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Abstract. Let N (resp., U) be a manifold (resp., an open subset of
R™). Let f: N - U and F : U — R¢ be an immersion and a C'° mapping,
respectively. Generally, the composition F' o f does not necessarily yield a
mapping transverse to a given subfiber-bundle of J!(N, ]RZ). Nevertheless,
in this paper, for any Al-invariant fiber, we show that composing generic
linearly perturbed mappings of F' and the given immersion f yields a mapping
transverse to the subfiber-bundle of J' (N, R¢) with the given fiber. Moreover,
we show a specialized transversality theorem on crossings of compositions of
generic linearly perturbed mappings of a given mapping F : U — R¢ and
a given injection f : N — U. Furthermore, applications of the two main
theorems are given.

1. Introduction.

Throughout this paper, let ¢/, m and n stand for positive integers. In this paper,
unless otherwise stated, all manifolds and mappings belong to class C*° and all manifolds
are without boundary. Let 7 : R™ — R, U and F : U — R’ be a linear mapping, an
open subset of R™ and a mapping, respectively.

Set

F,.=F+m.

Here, the mapping 7 in F; = F + 7 is restricted to U.

Let £(R™,R*) be the space consisting of all linear mappings of R™ into R¢. Remark
that we have the natural identification £(R™,R?) = (R™)*. An n-dimensional manifold
is denoted by N. For a given mapping f : N — U, a property of mappings F o f :
N — R’ will be said to be true for a generic mapping if there exists a subset ¥ with
Lebesgue measure zero of £L(R™,R?) such that for any 7 € L(R™,R?) — X, the mapping
F.of: N — R’ has the property. In the case F' = 0, by John Mather, for a given
embedding f : N — R™, a generic mapping 7o f : N — R’ (m > /) is investigated
in the celebrated paper [10]. The main theorem in [10] yields many applications. On
the other hand, in this paper, for a given immersion or a given injection f : N — U, a
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generic mapping Fy o f : N — R is investigated, where ¢ is an arbitrary positive integer
which may possibly satisfy m < £.

The main purpose of this paper is to show two main theorems (Theorems 1 and 2 in
Section 2) and to give some of their applications. The first main theorem (Theorem 1)
is as follows. Let f : N — U (resp., F : U — R’) be an immersion (resp., a mapping).
Then, generally, the composition F' o f does not necessarily yield a mapping transverse
to a given subfiber-bundle of the jet bundle J*(N,R?). Nevertheless, Theorem 1 asserts
that for any A'-invariant fiber, a generic mapping F, o f yields a mapping transverse
to the subfiber-bundle of J'(N,R¢) with the given fiber. The second main theorem
(Theorem 2) is a specialized transversality theorem on crossings of a generic mapping
F.o f, where f : N — U is a given injection and F : U — R’ is a given mapping.

For a given immersion (resp., injection) f : N — U, the following (1)—(4) (resp., (5))
are obtained as applications of Theorem 1 (resp., Theorem 2).

(1) If (n,£) = (n, 1), then a generic function F o f : N — R is a Morse function.

(2) If (n,£) = (n,2n — 1) and n > 2, then any singular point of a generic mapping
Fro f: N — R?!is a singular point of Whitney umbrella.

(3) If £ > 2n, then a generic mapping F; o f : N — R is an immersion.

(4) A generic mapping Fy o f : N — R’ has corank at most & singular points (for the
definition of corank at most k singular points, see Subsection 5.1), where k is the
maximum integer satisfying (n —v 4+ k)(¢{ — v+ k) <n (v = min{n, £}).

(5) If £ > 2n, then a generic mapping Fy; o f : N — R’ is injective.

Moreover, by combining the assertions (3) and (5), for a given embedding f : N — U,
the following assertion (6) is obtained.

(6) If £ > 2n and N is compact, then a generic mapping Fy o f : N — R’ is an
embedding.

In Section 2, some standard definitions are reviewed, and the two main theorems
(Theorems 1 and 2) are stated. Section 3 (resp., Section 4) is devoted to the proof of
Theorem 1 (resp., Theorem 2). In Section 5, the assertions (1)—(6) above are shown.
Moreover, in Section 6, as further applications, the two main theorems are adapted
to quadratic mappings of R™ into RY of a special type called “generalized distance-
squared mappings” (for the precise definition of generalized distance-squared mappings,
see Section 6). Since some corollaries in this paper (the assertion (6) in Section 1,
Corollary 7 in Section 5 and Corollary 9 in Section 6) are also obtained by using the
main theorem in [4], which is an improvement of the main theorem in [10], for the
sake of readers’ convenience, Section 7 explains the main theorems in [4] and [10] as an
appendix.

2. Preliminaries and the statements of Theorems 1 and 2.

Let N and P be manifolds. Firstly, we recall the definition of transversality.
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DEFINITION 1.  Let W be a submanifold of P. Let g : N — P be a mapping.

1. We say that g : N — P is transverse to W at q if g(q) ¢ W or in the case of
g(q) € W, the following holds:

dgq(TyN) + Ty )W = Ty(g) P.

2. We say that g : N — P is transverse to W if for any ¢ € N, the mapping g is
transverse to W at q.

We say that g : N — P is A-equivalent to h : N — P if there exist diffeomorphisms
®:N—->Nand ¥: P — Psuchthat g=Pohod 1.

Let J"(N, P) be the space of r-jets of mappings of N into P. For a given mapping
g : N — P, the mapping j"g : N — J"(N, P) is defined by ¢ — j"¢(q) (for details on
the space J"(N, P) or the mapping j"g : N — J"(N, P), see for example, [3]).

For the statement and the proof of Theorem 1, it is sufficient to consider the case of
r=1and P =R Let {(Ux,¢x)}rea be a coordinate neighborhood system of N. Let
IT: JYN,R") — N x R’ be the natural projection defined by II(j'g(q)) = (¢, 9(q)). Let
@y T H(Uy x RY) — pa(Uy) x R x J1(n,£) be the homeomorphism defined by

@5 (7'9(q)) = (ox(0),9(q). 5 (1, o g oy ' 0 Br)(0))

where J'(n,£) = {j'g(0) | g : (R*,0) — (R% 0)} and @y : R® — R" (resp., 1y : R™ —
R™) is the translation defined by $x(0) = px(q) (resp., ¥A(g9(q)) = 0). Then, {(II7 (U, x
R?), ®,)}aea is a coordinate neighborhood system of J*(INV, R?). A subset X of J1(n, ¢) is
said to be Al-invariant if for any j'g(0) € X, and for any two germs of diffeomorphisms
H : (Rf,0) — (R,0) and h : (R™,0) — (R™,0), we have j'(H ogoh™!)(0) € X. Let X
be an A'-invariant submanifold of J!(n, ). Set

X(N,RY) = U@ (pa(Ux) x RY x X) .
PYSN

Then, the set X (N, R) is a subfiber-bundle of J!(N,R?) with the fiber X such that

codim X (N, R?) = dim J!(N, R?) — dim X (N, R")
=dim J'(n,¢) — dim X
= codim X.

