for $\left.x \in \Theta^{*}\right\}$. Then the restriction $p_{C \mid \Xi}: \Xi \longrightarrow D_{C}$ of p_{C} to Ξ is a homeomorphism (see Figure 1). Let $\Xi_{x}=\{y \in \Xi \mid\langle x, y\rangle=1\}$ for each element x in $C^{*} \cap M$. Then Ξ_{x} is closed in Ξ. Let L be the set of vertices on Θ^{*}. Then L is contained in M and $\Xi=\bigcup_{x \in L} \Xi_{x}$. For any point y in $\Xi,\left\{x \in L \mid y \in \Xi_{x}\right\} \subset\left\{x \in C^{*} \cap M \mid\langle x, y\rangle=1\right\}$ is finite.

Let S be a compact subset of D_{C}. Then $L_{0}=\left\{x \in L \mid S \cap p_{C}\left(\Xi_{x}\right) \neq \emptyset\right\}$ is finite. If $\gamma S \cap S \neq \emptyset$ for an element γ in Γ_{C}, then there exist elements x_{1}, x_{2} in L_{0} with ${ }^{t} \gamma x_{1}=x_{2}$.

On the other hand, $K=\left\{y \in C \cap N \mid\left\langle x_{1}, y\right\rangle=c\right\}$ contains linearly independent r elements for a positive integer c. Then $\left\{\gamma \in \Gamma_{C} \mid{ }^{t} \gamma x_{1}=x_{1}\right\} \subset\left\{\gamma \in \Gamma_{C} \mid \gamma K=K\right\}$ is a finite set. Hence $\left\{\left.\gamma \in \Gamma_{C}\right|^{t} \gamma x_{1}=x_{2}\right\}$ is also finite for any elements x_{1}, x_{2} in L_{0}. Therefore, $\left\{\gamma \in \Gamma_{C} \mid \gamma S \cap S \neq \emptyset\right\}$ is finite.

For an open strongly convex cone C with compact D_{C} / Γ_{C}, there exists a normal subgroup Γ of Γ_{C} with a finite index acting on D_{C} freely. For example, we obtain such a group as the intersection with the kernel of $S L(N) \rightarrow S L(N / n N)$ for a suitable positive integer n.

2. Quadratic cones.

We fix a coordinate $\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of N throughout the rest of this paper. For a homogeneous polynomial $P\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ of r variables, we denote by C_{P} the open cone defined by

$$
\left\{\left(x_{1}, x_{2}, \ldots, x_{r}\right) \in N_{\mathbf{R}} \mid P\left(x_{1}, x_{2}, \ldots, x_{r}\right)>0\right\} .
$$

Definition. We call a cone C in $N_{\mathbf{R}}$ quadratic, if there exists a homogeneous quadratic polynomial $P\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ such that C is a connected component of C_{P}.

If a quadratic cone C defined by a polynomial P is strongly convex, then the signature of P is $(1, r-1)$ and $C \cup(-C)=C_{P}$.

Theorem 2. Let C be a quadratic strongly convex cone in $N_{\mathbf{R}}$ defined by a polynomial P. If D_{C} / Γ_{C} is compact, then there exists a positive real number c such that all coefficients of $c P$ are integers and P has no isotropic elements in N, i.e., $P(x) \neq 0$ for all x in $N \backslash\{0\}$.

Proof. First, we show that there exists a finite set K contained in $C \cap N$ such that the convex hull of $p_{C}\left(\Gamma_{C} K\right)$ is equal to D_{C}. Let Ξ be the boundary of the convex hull of $C \cap N$ and let $J=\Xi \cap N$. Then the convex hull of $p_{C}(J)$ is equal to D_{C}. On the other hand, J / Γ_{C} is finite, because D_{C} / Γ_{C} is compact. Hence there exists a finite set K such that $\Gamma_{C} K=J$.

Let x be an element in K. We may assume that $P(x)=1$, multiplying P by a positive number. Then $P(\gamma x)=1$ for any element γ in Γ_{C}. Hence all coefficients of P are rational, by the following lemma.

Lemma. There exist $m=r(r+1) / 2$ elements $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{m}$ in Γ_{C} and an element x in K such that $f\left(\gamma_{1} x\right), f\left(\gamma_{2} x\right), \ldots, f\left(\gamma_{m} x\right)$ are linearly independent, where $f: N \longrightarrow$ \mathbf{Z}^{m} is the map sending $\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ to $\left(x_{1}^{2}, \ldots, x_{r}^{2}, x_{1} x_{2}, \ldots, x_{r-1} x_{r}\right)$.

Proof. Suppose that $f\left(\gamma_{1} x\right), f\left(\gamma_{2} x\right), \ldots, f\left(\gamma_{m} x\right)$ are linearly dependent for any element x in K and any m elements $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{m}$ in Γ_{C}. Then $f\left(\Gamma_{C} x\right)$ is contained in an ($m-1$)-dimensional linear subspace of \mathbf{R}^{m}. It implies that there exists a homogeneous quadratic polynomial $Q_{x}\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ such that $Q_{x}(\gamma x)=0$ for all γ in Γ_{C}. Since K is finite, there exists a point x_{0} on $\partial C \backslash\{0\}$ such that $Q_{x}\left(x_{0}\right) \neq 0$ for all x in K. Then there
exists a non-zero element y_{0} in $M_{\mathbf{R}}$ such that $\left\langle y_{0}, x_{0}\right\rangle<0$ and that $\left\langle y_{0}, \gamma x\right\rangle>0$ for all x in K and for all γ in Γ_{C}, because there exists a hyperplane H with $H \cap \partial C=\mathbf{R}_{\geq 0} x_{0}$. Hence D_{C} is not equal to the convex hull of $p_{C}\left(\Gamma_{C} K\right)$, a contradiction.

Next, suppose that $P\left(y_{0}\right)=0$ for an element y_{0} in $N \backslash\{0\}$. We may assume that y_{0} is primitive and that $y_{0} \in \partial C$. Let x_{0} be a vertex on the boundary of the convex hull of $\left\{x \in C^{*} \cap M \mid\left\langle x, y_{0}\right\rangle=1\right\}$, which is not empty. Then $x_{0} \in M$ and $y_{0} \in \overline{\Theta_{x_{0}}}$, where

$$
\Theta_{x_{0}}=\left\{y \in C \mid\left\langle x_{0}, y\right\rangle=1,\langle x, y\rangle \geq 1 \text { for } x \in C^{*} \cap M\right\} .
$$

Since $\overline{\Theta_{x_{0}}}$ is compact, $\Theta_{x_{0}} \cap N$ is a finite set. Hence $\Gamma_{0}=\left\{\gamma \in \Gamma_{C} \mid \gamma \Theta_{x_{0}}=\Theta_{x_{0}}\right\}$ is a finite group. Therefore, $p_{C}\left(\Theta_{x_{0}}\right) / \Gamma_{0}$ is not compact. However, $p_{C}\left(\Theta_{x_{0}}\right)$ is closed in D_{C}. It implies that D_{C} / Γ_{C} is not compact.

In the 2-dimensional case, the converse of the above theorem holds, because $C=$ $\mathbf{R}_{\geq 0} v_{1}+\mathbf{R}_{\geq 0} v_{2}$ for two eigenvectors v_{1} and v_{2} in $N_{\mathbf{R}} \backslash N_{\mathbf{Q}}$ of an element in $S L(N)$.

Proposition 3. An open strongly convex cone C in $N_{\mathbf{R}}$ with compact D_{C} / Γ_{C}, is quadratic, if and only if there exists a homomorphism $f: N \rightarrow M$ such that $f_{\mathbf{R}}(C)=C^{*}$ and that $f \circ \gamma={ }^{t} \gamma^{-1} \circ f$ for any element γ in Γ_{C}.

