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Abstract. Let X be a nonsingular variety defined over an algebraically
closed field of characteristic 0, and D be a free divisor with Jacobian ideal of

linear type. We compute the Chern class of the sheaf of logarithmic derivations
along D and compare it with the Chern–Schwartz–MacPherson class of the
hypersurface complement. Our result establishes a conjecture by Aluffi raised
in [Alu12b].

1. Introduction.

Let X be an n-dimensional nonsingular variety defined over an algebraically closed

field of characteristic 0, D a reduced effective divisor and U = X ∖D the hypersurface

complement. The present paper is the third one in our sequence of studies on the following

question:

Question 1.1. In the Chow group A∗(X), under what conditions is the formula

cSM(1U ) = c(DerX(− logD)) ∩ [X] (1)

true?

The left hand side of the formula is the Chern–Schwartz–MacPherson class of the

open subvariety U , and the right hand side is the total Chern class of the sheaf of

logarithmic derivations along D.

Formula (1) is previously known to be true in the following cases:

• X is a nonsingular algebraic surface and D is a locally quasi-homogeneous divi-

sors [Lia12].

• X is a nonsingular variety and D is a certain type of hypersurface arrangement

[Alu12a]. This in particular includes the cases for free hyperplane arrangements

in Pn and simple normal crossing divisors in nonsingular varieties, which were

treated individually in [Alu12b] and [Alu99].

• When X is a nonsingular projective complex variety and D is a locally quasi-

homogeneous free divisor, the classes in (1) have the same images in the Chow

group of the ambient projective space [Lia].
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The main result of our investigation in this paper is:

Theorem 1.2. Under the condition that X is a nonsingular variety defined over

an algebraically closed field k of characteristic 0 and D is a free divisor with Jacobian

ideal of linear type, formula (1) is true.

In view of the fact that locally quasi-homogeneous divisors are divisors with Jacobian

ideal of linear type [CMNM02], the result of this paper not only covers all known cases

in which formula (1) is true, but also answers a conjecture raised by Aluffi in [Alu12b].

On the other hand, the fact that our result works for varieties defined over an arbitrary

algebraically closed field suggests that our approach is purely algebraic, without resorting

to local analytic geometry and the GAGA principle, which were applied in some previous

works.

In the course of our study we realized a very interesting connection from Ques-

tion 1.1 to the Logarithmic Comparison Theorem (LCT). A divisor is said to satisfy LCT

if the natural morphism of complexes Ω•
X(logD) → Ω•

X(⋆D) is a quasi-isomorphism. In

[CJNMM96], the authors proved that locally quasi-homogeneous free divisors satisfy

LCT. Later, Calderón-Moreno and Narváez-Macarro studied the LCT problem for inte-

grable logarithmic connections with respect to a free divisor with Jacobian ideal of linear

type [CMNM09]. More recently, Narváez-Macarro was able to show divisors with Ja-

cobian ideal of linear type also satisfy LCT [NM15]. In fact, in our previous approach

to Question 1.1 [Lia], LCT was the key to allow us to compare the degrees of the classes

in (1). Although in our current approach to Question 1.1 LCT is not utilized, we still

wonder if any deeper relations between LCT and formula (1) exist. We also note that

there are several classes of divisors, such as Kozul free divisors and Euler homogeneous

divisors that are highly relevant to LCT [CMNM02], and we ask if formula (1) is still

true for those types of divisors.

In the special case that X = Pn, the Chow group is a free abelian group of rank

n+ 1 generated by classes of projective subspaces of Pn. Thus the classes in (1) can be

viewed as polynomials of degree n whose degree k terms are given by the codimension

k components of their corresponding classes. Assume moreover that D is a hyperplane

arrangement. In this case it is known by the work of Aluffi [Alu12b] that the CSM

class polynomial is equivalent to the characteristic polynomial of the arrangement up to

a change of variables. Combining Aluffi’s formula, Theorem 1.2 generalizes a formula

given by Mustaţă and Schenck (Theorem 4.1 in [MS01]).

As we begin our main discussion, we will start from reviewing basic properties of

Chern–Schwartz–MacPherson classes, especially how these classes arise from taking the

shadows of Lagrangian cycles. Then we will see that the Lagrangian cycle corresponding

to a free divisor with Jacobian ideal of linear types takes a very simple form, realized by

basic operations in intersection theory. The main result will follow by combining these

observations.
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2. Chern–Schwartz–MacPherson classes as shadows of Lagrangian cy-

cles.