Then, the first main theorem in this paper is the following.

THEOREM 1. Let N be a manifold of dimension n. Let f be an immersion of
N into an open subset U of R™. Let F : U — R’ be a mapping. If X is an A'-in-
variant submanifold of J*(n, ), then there exists a subset X with Lebesgue measure zero of
L(R™ R such that for any © € L(R™,RY) — X, the mapping j1(Frof) : N — J*(N,R")
is transverse to the submanifold X (N, RY).

Now, in order to state the second main theorem (Theorem 2), we will prepare some
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definitions. Set N©) = {(q1,q2,...,qs) € N* | ¢i # q; (i # j)}. Notice that N(*) is
an open submanifold of N*. For any mapping g : N — P, let ¢*) : N(®) — P* be the
mapping defined by

9 a1, a2, as) = (9(@1), 9(a2), - -, 9(as))-

Set Ay = {(y,...,y) € P° |y € P}. It is clearly seen that A, is a submanifold of P*
such that

codim Ay = dim P — dim Ay = (s — 1) dim P.

DEFINITION 2. Let g be a mapping of NV into P. Then, g is called a mapping with
normal crossings if for any positive integer s (s > 2), the mapping g®) : NG - ps s
transverse to the submanifold Ag.

For any injection f: N — R™, set

Sf :max{s

Since the mapping f is injective, we get 2 < sy. Since f(q1), f(qz2),. .-, f(gs,) are points
of R™, it follows that sy < m + 1. Thus, we have

(g1, 42, -, 4s) € N® dim > R f (1) f(q:) = s — 1} :

=2

2<sy<m+1

Furthermore, in the following, for a set X, we denote the number of its elements (or its
cardinality) by |X|. Then, the second main theorem in this paper is the following.

THEOREM 2. Let N be a manifold of dimension n. Let f be an injection of N into
an open subset U of R™. Let F : U — R be a mapping. Then, there exists a subset ¥ of
L(R™, RY) with Lebesgue measure zero such that for any m € L(R™,RY) =X, and for any
5 (2 < s < sy), the mapping (Fyr o ) : NG — (RY)* is transverse to the submanifold
As. Moreover, if the mapping F, satisfies that |F-1(y)| < sy for any y € R, then
F.of: N — R is a mapping with normal crossings.

The following well known result is important for the proofs of Theorems 1 and 2.

LEmMA 1 ([1], [10])). Let N, P, Z be manifolds, and let W be a submanifold of P.
LetT': N x Z — P be a mapping. If I' is transverse to W, then there exists a subset ¥
of Z with Lebesgue measure zero such that for any p € Z — X, the mapping I', : N — P
is transverse to W, where I'y,(q) =T'(g,p).

REMARK 1. 1. We explain the advantage that the domain of the mapping F' is
an arbitrary open set. Suppose that U = R. Let ' : R — R be the mapping defined
by  — |z|. Since F' is not differentiable at * = 0, we cannot apply Theorems 1
and 2 to the mapping F : R — R.

On the other hand, if U = R — {0}, then Theorems 1 and 2 can be applied to the
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restriction F|y.

2. There is a case of sy = 3 as follows. If n+1<m, N = S™ and f : 8" — R is the
inclusion f(z) = (z,0,...,0), then it is easily seen that s; = 3. Indeed, suppose
—

that there exists a point (q1,qz,qs) € (S") such that dim =2, R (1) (q) = L.

Then, since the number of the intersections of f(S™) and a straight line of R™

is at most two, this contradicts the assumption. Thus, we get sy > 3. From

St x {0} C f(S™), it follows that s; < 4, where 0 = (0,...,0). Hence, we have
—_———

(m—2)-tuple
Sf = 3.

3. The essential idea for the proofs of Theorems 1 and 2 is to apply Lemma 1, and
it is almost similar to the idea of the proofs of main results in [8]. Nevertheless,
the two main theorems in this paper are drastically improved. As an effect of the
improvement, many applications are obtained by the two main theorems (for the
applications, see Sections 5 and 6).

3. Proof of Theorem 1.

Let (Oéij)1gige,1gjgm be a representing matrix of a linear mapping 7 : R™ — RE.
Set F, = F,, and we have

Fo(z) = <F1(SU) + > anjag, Fa(e) + Y agjag, . Fo(x) + ) Oéejxj), (3.1)
j=1 j=1

j=1
where F = (Fy, Fa, ..., Fy), @ = (Q11, 012, -+, Q- - -, Qg1 Q2 - - -, Q) € (R™)* and
x = (x1,29,...,2,). For a given immersion f : N — U, the mapping F,o f : N — R’

is given as follows:
Fa Of B <F1 Of—|—ZO[1jfj7F2 Of—FZO(gjfj,... ,Fg of+Zagjfj>, (32)
j=1 j=1 j=1

where f = (f1, f2,..., fm). Since we have the natural identification £L(R™, RY) = (R™)¢,
in order to prove Theorem 1, it is sufficient to show that there exists a subset ¥ with
Lebesgue measure zero of (R™)¢ such that for any a € (R™)¢—X, the mapping j'(F,of) :
N — JY(N,R") is transverse to the given submanifold X (N, R?).