Proof. Assume that C is quadratic, i.e., there exists a regular symmetric matrix A of index $(1, r-1)$ such that C is a connected component of $\left\{x \in N_{\mathbf{R}} \mid{ }^{t} x A x>0\right\}$. We may assume that all entries of A are integers, by Theorem 2. Let $f: N \rightarrow M$ be the homomorphism satisfying $\langle f(y), x\rangle={ }^{t} y A x$. Since the index of A is $(1, r-1)$,

$$
\left\{\left.y \in N_{\mathbf{R}}\right|^{t} y A x>0 \text { for } x \in \bar{C} \backslash\{0\}\right\}=C
$$

Therefore, $f_{\mathbf{R}}(C)=C^{*}$. Let γ be any element in Γ_{C}. Then ${ }^{t} \gamma A \gamma=A$. Hence

$$
\langle f(\gamma y), x\rangle={ }^{t}(\gamma y) A x={ }^{t} y^{t} \gamma A x={ }^{t} y A \gamma^{-1} x=\left\langle f(y), \gamma^{-1} x\right\rangle=\left\langle{ }^{t} \gamma^{-1} f(y), x\right\rangle
$$

Therefore, $f \circ \gamma={ }^{t} \gamma^{-1} \circ f$.
Conversely, assume that there exists a homomorphism $f: N \rightarrow M$ as in the proposition. We define a symmetric bilinear form on $N_{\mathbf{R}}$ by $x \cdot y=\left\langle f_{\mathbf{R}}(x), y\right\rangle+\left\langle f_{\mathbf{R}}(y), x\right\rangle$. Then there exists a symmetric and integer matrix A with $x \cdot y={ }^{t} x A y$. For any element γ in $\Gamma_{C}, \gamma x \cdot \gamma y=x \cdot y$, because $\left\langle f_{\mathbf{R}}(\gamma x), \gamma y\right\rangle=\left\langle{ }^{t} \gamma^{-1} f_{\mathbf{R}}(x), \gamma y\right\rangle=\left\langle f_{\mathbf{R}}(x), y\right\rangle$. Since $f_{\mathbf{R}}(C)=C^{*}, x \cdot y>0$ for any points x and y in C. Hence $x \cdot x \geq 0$ for any point x on ∂C, because the function $N_{\mathbf{R}} \ni x \mapsto x \cdot x \in \mathbf{R}$ is continuous. Let Θ be the convex hull of $C \cap N$. Since $\partial \Theta / \Gamma_{C}$ is compact, $\{x \cdot x \mid x \in \partial \Theta\}$ has the maximal value d. Let $S_{d}=\left\{x \in N_{\mathbf{R}} \mid x \cdot x=d\right\}$. Then $S_{d} \cap C \subset \Theta$. Since Θ is closed and $\Theta \cap \partial C=\emptyset$, $S_{d} \cap \partial C=\emptyset$. Hence $x \cdot x=0$ for any point x on ∂C. Therefore, C is a connected component of $\left\{x \in N_{\mathbf{R}} \mid x \cdot x>0\right\}$.

The above proposition can be applied to decide whether the cone C is quadratic for a pair (C, Γ) satisfying the conditions 1,2 and 3 in Introduction. We give an example. Let $r=3$. Let S be the surface and Δ be its triangulation obtained from the hexagon in Figure 2, identifying the edges $\overline{v_{1} v_{2}}, \overline{v_{3} v_{4}}$ and $\overline{v_{5} v_{6}}$ with $\overline{v_{2} v_{3}}, \overline{v_{4} v_{5}}$ and $\overline{v_{6} v_{1}}$, respectively.

Then $\chi(S)=-1$ and the double \mathbf{Z}-weight on Δ as in Figure 2 satisfies the monodromy condition and the convexity condition (see [8, Definitions 1.3 and 1.5]). Hence we obtain a map $\sigma:\{$ all vertices of $\widetilde{\Delta}\} \rightarrow N$ and a homomorphism $\rho: \pi_{1}(S) \rightarrow G L(N)$ such that $\sigma(\gamma v)=\rho(\gamma) \sigma(v)$ for all vertices v of $\widetilde{\Delta}$ and all elements γ in $\pi_{1}(S)$ by [8], where $\widetilde{\Delta}$ is the pull-back of Δ under the universal covering $\varpi: \widetilde{S} \rightarrow S$. Let $C=\mathbf{R}_{>0} \Theta$, where Θ is the convex hull of the image of σ, and let $\Gamma=\rho\left(\pi_{1}(S)\right)$. Then the pair (C, Γ) satisfies the conditions 1,2 and 3 in Introduction. There exist vertices $\tilde{v}_{1}, \tilde{v}_{2}, \ldots, \tilde{v}_{6}$ of $\widetilde{\Delta}$ with $\varpi\left(\tilde{v}_{i}\right)=v_{i}$ such that $\bar{v}_{1} \tilde{v}_{2} \tilde{v}_{3}, \overline{\tilde{v}}_{3} \tilde{v}_{4} \tilde{v}_{5}, \overline{\tilde{v}}_{5} \tilde{v}_{6} \tilde{v}_{1}$ and $\overline{\tilde{v}_{1} \tilde{v}_{3} \tilde{v}_{5}}$ are triangles of $\widetilde{\Delta}$. Here we may assume that $\sigma\left(\tilde{v}_{1}\right)=\mathbf{e}_{1}, \sigma\left(\tilde{v}_{3}\right)=\mathbf{e}_{2}$ and $\sigma\left(\tilde{v}_{5}\right)=\mathbf{e}_{3}$, where $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ is a basis of N. Let $\mathbf{f}_{i}=\sigma\left(\tilde{v}_{2 i}\right)\left(=2 \mathbf{e}_{i}+2 \mathbf{e}_{i+1}-\mathbf{e}_{i+2}\right)$ for each i in $\mathbf{Z} / 3 \mathbf{Z}$. Let $\Sigma=\left\{\gamma \tau \mid \gamma \in \Gamma, \tau \prec \mu_{i}, i=\right.$ $0,1,2,3\}$, where $\mu_{0}=\mathbf{R}_{\geq 0} \mathbf{e}_{1}+\mathbf{R}_{\geq 0} \mathbf{e}_{2}+\mathbf{R}_{\geq 0} \mathbf{e}_{3}$ and $\mu_{i}=\mathbf{R}_{\geq 0} \mathbf{e}_{i}+\mathbf{R}_{\geq 0} \mathbf{e}_{i+1}+\mathbf{R}_{\geq 0} \mathbf{f}_{i}$ for $i=1,2,3$. Then Σ is a non-singular fan with $|\Sigma| \backslash\{0\}=C$ and Γ acts on the set of 1-dimensional cones in Σ transitively, because Δ has only one vertex. Hence we have a resolution of $\operatorname{Cusp}(C, \Gamma)$ whose exceptional set is irreducible.

Figure 2.

Proposition 4. The above cone C is not quadratic.
Proof. Let γ_{i} be the elements in $G L(N)$ sending $\mathbf{e}_{i}, \mathbf{f}_{i}$ and \mathbf{e}_{i+1} to $\mathbf{f}_{i}, \mathbf{e}_{i+1}$ and $\mathbf{f}_{i}+3 \mathbf{e}_{i+1}-\mathbf{e}_{i}$, respectively for all i in $\mathbf{Z} / 3 \mathbf{Z}$. Then γ_{i} are in Γ_{C}. We easily see that also is in Γ_{C} the element sending \mathbf{e}_{i} to \mathbf{e}_{i+1}, which we denote by δ. Let $\mathbf{e}_{0}=\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}$ and $\mathbf{e}_{0}^{*}=\mathbf{e}_{1}^{*}+\mathbf{e}_{2}^{*}+\mathbf{e}_{3}^{*}$, where $\left\{\mathbf{e}_{1}^{*}, \mathbf{e}_{2}^{*}, \mathbf{e}_{3}^{*}\right\}$ is the basis of M dual to $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$. Then $\delta \mathbf{e}_{0}=\mathbf{e}_{0}$ and ${ }^{t} \delta \mathbf{e}_{0}^{*}=\mathbf{e}_{0}^{*}$. Suppose that there exists an injective homomorphism f : $N \rightarrow M$ satisfying $f \circ \gamma={ }^{t} \gamma^{-1} \circ f$ for any element γ in Γ_{C}. Then $f\left(\mathbf{e}_{0}\right)=c \mathbf{e}_{0}^{*}$ for a non-zero integer c, because any fixed point of ${ }^{t} \delta^{-1}$ is on $\mathbf{R e}_{0}^{*}$. We see by an easy calculation that $\gamma_{i} \mathbf{e}_{0}=9 \mathbf{e}_{i}+20 \mathbf{e}_{i+1}-6 \mathbf{e}_{i+2}$ and ${ }^{t} \gamma_{i}^{-1} \mathbf{e}_{0}^{*}=9 \mathbf{e}_{i}^{*}+3 \mathbf{e}_{i+1}^{*}+23 \mathbf{e}_{i+2}^{*}$. Hence $\gamma_{1} \mathbf{e}_{0}+\gamma_{2} \mathbf{e}_{0}+\gamma_{3} \mathbf{e}_{0}=23 \mathbf{e}_{0}$ and ${ }^{t} \gamma_{1}^{-1} \mathbf{e}_{0}^{*}+{ }^{t} \gamma_{2}^{-1} \mathbf{e}_{0}^{*}+{ }^{t} \gamma_{3}^{-1} \mathbf{e}_{0}^{*}=35 \mathbf{e}_{0}^{*}$. It implies $c=0$. Hence C is not quadratic, by Proposition 3.

3. Reflections.

Let P be a quadratic homogeneous polynomial of r variables with the signature $(1, r-1)$, and let C be a connected component of C_{P}. Then C is strongly convex and $C_{P}=C \cup(-C)$. We assume that all coefficients of P are integers with no common divisors greater than 1, throughout this section. Let $B_{P}: N \times N \rightarrow \mathbf{Z}$ be the symmetric bilinear form with $B_{P}(x, x)=2 P(x)$.