A more detailed account of the materials presented here can be found in [Alu04]

[Ken90].

We work over an algebraically closed field k of characteristic 0. LetX be an algebraic

variety defined over k, and W be a closed subvariety of X. The characteristic function

1W of W is the function on X which takes the value 1 on (closed) points of W and 0

elsewhere. A constructible function on X is a Z-linear combination∑
W

nW · 1W

where the summation is taken over all closed subvarieties of X and nW ∈ Z are nonzero

for only finite indexes. We denote by C(X) the group of constructible functions on X.

For a proper morphism f : X → Y of complex algebraic varieties we can define the

push-forward of constructible functions f∗ : C(X) → C(Y ) by Z-linear extension of the

following formula:

f∗(1W )(p) = χ(f−1(p) ∩W ).

Here p is an arbitrary (closed) point on Y and χ is the topological Euler characteristic.

For the extension of the definition of push-forward to k-varieties, we refer the reader

to [Ken90].

With the notions introduced above, we get a covariant functor C from a subcategory

of k-varieties to the category of abelian groups, assigning C(X) to each variety X and

f∗ to a proper morphism f : X → Y .

The Chow functorA is another important functor from (a subcategory of) k-varieties

to the category of abelian groups. To each X ∈ Var(k) we assign A∗(X) the Chow group

of X, which is the group of algebraic cycles on X modulo rational equivalence. With a

proper morphism f : X → Y , there is also a well defined push-forward homomorphism

f∗ : A(X) → A(Y ). For more details, see [Ful84].

The readers may wonder what relations do the functors C and A have. Indeed,

Grothendieck conjectured and MacPherson proved that there exists a unique natural

transformation (called MacPherson transformation) [Mac74]:

c∗ : C ⇝ A

with the normalization property that for a nonsingular variety X, the induced homomor-

phism

C(X) → A(X)

takes 1X to the total Chern class of the tangent bundle of X:

1X 7→ c(TX) ∩ [X].

Note that the push-forward formula for constructible functions and the normalization
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property together determine uniquely the homomorphism C(X) → A(X) for an arbitrary

variety X, since there is always a resolution of singularity π : X̃ → X such that π is a

proper morphism.

Now we want to describe a functor L which interpolate the functors C and A. The

functor L assigns to a variety X the group L(X) of Lagrangian cycles over X. For the

purpose of this paper, we only consider varieties which assumes a closed imbedding to

a nonsingular ambient space. Let i : X → M be such an imbedding and T ∗M be the

cotangent bundle of M . Then L(X) is isomorphic to the free abelian subgroup of the

group of algebraic cycles in P(T ∗M |X), generated by the cycles of projectivized conormal

spaces [P(T ∗
WM)] of closed subvarieties W ⊂ X. For x a nonsingular point of W , the

fiber of T ∗
WM over x consists of linear forms on TxM which vanish at TxW . Thus the

restriction of T ∗
WM to the regular subscheme of W is the genuine conormal bundle, and

T ∗
WM is the closure of this vector bundle in T ∗M |X .

A proper morphism f : X → Y has the ability to push forward the Lagrangian cycles

over X to the ones over Y . There is a nice description of this mechanism by viewing the

Lagrangian cycles as the projectivized conormal spaces. We leave this point to [Ken90].

As we proposed, there are two consecutive natural transformations:

C ⇝ L⇝ A.

To understand these natural transformations, fix an algebraic variety X. For each

closed subvariety W , there exists a constructible function EuW which is called the local

Euler obstruction of W . It is known that these local Euler obstructions form a basis

of abelian group for C(X). The homomorphism C(X) → L(X) sends the local Euler

obstruction of W to the projectivized conormal space of W in M , with an appropriate

sign twist.

EuW → (−1)dimW [P(T ∗
WM)].

The second natural transformation which produces rational equivalent classes in X

involves only standard operations in intersection theory. Let ζ be the universal quo-

tient bundle of rank m − 1 on P(T ∗M |X) where m = dimM , and π be the projection

P(T ∗M |X) → X. Given a Lagrangian cycle α, the homomorphism L(X) → A∗(X)

makes the following assignment:

α 7→ π∗(c(ζ) ∩ α).

