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Abstract. Let N (resp., U) be a manifold (resp., an open subset of
Rm). Let f : N → U and F : U → Rℓ be an immersion and a C∞ mapping,

respectively. Generally, the composition F ◦ f does not necessarily yield a
mapping transverse to a given subfiber-bundle of J1(N,Rℓ). Nevertheless,
in this paper, for any A1-invariant fiber, we show that composing generic

linearly perturbed mappings of F and the given immersion f yields a mapping
transverse to the subfiber-bundle of J1(N,Rℓ) with the given fiber. Moreover,
we show a specialized transversality theorem on crossings of compositions of
generic linearly perturbed mappings of a given mapping F : U → Rℓ and

a given injection f : N → U . Furthermore, applications of the two main
theorems are given.

1. Introduction.

Throughout this paper, let ℓ, m and n stand for positive integers. In this paper,

unless otherwise stated, all manifolds and mappings belong to class C∞ and all manifolds

are without boundary. Let π : Rm → Rℓ, U and F : U → Rℓ be a linear mapping, an

open subset of Rm and a mapping, respectively.

Set

Fπ = F + π.

Here, the mapping π in Fπ = F + π is restricted to U .

Let L(Rm,Rℓ) be the space consisting of all linear mappings of Rm into Rℓ. Remark

that we have the natural identification L(Rm,Rℓ) = (Rm)ℓ. An n-dimensional manifold

is denoted by N . For a given mapping f : N → U , a property of mappings Fπ ◦ f :

N → Rℓ will be said to be true for a generic mapping if there exists a subset Σ with

Lebesgue measure zero of L(Rm,Rℓ) such that for any π ∈ L(Rm,Rℓ)−Σ, the mapping

Fπ ◦ f : N → Rℓ has the property. In the case F = 0, by John Mather, for a given

embedding f : N → Rm, a generic mapping π ◦ f : N → Rℓ (m > ℓ) is investigated

in the celebrated paper [10]. The main theorem in [10] yields many applications. On

the other hand, in this paper, for a given immersion or a given injection f : N → U , a
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generic mapping Fπ ◦ f : N → Rℓ is investigated, where ℓ is an arbitrary positive integer

which may possibly satisfy m ≤ ℓ.

The main purpose of this paper is to show two main theorems (Theorems 1 and 2 in

Section 2) and to give some of their applications. The first main theorem (Theorem 1)

is as follows. Let f : N → U (resp., F : U → Rℓ) be an immersion (resp., a mapping).

Then, generally, the composition F ◦ f does not necessarily yield a mapping transverse

to a given subfiber-bundle of the jet bundle J1(N,Rℓ). Nevertheless, Theorem 1 asserts

that for any A1-invariant fiber, a generic mapping Fπ ◦ f yields a mapping transverse

to the subfiber-bundle of J1(N,Rℓ) with the given fiber. The second main theorem

(Theorem 2) is a specialized transversality theorem on crossings of a generic mapping

Fπ ◦ f , where f : N → U is a given injection and F : U → Rℓ is a given mapping.

For a given immersion (resp., injection) f : N → U , the following (1)–(4) (resp., (5))

are obtained as applications of Theorem 1 (resp., Theorem 2).

(1) If (n, ℓ) = (n, 1), then a generic function Fπ ◦ f : N → R is a Morse function.

(2) If (n, ℓ) = (n, 2n − 1) and n ≥ 2, then any singular point of a generic mapping

Fπ ◦ f : N → R2n−1 is a singular point of Whitney umbrella.

(3) If ℓ ≥ 2n, then a generic mapping Fπ ◦ f : N → Rℓ is an immersion.

(4) A generic mapping Fπ ◦ f : N → Rℓ has corank at most k singular points (for the

definition of corank at most k singular points, see Subsection 5.1), where k is the

maximum integer satisfying (n− v + k)(ℓ− v + k) ≤ n (v = min{n, ℓ}).

(5) If ℓ > 2n, then a generic mapping Fπ ◦ f : N → Rℓ is injective.

Moreover, by combining the assertions (3) and (5), for a given embedding f : N → U ,

the following assertion (6) is obtained.

(6) If ℓ > 2n and N is compact, then a generic mapping Fπ ◦ f : N → Rℓ is an

embedding.

In Section 2, some standard definitions are reviewed, and the two main theorems

(Theorems 1 and 2) are stated. Section 3 (resp., Section 4) is devoted to the proof of

Theorem 1 (resp., Theorem 2). In Section 5, the assertions (1)–(6) above are shown.

Moreover, in Section 6, as further applications, the two main theorems are adapted

to quadratic mappings of Rm into Rℓ of a special type called “generalized distance-

squared mappings” (for the precise definition of generalized distance-squared mappings,

see Section 6). Since some corollaries in this paper (the assertion (6) in Section 1,

Corollary 7 in Section 5 and Corollary 9 in Section 6) are also obtained by using the

main theorem in [4], which is an improvement of the main theorem in [10], for the

sake of readers’ convenience, Section 7 explains the main theorems in [4] and [10] as an

appendix.

2. Preliminaries and the statements of Theorems 1 and 2.

Let N and P be manifolds. Firstly, we recall the definition of transversality.
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Definition 1. Let W be a submanifold of P . Let g : N → P be a mapping.

1. We say that g : N → P is transverse to W at q if g(q) ̸∈ W or in the case of

g(q) ∈W , the following holds:

dgq(TqN) + Tg(q)W = Tg(q)P.

2. We say that g : N → P is transverse to W if for any q ∈ N , the mapping g is

transverse to W at q.

We say that g : N → P is A-equivalent to h : N → P if there exist diffeomorphisms

Φ : N → N and Ψ : P → P such that g = Ψ ◦ h ◦ Φ−1.

Let Jr(N,P ) be the space of r-jets of mappings of N into P . For a given mapping

g : N → P , the mapping jrg : N → Jr(N,P ) is defined by q 7→ jrg(q) (for details on

the space Jr(N,P ) or the mapping jrg : N → Jr(N,P ), see for example, [3]).

For the statement and the proof of Theorem 1, it is sufficient to consider the case of

r = 1 and P = Rℓ. Let {(Uλ, φλ)}λ∈Λ be a coordinate neighborhood system of N . Let

Π : J1(N,Rℓ) → N × Rℓ be the natural projection defined by Π(j1g(q)) = (q, g(q)). Let

Φλ : Π−1(Uλ × Rℓ) → φλ(Uλ)× Rℓ × J1(n, ℓ) be the homeomorphism defined by

Φλ

(
j1g(q)

)
=

(
φλ(q), g(q), j

1(ψ
λ
◦ g ◦ φ−1

λ ◦ φ̃λ)(0)
)
,

where J1(n, ℓ) = {j1g(0) | g : (Rn, 0) → (Rℓ, 0)} and φ̃λ : Rn → Rn (resp., ψλ : Rm →
Rm) is the translation defined by φ̃λ(0) = φλ(q) (resp., ψλ(g(q)) = 0). Then, {(Π−1(Uλ×
Rℓ),Φλ)}λ∈Λ is a coordinate neighborhood system of J1(N,Rℓ). A subset X of J1(n, ℓ) is

said to be A1-invariant if for any j1g(0) ∈ X, and for any two germs of diffeomorphisms

H : (Rℓ, 0) → (Rℓ, 0) and h : (Rn, 0) → (Rn, 0), we have j1(H ◦ g ◦ h−1)(0) ∈ X. Let X

be an A1-invariant submanifold of J1(n, ℓ). Set

X(N,Rℓ) =
∪
λ∈Λ

Φ−1
λ

(
φλ(Uλ)× Rℓ ×X

)
.

Then, the set X(N,Rℓ) is a subfiber-bundle of J1(N,Rℓ) with the fiber X such that

codimX(N,Rℓ) = dim J1(N,Rℓ)− dimX(N,Rℓ)

= dim J1(n, ℓ)− dimX

= codimX.