Now, let I': N x (R™)* — J*(N,R?) be the mapping defined by

L(q, @) = j' (Fao f)(q)-

If the mapping I' is transverse to the submanifold X (N, R?), then from Lemma 1, it
follows that there exists a subset ¥ of (R™)¢ with Lebesgue measure zero such that for
any a € (R™)* — %, the mapping I'y, : N — JY(N,RY) (T',, = j}(F, o f)) is transverse to
the submanifold X (N, R?). Thus, in order to finish the proof of Theorem 1, it is sufficient
to show that if T'(g, @) € X (N, R?), then the following holds:
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dr' g3 (Tiga (N x (R™)) + Trga X (N,RY) = TrgaJ (N.RY).  (33)
As in Section 2, let {(Ux,px)}rea (resp., {(IT71(Uy x RY),®))}rea) be a coordinate
neighborhood system of N (resp., J!(N,R¥)). There exists a coordinate neighborhood
(Us x (R™), o5 x id) containing the point (¢,@) of N x (R™)*, where id is the identity
mapping of (R™)* into (R™)*, and the mapping @5 x id : Uz x (R™)* — ¢5(Us) x
(R™)* (C R™ x (R™)*) is defined by (p5 x id) (q,@) = (¢5(q),id()). There exists a
coordinate neighborhood (II™!(Us x R), ®5) containing the point I'(g, &) of J*(N,R").

Let t = (t1,t2,...,t,) € R™ be a local coordinate on ¢5(Us) containing ¢5(q). Then,
the mapping I is locally given by the following:
(q); ol'o (907\ X id)fl)(t,a)
= (@504 (Fa o f)ops)(t)
= (t7 (Fa Ofogp';l)(t%
OFarofops) | OFarofops’)  OFarofopr!)
S () T (1) A ),
OFazrofops’) « OFapofops’) « OFapofops’)
A () T (1), A ),
B(Faxofotpil)t a(Fa,IZOfOSDrl)t O(Faofop 1)t
e
= (t, (Fao fopih)(®),
8Flof s of; 8F10f u of; 8Flof of;
atl +Z 1]8t] B +Z ljat] cey +Za1]aj(t
8F20f a afj BFgof d af; OF0 f .J
b 20 (O Tor )+ 3 e G0 T t>+;a2] o)
OF, ) aF R OF, 0
aﬁtff +Z g] fJ Zof +Z Zg f] . Eof +Z e] fJ
WhereFa:(Fa,laFa,27-~-aFa,€)andf:(f17f2a"'7fm) (flo(p)\ af? 7"'7fm
@il) =fo goil. The Jacobian matrix of the mapping I" at (¢, &) is the followmg.
E,|l 0 0
*k *
(J f7)
q 0
TLaa = | « I f7) )
(I f3)

(t,a)=(¢

5(2),a)
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where E,, is the n x n unit matrix and J f7 is the Jacobian matrix of the mapping f at ¢.
Note that !(J f7) is the transpose of the matrix .J f7 and that there are ¢ copies of /(.J f7) in
the above description of JI'(5). Since X (N,R) is a subfiber-bundle of J*(N, R?) with
the fiber X, it is clear that in order to show (3.3), it suffices to prove that the matrix M;
given below has rank n + £ + n¢:

ETL-‘r[ * PPN e *

YJ 1) 0
“Jf7) :

0

M,y

|
o

t T f
(Jf7) (t,a)=(¢5(2),a)

where E, ¢ is the (n + £) x (n + ¢) unit matrix. Note that there are ¢ copies of *(J f3)
in the above description of M;. Notice that for any ¢ (1 < i < m/), the (n + ¢+ 4)-th
column vector of M; coincides with the (n + 4)-th column vector of JI'( ). Since the
mapping f is an immersion (n < m), we have that the rank of the matrix M; is equal to
n + ¢ + nf. Hence, we have (3.3). O

4. Proof of Theorem 2.

By the same method as in the proof of Theorem 1, set F,, = F}., where F,, is given
by (3.1) in Section 3. For a given injection f : N — U, the mapping F,o f : N —
R’ is given by the same expression as (3.2). Since we have the natural identification
L(R™ R = (R™)*, in order to show that there exists a subset ¥ of £(R™,R?) with
Lebesgue measure zero such that for any 7 € L(R™,Rf) — ¥, and for any s (2 < s < s¢),
the mapping (Fyrof)(®) : N(®) — (R)* is transverse to the submanifold A, it is sufficient
to show that there exists a subset 3 of (R™)¢ with Lebesgue measure zero such that for
any a € (R™)* — %, and for any s (2 < s < sy), the mapping (F, o f)®) : N®) — (Rf)*
is transverse to Ag.

Now, let s be a positive integer satisfying 2 < s < sy. Let I": NG x (R™)¢ = (RY)*
be the mapping defined by

L(q1, g2, -5 qss @) = (Fa o f)(qu), (Fa o f)(q2),-- -, (Fao f)(gs)) -

If for any positive integer s (2 < s < s¢), the mapping I is transverse to Ay, then from
Lemma 1, it follows that for any positive integer s (2 < s < s;), there exists a subset X
of (R™)* with Lebesgue measure zero such that for any a € (R™)* — X, the mapping
T, : NG — (RY)* (T = (F,o f)®) is transverse to A,. Then, set ¥ = (Ji1, ¥,. Tt is
clearly seen that ¥ is a subset of (R™) with Lebesgue measure zero. Therefore, it follows
that for any o € (R™)* — %, and for any s (2 < s < s¢), the mapping ', : N®) — (RY)*
(To = (Fy o0 f)®) is transverse to A,.

Hence, for the proof, it is sufficient to show that for any positive integer s (2 < s <
sp), if I(q, @) € As (¢ = (G1,G2,---,qs)), then the following holds:

dl' ga (Tga (N x (R™) + Trga As = Trg.a) RY)". (4.1)
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Let {(Ux, ©x)}rea be a coordinate neighborhood system of N. There exists a coordinate
neighborhood (U x U5, %+ xUs_ X (R™), P5, XP5, X - X5 xid) containing the point
(7, @) of N x (R™)¢, where id is the identity mapping of (R™) into (R™)’, and the
mapping @5, X5, X - x5 xid : Uy, xUs x---xUs x(R™)" = (R™)*x(R™)" is defined
by (¢x, X ¢x, X X o5, X id)(q1, 42 - -+ 45, @) = (95, (@1), 95, (@2)s - - -, o5_(45), id(a)).
Let t; = (ti1,ti2,--.,tin) be a local coordinate around e3, (;) (1 <1 <'s). Then, the
mapping I' is locally given by the following:

-1
FO(@XIXQOXzX'“XQOXind) (tl,tg,...,ts,a)

= ((Fuo foe)t), (Fao fopih)(ta), .., (Fao fo g5 ))(ts))