Aluffi calls this particular operation of producing a rational equivalent class in the

Chow group of the base scheme from a cycle α in the projective bundle taking the shadow

of α [Alu04]. Its name is derived for the reason that “the shadow neglects some of the

information carried by the object that casts it”. In certain nice cases, the structure

theorem of the Chow group of the projective bundle allows us to reconstruct a cycle from

its shadow.

The composition of the natural transformations C ⇝ L and L ⇝ A is not quite

the MacPherson transformation. However it differs from the MacPherson transformation

only by a dual. Let γ ∈ A∗(X) be a rational equivalent class, express γ as the summation
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of its i-dimensional component γi:

γ =
∑

γi.

Its dual γ̆ is defined to be:

γ̆ =
∑

(−1)iγi.

For instance, let X be an n-dimensional variety and E be a rank n vector bundle

over X. If γ is the total Chern class of the vector bundle E:

γ = c(E) ∩ [X],

then

γ̆ = (−1)nc(E∨) ∩ [X].

Therefore taking the dual is an involution of the Chow group. The MacPherson

transformation c∗ is the composition of the two natural transformations described above,

followed by a dual of the Chow group. More specifically, given f ∈ C(X), to calculate

its CSM class, one needs to find subvarieties Wi of X and integers ni such that

f =
∑
i

ni · EuWi .

After doing this, imbed X in a nonsingular ambient variety M and form the Lagrangian

cycle ∑
i

ni · (−1)dimWi [P(T ∗
Wi

M)]

in the projective bundle P(T ∗M |X). Finally, taking the dual of the shadow of this cycle

yields the CSM class of f in A∗(X). In this paper, when the underlying variety is clear

from the context, we simply write cSM(f) for this class instead of c∗(X)(f).

Given an arbitrary constructible function f , the steps to find out its CSM class are

conceptual but less practical, because it is in general difficult to determine the subvarieties

Wi and the integers ni. Nonetheless, when X is a hypersurface in a nonsingular variety

M and f = 1X the characteristic function of X, we know more or less how to compute

the Lagrangian cycle of f .

Theorem 2.1 ([Alu04]). The Lagrangian cycle corresponding to 1X is

(−1)dimX [qBlY X], where Y denotes the singular subscheme of X and qBlY X denotes

the quasi-symmetric blow-up of X along Y .

The singular subscheme Y can be viewed either as a subscheme of X or a subscheme

of M . If h is a local equation of X in M , then the ideal sheaf of Y is locally generated

by all partial derivatives of h from the former perspective, or by all partial derivatives of

h together with h from the latter perspective.
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According to Aluffi [Alu04], given a closed embedding W ⊂ V of schemes, there

is a spectrum of relevant ‘blow-up’ algebras, each one of which corresponds to a closed

imbedding V into an ambient (not necessarily nonsingular) scheme M . In the special

case M = V , the blow-up algebra corresponding to V ⊂ V is the Rees algebra of the Ideal

sheaf of W . The constructions are functorial in the sense that any morphism M → N

of ambient schemes of X gives rise to an epimorphism of the blow-up algebras (with a

reversed arrow). The quasi-symmetric blow-up algebra of V along W is defined to be the

inverse limit of this system of blow-up algebras. Aluffi also defines the quasi-symmetric

blow-up qBlWV to be the projective scheme associated with the quasi-symmetric blow-up

algebra.

The object qBlWV may seem intangible at the first sight, but it is not as difficult

to grasp as one may feel. In fact, the inverse system of blow-up algebras stabilizes at

any nonsingular M , and the quasi-symmetric blow-up can be captured by the notion of

‘principal transform’.

Definition 2.2 ([Alu04]). Let W ⊂ V ⊂ M be closed imbeddings of schemes,

with M possibly singular. The principal transform of V in the blow-up BlWM
ρ−→ M of

M along W is the residual to the exceptional divisor in ρ−1(V ).

The definition of residual subscheme can be found in Fulton’s book [Ful84] chapter 9.

Its intuitive meaning in our context is the subscheme of BlWM obtained by subtracting

one copy of the exceptional divisor from the total transformation of V .

The principal transform and the quasi-symmetric blow-up are related in the following

way:

Theorem 2.3 ([Alu04]). Let W ⊂ V ⊂ M be closed imbeddings of schemes, with

M a nonsingular variety. The quasi-symmetric blow-up qBlWM of V along W equals

the principal transform of V in BlWM .