Then, the first main theorem in this paper is the following.

Theorem 1. Let N be a manifold of dimension n. Let f be an immersion of

N into an open subset U of Rm. Let F : U → Rℓ be a mapping. If X is an A1-in-

variant submanifold of J1(n, ℓ), then there exists a subset Σ with Lebesgue measure zero of

L(Rm,Rℓ) such that for any π ∈ L(Rm,Rℓ)−Σ, the mapping j1(Fπ ◦f) : N → J1(N,Rℓ)

is transverse to the submanifold X(N,Rℓ).

Now, in order to state the second main theorem (Theorem 2), we will prepare some
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definitions. Set N (s) = {(q1, q2, . . . , qs) ∈ Ns | qi ̸= qj (i ̸= j)}. Notice that N (s) is

an open submanifold of Ns. For any mapping g : N → P , let g(s) : N (s) → P s be the

mapping defined by

g(s)(q1, q2, . . . , qs) = (g(q1), g(q2), . . . , g(qs)).

Set ∆s = {(y, . . . , y) ∈ P s | y ∈ P}. It is clearly seen that ∆s is a submanifold of P s

such that

codim∆s = dimP s − dim∆s = (s− 1) dimP.

Definition 2. Let g be a mapping of N into P . Then, g is called a mapping with

normal crossings if for any positive integer s (s ≥ 2), the mapping g(s) : N (s) → P s is

transverse to the submanifold ∆s.

For any injection f : N → Rm, set

sf = max

{
s

∣∣∣∣∣ ∀(q1, q2, . . . , qs) ∈ N (s), dim
s∑

i=2

R
−−−−−−−→
f(q1)f(qi) = s− 1

}
.

Since the mapping f is injective, we get 2 ≤ sf . Since f(q1), f(q2), . . . , f(qsf ) are points

of Rm, it follows that sf ≤ m+ 1. Thus, we have

2 ≤ sf ≤ m+ 1.

Furthermore, in the following, for a set X, we denote the number of its elements (or its

cardinality) by |X|. Then, the second main theorem in this paper is the following.

Theorem 2. Let N be a manifold of dimension n. Let f be an injection of N into

an open subset U of Rm. Let F : U → Rℓ be a mapping. Then, there exists a subset Σ of

L(Rm,Rℓ) with Lebesgue measure zero such that for any π ∈ L(Rm,Rℓ)−Σ, and for any

s (2 ≤ s ≤ sf ), the mapping (Fπ ◦ f)(s) : N (s) → (Rℓ)s is transverse to the submanifold

∆s. Moreover, if the mapping Fπ satisfies that |F−1
π (y)| ≤ sf for any y ∈ Rℓ, then

Fπ ◦ f : N → Rℓ is a mapping with normal crossings.

The following well known result is important for the proofs of Theorems 1 and 2.

Lemma 1 ([1], [10]). Let N , P , Z be manifolds, and let W be a submanifold of P .

Let Γ : N × Z → P be a mapping. If Γ is transverse to W , then there exists a subset Σ

of Z with Lebesgue measure zero such that for any p ∈ Z − Σ, the mapping Γp : N → P

is transverse to W , where Γp(q) = Γ(q, p).

Remark 1. 1. We explain the advantage that the domain of the mapping F is

an arbitrary open set. Suppose that U = R. Let F : R → R be the mapping defined

by x 7→ |x|. Since F is not differentiable at x = 0, we cannot apply Theorems 1

and 2 to the mapping F : R → R.

On the other hand, if U = R− {0}, then Theorems 1 and 2 can be applied to the
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restriction F |U .

2. There is a case of sf = 3 as follows. If n+1 ≤ m, N = Sn and f : Sn → Rm is the

inclusion f(x) = (x, 0, . . . , 0), then it is easily seen that sf = 3. Indeed, suppose

that there exists a point (q1, q2, q3) ∈ (Sn)(3) such that dim
∑3

i=2 R
−−−−−−−→
f(q1)f(qi) = 1.

Then, since the number of the intersections of f(Sn) and a straight line of Rm

is at most two, this contradicts the assumption. Thus, we get sf ≥ 3. From

S1 × {0} ⊂ f(Sn), it follows that sf < 4, where 0 = (0, . . . , 0)︸ ︷︷ ︸
(m−2)-tuple

. Hence, we have

sf = 3.

3. The essential idea for the proofs of Theorems 1 and 2 is to apply Lemma 1, and

it is almost similar to the idea of the proofs of main results in [8]. Nevertheless,

the two main theorems in this paper are drastically improved. As an effect of the

improvement, many applications are obtained by the two main theorems (for the

applications, see Sections 5 and 6).

3. Proof of Theorem 1.

Let (αij)1≤i≤ℓ,1≤j≤m be a representing matrix of a linear mapping π : Rm → Rℓ.

Set Fα = Fπ, and we have

Fα(x) =

(
F1(x) +

m∑
j=1

α1jxj , F2(x) +

m∑
j=1

α2jxj , . . . , Fℓ(x) +

m∑
j=1

αℓjxj

)
, (3.1)

where F = (F1, F2, . . . , Fℓ), α = (α11, α12, . . . , α1m, . . . , αℓ1, αℓ2, . . . , αℓm) ∈ (Rm)ℓ and

x = (x1, x2, . . . , xm). For a given immersion f : N → U , the mapping Fα ◦ f : N → Rℓ

is given as follows:

Fα ◦ f =

(
F1 ◦ f +

m∑
j=1

α1jfj , F2 ◦ f +
m∑
j=1

α2jfj , . . . , Fℓ ◦ f +
m∑
j=1

αℓjfj

)
, (3.2)

where f = (f1, f2, . . . , fm). Since we have the natural identification L(Rm,Rℓ) = (Rm)ℓ,

in order to prove Theorem 1, it is sufficient to show that there exists a subset Σ with

Lebesgue measure zero of (Rm)ℓ such that for any α ∈ (Rm)ℓ−Σ, the mapping j1(Fα◦f) :
N → J1(N,Rℓ) is transverse to the given submanifold X(N,Rℓ).

Now, let Γ : N × (Rm)ℓ → J1(N,Rℓ) be the mapping defined by

Γ(q, α) = j1(Fα ◦ f)(q).

If the mapping Γ is transverse to the submanifold X(N,Rℓ), then from Lemma 1, it

follows that there exists a subset Σ of (Rm)ℓ with Lebesgue measure zero such that for

any α ∈ (Rm)ℓ −Σ, the mapping Γα : N → J1(N,Rℓ) (Γα = j1(Fα ◦ f)) is transverse to

the submanifold X(N,Rℓ). Thus, in order to finish the proof of Theorem 1, it is sufficient

to show that if Γ(q̃, α̃) ∈ X(N,Rℓ), then the following holds:
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dΓ(q̃,α̃)(T(q̃,α̃)(N × (Rm)ℓ)) + TΓ(q̃,α̃)X(N,Rℓ) = TΓ(q̃,α̃)J
1(N,Rℓ). (3.3)

As in Section 2, let {(Uλ, φλ)}λ∈Λ (resp., {(Π−1(Uλ × Rℓ),Φλ)}λ∈Λ) be a coordinate
neighborhood system of N (resp., J1(N,Rℓ)). There exists a coordinate neighborhood(
Uλ̃ × (Rm)ℓ, φλ̃ × id

)
containing the point (q̃, α̃) of N × (Rm)ℓ, where id is the identity

mapping of (Rm)ℓ into (Rm)ℓ, and the mapping φλ̃ × id : Uλ̃ × (Rm)ℓ → φλ̃(Uλ̃) ×
(Rm)ℓ (⊂ Rn × (Rm)ℓ) is defined by

(
φλ̃ × id

)
(q, α) =

(
φλ̃(q), id(α)

)
. There exists a

coordinate neighborhood
(
Π−1(Uλ̃ × Rℓ),Φλ̃

)
containing the point Γ(q̃, α̃) of J1(N,Rℓ).

