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Abstract. Similar to the definition in Riemannian space forms, we de-
fine the spacelike Dupin hypersurface in Lorentzian space forms. As conformal

invariant objects, spacelike Dupin hypersurfaces are studied in this paper using
the framework of the conformal geometry of spacelike hypersurfaces. Further
we classify the spacelike Dupin hypersurfaces with constant Möbius curvatures,
which are also called conformal isoparametric hypersurface.

1. Introduction.

Since Dupin surfaces were first studied by Dupin in 1822, the study of Dupin hy-

persurfaces in Rn+1 has been a topic of increasing interest, (see [2], [3], [4], [8], [9], [10],

[13], [14]), especially recently. In this paper we study spacelike Dupin hypersurfaces in

the Lorentzian space form Mn+1
1 (c).

Let Rn+2
s be the real vector space Rn+2 with the Lorentzian product ⟨, ⟩s given by

⟨X,Y ⟩s = −
s∑

i=1

xiyi +
n+2∑

j=s+1

xjyj .

For any a > 0, the standard sphere Sn+1(a), the hyperbolic space Hn+1(−a), the de

sitter space Sn+1
1 (a) and the anti-de sitter space Hn+1

1 (−a) are defined by

Sn+1(a) = {x ∈ Rn+2|x · x = a2}, Hn+1(−a) = {x ∈ Rn+2
1 |⟨x, x⟩1 = −a2},

Sn+1
1 (a) = {x ∈ Rn+2

1 |⟨x, x⟩1 = a2}, Hn+1
1 (−a) = {x ∈ Rn+2

2 |⟨x, x⟩2 = −a2}.

Let Mn+1
1 (c) be a Lorentz space form. When c = 0, Mn+1

1 (c) = Rn+1
1 . When c = 1,

Mn+1
1 (c) = Sn+1

1 (1). When c = −1, Mn+1
1 (c) = Hn+1

1 (−1).

For Lorentz space form Mn+1
1 (c), there exists a united conformal compactification

Qn+1
1 , which is the projectivized light cone in RPn+2 induced from Rn+3

2 . Using the

conformal compactification Qn+1
1 , we study the conformal geometry of spacelike hyper-

surfaces in Mn+1
1 (c). We define the conformal metric g and the conformal second funda-

mental form B on a spacelike hypersurface, which determine the spacelike hypersurface

up to a conformal transformation of Mn+1
1 (c). By these conformal invariants, it is clear

that the Möbius curvatures of a spacelike hypersurface are invariant under the confor-

mal transformations of Mn+1
1 (c) (see section 2). The Möbius curvatures of a spacelike
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hypersurface are defined by

Mijs =
λi − λj

λi − λs
, 1 ≤ i, j, k ≤ n,

where λ1, · · · , λr are the principal curvatures of the spacelike hypersurface.

Similar to the Dupin hypersurfaces in Riemannian space forms, we define the space-

like Dupin hypersurface in a Lorentzian space form. Let x : Mn → Mn+1
1 (c) be a

spacelike hypersurface in the Lorentzian space form Mn+1
1 (c). A curvature surface of

Mn is a smooth connected submanifold S such that for each point p ∈ S, the tangent

space TpS is equal to a principal space of the shape operator A of the hypersurface Mn

at p. The spacelike hypersurface Mn is called a spacelike Dupin hypersurface if, along

each curvature surface, the associated principal curvature is constant. The simple exam-

ples of the spacelike Dupin hypersurface are the spacelike isoparametric hypersurfaces in

Mn+1
1 (c), which are completely classified (see [5], [6], [7], [16]).

Using the conformal geometry of spacelike hypersurfaces in Mn+1
1 (c), we can prove

that the spacelike Dupin hypersurfaces in Mn+1
1 (c) are invariant under the conformal

transformations of Mn+1
1 (c). Like Pinkall’s method of constructed Dupin hypersurface

in Rn+1 ([14]), we can use the basic constructions of building cylinders and cones over

a spacelike Dupin hypersurface Wn−1 in Rn
1 with r − 1 principal curvatures to get a

spacelike Dupin hypersurface Wn−1+k in Rn+k
1 with r principal curvatures. In general,

these constructions are local. Therefore we have the following result.