= [ Froft) + Y an; fi(t), Fao f(t) + ) asifi(ta), . Feo f(t) + > ae f(t),

Jj=1 Jj=1 j=1
Fiof(t)+ Y a1fi(ta), Fao flta) + Y s fita), .., Feo f(ta) + Y e f(ta),
Jj=1 Jj=1 j=1
Frof(t)+ Y ayfilts), Fao f(ts) + > asifilts),... . Fro f(t) + > aufilts) |
j=1 j=1 j=1

where f(t;) = (fi(t:), fa(ti), .., fn(t:)) = (flowi_l(ti)afzowil(ti)y . wfmo(pi_l(ti)) (1<
1 < s). For simplicity, set t = (¢1,t2,...,ts) and z = (@XI X5, X xgo;s)('qvl, Goy -5 qs)-
The Jacobian matrix of the mapping I' at (¢, @) is the following:

* B(tl)
* B(tg)
HLaa=| . ; ’
* | B(ts) (t,0)=(2,d)
where
b(t:) 0
b(t:)
B(t;) = ) £ rows
0 B
b(t;)

and b(t;) = (f1(t;), f2(t:), - . -, fm(t:)). By the construction of Tr(g,a)As, in order to show
(4.1), it is sufficient to show that the rank of the following matrix M, is equal to ¢s:
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E, B(ty)
E, B(ta)
My = ) )
E | Btt) ),

There exists an £s x £s regular matrix @1 such that

E, B(t1)
0 B(ts) — B(ty
OuM, = (t2) | (t1)
0 | Btt)-B(t) ),

There exists an (¢ + mf) x (¢ + mf) regular matrix Q2 such that

Ey 0
0 B(ty) — B(t
angs= | | PP
0 | Btt,)-B(t) /,__
Ey 0
==
f(t) f(t2) 0
0 F(t) f(t2)
0 ==
= f(t1) f(t2)
%
f(tl)f(ts) O
0 Ftoiit,)
0 ==
f(t) f(ts)

PO

1173

{ rows

{ rows

where f(t1) f(t:) = (fi(t:) = fi(tr), fo(ts) = fa(t), - () = fin(t1)) (2 < i < s) and

t =z From s —1 < sy — 1 and the definition of s, it follows that

S ~ ~ )
dim) Rf(t)f(t:) =5 —1,

=2

where ¢ = z. Thus, by the construction of the matrix Q1 MsQ2 and s — 1 < m, we have
that the rank of the matrix Q1 M>Q)s is equal to £s. Hence, the rank of the matrix My must
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be equal to £s. Therefore, we have (4.1). Thus, there exists a subset ¥ of £L(R™, R?) with
Lebesgue measure zero such that for any 7 € L(R™,RY) — ¥, and for any s (2 < s < sy¢),
the mapping (Fy o f)®) : N(®) — (R)* is transverse to the submanifold A,.

Moreover, suppose that the mapping F) satisfies that |F-1(y)| < s; for any y € R”.
Since f : N — R™ is injective, it follows that |(Frof)~1(y)| < s; for any y € R®. Hence, it
follows that for any positive integer s with s > s; 41, we have (Fo f)()(N®) N A, = 0.
Namely, for any positive integer s with s > sy + 1, the mapping (Fr o f )(3) is transverse
to As. Thus, Fro f: N — R’ is a mapping with normal crossings. g

5. Applications of Theorems 1 and 2.

In Subsection 5.1 (resp., Subsection 5.2), applications of Theorem 1 (resp., Theo-
rem 2) are stated and proved. In Subsection 5.2, applications obtained by combining
Theorems 1 and 2 are also given.

5.1. Applications of Theorem 1.
Set

k= {jlg(O) € JY(n, ) | corank Jg(0) = k},

where corank Jg(0) = min{n, ¢} — rank Jg(0) and k = 1,2,...,min{n,£}. Then, X* is
an Al-invariant submanifold of J!(n, ). Set

F(N,RY) = Uq> (pa(Ux) x R x ©F) |
AEA

where the mappings ®, and ¢, are as defined in Section 2. Then, the set X¥(N,R?) is
a subfiber-bundle of J!(N,R) with the fiber ¥* such that

codim X¥(N, RY) = dim J* (N, RY) — dim X* (N, R)
=Mn—-v+k)({—v+k),

where v = min{n, £}. (For details on ¥* and ¥*(NN,R¥), see for example [3], pp. 60-61).
As applications of Theorem 1, we have the following Proposition 1, Corollaries 1, 2,
3 and 4.

PROPOSITION 1. Let N be a manifold of dimension n. Let f be an immersion of N
into an open subset U of R™. Let F : U — R be a mapping. Then, there exists a subset
Y of L(R™,RY) with Lebesgue measure zero such that for any m € L(R™ R) — 2, the
mapping j*(Fy o f) : N — JY(N,R") is transverse to the submanifold ¥*(N,R*) for any
positive integer k satisfying 1 < k < wv. Especially, in the case of £ > 2, we have kg+1 < v
and it follows that the mapping j*(Fy o f) satisfies that j1(Fy o f)(N) (N Z*(N,RY) = ()
for any positive integer k satisfying ko + 1 < k < v, where kg is the mazimum integer
satisfying (n — v + ko)({ — v + ko) < n (v =min{n, (}).

PrROOF. By Theorem 1, for any positive integer k satisfying 1 < k < v, there
exists a subset X of L(R™ R’) with Lebesgue measure zero such that for any 7 €
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L(R™ RY) — %, the mapping j*(Fy o f) : N — JY(N,R) is transverse to XF(N,RY).
Set ¥ =y, 3. Then, it is clearly seen that X is a subset of £(R™, R*) with Lebesgue
measure zero. Hence, it follows that there exists a subset ¥ of £L(R™,R?) with Lebesgue
measure zero such that for any m € L(R™,R?) — ¥, the mapping j'(Fyo f) : N —
JY(N,RY) is transverse to the submanifold ¥ (N, R) for any positive integer k satisfying
1<k <.

Now, we will consider the case of ¢ > 2. Firstly, we will show that kg + 1 < v in the
case. Suppose that v < kg. Then, by (n —v+ko)({ — v+ ko) < n, we have nf < n. This
contradicts the assumption ¢ > 2.