Let t = (t1, t2, . . . , tn) ∈ Rn be a local coordinate on φλ̃(Uλ̃) containing φλ̃(q̃). Then,
the mapping Γ is locally given by the following:

(Φλ̃ ◦ Γ ◦ (φλ̃ × id)−1)(t, α)

= (Φλ̃ ◦ j1(Fα ◦ f) ◦ φ−1

λ̃
)(t)

=

(
t, (Fα ◦ f ◦ φ−1

λ̃
)(t),

∂(Fα,1 ◦ f ◦ φ−1

λ̃
)

∂t1
(t),

∂(Fα,1 ◦ f ◦ φ−1

λ̃
)

∂t2
(t), . . . ,

∂(Fα,1 ◦ f ◦ φ−1

λ̃
)

∂tn
(t),

∂(Fα,2 ◦ f ◦ φ−1

λ̃
)

∂t1
(t),

∂(Fα,2 ◦ f ◦ φ−1

λ̃
)

∂t2
(t), . . . ,

∂(Fα,2 ◦ f ◦ φ−1

λ̃
)

∂tn
(t),

· · · · · · · · · ,

∂(Fα,ℓ ◦ f ◦ φ−1

λ̃
)

∂t1
(t),

∂(Fα,ℓ ◦ f ◦ φ−1

λ̃
)

∂t2
(t), . . . ,

∂(Fα,ℓ ◦ f ◦ φ−1

λ̃
)

∂tn
(t)

)

=

(
t, (Fα ◦ f ◦ φ−1

λ̃
)(t),

∂F1 ◦ f̃
∂t1

(t) +

m∑
j=1

α1j
∂f̃j
∂t1

(t),
∂F1 ◦ f̃
∂t2

(t) +

m∑
j=1

α1j
∂f̃j
∂t2

(t), . . . ,
∂F1 ◦ f̃
∂tn

(t) +

m∑
j=1

α1j
∂f̃j
∂tn

(t),

∂F2 ◦ f̃
∂t1

(t) +

m∑
j=1

α2j
∂f̃j
∂t1

(t),
∂F2 ◦ f̃
∂t2

(t) +

m∑
j=1

α2j
∂f̃j
∂t2

(t), . . . ,
∂F2 ◦ f̃
∂tn

(t) +

m∑
j=1

α2j
∂f̃j
∂tn

(t),

· · · · · · · · · ,

∂Fℓ ◦ f̃
∂t1

(t) +

m∑
j=1

αℓj
∂f̃j
∂t1

(t),
∂Fℓ ◦ f̃
∂t2

(t) +

m∑
j=1

αℓj
∂f̃j
∂t2

(t), . . . ,
∂Fℓ ◦ f̃
∂tn

(t) +

m∑
j=1

αℓj
∂f̃j
∂tn

(t)

)
,

where Fα = (Fα,1, Fα,2, . . . , Fα,ℓ) and f̃ = (f̃1, f̃2, . . . , f̃m) = (f1 ◦φ−1

λ̃
, f2 ◦φ−1

λ̃
, . . . , fm ◦

φ−1

λ̃
) = f ◦ φ−1

λ̃
. The Jacobian matrix of the mapping Γ at (q̃, α̃) is the following:

JΓ(q̃,α̃) =



En 0 · · · · · · 0

∗ · · · · · · ∗
t(Jfq̃) 0

∗ t(Jfq̃)

0
. . .

t(Jfq̃)


(t,α)=(φ

λ̃
(q̃),α̃)

,
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where En is the n×n unit matrix and Jfq̃ is the Jacobian matrix of the mapping f at q̃.

Note that t(Jfq̃) is the transpose of the matrix Jfq̃ and that there are ℓ copies of t(Jfq̃) in

the above description of JΓ(q̃,α̃). Since X(N,Rℓ) is a subfiber-bundle of J1(N,Rℓ) with

the fiber X, it is clear that in order to show (3.3), it suffices to prove that the matrix M1

given below has rank n+ ℓ+ nℓ:

M1 =


En+ℓ ∗ · · · · · · ∗

t(Jfq̃) 0
0

t(Jfq̃)

0
. . .

t(Jfq̃)


(t,α)=(φ

λ̃
(q̃),α̃)

,

where En+ℓ is the (n + ℓ) × (n + ℓ) unit matrix. Note that there are ℓ copies of t(Jfq̃)

in the above description of M1. Notice that for any i (1 ≤ i ≤ mℓ), the (n + ℓ + i)-th

column vector of M1 coincides with the (n + i)-th column vector of JΓ(q̃,α̃). Since the

mapping f is an immersion (n ≤ m), we have that the rank of the matrix M1 is equal to

n+ ℓ+ nℓ. Hence, we have (3.3). □

4. Proof of Theorem 2.

By the same method as in the proof of Theorem 1, set Fα = Fπ, where Fα is given

by (3.1) in Section 3. For a given injection f : N → U , the mapping Fα ◦ f : N →
Rℓ is given by the same expression as (3.2). Since we have the natural identification

L(Rm,Rℓ) = (Rm)ℓ, in order to show that there exists a subset Σ of L(Rm,Rℓ) with

Lebesgue measure zero such that for any π ∈ L(Rm,Rℓ)−Σ, and for any s (2 ≤ s ≤ sf ),

the mapping (Fπ ◦f)(s) : N (s) → (Rℓ)s is transverse to the submanifold ∆s, it is sufficient

to show that there exists a subset Σ of (Rm)ℓ with Lebesgue measure zero such that for

any α ∈ (Rm)ℓ − Σ, and for any s (2 ≤ s ≤ sf ), the mapping (Fα ◦ f)(s) : N (s) → (Rℓ)s

is transverse to ∆s.

Now, let s be a positive integer satisfying 2 ≤ s ≤ sf . Let Γ : N (s) × (Rm)ℓ → (Rℓ)s

be the mapping defined by

Γ(q1, q2, . . . , qs, α) = ((Fα ◦ f)(q1), (Fα ◦ f)(q2), . . . , (Fα ◦ f)(qs)) .

If for any positive integer s (2 ≤ s ≤ sf ), the mapping Γ is transverse to ∆s, then from

Lemma 1, it follows that for any positive integer s (2 ≤ s ≤ sf ), there exists a subset Σs

of (Rm)ℓ with Lebesgue measure zero such that for any α ∈ (Rm)ℓ − Σs, the mapping

Γα : N (s) → (Rℓ)s (Γα = (Fα ◦ f)(s)) is transverse to ∆s. Then, set Σ =
∪sf

s=2 Σs. It is

clearly seen that Σ is a subset of (Rm)ℓ with Lebesgue measure zero. Therefore, it follows

that for any α ∈ (Rm)ℓ −Σ, and for any s (2 ≤ s ≤ sf ), the mapping Γα : N (s) → (Rℓ)s

(Γα = (Fα ◦ f)(s)) is transverse to ∆s.

Hence, for the proof, it is sufficient to show that for any positive integer s (2 ≤ s ≤
sf ), if Γ(q̃, α̃) ∈ ∆s (q̃ = (q̃1, q̃2, . . . , q̃s)), then the following holds:

dΓ(q̃,α̃)(T(q̃,α̃)(N
(s) × (Rm)ℓ)) + TΓ(q̃,α̃)∆s = TΓ(q̃,α̃)(Rℓ)s. (4.1)
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Let {(Uλ, φλ)}λ∈Λ be a coordinate neighborhood system of N . There exists a coordinate

neighborhood (Uλ̃1
×Uλ̃2

×· · ·×Uλ̃s
×(Rm)ℓ, φλ̃1

×φλ̃2
×· · ·×φλ̃s

×id) containing the point
(q̃, α̃) of N (s) × (Rm)ℓ, where id is the identity mapping of (Rm)ℓ into (Rm)ℓ, and the

mapping φλ̃1
×φλ̃2

×· · ·×φλ̃s
×id : Uλ̃1

×Uλ̃2
×· · ·×Uλ̃s

×(Rm)ℓ → (Rn)s×(Rm)ℓ is defined

by (φλ̃1
× φλ̃2

× · · · × φλ̃s
× id)(q1, q2, . . . , qs, α) = (φλ̃1

(q1), φλ̃2
(q2), . . . , φλ̃s

(qs), id(α)).