Theorem 1.1. Given positive integers v1, v2, . . . , vr with

v1 + v2 + · · ·+ vr = n,

there exists a spacelike Dupin hypersurface in Rn+1
1 with r distinct principal curvatures

having respective multiplicities v1, v2, . . . , vr.

For some special spacelike Dupin hypersurfaces, we have the following results.

Theorem 1.2. Let x : Mn → Mn+1
1 (c) be a spacelike Dupin hypersurface in

Mn+1
1 (c) with r distinct principal curvatures. If r = 2, then locally x is conformally

equivalent to one of the following hypersurfaces.

(1) Sk(
√
a2 + 1)×Hn−k(−a) ⊂ Sn+1

1 (1), a > 0, 1 ≤ k ≤ n− 1;

(2) Hk(−a)×Hn−k(−
√
1− a2) ⊂ Hn+1

1 (−1), 0 < a < 1, 1 ≤ k ≤ n− 1;

(3) Hk(−a)× Rn−k ⊂ Rn+1
1 , a > 0, 1 ≤ k ≤ n− 1.

Theorem 1.3. Let x : Mn → Mn+1
1 (c) be a spacelike Dupin hypersurface in

Mn+1
1 (c) with r distinct principal curvatures. If r ≥ 3 and the Möbius curvatures are

constant, then r = 3, and locally x is conformally equivalent to the following hypersurface,

x : Hq(−
√
a2 − 1)× Sp(a)× R+ × Rn−p−q−1 → Rn+1

1 ,

defined by

x(u′, u′′, t, u′′′) = (tu′, tu′′, u′′′),
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where u′ ∈ Hq(−
√
a2 − 1), u′′ ∈ Sp(a), u′′′ ∈ Rn−p−q−1, a > 1.

Remark 1.1. A spacelike hypersurface with constant conformal principal curva-

tures and vanishing conformal 1-form is called a conformal isoparametric hypersurfaces

(see [11]). In section 3, we prove that the spacelike Dupin hypersurfaces with constant

Möbius curvatures are in fact the conformal isoparametric hypersurfaces. Thus Theorem

1.2 and 1.3 give a classification of conformal isoparametric hypersurfaces.

This paper is organized as follows. In section 2, we study the conformal geometry

of spacelike hypersurfaces in Mn+1
1 (c). In section 3, we study the spacelike Dupin hy-

persurfaces in the framework of conformal geometry. In section 4 and section 5, we give

the proof of Theorem 1.2 and Theorem 1.3, respectively.

2. Conformal geometry of spacelike hypersurfaces in Mn+1
1 (c).

In this section, following Wang’s idea in paper [15], we define some conformal in-

variants on a spacelike hypersurface and give a congruent theorem of the spacelike hy-

persurfaces under the conformal group of Mn+1
1 (c).

We denote by Cn+2 the cone in Rn+3
2 and by Qn+1

1 the conformal compactification

space in RPn+2,

Cn+2 = {X ∈ Rn+3
2 |⟨X,X⟩2 = 0, X ̸= 0},

Qn+1
1 = {[X] ∈ RPn+2|⟨X,X⟩2 = 0}.

Let O(n+3, 2) be the Lorentzian group of Rn+3
2 keeping the Lorentzian product ⟨X,Y ⟩2

invariant. Then O(n+ 3, 2) is a transformation group on Qn+1
1 defined by

T ([X]) = [XT ], X ∈ Cn+2, T ∈ O(n+ 3, 2).

Topologically Qn+1
1 is identified with the compact space Sn×S1/S0, which is endowed by

a standard Lorentzian metric h = gSn ⊕ (−gS1), where gSk denotes the standard metric

of the k-dimensional sphere Sk. Then Qn+1
1 has conformal metric

[h] = {eτh|τ ∈ C∞(Qn+1
1 )}

and [O(n+ 3, 2)] is the conformal transformation group of Qn+1
1 (see[1], [12]).