Secondly, we will show that in the case of £ > 2, the mapping j'(Fro f) : N —
JY(N,RY) satisfies that j'(EFrof)(N) [ ZF(N,R?) =  for any positive integer k satisfying
ko+1 < k < wv. Suppose that there exist a positive integer k (ko+1 < k < v) and a point
q € N such that j'(Frof)(q) € X¥(N,R¥). Since the mapping j'(Frof): N — J'(N,R?)
is transverse to X¥(N,R) at the point g, the following holds:

A3 (Fr 0 f)g(TyN) + Tir(propy( ZF (N, RY) = Tja oy I (N, RE).
Hence, we have

dim d(j' (Fr o f))q(T,N)
> dimnl(Fﬂof)(q)Jl(N7R£) - dimle(Fwof)(q)Zk(N, Re)
= COdimle(Fwof)(q)Ek(N, ]Re).

Thus, we get n > (n —v + k)({ — v + k). Since the given integer ko is the maximum
integer satisfying n > (n — v + ko)(¢ — v + ko), it follows that k < kg. This contradicts
the assumption kg + 1 < k. O

REMARK 2. 1. In Proposition 1, by (n — v + ko)({ — v + ko) < n, it is clearly
seen that kg > 0.

2. In Proposition 1, in the case of £ = 1, we have ky + 1 > v. Indeed, in the case, by
v =1, we get (n — 1+ ko)ko < n. Hence, we have kg = 1.

A mapping g : N — R is called a Morse function if all of the singularities of the
mapping ¢ are nondegenerate (for details on Morse functions, see for example, [3], p. 63).
In the case of (n,£) = (n,1), we have the following.

COROLLARY 1. Let N be a manifold of dimension n. Let f be an immersion of
N into an open subset U of R™. Let F' : U — R be a mapping. Then, there exists a
subset 3 of L(R™,R) with Lebesque measure zero such that for any m € LIR™ R) — X,
the mapping Fro f : N — R is a Morse function.

PRrROOF. By Proposition 1, there exists a subset ¥ with Lebesgue measure zero of
L(R™,R) such that for any 7 € L(R™,R) — %, the mapping j!(Fr o f) : N — J'(N,R)
is transverse to the submanifold ¥'(N,R). Hence, if ¢ € N is a singular point of the
mapping F;: o f, then the point ¢ is nondegenerate. O
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For a given mapping g : N — R?"~! (n > 2), a singular point ¢ € N is called
a singular point of Whitney umbrella if there exist two germs of diffeomorphisms H :
(R?"=1 g(q)) — (R?®"~1,0)and h : (N, q) — (R",0) such that Hogoh™*(z1,xa,...,2,) =
(v2, 2170, ..., 01Ty, T2, ..., Ty), Where (x1,Ta,...,2,) is a local coordinate around the
point h(g) =0 € R™. In the case of (n,¢) = (n,2n — 1) (n > 2), we have the following.

COROLLARY 2. Let N be a manifold of dimension n (n > 2). Let f be an im-
mersion of N into an open subset U of R™. Let F : U — R?"~! be a mapping. Then,
there exists a subset ¥ with Lebesgue measure zero of L(R™,R?"~1) such that for any
7 € LR™ R2"=1) — ¥ any singular point of the mapping Fr o f : N — R*7! 45 g
singular point of Whitney umbrella.

PROOF. By, for example, [3], p. 179, we see that a point ¢ € N is a singular point
of Whitney umbrella of the mapping Fy o f if j1(F; o f)(q) € L'(IN,R?"~1) and the
mapping j!(F, o f) is transverse to the submanifold (N, R?"~1) at ¢q. Set £ = 2n — 1
and v = n in Proposition 1. Then, it is clearly seen that we have kg = 1 in Proposition 1.
Hence, there exists a subset 3 of £(R™,R?"~1) with Lebesgue measure zero such that
for any 7 € L(R™,R?"~1) — ¥ the mapping Fyr o f : N — R?"~! is transverse to
YF(N,R?™~1) for any positive integer k satisfying 1 < k < n, and the mapping satisfies
that j1(Fy o f)(N) (N ZF(N,R?"~1) = ) for any positive integer k satisfying 2 < k < n.
Thus, if a point ¢ € N is a singular point of the mapping F, o f, then it follows that
Y (Fr o f)(q) € (N, R*~1) and j'(Fy o f) is transverse to 31 (N, R?"~1) at q. O

In the case of £ > 2n, the immersion property of a given mapping f : N — U is
preserved by composing generic linearly perturbed mappings as follows:

COROLLARY 3. Let N be a manifold of dimension n. Let f be an immersion of N
into an open subset U of R™. Let F : U — R’ be a mapping (¢ > 2n). Then, there exists
a subset X of L(R™, RY) with Lebesgue measure zero such that for any © € L(R™ R —%,
the mapping Fr o f : N = R’ is an immersion.

PROOF. It is clearly seen that the mapping Fr o f : N — R’ is an immersion if
and only if j1(Fr o f)(N)NUp—; Z*(N,R¥) = 0. Set v =n and ¢ > 2n in Proposition 1.
Then, it is clearly seen that kg < 0. By Remark 2, we get kg = 0. Hence, there exists a
subset ¥ of £L(R™,R?) with Lebesgue measure zero such that for any 7 € £(R™, Rf) — %
the mapping j'(Fy o f) : N — JY(N,RY) satisfies that j'(F, o f)(N) N XF(N,RY) =
for any positive integer k (1 < k < n).

O=

A mapping g : N — R? has corank at most k singular points if
sup {corank dg, | ¢ € N} <k,

where corank dg, = min{n, ¢} — rank dg,. By Proposition 1, we have the following
corollary.

COROLLARY 4. Let N be a manifold of dimension n. Let f be an immersion of N
into an open subset U of R™. Let F : U — R’ be a mapping. Let ko be the mazimum
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integer satisfying (n—v+ko)(—v+ko) <n (v=min{n,l}). Then, there exists a subset
Y of L(R™,RY) with Lebesgue measure zero such that for any m € L(R™, RY) — X, the
mapping Fr o f : N = R’ has corank at most ko singular points.

5.2. Applications of Theorem 2.

PROPOSITION 2. Let N be a manifold of dimension n. Let f be an injection of
N into an open subset U of R™. Let F : U — RY be a mapping. If (sy — 1)¢ > nsy,
then there exists a subset ¥ of L(R™,RY) with Lebesque measure zero such that for any
7€ LR™RY — %, Frof: N — R is a mapping with normal crossings satisfying
(Fy o fED(NCD) N A, = 0.