Therefore, the principal transform of V in the blow-up BlWM as an abstract scheme,

is independent of the ambient nonsingular variety M by which we realize the principal

transform.

Returning to the setup of Theorem 2.1, as a direct consequence of the previous

discussion, we have:

Theorem 2.4 ([Alu04]). The shadow of [qBlY X] is (−1)dimX c̆SM(1X).

In the next section, we will see that under the setup of Theorem 2.1, the quasi-

symmetric blow-up of X along Y (which is also the principal transform of X in the

blow-up BlY M) arises from the symmetric algebra of an ideal sheaf. We will compute

this quasi-symmetric blow-up explicitly from a fundamental exact sequence in the theory

of logarithmic derivations, and study how it is imbedded in the projectivized cotangent

bundle of M .
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3. The imbedding of the quasi-symmetric blow-up in the cotangent bun-

dle.

In this section and the following, X is a nonsingular algebraic variety defined over an

algebraically closed field of characteristic 0, D is a reduced effective divisor (hypersurface)

in X, Dsing is the singular subscheme of D. Let i : D → X and j : Dsing → X be the

inclusions of D and Dsing into X respectively. For readers who follow the discussion of

the previous section, there is a caution in the change of notation. The schemes X, D

and Dsing play the role of M , X and Y in Theorem 2.1 respectively. The ideal sheaf of

Dsing in OD will be denoted by I , and the ideal sheaf of Dsing in OX will be denoted

by Ĩ .

The sheaf of logarithmic derivations DerX(− logD) along D is a subsheaf of the

sheaf of regular derivations DerX , which we also identify with the sheaf of sections of

the tangent bundle of X. Over an open subset U of X where the divisor D has a local

equation h,

DerX(− logD)(U) = {θ ∈ DerX(U) | θh ∈ h · OX(U)}.

Example 3.1. Let X = A2 and the ideal of D be (xy). The module of logarithmic

derivations DerX(− logD) is free and it is generated by x∂x, y∂y.

The sheaf of logarithmic derivation DerX(− logD) is a reflexive sheaf for any reduced

effective divisor D. Its dual is the sheaf of logarithmic differential 1-forms Ω1
X(logD).

One can also define the sheaf of logarithmic differential k-forms Ωk
X(logD) and form a

logarithmic de Rham complex Ω•
X(logD). For a discussion on properties of these sheaves

at the introductory level, we refer the readers to [Sai80].

In this paper, the most significant aspect of the sheaf of logarithmic derivations we

will use is that it fits into a fundamental exact sequence of sheaves of OX -modules:

0 → DerX(− logD) → DerX → i∗I (D) → 0. (2)

In addition, the sheaf I and Ĩ are related by the following exact sequence:

0 → OX(−D) → Ĩ → i∗I → 0. (3)

The morphism OX(−D) → Ĩ is the inclusion of the equation of D into the ideal

of Dsing.

Remark 3.2. The sheaf i∗I is an OX -module, but not an OX -ideal. In fact,

applying the snake lemma to the following morphism of exact sequences

0 // OX(−D)

��

// OX

��

// i∗OD

��

// 0

0 // Ĩ // OX
// j∗ODsing

// 0

shows that i∗I is isomorphic to the kernel of the map i∗OD → j∗ODsing .
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To understand exact sequence (2), we consider as before an open subset U over

which the divisor D has a local equation h. The morphism

DerX(−D)
∣∣
U
→ i∗OD

∣∣
U

is defined by

θ ⊗ g 7→ g · θh

where θ ∈ DerX(U) and g ∈ Γ(U,OX) which is treated as a section over U of the line

bundle OX(−D) through the trivialization OX

∣∣
U

∼= OX(−D)
∣∣
U
. These locally defined

morphisms glue together to give a morphism DerX(−D) → i∗OD whose image is gener-

ated by all partial derivatives of the local equation of D. Through this description we

also see that θ⊗ 1 maps to 0 if and only if θh = 0 in Γ(U,OD), which is equivalent to θh

belonging to the ideal generated by h in Γ(U,OX). The latter condition is also equivalent

to θ being a logarithmic derivation.

Remark 3.3. Restrict the morphism DerX(−D) → i∗OD to D and dualize it, we

get a morphism OD → Ω1
X(D)

∣∣
D
. In [Alu04, Section 3.7], this morphism is constructed

by considering an exact sequence which involves the bundle of principal parts of O(D).