Denote P = {[X] ∈ Qn+1
1 |x1 = xn+2}, P− = {[X] ∈ Qn+1

1 |xn+2 = 0}, P+ = {[X] ∈
Qn+1

1 |x1 = 0}, we can define the following conformal diffeomorphisms,

σ0 : Rn+1
1 → Qn+1

1 \P, u 7→
[(

<u, u>1 + 1

2
, u,

<u, u>1 − 1

2

)]
,

σ1 : Sn+1
1 (1) → Qn+1

1 \P+, u 7→ [(1, u)],

σ−1 : Hn+1
1 (−1) → Qn+1

1 \P−, u 7→ [(u, 1)].

We may regard Qn+1
1 as the common compactification of Rn+1

1 ,Sn+1
1 (1),Hn+1

1 (−1).

Let x : Mn → Mn+1
1 (c) be a spacelike hypersurface. Using σc, we obtain the
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hypersurface in Qn+1
1 , σc ◦ x : Mn → Qn+1

1 . From [1], we have the following theorem.

Theorem 2.1. Two hypersurfaces x, x̄ : Mn → Mn+1
1 (c) are conformally equiva-

lent if and only if there exists T ∈ O(n+3, 2) such that σc ◦x = T (σc ◦ x̄) : Mn → Qn+1
1 .

Since x : Mn → Mn+1
1 (c) is a spacelike hypersurface, (σc ◦ x)∗(TMn) is a positive

definite subbundle of TQn+1
1 . For any local lift Z of the standard projection π : Cn+2 →

Qn+1
1 , we get a local lift y = Z◦σc◦x : U → Cn+1 of σc◦x : M → Qn+1

1 in an open subset

U of Mn. Thus ⟨dy, dy⟩2 = ρ2⟨dx, dx⟩s is a local metric, where ρ ∈ C∞(U). We denote

by ∆ and κ the Laplacian operator and the normalized scalar curvature with respect

to the local positive definite metric ⟨dy, dy⟩, respectively. Similar to Wang’s proof of

Theorem 1.2 in [15], we can get the following theorem.

Theorem 2.2. Let x : Mn → Mn+1
1 (c) be a spacelike hypersurface, then the 2-form

g = −(⟨∆y,∆y⟩2 − n2κ)⟨dy, dy⟩2 is a globally defined conformal invariant. Moreover, g

is positive definite at any non-umbilical point of Mn.

We call g the conformal metric of the spacelike hypersurface Mn. There exists a

unique lift

Y : M → Cn+2

such that g = ⟨dY, dY ⟩2. We call Y the conformal position vector of the spacelike

hypersurface Mn. Theorem 2.2 implies the following theorem.

Theorem 2.3. Two spacelike hypersurfaces x, x̄ : Mn → Mn+1
1 (c) are conformally

equivalent if and only if there exists T ∈ O(n+ 3, 2) such that Ȳ = Y T , where Y, Ȳ are

the conformal position vector of x, x̄, respectively.

Let {E1, · · · , En} be a local orthonormal basis of Mn with respect to g with dual

basis {ω1, · · · , ωn}. Denote Yi = Ei(Y ) and define

N = − 1

n
∆Y − 1

2n2
⟨∆Y,∆Y ⟩2Y,

where ∆ is the Laplace operator of g, then we have

⟨N,Y ⟩2 = 1, ⟨N,N⟩2 = 0, ⟨N,Yk⟩2 = 0, ⟨Yi, Yj⟩2 = δij , 1 ≤ i, j, k ≤ n.

We may decompose Rn+3
2 such that

Rn+3
2 = span{Y,N} ⊕ span{Y1, · · · , Yn} ⊕ V,

where V⊥span{Y,N, Y1, · · · , Yn}. We call V the conformal normal bundle of x, which is

linear bundle. Let ξ be a local section of V and <ξ, ξ>2 = −1, then {Y,N, Y1, · · · , Yn, ξ}
forms a moving frame in Rn+3

2 along Mn. We write the structure equations as follows,
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dY =
∑
i