PROOF. By Theorem 2, there exists a subset ¥ of £(R™, R¥) with Lebesgue mea-
sure zero such that for any 7 € L(R™,RY) — %, and for any s (2 < s < sy), the mapping
(Fro £)®) : NG — (RY)® is transverse to the submanifold A,. Hence, in order to show
Proposition 2, it is sufficient to show that for any 7 € L(R™,R?) — ¥, the mapping
(Fr o f)1) satisfies that (Fr o f) (NGO A, = 0.

Suppose that there exists an element 7 € L£(R™,RY) — ¥ such that there exists a
point ¢ € N©s) satisfying (Fy o f)*)(q) € A, . Since (Fy o f)¢#) is transverse to A
we have the following:

Sf

d((Fr o ) g(TENCD) Ty 0B = T opyten (R
Hence, we have
dim d((Fy o )1*0)(T,N 1)
dim T, (RY)*f — dim T,
A,

v

Frof)°5)(q) Frof) 9 (gD
codimTip, opyen (g

Thus, we get nsy > (sy — 1)¢. This contradicts the assumption (sy — 1)¢ > nsy. O

In the case of ¢ > 2n, the injection property of a given mapping f : N — U is
preserved by composing generic linearly perturbed mappings as follows:

COROLLARY 5. Let N be a manifold of dimension n. Let f be an injection of N
into an open subset U of R™. Let F: U — R’ be a mapping. If £ > 2n, then there exists
a subset X2 of L(R™, RY) with Lebesgue measure zero such that for any © € L(R™, RY)—¥,
the mapping Fr o f : N — R’ is injective.

PROOF. Since sy > 2 and ¢ > 2n, it is easily seen that the dimension pair (n, )
satisfies the assumption (sy —1)¢ > nsy of Proposition 2. Indeed, from ¢ > 2n, it follows
that (sy — 1) > 2n(sy —1). By sy > 2, we get 2n(sy — 1) > nsy.

Hence, by Proposition 2, there exists a subset ¥ of £(R™, R¥) with Lebesgue measure
zero such that for any 7 € L(R™,RY) — X, the mapping (F; o £)® : N&) — (RY)? is
transverse to As. In order to show Corollary 5, it is sufficient to show that the mapping
(Fr o £)?) satisfies that (Fy o f)(N@)N Ay = 0.
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Suppose that there exists a point ¢ € N such that (Fy o f)®)(q) € Ay. Then, we
have the following;:

A((Fr 0 /)P (TuN®) + T o o) BD2 = Tirno )@ (g) (R

Hence, we have

dim d((Fy o f)®),(T,N®)

2 dlm T(F,rof)@)(q) (R€)2 — dlm T(F,rof)(z)(q)AQ
= codim T(F,,Of)(2)(q)A2'
Thus, we get 2n > ¢. This contradicts the assumption ¢ > 2n. g

By combining Corollaries 3 and 5, we have the following.

COROLLARY 6. Let N be a manifold of dimension n. Let f be an injective im-
mersion of N into an open subset U of R™. Let F: U — R’ be a mapping. If { > 2n,
then there exists a subset ¥ of L(R™,RY) with Lebesque measure zero such that for any
7w € L(R™,RY) — %, the mapping Fy o f : N — R is an injective immersion.

In Corollary 6, suppose that the mapping Fy o f : N — R is proper. Then, an
injective immersion F o f is necessarily an embedding (see [3], p.11). Thus, we get the
following.

COROLLARY 7. Let N be a compact manifold of dimension n. Let f be an em-
bedding of N into an open subset U of R™. Let F : U — R’ be a mapping. If £ > 2n,
then there exists a subset ¥ of L(R™,RY) with Lebesque measure zero such that for any
7€ LIR™,RY) — %, the mapping Fy o f : N — RY is an embedding.

6. Further applications.

6.1. Introduction of generalized distance-squared mappings.

Let pi = (pit;pizs---»Pim) (1 <@ < £) (resp., A = (aij)1<i<r,1<j<m) be points
of R™ (resp., an £ x m matrix with all entries being non-zero real numbers). Set p =
(p1,p2,...,pe) € (R™). Let Gpa): R — R be the mapping defined by

m
Gp.a)(x Zalj '—plj)2,zazj($j—p2] ) Zaeg Peg )
j=1

where © = (21, %2,...,2y,) € R™. The mapping G, ) is called a generalized distance-
squared mapping, and the (-tuple of points p = (p1,pa,...,pe) € (R™) is called the
central point of the generalized distance-squared mapping G, 4). A distance-squared
mapping D, (resp., Lorentzian distance-squared mapping L) is the mapping G(p,a) sat-
isfying that each entry of A is equal to 1 (resp., a;; = —1 and a;; =1 (j # 1)).

In [5] (resp., [6]), a classification result of distance-squared mappings (resp.,
Lorentzian distance-squared mappings) is given.
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In [9], a classification result of generalized distance-squared mappings of the plane
into the plane is given. If the rank of A is equal to two, then a generalized distance-
squared mapping having a generic central point is a mapping of which any singular point
is a fold point except one cusp point. The singular set is a rectangular hyperbola. If the
rank of A is equal to one, then a generalized distance-squared mapping having a generic
central point is A-equivalent to the normal form of fold singularity (z1,z2) — (x1,23).

In [7], a classification result of generalized distance-squared mappings of R™*1
into R2™+1 is given. If the rank of A is equal to m + 1, then a generalized distance-
squared mapping having a generic central point is A-equivalent to the normal form
of Whitney umbrella (z1,22,...,Tmi1) = (22,2129, ..., T1%mi1, T2, .., Tmi1). If the
rank of A is strictly smaller than m + 1, then a generalized distance-squared mapping
having a generic central point is A-equivalent to the inclusion (x1,%2,...,Zmt1) —
(.T1,$2,. . ,$m+1,0,...,0).

Namely, in [5], [6], [7] and [9], the properties of generic generalized distance-squared
mappings are investigated. Hence, it is natural to investigate the properties of composi-
tions with generic generalized distance-squared mappings.

We have another original motivation. Height functions and distance-squared func-
tions have been investigated in detail so far, and they are useful tools in the applications
of singularity theory to differential geometry (for instance, see [2]). A mapping in which
each component is a height function is nothing but a projection. Projections as well as
height functions or distance-squared functions have been investigated so far. In [10],
compositions of generic projections and embeddings are investigated.

On the other hand, a mapping in which each component is a distance-squared func-
tion is a distance-squared mapping. In addition, the notion of a generalized distance-
squared mapping is an extension of that of a distance-squared mapping. Therefore, it is
natural to investigate compositions with generic generalized distance-squared mappings
as well as projections.