Later in this paper the morphism DerX → i∗I (D) will be used to construct an imbedding

of the quasi-symmetric blow-up qBlDsing
D in the cotangent bundle of X. This imbedding

is the same as the one appeared in [Alu04, Section 3.7].

Before continuing our discussion, we first recall the definitions of free divisors and

divisors whose Jacobian ideal is of linear type.

Definition 3.4. A reduce effective divisor is free if DerX(− logD) is locally free (of

rank equal to the dimension of X) [Sai80]. A divisor is Jacobian ideal of linear type if Ĩ

is an ideal sheaf of linear type, which is saying ReesOX (Ĩ ) ∼= SymOX
(Ĩ ) [CMNM09].

We also need a classical result concerning the symmetric algebras of modules.

Theorem 3.5 ([Eis95, Appendix A.2.3]). Let A be a commutative ring and

0 → K → M → N → 0

an exact sequence of A-modules. Then the induced homomorphism

SymA(M) → SymA(N)

is surjective and the kernel of this homomorphism is generated by the image of K in

degree 1 of the graded algebra SymA(M).

We will apply a sheafified version of this theorem on exact sequence (2) and (3)

respectively.

Proposition 3.6. Let D be a divisor with Jacobian ideal of linear type, we have
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Proj
(
SymOX

(i∗I )
)
∼= qBlDsing

D.

Proof. Applying Theorem 3.5 to exact sequence (3), and using the condition that

D is Jacobian of linear type, we get an epimorphism:

ReesOX (Ĩ ) → SymOX
(i∗I )

whose kernel is generated by OX(−D) in degree 1 of ReesOX
(Ĩ ). Let us examine the

kernel locally. Over an affine open set U = Spec(A) of X, assuming h is the equation of

D in U , the Rees algebra takes the form

ReesA(Ĩ) = A⊕ Ĩt⊕ Ĩ2t2 ⊕ · · ·

and the ideal defining SymA(I) is generated by ht. Consider a nonzero element g in Ĩ.

This element determines an open subset D+(gt) in Proj(ReesA(Ĩ)), in which the ideal of

Proj(SymA(I)) is generated by

ht

gt
=

h

g
.

In the open subset D+(gt), the ideal of the total transformation of D is generated by h

and the ideal of the exceptional divisor is generated by g. Consequently the fraction h/g

locally defines the ideal of the principal transform of D in the blow-up Proj(ReesOX
(Ĩ )),

which agrees with the quasi-symmetric blow-up of D along Dsing according to Theo-

rem 2.3. □

We want to introduce some auxiliary notation at this moment in order to smoothen

the following discussion. From now on:

• E will denote the cotangent bundle Spec
(
SymOX

(DerX)
)
of X,

• F will denote the logarithmic cotangent cone Spec
(
SymOX

(
DerX(− logD)

))
of X,

• C will denote the subcone Spec
(
SymOX

(
i∗I (D)

))
of E,

• σ : E → F will be the morphism induced by DerX(− logD) → DerX ,

• The corresponding projectivized cones and bundles of E, F , and C will be denoted

by P(E), P(F ), and P(C). Notice that P(C) is the quasi-symmetric blow-up of D

along Dsing because Proj
(
ReesOX

(i∗I )
)
∼= Proj

(
ReesOX

(
i∗I (D)

))
.

Next, we apply Theorem 3.5 to exact sequence (2).

Proposition 3.7. The inverse image of the zero section of F under σ is C.

Proof. This is immediate. The ideal of the zero section of F is generated by

DerX(− logD) in SymOX
(DerX(− logD)). Thus the ideal of the inverse image of the

zero section of F in E is generated by the image of DerX(− logD) in SymOX
(DerX).

This ideal also defines SymOX
((i∗I (D)) according to Theorem 3.5. □
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In the rest of the paper we will focus on free divisors with Jacobian ideal of linear

type. Under this condition F becomes a vector bundle of rank n = dimX. The morphism

σ becomes a linear map between vector bundles. The cone C can be thought of as the

fiberwise kernel of σ.

Example 3.8. Again consider the case that X = A2 and D is the normal crossing

divisor defined by the ideal (xy). The vector bundles E and F are both trivial of rank 2.