ωiYi,

dN =
∑
ij

AijωjYi +
∑
i

Ciωiξ,

dYi = −
∑
j

AijωjY − ωiN +
∑
j

ωijYj +
∑
j

Bijωjξ,

dξ =
∑
i

CiωiY +
∑
ij

BijωjYi,

(2.1)

where ωij(= −ωij) are the connection 1-forms on Mn with respect to {ω1, · · · , ωn}. It is
clear that A =

∑
ij Aijωj ⊗ ωi, B =

∑
ij Bijωj ⊗ ωi, C =

∑
i Ciωi are globally defined

conformal invariants. We call A, B and C the conformal 2-tensor, the conformal second

fundamental form and the conformal 1-form, respectively. The covariant derivatives of

these tensors with respect to ωij are defined by:∑
j

Ci,jωj = dCi +
∑
k

Ckωkj ,∑
k

Aij,kωk = dAij +
∑
k

Aikωkj +
∑
k

Akjωki,∑
k

Bij,kωk = dBij +
∑
k

Bikωkj +
∑
k

Bkjωki.

By exterior differentiation of structure equations (2.1), we can get the integrable condi-

tions of the structure equations

Aij = Aji, Bij = Bji,

Aij,k −Aik,j = BijCk −BikCj , (2.2)

Bij,k −Bik,j = δijCk − δikCj , (2.3)

Ci,j − Cj,i =
∑
k

(BikAkj −BjkAki), (2.4)

Rijkl = BilBjk −BikBjl +Aikδjl +Ajlδik −Ailδjk −Ajkδil. (2.5)

Furthermore, we have

tr(A) =
1

2n
(n2κ− 1), Rij = tr(A)δij + (n− 2)Aij +

∑
k

BikBkj ,

(1− n)Ci =
∑
j

Bij,j ,
∑
ij

B2
ij =

n− 1

n
,

∑
i

Bii = 0,
(2.6)

where κ is the normalized scalar curvature of g. From (2.6), we see that when n ≥ 3, all

coefficients in the structure equations are determined by the conformal metric g and the

conformal second fundamental form B, thus we get the following conformal congruent

theorem.

Theorem 2.4. Two spacelike hypersurfaces x, x̄ : Mn → Mn+1
1 (c)(n ≥ 3) are
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conformally equivalent if and only if there exists a diffeomorphism φ : Mn → Mn which

preserves the conformal metric and the conformal second fundamental form.

Next we give the relations between the conformal invariants and the isometric in-

variants of a spacelike hypersurface in Mn+1
1 (c).

First we consider the spacelike hypersurface x : Mn → Rn+1
1 in Rn+1

1 . Let {e1, · · · ,
en} be an orthonormal local basis with respect to the induced metric I = <dx, dx>1

with dual basis {θ1, · · · , θn}. Let en+1 be a normal vector field of x, <en+1, en+1>1 =

−1. Let II =
∑

ij hijθi ⊗ θj denote the second fundamental form, the mean curvature

H =
∑

i hii/n. Denote by ∆M the Laplacian operator and κM the normalized scalar

curvature for I. By structure equation of x : Mn → Rn+1
1 we get that

∆Mx = nHen+1. (2.7)

There is a local lift of x

y : Mn → Cn+2, y = (
<x, x>1 + 1

2
, x,

<x, x>1 − 1

2
).

It follows from (2.7) that

⟨∆y,∆y⟩2 − n2κM =
n

n− 1
(−|II|2 + n|H|2) = −e2τ .

Therefore the conformal metric g, conformal position vector of x and ξ have the following

expression,

g =
n

n− 1
(|II|2 − n|H|2)<dx,dx>1 := e2τI, Y = eτy,

ξ = −Hy + (<x, en+1>1, en+1, <x, en+1>1).
(2.8)

By a direct calculation we get the following expression of the conformal invariants,

Aij = e−2τ [τiτj − hijH − τi,j +
1

2
(−|∇τ |2 + |H|2)δij ],

Bij = e−τ (hij −Hδij), Ci = e−2τ (Hτi −Hi −
∑
j

hijτj),
(2.9)

where τi = ei(τ) and |∇τ |2 =
∑

i τ
2
i , and τi,j is the Hessian of τ for I and Hi = ei(H).