6.2. Applications of Theorem 1 to G, 4) : R™ — R¢.

PRroOPOSITION 3. Let N be a manifold of dimension n. Let f : N — R™ be an
immersion. Let A = (a;j)1<i<e,1<j<m be an € X m matriz with all entries being non-zero
real numbers. If X is an A'-invariant submanifold of J'(n, ), then there exists a subset
Y of (R™)! with Lebesgue measure zero such that for any p € (R™)* — %, the mapping
i1 (Gp,ayo f): N — JH(N,R") is transverse to the submanifold X (N,R).

ProOOF. Let H : R’ — R be a diffeomorphism of the target for deleting constant
terms. The composition H o G, 4y : R™ — R’ is given as follows:

m m m m
E 2 § : § 2 § :

H [¢] G(p,A)(Z‘) = aljxj — 2 aljpljxj, agjl’j — 2 agjpgjl‘j,
j=1 j=1 j=1 j=1

m m
2
R g agxy —2 g ag;pe;Ti |,
=1 =1

where © = (z1, T2, ..., Tm).
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Let ¢ : (R™)¢ — L(R™,R*) be the mapping defined by

(P11, P12 - - - Pem) = —2(a11P11, @12P12; - - -, AemDem )-

Remark that we have the natural identification £(R™,R?) = (R™)%. Since a;; # 0 for
any ¢, j (1 <i</{,1<j<m),itis clearly seen that ¢ is a C*° diffeomorphism.

Set Fi(z) = Y7 aiya; (1 < i < () and F = (F1, Fy,...,Fy). By Theorem 1,
there exists a subset ¥ of £(R™,R’) with Lebesgue measure zero such that for any
7 € L(R™ RY) — X, the mapping j!(Fy o f) : N — JY(N,R) is transverse to X (N, R).
Since ¢~ : L(R™,Rf) — (R™)* is a C> mapping, ¢ ~1(X) is a subset of (R™)* with
Lebesgue measure zero. For any p € (R™)’ — ¢~ 1(X), we have ¢(p) € L(R™,RY) — X.
Hence, for any p € (R™)* — ¢~(2), the mapping j'(H o Gy 4y 0 f) : N — J'(N,R)
is transverse to X (N, R?). Then, since H : R® — R’ is a diffeomorphism, the mapping
i (Gpayo f): N = J'(N,R") is transverse to X (N, R"). O

REMARK 3. As applications of Proposition 3, regarding generalized distance-
squared mappings, we get analogies of Proposition 1, Corollaries 1, 2, 3 and 4.

6.3. Applications of Theorem 2 to G(;, 4) : R™ — R¢.
By Theorem 2, we get the following proposition, which can be proved by the same
argument as in the proof of Proposition 3, and we omit the proof.

PROPOSITION 4. Let N be a manifold of dimension n. Let f : N — R™ be an
injection. Let A = (aij)lgigz,lgjgm be an £ x m matriz with all entries being non-zero
real numbers. Then, there exists a subset ¥ of (R™)¢ with Lebesque measure zero such
that for any p € (R™)* — X, and for any s (2 < s < sy), the mapping (Gp,a) © e
NG — (RY® is transverse to the submanifold A,. Moreover, if the mapping Gp,A)
satisfies that |G(_p%A) (y)| < sy for any y € RY, then Gpayof: N — R is a mapping
with normal crossings.

REMARK 4. As applications of Proposition 4, regarding generalized distance-
squared mappings, we get analogies of Proposition 2, Corollaries 5, 6 and 7.

As the special case of the classification result of distance squared mappings (resp.,
Lorentzian distance-squared mappings) in [5] (resp., [6]), we have Lemma 2.

LEMMA 2 ([5], [6]). We have the following.

1. For any p € R, the mappings Dy : R — R and L, : R = R are A-equivalent to
x> 22

2. For m > 2, there exists a subset ¥p (resp., X1,) of (R™)™ with Lebesgue measure
zero such that for any p € (R™)™ — Xp (resp., p € (R™)™ — 1), the mapping
D, : R™ — R™ (resp., L, : R™ — R™) is A-equivalent to the normal form of
definite fold mappings (x1,%a, ..., Tm) = (X1,T2, .., Tin_1,T2,).

3. In the case of 1 < m < {, there exists a subset Xp (resp., Xr) of (R™)¢ with
Lebesgque measure zero such that for any p € (R™)¢ — $p (resp., p € (R™) — %),
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the mapping D, : R™ — R* (resp., L, :R™ — R?) is A-equivalent to the inclusion
(1,22, .., Zm) — (T1,2Z2,. .., Tm, 0,...,0).

PROPOSITION 5.  Let N be a manifold of dimension n. Let f : N — R™ be an
injection. Then, the following holds:

1. For m > 1, there exists a subset Xp (resp., ¥1) of (R™)™ with Lebesgue measure
zero such that for any p € (R™)™ —Xp (resp., p € (R™)™ —Xr), Dyof: N - R™
(resp., Lpo f : N — R™) is a mapping with normal crossings.

2. In the case of 1 < m < {, there exists a subset Xp (resp., Y1) of (R™)¢ with
Lebesgue measure zero such that for any p € (R™)* — Xp (resp., p € (R™)" — %),
the mapping Dy o f : N — R (resp., L, o f : N — R") is an injection.

ProOOF. The proof for distance-squared mappings is the same as that for
Lorentzian distance-squared mappings. Hence, it is sufficient to give the proof for
distance-squared mappings.

Firstly, we will show the assertion 1. From Lemma 2, there exists a subset 3 of
(R™)™ with Lebesgue measure zero such that for any p € (R™)™ — X1, the mapping
Dy : R™ — R™ satisfies that |D,'(y)| < 2 for any y € R™. On the other hand, from
Proposition 4, there exists a subset Xy of (R™)™ with Lebesgue measure zero such that
for any p € (R™)™ — %, if D, satisfies that [D,'(y)| < s; for any y € R™, then
Dy,of : N — R™ is a mapping with normal crossings. Set Xp = ¥; U Xy. It is
clearly seen that Yp is a subset of (R™)™ with Lebesgue measure zero. Then, for any
pe€ (R™)™—Xp, Dyo f: N—=R™is a mapping with normal crossings.