Let ti = (ti1, ti2, . . . , tin) be a local coordinate around φλ̃i
(q̃i) (1 ≤ i ≤ s). Then, the

mapping Γ is locally given by the following:

Γ ◦
(
φλ̃1

× φλ̃2
× · · · × φλ̃s

× id
)−1

(t1, t2, . . . , ts, α)

=
(
(Fα ◦ f ◦ φ−1

λ̃1
)(t1), (Fα ◦ f ◦ φ−1

λ̃2
)(t2), . . . , (Fα ◦ f ◦ φ−1

λ̃s
)(ts)

)
=

F1 ◦ f̃(t1) +
m∑
j=1

α1j f̃j(t1), F2 ◦ f̃(t1) +
m∑
j=1

α2j f̃j(t1), . . . , Fℓ ◦ f̃(t1) +
m∑
j=1

αℓj f̃j(t1),

F1 ◦ f̃(t2) +
m∑
j=1

α1j f̃j(t2), F2 ◦ f̃(t2) +
m∑
j=1

α2j f̃j(t2), . . . , Fℓ ◦ f̃(t2) +
m∑
j=1

αℓj f̃j(t2),

· · · · · · · · · ,

F1 ◦ f̃(ts) +
m∑
j=1

α1j f̃j(ts), F2 ◦ f̃(ts) +
m∑
j=1

α2j f̃j(ts), . . . , Fℓ ◦ f̃(ts) +
m∑
j=1

αℓj f̃j(ts)

 ,

where f̃(ti) = (f̃1(ti), f̃2(ti), . . . , f̃m(ti)) = (f1◦φ−1

λ̃i
(ti), f2◦φ−1

λ̃i
(ti), . . . , fm◦φ−1

λ̃i
(ti)) (1 ≤

i ≤ s). For simplicity, set t = (t1, t2, . . . , ts) and z = (φλ̃1
×φλ̃2

×· · ·×φλ̃s
)(q̃1, q̃2, . . . , q̃s).

The Jacobian matrix of the mapping Γ at (q̃, α̃) is the following:

JΓ(q̃,α̃) =


∗ B(t1)

∗ B(t2)
...

...

∗ B(ts)


(t,α)=(z,α̃)

,

where

B(ti) =


b(ti) 0

b(ti)

0
. . .

b(ti)


 ℓ rows

and b(ti) = (f̃1(ti), f̃2(ti), . . . , f̃m(ti)). By the construction of TΓ(q̃,α̃)∆s, in order to show

(4.1), it is sufficient to show that the rank of the following matrix M2 is equal to ℓs:
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M2 =


Eℓ B(t1)

Eℓ B(t2)
...

...

Eℓ B(ts)


t=z

.

There exists an ℓs× ℓs regular matrix Q1 such that

Q1M2 =


Eℓ B(t1)

0 B(t2)−B(t1)
...

...

0 B(ts)−B(t1)


t=z

.

There exists an (ℓ+mℓ)× (ℓ+mℓ) regular matrix Q2 such that

Q1M2Q2 =


Eℓ 0

0 B(t2)−B(t1)
...

...

0 B(ts)−B(t1)


t=z

=





Eℓ 0 
ℓ rows

−−−−−−−→
f̃(t1)f̃(t2) 0

0
−−−−−−−→
f̃(t1)f̃(t2)

0
. . .

−−−−−−−→
f̃(t1)f̃(t2)

...
...

...
...

... 
ℓ rows

−−−−−−−→
f̃(t1)f̃(ts) 0

0
−−−−−−−→
f̃(t1)f̃(ts)

0
. . .

−−−−−−−→
f̃(t1)f̃(ts)

,

where
−−−−−−→
f̃(t1)f̃(ti) = (f̃1(ti) − f̃1(t1), f̃2(ti) − f̃2(t1), . . . , f̃m(ti) − f̃m(t1)) (2 ≤ i ≤ s) and

t = z. From s− 1 ≤ sf − 1 and the definition of sf , it follows that

dim

s∑
i=2

R
−−−−−−→
f̃(t1)f̃(ti) = s− 1,

where t = z. Thus, by the construction of the matrix Q1M2Q2 and s− 1 ≤ m, we have

that the rank of the matrixQ1M2Q2 is equal to ℓs. Hence, the rank of the matrixM2 must



1174(296)

1174 S. Ichiki

be equal to ℓs. Therefore, we have (4.1). Thus, there exists a subset Σ of L(Rm,Rℓ) with

Lebesgue measure zero such that for any π ∈ L(Rm,Rℓ)−Σ, and for any s (2 ≤ s ≤ sf ),

the mapping (Fπ ◦ f)(s) : N (s) → (Rℓ)s is transverse to the submanifold ∆s.

Moreover, suppose that the mapping Fπ satisfies that |F−1
π (y)| ≤ sf for any y ∈ Rℓ.

Since f : N → Rm is injective, it follows that |(Fπ◦f)−1(y)| ≤ sf for any y ∈ Rℓ. Hence, it

follows that for any positive integer s with s ≥ sf +1, we have (Fπ ◦f)(s)(N (s))
∩
∆s = ∅.

Namely, for any positive integer s with s ≥ sf + 1, the mapping (Fπ ◦ f)(s) is transverse
to ∆s. Thus, Fπ ◦ f : N → Rℓ is a mapping with normal crossings. □

5. Applications of Theorems 1 and 2.

In Subsection 5.1 (resp., Subsection 5.2), applications of Theorem 1 (resp., Theo-

rem 2) are stated and proved. In Subsection 5.2, applications obtained by combining

Theorems 1 and 2 are also given.

5.1. Applications of Theorem 1.

Set

Σk =
{
j1g(0) ∈ J1(n, ℓ) | corank Jg(0) = k

}
,

where corank Jg(0) = min{n, ℓ} − rank Jg(0) and k = 1, 2, . . . ,min{n, ℓ}. Then, Σk is

an A1-invariant submanifold of J1(n, ℓ). Set

Σk(N,Rℓ) =
∪
λ∈Λ

Φ−1
λ

(
φλ(Uλ)× Rℓ × Σk

)
,

where the mappings Φλ and φλ are as defined in Section 2. Then, the set Σk(N,Rℓ) is

a subfiber-bundle of J1(N,Rℓ) with the fiber Σk such that

codimΣk(N,Rℓ) = dim J1(N,Rℓ)− dimΣk(N,Rℓ)

= (n− v + k)(ℓ− v + k),

where v = min{n, ℓ}. (For details on Σk and Σk(N,Rℓ), see for example [3], pp. 60–61).

As applications of Theorem 1, we have the following Proposition 1, Corollaries 1, 2,

3 and 4.

Proposition 1. Let N be a manifold of dimension n. Let f be an immersion of N

into an open subset U of Rm. Let F : U → Rℓ be a mapping. Then, there exists a subset

Σ of L(Rm,Rℓ) with Lebesgue measure zero such that for any π ∈ L(Rm,Rℓ) − Σ, the

mapping j1(Fπ ◦ f) : N → J1(N,Rℓ) is transverse to the submanifold Σk(N,Rℓ) for any

positive integer k satisfying 1 ≤ k ≤ v. Especially, in the case of ℓ ≥ 2, we have k0+1 ≤ v

and it follows that the mapping j1(Fπ ◦ f) satisfies that j1(Fπ ◦ f)(N)
∩
Σk(N,Rℓ) = ∅

for any positive integer k satisfying k0 + 1 ≤ k ≤ v, where k0 is the maximum integer

satisfying (n− v + k0)(ℓ− v + k0) ≤ n (v = min{n, ℓ}).