Definition. $\quad x \cdot y=B_{P}(x, y)$ for elements $x, y \in N_{\mathbf{R}}$.
We easily see that $\gamma x \cdot \gamma y=x \cdot y$ for any element γ in Γ_{C}. For an element v in $N_{\mathbf{R}}$ with $v \cdot v \neq 0$, we define a linear transformation γ_{v} and a hyperplane H_{v} of $N_{\mathbf{R}}$ as follows:

$$
\gamma_{v}: x \mapsto x-2 \frac{x \cdot v}{v \cdot v} v, \quad H_{v}=\left\{x \in N_{\mathbf{R}} \mid x \cdot v=0\right\} .
$$

We see by easy calculation that $\gamma_{v}^{2}=\mathrm{id}, \gamma_{v} v=-v, \gamma_{v} x=x$ for any x in H_{v} and $\gamma_{v} x \cdot \gamma_{v} y=x \cdot y$ for any x, y in $N_{\mathbf{R}}$. Hence $\gamma_{v} C=C$ or $-C$. If $v \cdot v<0$, then $\gamma_{v} C=C$, because $C \cap H_{v} \neq \emptyset$. Hence we have:

Proposition 5. If v is an element in N with $v \cdot v<0$ and $2\left(\mathbf{e}_{i} \cdot v / v \cdot v\right) \in \mathbf{Z}$ for each fundamental vector \mathbf{e}_{i}, then γ_{v} is in Γ_{C}.

Any element v in N with $v \cdot v=-2$ satisfies the assumption of the above proposition. Let $F_{\gamma}=\{x \in C \mid \gamma x=x\}$ for an element γ in Γ_{C}.

Proposition 6. Let γ be an element in Γ_{C} with $F_{\gamma} \neq \emptyset$ and $\operatorname{dim} F_{\gamma}=r-1$. Then there exists an element v in N with $\gamma=\gamma_{v}$.

Proof. $\quad r-1$ of the eigenvalues of γ are equal to 1 . The other is equal to -1 and $\gamma^{2}=1$, by Theorem 1. Hence there exists a non-zero element v in N with $\gamma v=-v$. For any element x in $N_{\mathbf{R}}$, there exists a real number c_{x} with $x-\gamma x=c_{x} v$, because $\gamma(x-\gamma x)=-(x-\gamma x)$. On the other hand, $\gamma x \cdot v=x \cdot \gamma v$, because $\gamma^{2}=1$. Hence $(x-\gamma x) \cdot v=2 x \cdot v$. Therefore, $c_{x}=2(x \cdot v / v \cdot v)$.

Here we note that an eigenvector h of γ_{v} corresponding to the eigenvalue -1 and the linear function α on $N_{\mathbf{R}}$ with $\alpha(h)=2$ and vanishing on H_{v} in [10], are nothing but v and the function $\alpha(x)=2 v \cdot x / v \cdot v$, respectively.

Proposition 7. Let v and w be elements in N with $v \cdot v<0$ and $w \cdot w<0$. If $v \cdot w /(\sqrt{-v \cdot v} \sqrt{-w \cdot w})=0,1 / 2,1 / \sqrt{2}$ or $\sqrt{3} / 2$, then $\left|\gamma_{v} \gamma_{w}\right|=2,3,4$ or 6 , respectively, and $\lambda=\left\{y \in N_{\mathbf{R}} \mid v \cdot y \geq 0, w \cdot y \geq 0\right\}$ is a fundamental domain of the action of $\left\langle\gamma_{v}, \gamma_{w}\right\rangle$ on $N_{\mathbf{R}}$.

Proof. We may assume that $v \cdot v=w \cdot w=-1$ replacing v and w with $v / \sqrt{-v \cdot v}$ and $w / \sqrt{-w \cdot w}$, respectively. Assume that $v \cdot w=\sqrt{3} / 2$. Then $\gamma_{v} \gamma_{w}$ sends v and w to $2 v+\sqrt{3} w$ and $-\sqrt{3} v-w$, respectively. Hence $\left|\gamma_{v} \gamma_{w}\right|=6$. Moreover,

$$
\lambda=\mathbf{R}_{\geq 0}(-2 v-\sqrt{3} w)+\mathbf{R}_{\geq 0}(-\sqrt{3} v-2 w)+\left\{y \in N_{\mathbf{R}} \mid v \cdot y=w \cdot y=0\right\}
$$

We see by easy calculation that $r-2 \leq \operatorname{dim}(\gamma \lambda \cap \lambda) \leq r-1$ for any γ in $\left\langle\gamma_{v}, \gamma_{w}\right\rangle \backslash\{1\}$. For the other cases, calculation is easier.

If $v \cdot w /(\sqrt{-v \cdot v} \sqrt{-w \cdot w})=-1 / 2,-1 / \sqrt{2}$ or $-\sqrt{3} / 2$, then $\left|\gamma_{v} \gamma_{w}\right|=3,4$ or 6 , respectively, however, $\operatorname{dim}\left(\gamma_{v} \gamma_{w} \gamma_{v} \lambda \cap \lambda\right)=r$. Let σ be an r-dimensional rational polyhedral cone. For each ($r-1$)-dimensional face τ of σ, we denote by $v(\tau)$ the unique primitive element v in N determined by the condition that $v \cdot y=0$ for all points y in τ and $v \cdot y \geq 0$ for all points y in σ.

THEOREM 8. If there exists an r-dimensional rational polyhedral cone σ satisfying the following three conditions, then $p_{C}(\sigma \backslash\{0\})$ is a fundamental domain of the action of Γ on $D_{C}, \Sigma=\{\gamma \lambda \mid \gamma \in \Gamma, \lambda \prec \sigma\}$ is a fan and $|\Sigma|=C \cup\{0\}$, where $\Gamma=\left\langle\gamma_{v(\tau)}\right| \tau \prec$ $\sigma, \operatorname{dim} \tau=n-1\rangle$.

1. $\sigma \backslash\{0\} \subset C$.
2. $v(\tau) \cdot v(\tau)<0$ and $\gamma_{v(\tau)} \in \Gamma_{C}$ for any $(r-1)$-dimensional face τ of σ.
3. $v(\tau) \cdot v(\mu) /(\sqrt{-v(\tau) \cdot v(\tau)} \sqrt{-v(\mu) \cdot v(\mu)})=0, \quad 1 / 2, \quad 1 / \sqrt{2}$ or $\sqrt{3} / 2$ for any ($r-1$)-dimensional faces τ and μ of σ with $\operatorname{dim}(\tau \cap \mu)=r-2$.

Proof. We can define distance $\overline{v w}$ on $S_{C}=\{v \in C \mid v \cdot v=1\} \simeq D_{C}$ by $\cosh \overline{v w}=$ $v \cdot w$ and angle $\angle H_{v}^{C} H_{w}^{C}$ of two hyperplanes $H_{v}^{C}=H_{v} \cap S_{C}$ and $H_{w}^{C}=H_{w} \cap S_{C}$ on S_{C} by $\cos \angle H_{v}^{C} H_{w}^{C}=v \cdot w /(\sqrt{-v \cdot v} \sqrt{-w \cdot w})$ for $v, w \in N_{\mathbf{R}}$ with $v \cdot v<0, w \cdot w<0$. Then we may regard D_{C} as a hyperbolic space and $\left(p_{C}\right)_{\mathbf{R}}(\sigma \backslash\{0\})$ as a Coxeter polyhedron, by the conditions 2,3 and Proposition 7. Hence we see by [4, Theorem 7.1.3] that the assertions of the theorem hold.

4. Structure of exceptional sets.

We keep the notations and the assumptions in the previous section. Let σ be an r-dimensional rational polyhedral cone satisfying the conditions of Theorem 8. Let $W=$ $T_{N} \mathrm{emb}(\Sigma)$ be the toric variety associated to the fan Σ in Theorem 8 . For a cone $\tau \neq\{0\}$ in Σ, we denote by $V(\tau)$ the closure $\operatorname{of} \operatorname{orb}(\tau)$ in W, which is a compact toric variety (see [5, Corollary 1.7]). Let ord : $T_{N} \rightarrow N_{\mathbf{R}}$ be the homomorphism induced by $-\log | |$: $\mathbf{C}^{\times} \rightarrow \mathbf{R}$. Let \widetilde{U} be the interior of the closure of $\operatorname{ord}^{-1}(C)$ in W and let $\widetilde{X}=W \backslash T_{N}$. Then \widetilde{U} is an open neighborhood of \widetilde{X}. Let Γ_{0} be a subgroup of Γ with a finite index acting on D_{C} freely. Then Γ_{0} acts on \widetilde{U} freely. Let $U=\widetilde{U} / \Gamma_{0}$ and let $X=\widetilde{X} / \Gamma_{0}$. Then the cusp singularity $\operatorname{Cusp}\left(C, \Gamma_{0}\right)$ is obtained by contracting X to a point in U (see [8]).