In the case of m < /, since from Lemma 2, there exists a subset Xp of (R™)¢ with
Lebesgue measure zero such that for any p € (R™)* — ¥p, the mapping D, :R"™ — R¢
is A-equivalent to the inclusion, the assertion 2 holds. O

By combining Proposition 5 and the analogy of Corollary 3 in Remark 3, we have
the following.

COROLLARY 8. Let N be a manifold of dimension n. Let f : N — R™ be an
injective immersion (2n < m). Then, there exists a subset Xp (resp., X1) of (R™)™
with Lebesgue measure zero such that for any p € (R™)™ —Xp (resp., p € (R™)™ —%p),
the mapping Dy o f : N — R™ (resp., L, o f : N — R™) is an immersion with normal
Crossings.

In Corollary 8, if m = 2n and the mapping D, o f : N — R?" (resp., Lo f: N —
R?") is proper, then the immersion with normal crossings D, o f : N — R?" (resp.,
L,o f: N — R?") is necessarily stable (see [3], p.86). Thus, we get the following.

COROLLARY 9. Let N be a compact manifold of dimension n. Let f : N — R?"
be an embedding. Then, there erists a subset Xp (resp., ¥1) of (R?™)?™ with Lebesgue
measure zero such that for any p € (R*")2" —%p (resp., p € (R?")*" — 1), the mapping
Dyo f: N — R*™ (resp., L,o f: N — R?") is stable.
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Remark that the dimension of the target space in Corollary 9 is smaller than that
in Corollary 7.

7. Appendix.

In this section, the main theorems in [4] and [10] are stated. For this, we prepare
some notions.

Let N and P be manifolds. Let 4J"(N,P) be the space consisting of elements
(77 9(@1), 57 9(@2), -, 57 9(a,)) € J"(N, P)* satisfying (1,ds. . ., 5) € N©). Since N is
an open submanifold of N*, the space sJ" (N, P) is also an open submanifold of J" (N, P)*.
For a given mapping g : N — P, the mapping ,j"g : N©®) — (J"(N, P) is defined by
(q1,q2,---54s) = (79(q1), 37 9(q2); - -, 37 9(as))-

Let W be a submanifold of J"(N, P). A mapping g : N — P will be said to be
transverse with respect to W if ;j7g : N — J* (N, P) is transverse to W.

Following Mather ([10]), we can partition P° as follows. Given any partition II of
{1,2,...,s}, let P denote the set of s-tuples (y1,¥2,...,ys) € P® such that y; = y; if
and only if the two positive integers ¢ and j are in the same member of the partition II.

Let Diff NV denote the group of diffeomorphisms of N. We have the natural ac-
tion of Diff N x Diff P on ¢J"(N,P) such that for a mapping g : N — P, the
equality (h, H) - 55"g(q) = s"(H o g o h=")(¢') holds, where ¢ = (g1,42,.--,9s) and
¢ = (h(q1),h(g2),...,h(gs)). A subset W of ;J"(N,P) is said to be invariant if it is
invariant under this action.

We recall the following identification (7.1) from [10]. For ¢ = (q1,¢2,...,qs) € N©,
let g : U — P be a mapping defined in a neighborhood U of {¢1,¢a,...,¢s} in N, and let
z=33"9(q), ¢ = (9(q1),9(q2),---,9(gs)). Let sJ"(N,P), and sJ" (N, P), denote the
fibers of s J" (N, P) over q and over (g, ¢’) respectively. Let J"(N), denote the R-algebra
of r-jets at ¢ of functions on N. Namely,

JT(N)q =J"(N, R)q-

Set g*TP = Uzcp Ty P; where TP is the tangent bundle of P. Let J"(g*T'P)q denote
the J"(N),-module of r-jets at g of sections of the bundle ¢g*TP. Let m, be the ideal in
J"(N), consisting of jets of functions which vanish at ¢. Namely,

my = {s5"h(g) € s J" (N, R)q | h(q1) = h(g2) = --- = h(gs) = 0}

Let mgJ"(g*TP)4 be the set consisting of finite sums of products of an element of m,
and an element of J"(¢*TP),. Namely, we set

myJ (9" TP)g = J"(g"TP)yN{sj"€(q) € sJ"(N,TP)q | §(q1) = &(q2) = --- = &(gs) = 0}

Then, it is easily seen that we have the following canonical identification of R-vector
spaces:

T(sJ"(N,P)g,q): =mgJ (¢"TP),. (7.1)

Let W be a non-empty submanifold of ,.J"(N, P). Choose ¢ = (q1,q2,...,qs) € N
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and g : N — P, and set z = 3j"g(q) and ¢ = (9(q1),9(q2),-..,9(gs)). Suppose that
the choice is made so that z € W. Set W, » = 7 1(q,¢), where 7@ : W — NG x Ps is
defined by %(sfﬁ(@) = (E]va (5(51)»5@2)7 c 75(&5))) and Ej: (szl’ E]v27 cee 768) € N(S)
Then, under the identification (7.1), the tangent space T'(W, ,). can be identified
with a vector subspace of myJ"(¢*T'P),. We denote this vector subspace by E(g,q, W).

DEFINITION 3. The submanifold W is said to be modular if conditions («) and
(B) below are satisfied.

(a) The set W is an invariant submanifold of J"(N, P), and lies over P for some
partition IT of {1,2,...,s}.

(B) For any ¢ € N and any mapping g : N — P such that 4j"g(q) € W, the subspace
E(g,q, W) is a J"(N)4-submodule.

Now, suppose that P = R*. The main theorem in [10] is the following.

THEOREM 3 ([10]). Let N be a manifold of dimensionn. Let f be an embedding of
N into R™. If W is a modular submanifold of ;J"(N,RY) and m > £, then there exists a
subset ¥ with Lebesgue measure zero of L(R™, RY) such that for any © € L(R™ RY) — %,
mo f: N — R’ is transverse with respect to W.

Then, the main theorem in [4] is the following.

THEOREM 4 ([4]). Let N be a manifold of dimension n. Let f be an embedding
of N into an open subset U of R™. Let F : U — R® be a mapping. If W is a modular
submanifold of ¢J"(N,RY), then there exists a subset ¥ with Lebesgue measure zero of
L(R™,RY) such that for any # € LR™,RY) =%, Frof: N — R’ is transverse with
respect to W.

The assertion (6) in Section 1, Corollary 7 in Section 5 and Corollary 9 in Section 6
of the present paper are obtained as corollaries of Theorems 1 and 2 in this paper. On
the other hand, they are also corollaries of Theorem 4.
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