Proof. By Theorem 1, for any positive integer k satisfying 1 ≤ k ≤ v, there

exists a subset Σ̃k of L(Rm,Rℓ) with Lebesgue measure zero such that for any π ∈
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L(Rm,Rℓ) − Σ̃k, the mapping j1(Fπ ◦ f) : N → J1(N,Rℓ) is transverse to Σk(N,Rℓ).

Set Σ =
∪v

k=1 Σ̃k. Then, it is clearly seen that Σ is a subset of L(Rm,Rℓ) with Lebesgue

measure zero. Hence, it follows that there exists a subset Σ of L(Rm,Rℓ) with Lebesgue

measure zero such that for any π ∈ L(Rm,Rℓ) − Σ, the mapping j1(Fπ ◦ f) : N →
J1(N,Rℓ) is transverse to the submanifold Σk(N,Rℓ) for any positive integer k satisfying

1 ≤ k ≤ v.

Now, we will consider the case of ℓ ≥ 2. Firstly, we will show that k0 + 1 ≤ v in the

case. Suppose that v ≤ k0. Then, by (n− v+ k0)(ℓ− v+ k0) ≤ n, we have nℓ ≤ n. This

contradicts the assumption ℓ ≥ 2.

Secondly, we will show that in the case of ℓ ≥ 2, the mapping j1(Fπ ◦ f) : N →
J1(N,Rℓ) satisfies that j1(Fπ◦f)(N)

∩
Σk(N,Rℓ) = ∅ for any positive integer k satisfying

k0+1 ≤ k ≤ v. Suppose that there exist a positive integer k (k0+1 ≤ k ≤ v) and a point

q ∈ N such that j1(Fπ◦f)(q) ∈ Σk(N,Rℓ). Since the mapping j1(Fπ◦f) : N → J1(N,Rℓ)

is transverse to Σk(N,Rℓ) at the point q, the following holds:

d(j1(Fπ ◦ f))q(TqN) + Tj1(Fπ◦f)(q)Σ
k(N,Rℓ) = Tj1(Fπ◦f)(q)J

1(N,Rℓ).

Hence, we have

dim d(j1(Fπ ◦ f))q(TqN)

≥ dimTj1(Fπ◦f)(q)J
1(N,Rℓ)− dimTj1(Fπ◦f)(q)Σ

k(N,Rℓ)

= codimTj1(Fπ◦f)(q)Σ
k(N,Rℓ).

Thus, we get n ≥ (n − v + k)(ℓ − v + k). Since the given integer k0 is the maximum

integer satisfying n ≥ (n − v + k0)(ℓ − v + k0), it follows that k ≤ k0. This contradicts

the assumption k0 + 1 ≤ k. □

Remark 2. 1. In Proposition 1, by (n − v + k0)(ℓ − v + k0) ≤ n, it is clearly

seen that k0 ≥ 0.

2. In Proposition 1, in the case of ℓ = 1, we have k0 + 1 > v. Indeed, in the case, by

v = 1, we get (n− 1 + k0)k0 ≤ n. Hence, we have k0 = 1.

A mapping g : N → R is called a Morse function if all of the singularities of the

mapping g are nondegenerate (for details on Morse functions, see for example, [3], p. 63).

In the case of (n, ℓ) = (n, 1), we have the following.

Corollary 1. Let N be a manifold of dimension n. Let f be an immersion of

N into an open subset U of Rm. Let F : U → R be a mapping. Then, there exists a

subset Σ of L(Rm,R) with Lebesgue measure zero such that for any π ∈ L(Rm,R) − Σ,

the mapping Fπ ◦ f : N → R is a Morse function.

Proof. By Proposition 1, there exists a subset Σ with Lebesgue measure zero of

L(Rm,R) such that for any π ∈ L(Rm,R)− Σ, the mapping j1(Fπ ◦ f) : N → J1(N,R)
is transverse to the submanifold Σ1(N,R). Hence, if q ∈ N is a singular point of the

mapping Fπ ◦ f , then the point q is nondegenerate. □
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For a given mapping g : N → R2n−1 (n ≥ 2), a singular point q ∈ N is called

a singular point of Whitney umbrella if there exist two germs of diffeomorphisms H :

(R2n−1, g(q)) → (R2n−1, 0) and h : (N, q) → (Rn, 0) such thatH◦g◦h−1(x1, x2, . . . , xn) =

(x21, x1x2, . . . , x1xn, x2, . . . , xn), where (x1, x2, . . . , xn) is a local coordinate around the

point h(q) = 0 ∈ Rn. In the case of (n, ℓ) = (n, 2n− 1) (n ≥ 2), we have the following.

Corollary 2. Let N be a manifold of dimension n (n ≥ 2). Let f be an im-

mersion of N into an open subset U of Rm. Let F : U → R2n−1 be a mapping. Then,

there exists a subset Σ with Lebesgue measure zero of L(Rm,R2n−1) such that for any

π ∈ L(Rm,R2n−1) − Σ, any singular point of the mapping Fπ ◦ f : N → R2n−1 is a

singular point of Whitney umbrella.

Proof. By, for example, [3], p. 179, we see that a point q ∈ N is a singular point

of Whitney umbrella of the mapping Fπ ◦ f if j1(Fπ ◦ f)(q) ∈ Σ1(N,R2n−1) and the

mapping j1(Fπ ◦ f) is transverse to the submanifold Σ1(N,R2n−1) at q. Set ℓ = 2n− 1

and v = n in Proposition 1. Then, it is clearly seen that we have k0 = 1 in Proposition 1.

Hence, there exists a subset Σ of L(Rm,R2n−1) with Lebesgue measure zero such that

for any π ∈ L(Rm,R2n−1) − Σ, the mapping Fπ ◦ f : N → R2n−1 is transverse to

Σk(N,R2n−1) for any positive integer k satisfying 1 ≤ k ≤ n, and the mapping satisfies

that j1(Fπ ◦ f)(N)
∩
Σk(N,R2n−1) = ∅ for any positive integer k satisfying 2 ≤ k ≤ n.

Thus, if a point q ∈ N is a singular point of the mapping Fπ ◦ f , then it follows that

j1(Fπ ◦ f)(q) ∈ Σ1(N,R2n−1) and j1(Fπ ◦ f) is transverse to Σ1(N,R2n−1) at q. □

In the case of ℓ ≥ 2n, the immersion property of a given mapping f : N → U is

preserved by composing generic linearly perturbed mappings as follows:

Corollary 3. Let N be a manifold of dimension n. Let f be an immersion of N

into an open subset U of Rm. Let F : U → Rℓ be a mapping (ℓ ≥ 2n). Then, there exists

a subset Σ of L(Rm,Rℓ) with Lebesgue measure zero such that for any π ∈ L(Rm,Rℓ)−Σ,

the mapping Fπ ◦ f : N → Rℓ is an immersion.

Proof. It is clearly seen that the mapping Fπ ◦ f : N → Rℓ is an immersion if

and only if j1(Fπ ◦ f)(N)
∩∪n

k=1 Σ
k(N,Rℓ) = ∅. Set v = n and ℓ ≥ 2n in Proposition 1.

Then, it is clearly seen that k0 ≤ 0. By Remark 2, we get k0 = 0. Hence, there exists a

subset Σ of L(Rm,Rℓ) with Lebesgue measure zero such that for any π ∈ L(Rm,Rℓ)−Σ,

the mapping j1(Fπ ◦ f) : N → J1(N,Rℓ) satisfies that j1(Fπ ◦ f)(N)
∩

Σk(N,Rℓ) = ∅
for any positive integer k (1 ≤ k ≤ n). □

A mapping g : N → Rℓ has corank at most k singular points if

sup {corank dgq | q ∈ N} ≤ k,

where corank dgq = min{n, ℓ} − rank dgq. By Proposition 1, we have the following

corollary.