Let λ be a face of σ with $1 \leq s:=\operatorname{dim} \lambda \leq r-2$, and let $p_{\lambda}: N \rightarrow N /(\mathbf{R} \lambda \cap N)$ be the natural projection. Let $\mu_{1}, \mu_{2}, \ldots, \mu_{l}$ be the $(r-1)$-dimensional faces of σ with $\lambda \prec \mu_{i}$ and let $\Gamma_{\lambda}=\left\langle\gamma_{v\left(\mu_{i}\right)} \mid i=1, \ldots, l\right\rangle$. Then Γ_{λ} acts on $N /(\mathbf{R} \lambda \cap N)$. Let $\Sigma_{\lambda}=\left\{\left(p_{\lambda}\right)_{\mathbf{R}}(\tau) \mid \tau \in \Sigma, \lambda \prec \tau\right\}$. Then Σ_{λ} is a Γ_{λ}-invariant fan in $N /(\mathbf{R} \lambda \cap N)$. Moreover, $V(\lambda) \simeq T_{N /(\mathbf{R} \lambda \cap N)} \operatorname{emb}\left(\Sigma_{\lambda}\right)$, by [5, Corollary 1.7]. Hence $V(\lambda)$ is non-singular, if and only if so is $\left(p_{\lambda}\right)_{\mathbf{R}}(\sigma)$.

Now, assume that $\left(p_{\lambda}\right)_{\mathbf{R}}(\sigma)$ is non-singular, i.e., $\left(p_{\lambda}\right)_{\mathbf{R}}(\sigma)=\mathbf{R}_{\geq 0} w_{1}+\mathbf{R}_{\geq 0} w_{2}+\cdots+$ $\mathbf{R}_{\geq 0} w_{r-s}$ for a basis $\left\{w_{1}, w_{2}, \ldots, w_{r-s}\right\}$ of $N /(\mathbf{R} \lambda \cap N)$. Then there exist elements u_{1}, u_{2}, \ldots, u_{r-s} in $N \cap \sigma$ with $w_{i}=p_{\lambda}\left(u_{i}\right)$. Let $\left\{u_{r-s+1}, \ldots, u_{r}\right\}$ be a basis of $\mathbf{R} \lambda \cap N$. Then $\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ is a basis of N. Moreover, so is $\left\{u_{1}, \ldots, u_{i-1}, \gamma_{v\left(\mu_{i}\right)} u_{i}, u_{i+1}, \ldots, u_{r}\right\}$, because $\gamma_{v\left(\mu_{i}\right)}$ is in $G L(N)$ and $\gamma_{v\left(\mu_{i}\right)} u_{j}=u_{j}$ if $i \neq j$. Hence there exist integers $c_{i, j}$ $(1 \leq i \leq r-s, 1 \leq j \leq r)$ with

$$
u_{i}+\gamma_{v\left(\mu_{i}\right)} u_{i}+c_{i, 1} u_{1}+\cdots+c_{i, i-1} u_{i-1}+c_{i, i+1} u_{i+1}+\cdots+c_{i, r} u_{r}=0
$$

Therefore,

$$
w_{i}+\gamma_{v\left(\mu_{i}\right)} w_{i}+c_{i, 1} w_{1}+\cdots+c_{i, i-1} w_{i-1}+c_{i, i+1} w_{i+1}+\cdots+c_{i, r-s} w_{r-s}=0
$$

These numbers $c_{i, j}$ determine the structure of $V(\lambda)$. Especially, when $s=r-3$, they are nothing but double \mathbf{Z}-weights in [5, 1.7]. We easily see that $c_{i, j} \leq 0$. Moreover, $\left|\gamma_{v\left(\mu_{i}\right)} \gamma_{v\left(\mu_{j}\right)}\right|=+\infty$, if $c_{i, j} \leq-2$ and $c_{j, i} \leq-2, c_{i, j}=-1$ and $c_{j, i} \leq-4$ or $c_{i, j}=0$ and $c_{j, i} \neq 0$. Hence if $v\left(\mu_{i}\right) \cdot v\left(\mu_{j}\right) /\left(\sqrt{-v\left(\mu_{i}\right) \cdot v\left(\mu_{i}\right)} \sqrt{-v\left(\mu_{j}\right) \cdot v\left(\mu_{j}\right)}\right)=0,1 / 2,1 / \sqrt{2}$ or $\sqrt{3} / 2$, then $\left\{c_{i, j}, c_{j, i}\right\}=\{0\},\{-1\},\{-1,-2\}$ or $\{-1,-3\}$, respectively, by Proposition 7 .

We explain some examples of $V(\lambda)$ for the convenience of the next section. First, we consider the case $s=r-2$ and $\left(p_{\lambda}\right)_{\mathbf{R}}(\sigma)$ is non-singular. If $c_{1,2}=c_{2,1}=0$, then $V(\lambda) \simeq \mathbf{P}^{1} \times \mathbf{P}^{1}$. If $c_{1,2}=c_{2,1}=-1$, then $V(\lambda) \simeq S_{6}$. If $c_{1,2}=-1$ and $c_{2,1}=-2$ (resp. $-3)$, then $V(\lambda) \simeq S_{8}$ (resp. S_{12}). Here S_{i} are toric surfaces obtained from Coxeter groups as follows (see [2,5.1] for the definition of Coxeter group). For each $i=6,8,12$, let G_{i} be a subgroup of $G L(2, \mathbf{Z})$ generated by two elements g_{1} and $g_{2, i}$ defined by

$$
g_{1}=\left(\begin{array}{rr}
-1 & 0 \\
1 & 1
\end{array}\right), \quad g_{2,6}=\left(\begin{array}{rr}
1 & 1 \\
0 & -1
\end{array}\right), \quad g_{2,8}=\left(\begin{array}{rr}
1 & 2 \\
0 & -1
\end{array}\right), \quad g_{2,12}=\left(\begin{array}{rr}
1 & 3 \\
0 & -1
\end{array}\right)
$$

Then G_{i} are Coxeter groups with $\left|G_{i}\right|=i$. Let $\Lambda_{i}=\left\{\right.$ faces of $\left.g \mathbf{R}_{\geq 0}^{2} \mid g \in G_{i}\right\}$. Then Λ_{i} is a non-singular fan for each i. Let $S_{i}=T_{\mathbf{Z}^{2}} \mathrm{emb}\left(\Lambda_{i}\right)$ be the compact toric surface associated to the fan Λ_{i}. Then the complement of the algebraic torus in S_{6}, is a cycle of 6 rational curves with the self-intersection numbers all equal to -1 . The complement of the algebraic torus in S_{8} (resp. S_{12}), is a cycle of 8 (resp. 12) rational curves with the self-intersection numbers repeating $-1,-2$ (resp. $-1,-3$).

Next, we consider the case $s=r-3$ and assume that $\left(p_{\lambda}\right)_{\mathbf{R}}(\sigma)$ is non-singular except the case (7). We denote by V_{i} the toric variety $V(\lambda)$ in (i), which appears in the following sections as an irreducible component of the exceptional set of a resolution of 4-dimensional cusp singularities.
(1a) If $c_{1,2}=c_{2,1}=0, c_{1,3}=c_{3,1}=c_{3,2}=-1, c_{2,3}=-2$, then the complement of the algebraic torus in $V_{1 a}$, consists of 26 toric surfaces 6,8 and 12 of which are biholomorphic to S_{8}, S_{6} and $\mathbf{P}^{1} \times \mathbf{P}^{1}$, respectively (see Figure 3). The selfintersection numbers $\left(E_{\mid V}\right)^{2}$ in irreducible components $V \simeq S_{8}$ of rational curves $E=V \cdot W$, are equal to -2 and -1 , if $W \simeq \mathbf{P}^{1} \times \mathbf{P}^{1}$ and S_{6}, respectively.
(1b) If $c_{1,2}=c_{2,1}=0, c_{1,3}=c_{3,1}=c_{2,3}=-1, c_{3,2}=-2$, then the complement of the algebraic torus in $V_{1 b}$, consists of 26 toric surfaces 6,8 and 12 of which

Figure 3.

Figure 4.

Figure 5.
are biholomorphic to S_{8}, S_{6} and $\mathbf{P}^{1} \times \mathbf{P}^{1}$, respectively (see Figure 4). The selfintersection numbers $\left(E_{\mid V}\right)^{2}$ in irreducible components $V \simeq S_{8}$ of rational curves $E=V \cdot W$, are equal to -1 and -2 , if $W \simeq \mathbf{P}^{1} \times \mathbf{P}^{1}$ and S_{6}, respectively.
(2) If $c_{1,2}=c_{2,1}=0, c_{1,3}=c_{3,1}=c_{3,2}=c_{2,3}=-1$, then the complement of the algebraic torus in V_{2}, consists of 14 toric surfaces 8 and 6 of which are biholomorphic to S_{6} and $\mathbf{P}^{1} \times \mathbf{P}^{1}$, respectively (see Figure 5).
(3) If $c_{1,2}=c_{2,1}=c_{1,3}=c_{3,1}=0, c_{2,3}=c_{3,2}=-1$ then $V_{3} \simeq \mathbf{P}^{1} \times S_{6}$.
(4) If $c_{1,2}=c_{2,1}=c_{1,3}=c_{3,1}=0, c_{2,3}=-1, c_{3,2}=-2$ then $V_{4} \simeq \mathbf{P}^{1} \times S_{8}$.
(5) If $c_{1,2}=c_{2,1}=c_{1,3}=c_{3,1}=0, c_{2,3}=-1, c_{3,2}=-3$ then $V_{5} \simeq \mathbf{P}^{1} \times S_{12}$.
(6) If $c_{i, j}=0$ for all i, j, then $V_{6} \simeq \mathbf{P}^{1} \times \mathbf{P}^{1} \times \mathbf{P}^{1}$.
(7) If $\left(p_{\lambda}\right)_{\mathbf{R}}(\sigma)$ is simplicial, $v\left(\mu_{i}\right) \cdot v\left(\mu_{j}\right)=0$ for $1 \leq i<j \leq 3$ and $u_{1}=\mathbf{f}_{1}, u_{2}=$ $\mathbf{f}_{1}+2 \mathbf{f}_{2}, u_{3}=\mathbf{f}_{3}$ for a basis $\left\{\mathbf{f}_{1}, \mathbf{f}_{2}, \ldots, \mathbf{f}_{r}\right\}$ of N, then $V_{7} \simeq \mathbf{P}^{1} \times\left(\mathbf{P}^{1} \times \mathbf{P}^{1} /(-1,-1)\right)$.