The homomorphism on the affine coordinate rings is:

k[x, y][A,B] → k[x, y][A,B]

A 7→ xA

B 7→ yB.

Let v = v1e1 + v2e2 be a vector in E over the point (a, b) ∈ A2. Then its image in F

by σ is the vector av1e1 + bv2e2 over the same point (a, b). From this description we

see that C has a 2-dimensional fiber over the point (0, 0); 1-dimensional fibers generated

by e2 over points on the x-axis; 1-dimensional fibers generated by e1 over points on the

y-axis; and 0-dimensional fibers elsewhere. The projectivized cone P(C) has one copy

of P1 over the point (0, 0), and two separate lines meeting P1 at two distinct points. It

is the same as the principal transform of D along its singular subscheme (0, 0), as the

exceptional divisor of the blow-up of D along the origin contains two copies of P1.

With these preparations, we can give a rather transparent description of the imbed-

ding of P(C) in P(E).

Proposition 3.9. Under the condition that D is a free divisor with linear type

Jacobian ideal, P(C) is a locally complete intersection in P(E). The normal bundle of

P(C) in P(E) is isomorphic to p∗F ⊗ O(1) where p is the projection P(C) → X.

Proof. Consider the following Cartesian square

C

��

// E

��
Γ(σ) // E ⊕ F.

In the diagram Γ(σ) is the graph of σ : E → F . Set-theoretically and fiberwisely it

consists of vectors of the form (v, σ(v)). The map E → E⊕F is the inclusion v 7→ (v, 0).

Projectivize the above diagram we get another Cartesian square

P(C)

ϕ

��

// P(E)

��
P(Γ(σ)) // P(E ⊕ F ).

The projectivized cotangent bundle P(E) is irreducible and its dimension is 2n− 1.
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The quasi-symmetric blow-up P(C) of D along Dsing has pure dimension n − 1, since

we have seen in the proof of Proposition 3.6 the quasi-symmetric blow-up is a Cartier

divisor in BlDsing
X with a local equation h/g. Thus the codimension of P(C) in P(E)

equals n. The ideal of P(C) in P(E) is also locally generated by n elements, because

the rank of DerX(− logD) is n. From these we deduce that P(C) is a locally complete

intersection scheme in P(E)—a well known result for Cohen–Macaulay rings ([Mat89,

Theorem 17.4]).

Denote by q̃ the projection Γ(σ) → X and q the projection P(Γ(σ)) → X. The

locally complete intersection P(C) has a normal bundle of rank n in P(E), and this

normal bundle is a subbundle of ϕ∗N where N is the normal bundle to P(Γ(σ)) in

P(E ⊕ F ) ([Ful84, Chapter 6, p. 93]). We know that N also has rank n. As a result,

the normal bundle to P(C) in P(E) must agree with ϕ∗N .

The closed imbedding P(Γ(σ)) → P(E ⊕ F ) falls along the standard situation that

one projectivized vector bundle being imbedded into another. The normal bundle to

Γ(σ) in E ⊕ F is q̃∗F ([Ful84, Appendix B.7.3]), and thus N ∼= q∗F ⊗ O(1). The last

statement can be seen by looking at the Euler sequences defining the tangent bundles of

P(Γ(σ)) and P(E ⊕ F ).

Finally we observe that

ϕ∗(q∗F ⊗ O(1)) = p∗F ⊗ O(1). □

Remark 3.10. Similarly, the normal bundle to P(E) in P(E ⊕ F ) is r∗F ⊗O(1),

with r the projection P(E) → X.

Corollary 3.11. In A∗(P(E)), we have [P(C)] = cn(r
∗F ⊗ O(1)) ∩ [P(E)].

Proof. For any t in the algebraically closed base field, there is a map tσ : E → F

defined by v 7→ t · σ(v). Thus there is a family of cycles in P(E ⊕F ) deforming P(Γ(σ))

(t = 1) to P(E) (t = 0). Moreover, the intersection product of [P(Γ(tσ))] and [P(E)] is

always [P(C)] for t ̸= 0. Therefore:

P(C)t = [P(Γ(tσ))] · [P(E)] (t ̸= 0)

= lim
t→0

(
[P(Γ(tσ))] · [P(E)]

)
= [P(E)] · [P(E)]

= cn(r
∗F ⊗ O(1)) ∩ [P(E)].