Corollary 4. Let N be a manifold of dimension n. Let f be an immersion of N

into an open subset U of Rm. Let F : U → Rℓ be a mapping. Let k0 be the maximum
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integer satisfying (n−v+k0)(ℓ−v+k0) ≤ n (v = min{n, ℓ}). Then, there exists a subset

Σ of L(Rm,Rℓ) with Lebesgue measure zero such that for any π ∈ L(Rm,Rℓ) − Σ, the

mapping Fπ ◦ f : N → Rℓ has corank at most k0 singular points.

5.2. Applications of Theorem 2.

Proposition 2. Let N be a manifold of dimension n. Let f be an injection of

N into an open subset U of Rm. Let F : U → Rℓ be a mapping. If (sf − 1)ℓ > nsf ,

then there exists a subset Σ of L(Rm,Rℓ) with Lebesgue measure zero such that for any

π ∈ L(Rm,Rℓ) − Σ, Fπ ◦ f : N → Rℓ is a mapping with normal crossings satisfying

(Fπ ◦ f)(sf )(N (sf ))
∩
∆sf = ∅.

Proof. By Theorem 2, there exists a subset Σ of L(Rm,Rℓ) with Lebesgue mea-

sure zero such that for any π ∈ L(Rm,Rℓ)−Σ, and for any s (2 ≤ s ≤ sf ), the mapping

(Fπ ◦ f)(s) : N (s) → (Rℓ)s is transverse to the submanifold ∆s. Hence, in order to show

Proposition 2, it is sufficient to show that for any π ∈ L(Rm,Rℓ) − Σ, the mapping

(Fπ ◦ f)(sf ) satisfies that (Fπ ◦ f)(sf )(N (sf ))
∩
∆sf = ∅.

Suppose that there exists an element π ∈ L(Rm,Rℓ) − Σ such that there exists a

point q ∈ N (sf ) satisfying (Fπ ◦ f)(sf )(q) ∈ ∆sf . Since (Fπ ◦ f)(sf ) is transverse to ∆sf ,

we have the following:

d((Fπ ◦ f)(sf ))q(TqN (sf )) + T
(Fπ◦f)(sf )(q)

∆sf = T
(Fπ◦f)(sf )(q)

(Rℓ)sf .

Hence, we have

dim d((Fπ ◦ f)(sf ))q(TqN (sf ))

≥ dimT
(Fπ◦f)(sf )(q)

(Rℓ)sf − dimT
(Fπ◦f)(sf )(q)

∆sf

= codimT
(Fπ◦f)(sf )(q)

∆sf .

Thus, we get nsf ≥ (sf − 1)ℓ. This contradicts the assumption (sf − 1)ℓ > nsf . □

In the case of ℓ > 2n, the injection property of a given mapping f : N → U is

preserved by composing generic linearly perturbed mappings as follows:

Corollary 5. Let N be a manifold of dimension n. Let f be an injection of N

into an open subset U of Rm. Let F : U → Rℓ be a mapping. If ℓ > 2n, then there exists

a subset Σ of L(Rm,Rℓ) with Lebesgue measure zero such that for any π ∈ L(Rm,Rℓ)−Σ,

the mapping Fπ ◦ f : N → Rℓ is injective.

Proof. Since sf ≥ 2 and ℓ > 2n, it is easily seen that the dimension pair (n, ℓ)

satisfies the assumption (sf − 1)ℓ > nsf of Proposition 2. Indeed, from ℓ > 2n, it follows

that (sf − 1)ℓ > 2n(sf − 1). By sf ≥ 2, we get 2n(sf − 1) ≥ nsf .

Hence, by Proposition 2, there exists a subset Σ of L(Rm,Rℓ) with Lebesgue measure

zero such that for any π ∈ L(Rm,Rℓ) − Σ, the mapping (Fπ ◦ f)(2) : N (2) → (Rℓ)2 is

transverse to ∆2. In order to show Corollary 5, it is sufficient to show that the mapping

(Fπ ◦ f)(2) satisfies that (Fπ ◦ f)(2)(N (2))
∩

∆2 = ∅.
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Suppose that there exists a point q ∈ N (2) such that (Fπ ◦ f)(2)(q) ∈ ∆2. Then, we

have the following:

d((Fπ ◦ f)(2))q(TqN (2)) + T(Fπ◦f)(2)(q)∆2 = T(Fπ◦f)(2)(q)(R
ℓ)2.

Hence, we have

dim d((Fπ ◦ f)(2))q(TqN (2))

≥ dimT(Fπ◦f)(2)(q)(R
ℓ)2 − dimT(Fπ◦f)(2)(q)∆2

= codimT(Fπ◦f)(2)(q)∆2.

Thus, we get 2n ≥ ℓ. This contradicts the assumption ℓ > 2n. □

By combining Corollaries 3 and 5, we have the following.

Corollary 6. Let N be a manifold of dimension n. Let f be an injective im-

mersion of N into an open subset U of Rm. Let F : U → Rℓ be a mapping. If ℓ > 2n,

then there exists a subset Σ of L(Rm,Rℓ) with Lebesgue measure zero such that for any

π ∈ L(Rm,Rℓ)− Σ, the mapping Fπ ◦ f : N → Rℓ is an injective immersion.

In Corollary 6, suppose that the mapping Fπ ◦ f : N → Rℓ is proper. Then, an

injective immersion Fπ ◦ f is necessarily an embedding (see [3], p. 11). Thus, we get the

following.

Corollary 7. Let N be a compact manifold of dimension n. Let f be an em-

bedding of N into an open subset U of Rm. Let F : U → Rℓ be a mapping. If ℓ > 2n,

then there exists a subset Σ of L(Rm,Rℓ) with Lebesgue measure zero such that for any

π ∈ L(Rm,Rℓ)− Σ, the mapping Fπ ◦ f : N → Rℓ is an embedding.

6. Further applications.

6.1. Introduction of generalized distance-squared mappings.

Let pi = (pi1, pi2, . . . , pim) (1 ≤ i ≤ ℓ) (resp., A = (aij)1≤i≤ℓ,1≤j≤m) be points

of Rm (resp., an ℓ × m matrix with all entries being non-zero real numbers). Set p =

(p1, p2, . . . , pℓ) ∈ (Rm)ℓ. Let G(p,A) : Rm → Rℓ be the mapping defined by

G(p,A)(x) =

 m∑
j=1

a1j(xj − p1j)
2,

m∑
j=1

a2j(xj − p2j)
2, . . . ,

m∑
j=1

aℓj(xj − pℓj)
2

 ,

where x = (x1, x2, . . . , xm) ∈ Rm. The mapping G(p,A) is called a generalized distance-

squared mapping, and the ℓ-tuple of points p = (p1, p2, . . . , pℓ) ∈ (Rm)ℓ is called the

central point of the generalized distance-squared mapping G(p,A). A distance-squared

mapping Dp (resp., Lorentzian distance-squared mapping Lp) is the mapping G(p,A) sat-

isfying that each entry of A is equal to 1 (resp., ai1 = −1 and aij = 1 (j ̸= 1)).

In [5] (resp., [6]), a classification result of distance-squared mappings (resp.,

Lorentzian distance-squared mappings) is given.
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In [9], a classification result of generalized distance-squared mappings of the plane

into the plane is given. If the rank of A is equal to two, then a generalized distance-

squared mapping having a generic central point is a mapping of which any singular point

is a fold point except one cusp point. The singular set is a rectangular hyperbola. If the

rank of A is equal to one, then a generalized distance-squared mapping having a generic

central point is A-equivalent to the normal form of fold singularity (x1, x2) 7→ (x1, x
2
2).

In [7], a classification result of generalized distance-squared mappings of Rm+1

into R2m+1 is given. If the rank of A is equal to m + 1, then a generalized distance-

squared mapping having a generic central point is A-equivalent to the normal form

of Whitney umbrella (x1, x2, . . . , xm+1) 7→ (x21, x1x2, . . . , x1xm+1, x2, . . . , xm+1). If the

rank of A is strictly smaller than m + 1, then a generalized distance-squared mapping

having a generic central point is A-equivalent to the inclusion (x1, x2, . . . , xm+1) 7→
(x1, x2, . . . , xm+1, 0, . . . , 0).