For a spacelike hypersurface x : Mn → Sn+1
1 (1), the conformal metric g, conformal

position vector of x and ξ have the following expression,

g =
n

n− 1
(|II|2 − n|H|2)<dx,dx>1 := e2τI,

Y = eτ (1, x) = eτy, ξ = −Hy + (0, en+1).
(2.10)

For a spacelike hypersurface x : Mn → Hn+1
1 (−1), the conformal metric g, conformal

position vector of x and ξ have the following expression,
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g =
n

n− 1
(|II|2 − n|H|2)<dx,dx>2 := e2τI,

Y = eτ (x, 1) = eτy, ξ = −Hy + (en+1, 0).
(2.11)

Using the same calculation from (2.10) and (2.11), we have the following united expression

of the conformal invariants,

Aij = e−2τ [τiτj − τi,j − hijH +
1

2
(−|∇τ |2 + |H|2 + c)δij ],

Bij = e−τ (hij −Hδij), Ci = e−2τ (Hτi −Hi −
∑
j

hijτj),
(2.12)

where c = 1 for x : Mn → Sn+1
1 (1), and c = −1 for x : Mn → Hn+1

1 (−1).

Let {b1, · · · , bn} be the eigenvalues of the conformal second fundamental form B,

which are called conformal principal curvatures of x. Let {λ1, · · · , λn} be the principal

curvatures of x. From (2.9) and (2.12), we have

bi = e−τ (λi −H), i = 1, · · · , n. (2.13)

Clearly the number of distinct conformal principal curvatures is the same as that of

principal curvatures of x. Further, from equations (2.13), the Möbius curvatures

Mijk =
λi − λj

λi − λk
=

bi − bj
bi − bk

. (2.14)

Combining equations (2.9), (2.12) and (2.14), we have the following.

Proposition 2.1. Let x : Mn → Mn+1
1 (c) be a spacelike hypersurface. Then the

principal vectors and the conformal principal curvatures are invariant under the con-

formal transformations of Mn+1
1 (c). In particular, the Möbius curvatures are invariant

under the conformal transformations of Mn+1
1 (c).

3. Spacelike Dupin hypersurfaces in Lorentzian space forms.

Let x : Mn → Mn+1
1 (c) be a spacelike hypersurface in Mn+1

1 (c). For a principal

curvature λ, we have the principal space Dλ = {X ∈ TMn|AX = λX}. Then the

spacelike hypersurface is Dupin if and only if X(λ) = 0, X ∈ Dλ for every principal

curvature λ. The simple examples of spacelike Dupin hypersurface are the following

spacelike isoparametric hypersurfaces in Mn+1
1 (c).

Example 3.1. Hk(−a)× Rn−k ⊂ Rn+1
1 , a > 0, 0 ≤ k ≤ n.

Example 3.2. Sk(
√
1 + a2)×Hn−k(−a) ⊂ Sn+1

1 (1), a > 0, 1 ≤ k ≤ n.

Example 3.3. Hk(−a)×Hn−k(−
√
1− a2) ⊂ Hn+1

1 (−1), 0 < a < 1, 1 ≤ k ≤ n.

In fact, these spacelike isoparametric hypersurfaces are all spacelike isoparametric

hypersurfaces in Mn+1
1 (c) (see [5], [7], [16]). The following theorem confirms that the

spacelike Dupin hypersurface is conformally invariant.
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Theorem 3.1. Let x : Mn → Mn+1
1 (c) be a spacelike Dupin hypersurface, and

ϕ : Mn+1
1 (c) → Mn+1

1 (c) a conformal transformation. Then ϕ ◦ x : Mn → Mn+1
1 (c) is a

spacelike Dupin hypersurface.