For the third equality we use the dynamic interpretation of the intersection product,

and for the last equality we use the self intersection formula ([Ful84, Theorem 6.2]). □

To summarize, in this section, we have realized the quasi-symmetric blow-up P(C) of

D along Dsing concretely in the projectivized cotangent bundle P(E) of X (Proposition

3.9 and Corollary 3.11). Corollary 3.11 will be used to calculate the shadow of P(C) in

A∗(X), which is an essential step in obtaining the main theorem of this paper.
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4. Proof of the main theorem.

Engaging all elements we saw in the previous sections, the proof of Theorem 1.2 is

almost at hand.

Proof of Theorem 1.2. We rewrite the formula we want to prove as:

cSM(1X)− c(DerX(− logD)) ∩ [X] = cSM(1D).

Taking the dual of this formula and recalling that for a nonsingular variety X,

cSM(1X) = c(TX) ∩ [X], it is equivalent to verify that:

(−1)nc(T ∗X) ∩ [X]− (−1)nc(Ω1
X(logD)) ∩ [X] = c̆SM(1D).

If we invoke our notations in the previous section, we can again rewrite the formula

as:

c(E) ∩ [X]− c(F ) ∩ [X] = (−1)nc̆SM(1D).

By Theorem 2.4, Proposition 3.6 and our discussion about the natural transforma-

tion L⇝ A, we get:

(−1)n−1c̆SM(1D) = r∗(c(ζ) ∩ [P(C)])

= c(E) ∩ r∗

((
c(OP(E)(−1))

)−1 ∩ [P(C)]
)
.

Here r is the projection P(E) → X, and ζ is the universal quotient bundle of P(E).

In getting the second equality, we use the projection formula and the Whitney sum

formula:

c(r∗E) = c(ζ) · c(OP(E)(−1)).

Thus we are only to verify:

c(E) ∩ [X]− c(F ) ∩ [X] = −c(E) ∩ r∗

((
c(OP(E)(−1))

)−1 ∩ [P(C)]
)
.

Recall that the Segre class s(E) of the vector bundle E is the multiplicative inverse

of the total Chern class c(E) of E ([Ful84, Chapter 3]). We multiply both sides of the

above formula by s(E) and reach another equivalent form of formula (1):

[X]− s(E) · c(F ) ∩ [X] = −r∗

((
c(OP(E)(−1))

)−1 ∩ [P(C)]
)
.

Let us verify this last formula. Denote by H a general hyperplane in P(E), or

equivalently c1(OP(E)(1)). We have:

−r∗

((
c(OP(E)(−1))

)−1 ∩ [P(C)]
)
= −r∗

(∑
i≥0

Hi ∩ [P(C)]
)



987(109)

Chern classes for free divisors with linear type Jacobian 987

= −r∗
(∑
i≥0

Hi · cn(r∗F ⊗ O(1)) ∩ [P(E)]
)

= −r∗
(∑
i≥0

Hi ·
n∑

j=0

(cj(r
∗F ) ·Hn−j) ∩ [P(E)]

)
= −

∑
i≥0

n∑
j=0

cj(F ) · r∗(Hn+i−j ∩ [P(E)])

= −
∑
i≥0

n∑
j=0

cj(F ) · si−j+1(E) ∩ [X]

= −
∑
i≥0

∑
j+k=i+1
j,k≥0

cj(F ) · sk(E) ∩ [X]

= −
(
c(F ) · s(E)− 1

)
∩ [X]

= [X]− c(F ) · s(E) ∩ [X].

The second among these equalities uses Corollary 3.11. The fourth one uses the

projection formula. The fifth one uses the definition of the Segre classes. The sixth one

employs the fact that sk(E) = 0 when k < 0 for any vector bundle E. For the seventh

one, recall that c0(F ) = s0(E) = 1. □

Let us once again review the key ideas in the proof. We first take the dual of the

proposed formula (1) to make it more adaptable to the conclusion of Theorem 2.4. Then

the original formula is turned into a formula about the shadow of the quasi-symmetric

blow-up P(C). The fact that the normal bundle to P(E) in P(E ⊕ F ) (and thus the

normal bundle to P(C) in P(E)) is related to the pull back of the logarithmic cotangent

bundle F is the most important observation in this paper. This observation finally allows

one to express the shadow of P(C) by the Chern class of E and the Segre class of F .
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