Namely, in [5], [6], [7] and [9], the properties of generic generalized distance-squared

mappings are investigated. Hence, it is natural to investigate the properties of composi-

tions with generic generalized distance-squared mappings.

We have another original motivation. Height functions and distance-squared func-

tions have been investigated in detail so far, and they are useful tools in the applications

of singularity theory to differential geometry (for instance, see [2]). A mapping in which

each component is a height function is nothing but a projection. Projections as well as

height functions or distance-squared functions have been investigated so far. In [10],

compositions of generic projections and embeddings are investigated.

On the other hand, a mapping in which each component is a distance-squared func-

tion is a distance-squared mapping. In addition, the notion of a generalized distance-

squared mapping is an extension of that of a distance-squared mapping. Therefore, it is

natural to investigate compositions with generic generalized distance-squared mappings

as well as projections.

6.2. Applications of Theorem 1 to G(p,A) : Rm → Rℓ.

Proposition 3. Let N be a manifold of dimension n. Let f : N → Rm be an

immersion. Let A = (aij)1≤i≤ℓ,1≤j≤m be an ℓ×m matrix with all entries being non-zero

real numbers. If X is an A1-invariant submanifold of J1(n, ℓ), then there exists a subset

Σ of (Rm)ℓ with Lebesgue measure zero such that for any p ∈ (Rm)ℓ − Σ, the mapping

j1(G(p,A) ◦ f) : N → J1(N,Rℓ) is transverse to the submanifold X(N,Rℓ).

Proof. Let H : Rℓ → Rℓ be a diffeomorphism of the target for deleting constant

terms. The composition H ◦G(p,A) : Rm → Rℓ is given as follows:

H ◦G(p,A)(x) =

 m∑
j=1

a1jx
2
j − 2

m∑
j=1

a1jp1jxj ,
m∑
j=1

a2jx
2
j − 2

m∑
j=1

a2jp2jxj ,

. . . ,
m∑
j=1

aℓjx
2
j − 2

m∑
j=1

aℓjpℓjxj

 ,

where x = (x1, x2, . . . , xm).
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Let ψ : (Rm)ℓ → L(Rm,Rℓ) be the mapping defined by

ψ(p11, p12, . . . , pℓm) = −2(a11p11, a12p12, . . . , aℓmpℓm).

Remark that we have the natural identification L(Rm,Rℓ) = (Rm)ℓ. Since aij ̸= 0 for

any i, j (1 ≤ i ≤ ℓ, 1 ≤ j ≤ m), it is clearly seen that ψ is a C∞ diffeomorphism.

Set Fi(x) =
∑m

j=1 aijx
2
j (1 ≤ i ≤ ℓ) and F = (F1, F2, . . . , Fℓ). By Theorem 1,

there exists a subset Σ of L(Rm,Rℓ) with Lebesgue measure zero such that for any

π ∈ L(Rm,Rℓ)− Σ, the mapping j1(Fπ ◦ f) : N → J1(N,Rℓ) is transverse to X(N,Rℓ).

Since ψ−1 : L(Rm,Rℓ) → (Rm)ℓ is a C∞ mapping, ψ−1(Σ) is a subset of (Rm)ℓ with

Lebesgue measure zero. For any p ∈ (Rm)ℓ − ψ−1(Σ), we have ψ(p) ∈ L(Rm,Rℓ) − Σ.

Hence, for any p ∈ (Rm)ℓ − ψ−1(Σ), the mapping j1(H ◦ G(p,A) ◦ f) : N → J1(N,Rℓ)

is transverse to X(N,Rℓ). Then, since H : Rℓ → Rℓ is a diffeomorphism, the mapping

j1(G(p,A) ◦ f) : N → J1(N,Rℓ) is transverse to X(N,Rℓ). □

Remark 3. As applications of Proposition 3, regarding generalized distance-

squared mappings, we get analogies of Proposition 1, Corollaries 1, 2, 3 and 4.

6.3. Applications of Theorem 2 to G(p,A) : Rm → Rℓ.

By Theorem 2, we get the following proposition, which can be proved by the same

argument as in the proof of Proposition 3, and we omit the proof.

Proposition 4. Let N be a manifold of dimension n. Let f : N → Rm be an

injection. Let A = (aij)1≤i≤ℓ,1≤j≤m be an ℓ ×m matrix with all entries being non-zero

real numbers. Then, there exists a subset Σ of (Rm)ℓ with Lebesgue measure zero such

that for any p ∈ (Rm)ℓ − Σ, and for any s (2 ≤ s ≤ sf ), the mapping (G(p,A) ◦ f)(s) :

N (s) → (Rℓ)s is transverse to the submanifold ∆s. Moreover, if the mapping G(p,A)

satisfies that |G−1
(p,A)(y)| ≤ sf for any y ∈ Rℓ, then G(p,A) ◦ f : N → Rℓ is a mapping

with normal crossings.

Remark 4. As applications of Proposition 4, regarding generalized distance-

squared mappings, we get analogies of Proposition 2, Corollaries 5, 6 and 7.

As the special case of the classification result of distance squared mappings (resp.,

Lorentzian distance-squared mappings) in [5] (resp., [6]), we have Lemma 2.

Lemma 2 ([5], [6]). We have the following.

1. For any p ∈ R, the mappings Dp : R → R and Lp : R → R are A-equivalent to

x 7→ x2.

2. For m ≥ 2, there exists a subset ΣD (resp., ΣL) of (Rm)m with Lebesgue measure

zero such that for any p ∈ (Rm)m − ΣD (resp., p ∈ (Rm)m − ΣL), the mapping

Dp : Rm → Rm (resp., Lp : Rm → Rm) is A-equivalent to the normal form of

definite fold mappings (x1, x2, . . . , xm) 7→ (x1, x2, . . . , xm−1, x
2
m).

3. In the case of 1 ≤ m < ℓ, there exists a subset ΣD (resp., ΣL) of (Rm)ℓ with

Lebesgue measure zero such that for any p ∈ (Rm)ℓ −ΣD (resp., p ∈ (Rm)ℓ −ΣL),



1181(303)

Composing generic linearly perturbed mappings and immersions/injections 1181

the mapping Dp : Rm → Rℓ (resp., Lp : Rm → Rℓ) is A-equivalent to the inclusion

(x1, x2, . . . , xm) 7→ (x1, x2, . . . , xm, 0, . . . , 0).

Proposition 5. Let N be a manifold of dimension n. Let f : N → Rm be an

injection. Then, the following holds:

1. For m ≥ 1, there exists a subset ΣD (resp., ΣL) of (Rm)m with Lebesgue measure

zero such that for any p ∈ (Rm)m−ΣD (resp., p ∈ (Rm)m−ΣL), Dp ◦f : N → Rm

(resp., Lp ◦ f : N → Rm) is a mapping with normal crossings.

2. In the case of 1 ≤ m < ℓ, there exists a subset ΣD (resp., ΣL) of (Rm)ℓ with

Lebesgue measure zero such that for any p ∈ (Rm)ℓ −ΣD (resp., p ∈ (Rm)ℓ −ΣL),

the mapping Dp ◦ f : N → Rℓ (resp., Lp ◦ f : N → Rℓ) is an injection.

Proof. The proof for distance-squared mappings is the same as that for

Lorentzian distance-squared mappings. Hence, it is sufficient to give the proof for

distance-squared mappings.