Proof. Let {λ1, λ2, · · · , λn} denote its principal curvatures, and {e1, e2, · · · , en}
be the orthonormal basis for TMn with respect to the induced metric I, consisting

of unit principal vectors. Therefore {E1 = eτe1, E2 = eτe2, · · · , En = eτen} is the

orthonormal basis for TMn with respect to the conformal metric g = e2τI, and {b1 =

e−τ (λ1−H), · · · , bn = e−τ (λn−H)} are the conformal principal curvatures. From (2.9)

and (2.12), we have

Ci = e−τ (−e−τHi +
∑
j

(hij −Hδij)(e
−τ )j)

= e−τ (−e−τHi +
∑
j

ej((hij −Hδij)e
−τ )− e−τ

∑
j

ej(hij −Hδij))

= e−τ (
∑
j

ej(Bij)−
∑
j

e−τHej(hij))

= Ei(bi)− e−τEi(λi).

(3.15)

Noting that the principal vectors are conformal invariants, therefore x is Dupin if and

only if Ci = Ei(bi), which is invariant under the conformal transformation of Mn+1
1 (c)

from Proposition 2.1. □

The spacelike Dupin hypersurfaces with constant Möbius curvatures can be charac-

terized in terms of the conformal invariants.

Theorem 3.2. Let x : Mn → Mn+1
1 (c) be a spacelike Dupin hypersurface with

r(≥ 3) distinct principal curvatures. Then the Möbius curvatures are constant if and only

if the conformal 1-form vanishes and the conformal principal curvatures are constant.

Proof. It suffices to prove that the Möbius curvatures Mijk are constant implies

all conformal principal curvatures bi are constant and the conformal 1-form vanishes.

First, for any tangent vector X ∈ TMn, it is not hard to calculate that

X(bi)−X(bj)

bi − bj
=

X(bi)−X(bk)

bi − bk
=

X(bj)−X(bk)

bj − bk

from Mijk being constant for all 1 ≤ i, j, k ≤ n. Hence there exist µ and ε such that

X(bj) = µbj + ε for j = 1, · · · , n. (3.16)

It is then immediate that (2.6) implies ε = 0 and b1X(b1) + · · · + bnX(bn) = 0, which

implies µ = 0. Thus all b1, · · · , bn are constant. The conformal 1-form vanishes, C = 0

from the equation (3.15). □

Like as Pinkall’s method in [14], we construct a new spacelike Dupin hypersurface

from a spacelike Dupin hypersurface.
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Proposition 3.1. Let u : Mk → Rk+1
1 be an immersed spacelike hypersurface.

The cylinder over u is defined as follows :

x : Mk × Rn−k → Rk+1
1 × Rn−k = Rn+1

1 , x(p, y) = (u(p), y).

If u is a Dupin hypersurface, then cylinder x is a spacelike Dupin hypersurface.

Proposition 3.2. Let u : Mk → Sk+1
1 be an immersed spacelike hypersurface and

R+ the half line of positive real numbers. The cone over u is defined as follows :

x : Mk ×R+ × Rn−k−1 → Rn+1
1 , x(p, t, y) = (tu(p), y).

If u is a Dupin hypersurface, then cone x is a spacelike Dupin hypersurface.

In general, these constructions introduce a new principal curvature of multiplicity

n − k which is constant along its curvature surface. The other principal curvatures are

determined by the principal curvatures of Mk, and the Dupin property is preserved for

these principal curvatures. It is easy to prove Theorem 1.1 using these constructions.

Next we give a spacelike Dupin hypersurface which is a cone over a spacelike isopara-

metric hypersurface in Sn+1
1 (1), which is a spacelike Dupin hypersurface with three con-

stant conformal principal curvatures.

Example 3.4. Let p, q be any two given natural numbers with p + q < n and a

real number a > 1, consider the spacelike hypersurface of warped product embedding

x : Hq(−
√
a2 − 1)× Sp(a)× R+ × Rn−p−q−1 → Rn+1

1 ,

defined by

x(u′, u′′, t, u′′′) = (tu′, tu′′, u′′′),

where u′ ∈ Hq(−
√
a2 − 1), u′′ ∈ Sp(a), u′′′ ∈ Rn−p−q−1.

Next we give some conformal invariants of the spacelike Dupin hypersurface x. Let

b =
√
a2 − 1. One of the normal vector of x can be taken as

en+1 = (
a

b
u′,

b

a
u′′, 0).