5. Examples with quadratic C.

We fix $r=4$, throughout the rest of this paper.
Example 1. Let $P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}+7 x_{4}^{2}$. Let σ be the cone generated by the following six elements in N.

$$
u_{1}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right], u_{2}=\left[\begin{array}{l}
7 \\
7 \\
0 \\
4
\end{array}\right], u_{3}=\left[\begin{array}{l}
7 \\
7 \\
7 \\
5
\end{array}\right], u_{4}=\left[\begin{array}{c}
14 \\
7 \\
0 \\
6
\end{array}\right], u_{5}=\left[\begin{array}{c}
21 \\
7 \\
7 \\
9
\end{array}\right], u_{6}=\left[\begin{array}{l}
7 \\
0 \\
0 \\
3
\end{array}\right] .
$$

Let C be the connected component of C_{P} containing u_{1}. Then $\sigma \backslash\{0\} \subset C$. Let

$$
v_{1}=\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right], v_{2}=\left[\begin{array}{c}
0 \\
-1 \\
1 \\
0
\end{array}\right], v_{3}=\left[\begin{array}{c}
0 \\
0 \\
-1 \\
0
\end{array}\right], v_{4}=\left[\begin{array}{l}
3 \\
0 \\
0 \\
1
\end{array}\right], v_{5}=\left[\begin{array}{l}
2 \\
2 \\
1 \\
1
\end{array}\right] .
$$

Figure 6.

Then $\tau_{i}:=\sigma \cap H_{v_{i}}(i=1, \ldots, 5)$ are 3-dimensional faces of σ (see Figure 6 which shows the intersection with a hyperplane H). Moreover, we see by Proposition 5 and easy calculation that $v\left(\tau_{i}\right)=v_{i}$ satisfy the conditions 2,3 of Theorem 8 . Let Σ be the fan in Theorem 8 defined for this σ. Then $V(\lambda)$ are singularities in $T_{N} \mathrm{emb}(\Sigma)$ for all cones λ in Σ with $\operatorname{dim} \lambda \geq 2$. Noting that σ^{\vee} is spanned by $i\left(v_{1}\right), i\left(v_{2}\right), \ldots, i\left(v_{5}\right)$, where $i: N \rightarrow M$ is the homomorphism satisfying $\langle i(x), y\rangle=B_{P}(x, y)$, we see that all 3 -dimensional faces of σ^{\vee} are non-singular. Let $\lambda=\mathbf{R}_{\geq 0} u_{1}$ and let

$$
u_{1,2}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right], u_{1,3}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], u_{1,6}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right] .
$$

Then $\left\{u_{1}, u_{1,2}, u_{1,3}, u_{1,6}\right\}$ is a basis of N and $\left(p_{\lambda}\right)_{\mathbf{R}}(\sigma)=\mathbf{R}_{\geq 0} p_{\lambda}\left(u_{1,2}\right)+\mathbf{R}_{\geq 0} p_{\lambda}\left(u_{1,3}\right)+$ $\mathbf{R}_{\geq 0} p_{\lambda}\left(u_{1,6}\right)$. Moreover, we see by easy calculation that the relations $u_{1,2}+\gamma_{v_{2}} u_{1,2}-$ $u_{1,3}-u_{1,6}=0, u_{1,3}+\gamma_{v_{3}} u_{1,3}-2 u_{1,2}=0$ and $u_{1,6}+\gamma_{v_{1}} u_{1,6}-u_{1}-u_{1,2}=0$ hold. Hence $V(\lambda)$ is biholomorphic to $V_{1 a}$ in the previous section. Since $v_{1} \cdot v_{3}=v_{1} \cdot v_{5}=0$, $v_{3} \cdot v_{5}=1, v_{3} \cdot v_{3}=-1$ and $v_{5} \cdot v_{5}=-2, V\left(\mathbf{R}_{\geq 0} u_{2}\right)$ is biholomorphic to V_{4}. We see by similar calculation that $V\left(\mathbf{R}_{\geq 0} u_{i}\right)$ are biholomorphic to $V_{2}, V_{1 a}, V_{2}$ and V_{4} for $i=3,4,5$ and 6 , respectively.

Example 2. Let $P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}+15 x_{4}^{2}$. Then the cone σ defined by $v_{1}, v_{2}, \ldots, v_{6}$, satisfies the conditions of Theorem 8 , where

$$
v_{1}=\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right], v_{2}=\left[\begin{array}{c}
0 \\
-1 \\
1 \\
0
\end{array}\right], v_{3}=\left[\begin{array}{c}
0 \\
0 \\
-1 \\
0
\end{array}\right], v_{4}=\left[\begin{array}{l}
5 \\
0 \\
0 \\
1
\end{array}\right], v_{5}=\left[\begin{array}{l}
3 \\
3 \\
0 \\
1
\end{array}\right], v_{6}=\left[\begin{array}{l}
3 \\
2 \\
2 \\
1
\end{array}\right]
$$

(see Figure 7). We can verify that the divisors corresponding to the vertices attached (i) are biholomorphic to V_{i} in the previous section. For example, $v_{2} \cdot v_{4}=v_{2} \cdot v_{6}=v_{4} \cdot v_{6}=0$,
$\left(\mathbf{R} w_{2}+\mathbf{R} w_{i}\right) \cap M=\mathbf{Z} w_{2}+\mathbf{Z} w_{i}$ for $i=4,6$ and $\left[\left(\mathbf{R} w_{4}+\mathbf{R} w_{6}\right) \cap M: \mathbf{Z} w_{4}+\mathbf{Z} w_{6}\right]=2$, where $w_{i}(i=2,4,6)$ are the elements in M satisfying $\left\langle w_{2}, x\right\rangle=B_{P}\left(v_{2}, x\right),\left\langle w_{4}, x\right\rangle=$ $(1 / 5) B_{P}\left(v_{4}, x\right)$ and $\left\langle w_{6}, x\right\rangle=B_{P}\left(v_{6}, x\right)$. Hence $V\left(\tau_{2} \cap \tau_{4} \cap \tau_{6}\right)$ is biholomorphic to V_{7}, where $\tau_{i}=\sigma \cap H_{v_{i}}$.

Figure 7.

Figure 8.

Example 3. Let $P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=-3 x_{1}^{2}-3 x_{2}^{2}-5 x_{3}^{2}+x_{4}^{2}$. Then the cone σ defined by $v_{1}, v_{2}, \ldots, v_{6}$, where

$$
\begin{gathered}
v_{1}=\left[\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right], \quad v_{4}=\left[\begin{array}{c}
0 \\
0 \\
-1 \\
0
\end{array}\right], \\
v_{5}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
2
\end{array}\right], \quad v_{6}=\left[\begin{array}{c}
0 \\
5 \\
6 \\
15
\end{array}\right], \quad v_{7}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
3
\end{array}\right]
\end{gathered}
$$

(see Figure 8).