Firstly, we will show the assertion 1. From Lemma 2, there exists a subset Σ1 of

(Rm)m with Lebesgue measure zero such that for any p ∈ (Rm)m − Σ1, the mapping

Dp : Rm → Rm satisfies that |D−1
p (y)| ≤ 2 for any y ∈ Rm. On the other hand, from

Proposition 4, there exists a subset Σ2 of (Rm)m with Lebesgue measure zero such that

for any p ∈ (Rm)m − Σ2, if Dp satisfies that |D−1
p (y)| ≤ sf for any y ∈ Rm, then

Dp ◦ f : N → Rm is a mapping with normal crossings. Set ΣD = Σ1 ∪ Σ2. It is

clearly seen that ΣD is a subset of (Rm)m with Lebesgue measure zero. Then, for any

p ∈ (Rm)m − ΣD, Dp ◦ f : N → Rm is a mapping with normal crossings.

In the case of m < ℓ, since from Lemma 2, there exists a subset ΣD of (Rm)ℓ with

Lebesgue measure zero such that for any p ∈ (Rm)ℓ − ΣD, the mapping Dp : Rm → Rℓ

is A-equivalent to the inclusion, the assertion 2 holds. □

By combining Proposition 5 and the analogy of Corollary 3 in Remark 3, we have

the following.

Corollary 8. Let N be a manifold of dimension n. Let f : N → Rm be an

injective immersion (2n ≤ m). Then, there exists a subset ΣD (resp., ΣL) of (Rm)m

with Lebesgue measure zero such that for any p ∈ (Rm)m−ΣD (resp., p ∈ (Rm)m−ΣL),

the mapping Dp ◦ f : N → Rm (resp., Lp ◦ f : N → Rm) is an immersion with normal

crossings.

In Corollary 8, if m = 2n and the mapping Dp ◦ f : N → R2n (resp., Lp ◦ f : N →
R2n) is proper, then the immersion with normal crossings Dp ◦ f : N → R2n (resp.,

Lp ◦ f : N → R2n) is necessarily stable (see [3], p. 86). Thus, we get the following.

Corollary 9. Let N be a compact manifold of dimension n. Let f : N → R2n

be an embedding. Then, there exists a subset ΣD (resp., ΣL) of (R2n)2n with Lebesgue

measure zero such that for any p ∈ (R2n)2n−ΣD (resp., p ∈ (R2n)2n−ΣL), the mapping

Dp ◦ f : N → R2n (resp., Lp ◦ f : N → R2n) is stable.



1182(304)

1182 S. Ichiki

Remark that the dimension of the target space in Corollary 9 is smaller than that

in Corollary 7.

7. Appendix.

In this section, the main theorems in [4] and [10] are stated. For this, we prepare

some notions.

Let N and P be manifolds. Let sJ
r(N,P ) be the space consisting of elements

(jrg(q1), j
rg(q2), . . . , j

rg(qs)) ∈ Jr(N,P )s satisfying (q1, q2, . . . , qs) ∈ N (s). Since N (s) is

an open submanifold ofNs, the space sJ
r(N,P ) is also an open submanifold of Jr(N,P )s.

For a given mapping g : N → P , the mapping sj
rg : N (s) → sJ

r(N,P ) is defined by

(q1, q2, . . . , qs) 7→ (jrg(q1), j
rg(q2), . . . , j

rg(qs)).

Let W be a submanifold of sJ
r(N,P ). A mapping g : N → P will be said to be

transverse with respect to W if sj
rg : N (s) → sJ

r(N,P ) is transverse to W .

Following Mather ([10]), we can partition P s as follows. Given any partition Π of

{1, 2, . . . , s}, let PΠ denote the set of s-tuples (y1, y2, . . . , ys) ∈ P s such that yi = yj if

and only if the two positive integers i and j are in the same member of the partition Π.

Let Diff N denote the group of diffeomorphisms of N . We have the natural ac-

tion of Diff N × Diff P on sJ
r(N,P ) such that for a mapping g : N → P , the

equality (h,H) · sj
rg(q) = sj

r(H ◦ g ◦ h−1)(q′) holds, where q = (q1, q2, . . . , qs) and

q′ = (h(q1), h(q2), . . . , h(qs)). A subset W of sJ
r(N,P ) is said to be invariant if it is

invariant under this action.

We recall the following identification (7.1) from [10]. For q = (q1, q2, . . . , qs) ∈ N (s),

let g : U → P be a mapping defined in a neighborhood U of {q1, q2, . . . , qs} in N , and let

z = sj
rg(q), q′ = (g(q1), g(q2), . . . , g(qs)). Let sJ

r(N,P )q and sJ
r(N,P )q,q′ denote the

fibers of sJ
r(N,P ) over q and over (q, q′) respectively. Let Jr(N)q denote the R-algebra

of r-jets at q of functions on N . Namely,

Jr(N)q = sJ
r(N,R)q.

Set g∗TP =
∪

q̃∈U Tg(q̃)P , where TP is the tangent bundle of P . Let Jr(g∗TP )q denote

the Jr(N)q-module of r-jets at q of sections of the bundle g∗TP . Let mq be the ideal in

Jr(N)q consisting of jets of functions which vanish at q. Namely,

mq = {sjrh(q) ∈ sJ
r(N,R)q | h(q1) = h(q2) = · · · = h(qs) = 0}.

Let mqJ
r(g∗TP )q be the set consisting of finite sums of products of an element of mq

and an element of Jr(g∗TP )q. Namely, we set

mqJ
r(g∗TP )q = Jr(g∗TP )q∩{sjrξ(q) ∈ sJ

r(N,TP )q | ξ(q1) = ξ(q2) = · · · = ξ(qs) = 0}.

Then, it is easily seen that we have the following canonical identification of R-vector
spaces:

T (sJ
r(N,P )q,q′)z = mqJ

r(g∗TP )q. (7.1)

Let W be a non-empty submanifold of sJ
r(N,P ). Choose q = (q1, q2, . . . , qs) ∈ N (s)
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and g : N → P , and set z = sj
rg(q) and q′ = (g(q1), g(q2), . . . , g(qs)). Suppose that

the choice is made so that z ∈ W . Set Wq,q′ = π̃−1(q, q′), where π̃ : W → N (s) × P s is

defined by π̃(sj
r g̃(q̃)) = (q̃, (g̃(q̃1), g̃(q̃2), . . . , g̃(q̃s))) and q̃ = (q̃1, q̃2, . . . , q̃s) ∈ N (s).

Then, under the identification (7.1), the tangent space T (Wq,q′)z can be identified

with a vector subspace of mqJ
r(g∗TP )q. We denote this vector subspace by E(g, q,W ).

Definition 3. The submanifold W is said to be modular if conditions (α) and

(β) below are satisfied.

(α) The set W is an invariant submanifold of sJ
r(N,P ), and lies over PΠ for some

partition Π of {1, 2, . . . , s}.

(β) For any q ∈ N (s) and any mapping g : N → P such that sj
rg(q) ∈W , the subspace

E(g, q,W ) is a Jr(N)q-submodule.

Now, suppose that P = Rℓ. The main theorem in [10] is the following.

Theorem 3 ([10]). Let N be a manifold of dimension n. Let f be an embedding of

N into Rm. If W is a modular submanifold of sJ
r(N,Rℓ) and m > ℓ, then there exists a

subset Σ with Lebesgue measure zero of L(Rm,Rℓ) such that for any π ∈ L(Rm,Rℓ)−Σ,

π ◦ f : N → Rℓ is transverse with respect to W .

Then, the main theorem in [4] is the following.

Theorem 4 ([4]). Let N be a manifold of dimension n. Let f be an embedding

of N into an open subset U of Rm. Let F : U → Rℓ be a mapping. If W is a modular

submanifold of sJ
r(N,Rℓ), then there exists a subset Σ with Lebesgue measure zero of

L(Rm,Rℓ) such that for any π ∈ L(Rm,Rℓ) − Σ, Fπ ◦ f : N → Rℓ is transverse with

respect to W .

The assertion (6) in Section 1, Corollary 7 in Section 5 and Corollary 9 in Section 6

of the present paper are obtained as corollaries of Theorems 1 and 2 in this paper. On

the other hand, they are also corollaries of Theorem 4.
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