The first and second fundamental form of x are given by

I = t2(<du′, du′>1 + du′′ · du′′) + dt · dt+ du′′′ · du′′′,

II = −<dx, den+1>1 = −t(
a

b
<du′, du′>1 +

b

a
du′′ · du′′).

Thus the mean curvature of x

H =
−pb2 − qa2

nabt
,
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and

e2τ =
n

n− 1

∑
ij

h2
ij − nH2

 =
p(n− p)b4 − 2pqa2b2 + q(n− q)a4

(n− 1)t2
:=

α2

t2
.

From (2.8) and (2.12), the conformal 1-form C = 0, and the conformal metric and

the conformal second fundamental form of x are given by

g = α2<du′, du′>+ α2du′′ · du′′ +
α2

t2
(dt · dt+ du′′′ · du′′′) = g̃1 + g̃2 + g̃3,

B =
∑
ij

Bijωi ⊗ ωj , (Bij) = (b1, · · · , b1︸ ︷︷ ︸
q

, b2, · · · , b2︸ ︷︷ ︸
p

, b3, · · · , b3︸ ︷︷ ︸
n−p−q

),
(3.17)

where

b1 =
pb2 − (n− q)a2

nabα
, b2 =

qa2 − (n− p)b2

nabα
, b3 =

pb2 + qa2

nabα
.

Furthermore, from (3.17), we have the following facts:

(1) If q ≥ 2, then (Hq(−
√
a2 − 1), g̃1) has constant sectional curvature −1/b2α2.

(2) If p ≥ 2, then (Sp(a), g̃2) has constant sectional curvature 1/a2α2.

(3) If n− q − p ≥ 2, then (R+ × Rn−p−q−1, g̃3) has constant sectional curvature −1/α2.

4. The proof of Theorem 1.2.

To prove Theorem 1.2, we need the following Lemma.

Lemma 4.1. Let x : Mn → Mn+1
1 (c) be a spacelike hypersurface without umbilical

points. If the conformal invariants of x satisfy C = 0 and A = µB+λg for some constant

µ, λ, then x is conformally equivalent to the spacelike hypersurface with constant mean

curvature and constant scalar curvature.

Proof. Since C = 0 and A = µB+λg, from structure equations (2.1) we get that

dN − λdY − µdξ = 0

and

d(N − λY − µξ) = 0.

Therefore we can find a constant vector e ∈ Rn+3
2 such that

N − λY − µξ = e. (4.18)

Therefore

<e, e>2 = −µ2 − 2λ, <Y, e>2 = 1.

From (2.6) and A = µB+λg, we get tr(A) = nλ = (n2κ−1)/2n, therefore κ is constant.
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To prove the Lemma we consider the following three cases,

Case 1: e is lightlike, i.e., µ2 + 2λ = 0,

Case 2: e is spacelike, i.e., µ2 + 2λ < 0,

Case 3: e is timelike, i.e., µ2 + 2λ > 0.

First we consider Case 1, e is lightlike, i.e., µ2 + 2λ = 0. Then there exists a

T ∈ O(n+ 3, 2) such that

ē = (−1, 0⃗,−1) = eT = (N − λY − µξ)T.

Let x̄ : Mn → Rn+1
1 be a spacelike hypersurface whose conformal position vector is

Ȳ = Y T , then N̄ = NT, ξ̄ = ξT , and

ē = N̄ − λȲ − µξ̄, <Ȳ , ē>2 = 1, <ξ̄, ē>2 = µ. (4.19)

Writing

Ȳ = eτ̄ (
<x̄, x̄>1 + 1

2
, x̄,

<x̄, x̄>1 − 1

2
) = eτ̄ ȳ, ξ̄ = −H̄ȳ + ȳn+1,

then from (2.8) and (4.19), we obtain that

eτ̄ = 1, H̄ = −µ.

Since Ȳ = ((<x̄, x̄>1 + 1)/2, x̄, (<x̄, x̄>1 − 1)/2), then g = <dx̄, dx̄>1 = Ī and the

normalized scalar curvature of Ī, κM = κ. Therefore the mean curvature and the scalar

curvature of the hypersurface x̄ are constant.