6. An example with non-quadratic C.

We fix a basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}\right\}$ of N. Let γ_{i} be the elements in $G L(N)$ defined by the following relations for $i=1,2,3,4 . \gamma_{i} \mathbf{e}_{j}=\mathbf{e}_{j}$ if $i \neq j$ and $\gamma_{1} \mathbf{e}_{1}=-\mathbf{e}_{1}+\mathbf{e}_{2}+2 \mathbf{e}_{3}, \gamma_{2} \mathbf{e}_{2}=\mathbf{e}_{1}-\mathbf{e}_{2}+\mathbf{e}_{4}, \gamma_{3} \mathbf{e}_{3}=\mathbf{e}_{1}-\mathbf{e}_{3}+\mathbf{e}_{4}, \gamma_{4} \mathbf{e}_{4}=2 \mathbf{e}_{2}+\mathbf{e}_{3}-\mathbf{e}_{4}$. Then $\Gamma_{6}=\left\langle\gamma_{i} \mid i=1,2,3,4\right\rangle$ is a Coxeter group with the relations: $\gamma_{i}^{2}=1$ and

$$
(*)\left(\gamma_{1} \gamma_{2}\right)^{3}=\left(\gamma_{3} \gamma_{4}\right)^{3}=\left(\gamma_{1} \gamma_{3}\right)^{4}=\left(\gamma_{2} \gamma_{4}\right)^{4}=\left(\gamma_{1} \gamma_{4}\right)^{2}=\left(\gamma_{2} \gamma_{3}\right)^{2}=1 .
$$

Hence the Dynkin diagram of Γ_{6} is Figure 9 (see [2, 2.3] for the definition of Dynkin diagram). Let $\sigma=\mathbf{R}_{\geq 0} \mathbf{e}_{1}+\mathbf{R}_{\geq 0} \mathbf{e}_{2}+\mathbf{R}_{\geq 0} \mathbf{e}_{3}+\mathbf{R}_{\geq 0} \mathbf{e}_{4}$ and let τ_{i} be the 3-dimensional face of σ which does not contain \mathbf{e}_{i} for each i. Then γ_{i} is a reflection with respect to
the hyperplane containing τ_{i}. Moreover, the entries $a_{i j}$ of the Cartan matrix in [10], are equal to $-c_{j i}$ if $i \neq j$, where $c_{j i}$ are the coefficients in the above relations $\gamma_{j} \mathbf{e}_{j}=\sum c_{j i} \mathbf{e}_{i}$, because $2 \mathbf{e}_{j}-\sum_{i \neq j} c_{j i} \mathbf{e}_{i}$ is an eigenvector of γ_{j} with the eigenvalue -1 . Hence $a_{14}=$ $a_{41}=a_{23}=a_{32}=0, a_{12} \cdot a_{21}=a_{34} \cdot a_{43}=1, a_{13} \cdot a_{31}=a_{24} \cdot a_{42}=2$. Therefore, $C_{6}=$ $\bigcup_{\gamma \in \Gamma_{6}} \gamma \sigma \backslash\{0\}$ is an open strongly convex cone in $N_{\mathbf{R}}$ and $\Sigma_{6}=\left\{\gamma \tau \mid \gamma \in \Gamma_{6}, \tau \prec \sigma\right\}$ is a Γ_{6}-invariant fan with $\left|\Sigma_{6}\right|=C_{6} \cup\{0\}$, by [10, Theorem 1]. Moreover, C_{6} is not quadratic, by [10, Theorem 6]. Since σ is non-singular, so is $T_{N} \operatorname{emb}\left(\Sigma_{6}\right)$. The 3-dimensional toric variety $V\left(\mathbf{R}_{\geq 0} \mathbf{e}_{i}\right)$ is biholomorphic to $V_{1 a}$ (resp. $V_{1 b}$) in Section 4 for $i=2,3$ (resp. 1,4). The intersection $V\left(\mathbf{R}_{\geq 0} \mathbf{e}_{i}\right) \cap V\left(\mathbf{R}_{\geq 0} \mathbf{e}_{j}\right)=V\left(\mathbf{R}_{\geq 0} \mathbf{e}_{i}+\mathbf{R}_{\geq 0} \mathbf{e}_{j}\right)$ is the toric surface corresponding to the Coxeter group generated by $\left\{\gamma_{k}, \gamma_{l}\right\}$ for $\{k, l\}=\{1,2,3,4\} \backslash\{i, j\}$. Hence it is biholomorphic to $\mathbf{P}^{1} \times \mathbf{P}^{1}$ if $(i, j)=(2,3),(1,4), S_{6}$ if $(i, j)=(3,4),(1,2)$ and S_{8} if $(i, j)=(2,4),(1,3)$ by $(*)$. Note that $V\left(\mathbf{R}_{\geq 0} \mathbf{e}_{i}\right) \cap V\left(\mathbf{R}_{\geq 0} \mathbf{e}_{j}\right)$ is biholomorphic to $\mathbf{P}^{1} \times \mathbf{P}^{1}$, if and only if $V\left(\mathbf{R}_{\geq 0} \mathbf{e}_{i}\right)$ and $V\left(\mathbf{R}_{\geq 0} \mathbf{e}_{j}\right)$ are biholomorphic.

REmark. Let $\Gamma_{6}^{\prime}, \Sigma_{6}^{\prime}$ and C_{6}^{\prime} be the subgroup of $G L(N)$, the fan and the cone in $N_{\mathbf{R}}$, respectively, obtained by transposing the coefficients $c_{2,4}=1$ and $c_{4,2}=2$ in the above relations $\gamma_{i} \mathbf{e}_{i}=\sum c_{i j} \mathbf{e}_{j}$. Then the irreducible components of $T_{N} \mathrm{emb}\left(\Sigma_{6}^{\prime}\right) \backslash T_{N}$ are isomorphic to those of $T_{N} \operatorname{emb}\left(\Sigma_{6}\right) \backslash T_{N}$. However, they intersect to each other in a different way. $V\left(\mathbf{R}_{\geq 0} \mathbf{e}_{i}\right)$ are biholomorphic to $V_{1 a}$ (resp. $V_{1 b}$) for $i=1,2$ (resp. 3,4). Hence $V\left(\mathbf{R}_{\geq 0} \mathbf{e}_{i}\right) \cap V\left(\mathbf{R}_{\geq 0} \mathbf{e}_{j}\right)$ is biholomorphic to S_{6}, if and only if $V\left(\mathbf{R}_{\geq 0} \mathbf{e}_{i}\right)$ and $V\left(\mathbf{R}_{\geq 0} \mathbf{e}_{j}\right)$ are biholomorphic. However, the following consideration for $\left(C_{6}, \Gamma_{6}\right)$ holds also for $\left(C_{6}^{\prime}, \Gamma_{6}^{\prime}\right)$, because the relations in (*) do not change.

Hereafter, we simply write Γ, Σ and C for Γ_{6}, Σ_{6} and C_{6}, respectively.

Figure 9.

Figure 10.

Figure 11.

Theorem 9. There exists a subgroup Γ^{0} of Γ of index 48 which acts on D_{C} freely. Conversely, if a subgroup Γ^{\prime} of Γ acts on D_{C} freely, then Γ^{\prime} is of index at least 48.

Let $\Gamma^{i}=\left\langle\gamma_{j} \mid 1 \leq j \leq 4, j \neq i\right\rangle$ for each i. Then Γ^{i} is the stabilizer of $\mathbf{R}_{\geq 0} \mathbf{e}_{i}$ and $\left|\Gamma^{i}\right|=48$. Hence the second assertion in the above theorem holds. Let $\Delta=$ $\left\{p_{C}(\tau \backslash\{0\}) \mid \tau \in \Sigma, \tau \neq\{0\}\right\}$. Then Δ is a Γ-invariant tetrahedral decomposition of D_{C}. If we get Γ^{0} in the above theorem, then Δ / Γ^{0} is a tetrahedral decomposition of the 3-dimensional compact topological manifold D_{C} / Γ^{0} consisting of 48 tetrahedra. Since Δ / Γ^{0} has $48 \cdot 4 /\left|\Gamma^{i}\right|=4$ vertices, there exists a resolution of the cusp singularity $\operatorname{Cusp}\left(C, \Gamma^{0}\right)$ with an exceptional set consisting of 4 irreducible components. The rest of this section is devoted to the proof of the first assertion in the above theorem.

Let γ_{i}^{\prime} be the elements in $G L(N)$ defined by the following relations for $i=1,2,3,4$. $\gamma_{i}^{\prime} \mathbf{e}_{j}=\mathbf{e}_{j}$ if $i \neq j$ and

$$
\gamma_{1}^{\prime} \mathbf{e}_{1}=-\mathbf{e}_{1}+\mathbf{e}_{2}, \gamma_{2}^{\prime} \mathbf{e}_{2}=\mathbf{e}_{1}-\mathbf{e}_{2}, \gamma_{3}^{\prime} \mathbf{e}_{3}=-\mathbf{e}_{3}+\mathbf{e}_{4}, \gamma_{4}^{\prime} \mathbf{e}_{4}=\mathbf{e}_{3}-\mathbf{e}_{4}
$$

Then $\Gamma^{\prime}=\left\langle\gamma_{i}^{\prime} \mid i=1,2,3,4\right\rangle$ is a Coxeter group with the relations: $\gamma_{i}^{\prime 2}=1$ and

$$
\left(\gamma_{1}^{\prime} \gamma_{2}^{\prime}\right)^{3}=\left(\gamma_{3}^{\prime} \gamma_{4}^{\prime}\right)^{3}=\left(\gamma_{1}^{\prime} \gamma_{3}^{\prime}\right)^{2}=\left(\gamma_{2}^{\prime} \gamma_{4}^{\prime}\right)^{2}=\left(\gamma_{1}^{\prime} \gamma_{4}^{\prime}\right)^{2}=\left(\gamma_{2}^{\prime} \gamma_{3}^{\prime}\right)^{2}=1
$$

Hence the Dynkin diagram of Γ^{\prime} is Figure $10, \Gamma^{\prime} \simeq D_{3} \times D_{3}$ and there exists a surjective homomorphism $q: \Gamma \rightarrow \Gamma^{\prime}$ sending γ_{i} to γ_{i}^{\prime}. Let $\Delta^{\prime}=\left\{p\left(\gamma^{\prime} \tau \backslash\{0\}\right) \mid \gamma^{\prime} \in \Gamma^{\prime}, \tau \prec\right.$ $\sigma, \tau \neq\{0\}\}$, where $p: N_{\mathbf{R}} \backslash\{0\} \rightarrow S^{3}$ is the natural projection. Then Δ^{\prime} is a tetrahedral decomposition of S^{3} with 36 tetrahedra. Let $\tilde{f}: C \cup\{0\} \rightarrow N_{\mathbf{R}}$ be the piecewise linear map defined by $\tilde{f}(x)=q(\gamma) \gamma^{-1} x$, if x is in $\gamma \sigma$ for an element γ in Γ. Then \tilde{f} induces a Galois covering $f: D_{C} \rightarrow S^{3}$ with $f(\gamma x)=q(\gamma) f(x)$ for any element γ in Γ, ramifying only along $\Xi_{13} \cup \Xi_{24}$, where $\Xi_{i j}=\bigcup_{\gamma^{\prime} \in \Gamma^{\prime}} p\left(\gamma^{\prime}\left(\mathbf{R}_{\geq 0} \mathbf{e}_{i}+\mathbf{R}_{\geq 0} \mathbf{e}_{j}\right) \backslash\{0\}\right)$, because $\left\langle\gamma_{i}, \gamma_{j}\right\rangle$ are the stabilizers of $\mathbf{R}_{\geq 0} \mathbf{e}_{k}+\mathbf{R}_{\geq 0} \mathbf{e}_{l}$, where $\{k, l\}=\{1,2,3,4\} \backslash\{i, j\}$, $q\left(\left(\gamma_{2} \gamma_{4}\right)^{2}\right)=q\left(\left(\gamma_{1} \gamma_{3}\right)^{2}\right)=1$ and the restriction of q to $\left\langle\gamma_{i}, \gamma_{j}\right\rangle$ is an isomorphism if $(i, j) \neq(1,3),(2,4)$. Moreover, Δ is the pull-back of Δ^{\prime} under f.

Let $\Gamma^{\prime \prime}=\left\langle\gamma_{i}^{\prime \prime} \mid i=1,2,3,4\right\rangle$, where $\gamma_{1}^{\prime \prime}=\gamma_{1}^{\prime}, \gamma_{2}^{\prime \prime}=\gamma_{2}, \gamma_{3}^{\prime \prime}=\gamma_{3}^{\prime}, \gamma_{4}^{\prime \prime}=\gamma_{4}$. Then $\Gamma^{\prime \prime}$ is a Coxeter group whose Dynkin diagram is Figure 11 and there exist surjective homomorphisms $q_{1}: \Gamma \rightarrow \Gamma^{\prime \prime}$ sending γ_{i} to $\gamma_{i}^{\prime \prime}$ and $q_{1}^{\prime}: \Gamma^{\prime \prime} \rightarrow \Gamma^{\prime}$ sending $\gamma_{i}^{\prime \prime}$ to γ_{i}^{\prime} with $q=q_{1}^{\prime} \circ q_{1}$. We can define Galois coverings $f_{1}: D_{C} \rightarrow S^{3}$ and $f_{1}^{\prime}: S^{3} \rightarrow S^{3}$ such that $f_{1}^{\prime}\left(\gamma^{\prime \prime} x\right)=q_{1}^{\prime}\left(\gamma^{\prime \prime}\right) f_{1}^{\prime}(x)$ for any element $\gamma^{\prime \prime}$ in $\Gamma^{\prime \prime}$ and that $f_{1}^{\prime} \circ f_{1}=f$, in a similar way as f. Then f_{1}^{\prime} ramifies only along $\Xi_{13}, \operatorname{Gal}\left(f_{1}^{\prime}\right)=\operatorname{ker}\left(q_{1}^{\prime}\right)$ and $\Delta_{1}=\left\{p\left(\gamma^{\prime \prime} \tau \backslash\{0\}\right) \mid \gamma^{\prime \prime} \in\right.$ $\left.\Gamma^{\prime \prime}, \tau \prec \sigma, \tau \neq\{0\}\right\}$ is the pull-back of Δ^{\prime} under f_{1}^{\prime}. Let $\gamma_{0}^{\prime \prime}=\gamma_{1}^{\prime \prime} \gamma_{2}^{\prime \prime} \gamma_{3}^{\prime \prime} \gamma_{4}^{\prime \prime}$.

Lemma. There exists a normal subgroup Γ_{1} of $\operatorname{ker}\left(q_{1}^{\prime}\right)$ acting on S^{3} freely with $\operatorname{ker}\left(q_{1}^{\prime}\right) / \Gamma_{1} \simeq \mathbf{Z}_{2} \oplus \mathbf{Z}_{2}, \gamma_{0}^{\prime \prime 3} \in \Gamma_{1}$ and $\gamma_{0}^{\prime \prime} \Gamma_{1} \gamma_{0}^{\prime \prime-1}=\Gamma_{1}$.

Proof. Let \mathbb{P} be the convex hull of the 24 points

$$
\left(\begin{array}{c}
\pm 2 \\
0 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{c}
0 \\
\pm 2 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{c}
0 \\
0 \\
\pm 2 \\
0
\end{array}\right), \quad\left(\begin{array}{c}
0 \\
0 \\
0 \\
\pm 2
\end{array}\right), \quad\left(\begin{array}{c}
\pm 1 \\
\pm 1 \\
\pm 1 \\
\pm 1
\end{array}\right)
$$

in \mathbf{R}^{4}. Then the boundary $\partial \mathbb{P}$ of \mathbb{P} consists of 24 octahedra which are on the hyperplanes defined by $\pm x_{i} \pm x_{j}=2(1 \leq i<j \leq 4)$, and is a regular polyhedron of type $(3,4,3)$ (see $[\mathbf{1}, 8.2])$. For example, an octahedron has 6 vertices ${ }^{t}(2,0,0,0),{ }^{t}(0,2,0,0),{ }^{t}(1,1, \pm 1, \pm 1)$. Let \square be the barycentric subdivision of the octahedral decomposition $p(\partial \mathbb{P})$ of S^{3} which is the image of $\partial \mathbb{P}$ under the projection $p: \mathbf{R}^{4} \backslash\{0\} \rightarrow S^{3}$. Let $h: S^{3} \rightarrow S^{3}$ be the homeomorphism induced by the linear transformation \tilde{h} sending $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ and \mathbf{e}_{4} to ${ }^{t}(1,1,0,0),{ }^{t}(2,1,1,0),{ }^{t}(1,1,1,1)$ and ${ }^{t}(2,2,2,0)$, respectively. Then $h \Delta_{1}$ coincides

Figure 12.
with \square, because $\tilde{h}\left(\gamma_{1}^{\prime \prime} \mathbf{e}_{1}\right)={ }^{t}(1,0,1,0), \tilde{h}\left(\gamma_{2}^{\prime \prime} \mathbf{e}_{2}\right)={ }^{t}(1,2,1,0), \tilde{h}\left(\gamma_{3}^{\prime \prime} \mathbf{e}_{3}\right)={ }^{t}(1,1,1,-1)$ and $\tilde{h}\left(\gamma_{4}^{\prime \prime} \mathbf{e}_{4}\right)={ }^{t}(3,1,1,1)$ (see Figure 12). Moreover, $h\left(f_{1}^{\prime-1}\left(\Xi_{13}\right)\right)$ is the union of the diagonals of the octahedra on $p(\partial \mathbb{P})$. Since the barycentric subdivision of an octahedron has 48 tetrahedra, $\left|\Gamma^{\prime \prime}\right|=24 \cdot 48=1152$. Since $\operatorname{ker}\left(q_{1}^{\prime}\right)$ is generated by the conjugates of $\left(\gamma_{2}^{\prime \prime} \gamma_{4}^{\prime \prime}\right)^{2}$, whose fixed points are contained in $f_{1}^{\prime-1}\left(\Xi_{13}\right)$ and $\left|\operatorname{ker}\left(q_{1}^{\prime}\right)\right|=\left|\Gamma^{\prime \prime}\right| /\left|\Gamma^{\prime}\right|=$ $1152 / 36=32, \tilde{h} \operatorname{ker}\left(q_{1}^{\prime}\right) \tilde{h}^{-1}$ consists of the following 32 matrices, where $\epsilon_{i}= \pm 1$ and $\epsilon_{1} \epsilon_{2} \epsilon_{3} \epsilon_{4}=1$.

$$
\left(\begin{array}{cccc}
\epsilon_{1} & 0 & 0 & 0 \\
0 & \epsilon_{2} & 0 & 0 \\
0 & 0 & \epsilon_{3} & 0 \\
0 & 0 & 0 & \epsilon_{4}
\end{array}\right), \quad\left(\begin{array}{cccc}
0 & \epsilon_{1} & 0 & 0 \\
\epsilon_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & \epsilon_{3} \\
0 & 0 & \epsilon_{4} & 0
\end{array}\right), \quad\left(\begin{array}{cccc}
0 & 0 & \epsilon_{1} & 0 \\
0 & 0 & 0 & \epsilon_{2} \\
\epsilon_{3} & 0 & 0 & 0 \\
0 & \epsilon_{4} & 0 & 0
\end{array}\right), \quad\left(\begin{array}{cccc}
0 & 0 & 0 & \epsilon_{1} \\
0 & 0 & \epsilon_{2} & 0 \\
0 & \epsilon_{3} & 0 & 0 \\
\epsilon_{4} & 0 & 0 & 0
\end{array}\right) .
$$

Note that the fixed points of all matrices of order 2 in the above except $-I_{4}$, are contained in the diagonals of the octahedra and that any one of order 4 in the above is the product of two of order 2 . The set consisting of $\pm I_{4}, \pm A, \pm B$ and $\pm C$ is a normal subgroup of $\tilde{h} \operatorname{ker}\left(q_{1}^{\prime}\right) \tilde{h}^{-1}$ acting on S^{3} freely, where

$$
A=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right), \quad B=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right), \quad C=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right) .
$$

Let $J=\tilde{h} \gamma_{0}^{\prime \prime} \tilde{h}^{-1}$. Then

$$
J=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & -1 & 1 \\
1 & -1 & 1 & 1 \\
1 & 1 & 1 & -1 \\
1 & -1 & -1 & -1
\end{array}\right)
$$

Hence $J^{3}=-B, J A J^{-1}=-A, J B J^{-1}=B$ and $J C J^{-1}=-C$. Since $\left|\operatorname{ker}\left(q_{1}^{\prime}\right) / \Gamma_{1}\right|=4$ and $X^{2}=-I_{4}$ for any element X of order 4 in $\tilde{h} \operatorname{ker}\left(q_{1}^{\prime}\right) \tilde{h}^{-1}, \operatorname{ker}\left(q_{1}^{\prime}\right) / \Gamma_{1} \simeq \mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$.

Let $T_{1}=S^{3} / \Gamma_{1}$ and let $g_{1}^{\prime}: T_{1} \rightarrow S^{3}$ be the Galois covering induced by f_{1}^{\prime}. Then g_{1}^{\prime} ramifies only along Ξ_{13}. Let $h_{1}: D_{C} \rightarrow T_{1}$ be the composite of f_{1} and the quotient map $S^{3} \rightarrow T_{1}$ under Γ_{1}. Then h_{1} ramifies only along $g_{1}^{\prime-1}\left(\Xi_{24}\right)$ and $f=g_{1}^{\prime} \circ h_{1}$. Moreover, $\gamma_{0}^{\prime \prime}$ induces an automorphism δ_{1} on T_{1} with $\left|\delta_{1}\right|=3$, by the above lemma. Let $\gamma_{0}^{\prime}=\gamma_{1}^{\prime} \gamma_{2}^{\prime} \gamma_{3}^{\prime} \gamma_{4}^{\prime}$. Then γ_{0}^{\prime} has no fixed points on S^{3} and $q_{1}^{\prime}\left(\gamma_{0}^{\prime \prime}\right)=\gamma_{0}^{\prime}$. Hence $g_{1}^{\prime} \circ \delta_{1}=\gamma_{0}^{\prime} \circ g_{1}^{\prime}$. In a similar way, we obtain Galois coverings $g_{2}^{\prime}: T_{2} \rightarrow S^{3}$ ramifying only along $\Xi_{24}, h_{2}: D_{C} \rightarrow T_{2}$ ramifying only along $g_{2}^{\prime-1}\left(\Xi_{13}\right)$ with $f=g_{2}^{\prime} \circ h_{2}$ and an automorphism δ_{2} on T_{2} with $\left|\delta_{2}\right|=3$ such that $g_{2}^{\prime} \circ \delta_{2}=\gamma_{0}^{\prime} \circ g_{2}^{\prime}$.

$$
D_{C} \rightarrow T=T_{1} \times_{S^{3}} T_{2} \rightarrow T_{0}=T / G_{0} \rightarrow T_{0} /\left\langle\delta_{0}\right\rangle=D_{C} / \Gamma^{0} \rightarrow S^{3}
$$

Now, to show the existence of a subgroup Γ^{0} in the theorem, we construct covering maps as above, where the left three arrows do not ramify and the right one ramifies along $\Xi_{13} \cup \Xi_{24}$. Let $T=T_{1} \times{ }_{S^{3}} T_{2}$ be the fiber product of g_{1}^{\prime} and g_{2}^{\prime}. Then T is a topological manifold, because $\Xi_{13} \cap \Xi_{24}=\emptyset$. Since $\operatorname{Gal}\left(g_{i}^{\prime}\right) \simeq \mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$, any bijection between $\operatorname{Gal}\left(g_{1}^{\prime}\right) \backslash\{1\}$ and $\operatorname{Gal}\left(g_{2}^{\prime}\right) \backslash\{1\}$ induces an isomorphism. Hence there exists an isomorphism $\phi: \operatorname{Gal}\left(g_{1}^{\prime}\right) \simeq \operatorname{Gal}\left(g_{2}^{\prime}\right)$ such that $\phi\left(\delta_{1} \gamma \delta_{1}^{-1}\right)=\delta_{2} \phi(\gamma) \delta_{2}^{-1}$ for any element γ in $\operatorname{Gal}\left(g_{1}^{\prime}\right)$. Let $G_{0}=\left\{(\gamma, \phi(\gamma)) \mid \gamma \in \operatorname{Gal}\left(g_{1}^{\prime}\right)\right\}$. Then G_{0} has no fixed points on T, because $\Xi_{13} \cap \Xi_{24}=\emptyset$. Let $T_{0}=T / G_{0}$ and let $g_{0}^{\prime}: T_{0} \rightarrow S^{3}$ be the covering induced by the natural projection $T \rightarrow S^{3}$. Then $\operatorname{deg} g_{0}^{\prime}=4$, because $\operatorname{deg} g_{i}^{\prime}=4$. Hence the pull-back of Δ^{\prime} under g_{0}^{\prime}, consists of $36 \cdot 4=144$ tetrahedra. Let $h: D_{C} \rightarrow T_{0}$ be the composite of the map (h_{1}, h_{2}) and the quotient map $T \rightarrow T_{0}$. Then h is a surjective unramified covering, because it does not ramify along $g_{0}^{\prime-1}\left(\Xi_{13} \cup \Xi_{24}\right)$ and T_{0} is a topological manifold. Since $\left(\delta_{1}, \delta_{2}\right) G_{0}\left(\delta_{1}, \delta_{2}\right)^{-1}=G_{0},\left(\delta_{1}, \delta_{2}\right)$ induces an automorphism δ_{0} on T_{0} with $g_{0}^{\prime} \circ \delta_{0}=\gamma_{0}^{\prime} \circ g_{0}^{\prime}$. Since γ_{0}^{\prime} has no fixed points on S^{3}, so does δ_{0} on T_{0}. Hence the composite of h and the quotient map $T_{0} \rightarrow T_{0} /\left\langle\delta_{0}\right\rangle$, is the quotient map under a subgroup of Γ with the index $144 / 3=48$ acting on D_{C} freely.

References

[1] H. S. M. Coxeter, Regular Polytopes, 3rd edn., Dover, New York, 1973.
[2] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge.
[3] M. Ishida, Cusp singularities given by reflections of stellable cones, Internat. J. Math., 2 (1991), 635-657.
[4] J. G. Ratcliffe, Foundations of Hyperbolic Manifolds, 2nd edn., GTM, 149, Springer.
[5] T. Oda, Convex Bodies and Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete 3, Folge-Band 15, Springer-Verlag, 1987.
[6] I. Satake, On numerical invariants of arithmetic varieties of Q-rank one, in Automorphic forms of several variables, Taniguchi Symposium, Katata, 1983 (I. Satake and Y. Morita, eds.), Progr. Math., 46, Birkhauser, Basel-Boston-Stuttgart, 1984, 353-369.
[7] I. Satake and S. Ogata, Zeta functions associated to cones and their special values, Automorphic Forms and Geometry of Arithmetic Varieties, Adv. Stud. Pure Math., 15, 1989, 1-27.
[8] H. Tsuchihashi, Higher dimensional analogues of periodic continued fractions and cusp singularities, Tohoku Math. J., 35 (1983), 607-639.
[9] H. Tsuchihashi, Three-Dimensional Cusp Singularities, Complex Analytic Singularities, Adv. Stud. Pure Math., 8, 1986, 649-670.
[10] È. B. Vinberg, Discrete linear groups generated by reflections, Math. USSR Izvestija, 5 (1971), 1083-1119.

[^0]: 2010 Mathematics Subject Classification. Primary 14J17; Secondary 32S05.
 Key Words and Phrases. cusp singularity, quadratic cone, reflection.