Next we consider Case 2, e is spacelike, i.e., µ2 + 2λ < 0. Then there exists a

T ∈ O(n+ 3, 2) such that

ē = (⃗0,
√
−µ2 − 2λ) = eT = (N − λY − µξ)T.

Let x̄ : Mn → Hn+1
1 (−1) be a spacelike hypersurface whose conformal position vector is

Ȳ = Y T , then N̄ = NT, ξ̄ = ξT , and

ē = N̄ − λȲ − µξ̄, <Ȳ , ē>2 = 1, <ξ̄, ē>2 = µ. (4.20)

Writing Ȳ = eτ̄ (x̄, 1), ξ̄ = −H̄(x̄, 1) + (en+1, 0), then from (2.11) and (4.20), we obtain

that

eτ̄ =
1√

−µ2 − 2λ
, H̄ =

−µ√
−µ2 − 2λ

.

Since<dx̄, dx̄>2 = −(µ2+2λ)g, the normalized scalar curvature of Ī, κM = κ/(−µ2−2λ).

Therefore the mean curvature and the scalar curvature of the hypersurface x̄ are constant.

Finally we consider Case 3, e is timelike, i.e., µ2 + 2λ > 0. Then there exists a

T ∈ O(n+ 3, 2) such that

ē = (−
√
2λ+ µ2, 0⃗) = eT = (N − λY − µξ)T.
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Let x̄ : Mn → Sn+1
1 (1) be a spacelike hypersurface whose conformal position vector is

Ȳ = Y T , then N̄ = NT, ξ̄ = ξT , and

ē = N̄ − λȲ − µξ̄, <Ȳ , ē>2 = 1, <ξ̄, ē>2 = µ. (4.21)

Writing Ȳ = eτ̄ (1, x̄), ξ̄ = −H̄(1, x̄) + (0, en+1), then from (2.10) and (4.21), we obtain

that

eτ̄ =
1√

2λ+ µ2
, H̄ =

−µ√
2λ+ µ2

.

Since <dx̄, dx̄>1 = (2λ + µ2)g, the normalized scalar curvature of Ī, κM = κ/(2λ +

µ2). Therefore the mean curvature and the scalar curvature of the hypersurface x̄ are

constant. □

Now we prove Theorem 1.2. Let x : Mn → Mn+1
1 (c) be a spacelike Dupin hy-

persurface with two distinct principal curvatures. We take a local orthonormal basis

{E1, · · · , En} with respect to g such that under the basis

(Bij) = diag(b1, · · · , b1︸ ︷︷ ︸
k

, b2, · · · , b2︸ ︷︷ ︸
n−k

).

Using the equation (2.6), we have

b1 =
1

n

√
(n− 1)(n− k)

k
, b2 =

−1

n

√
(n− 1)k

n− k
.

From (3.15), we can obtain that

C = 0. (4.22)

From equation (2.4), we know that [A,B] = 0. Thus we can take a local orthonormal

basis {E1, · · · , En} with respect to g such that under the basis

(Bij) = diag(b1, · · · , b1︸ ︷︷ ︸
k

, b2, · · · , b2︸ ︷︷ ︸
n−k

), (Aij) = diag(a1, a2, · · · , an). (4.23)

Since b1, b2 are constant, using the covariant derivatives of B, (2.3) and (4.22) we can

obtain

Bij,l = 0, 1 ≤ i, j, l ≤ n, ωiα = 0, 1 ≤ i ≤ k, k + 1 ≤ α ≤ n,

which implies that

Riαiα = 0, 1 ≤ i ≤ k, k + 1 ≤ α ≤ n.

Combining the equation (2.5), we have

−b1b2 + ai + aα = 0, 1 ≤ i ≤ k, k + 1 ≤ α ≤ n,
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thus

a1 = · · · = ak, ak+1 = · · · = an.

Using the covariant derivatives of A, we can get

Aij,α = 0, Aαβ,i = 0, 1 ≤ i, j ≤ k, k + 1 ≤ α, β ≤ n. (4.24)

Since Eα(a1) = Aii,α = 0, Ei(an) = Aαα,i = 0, combining b1b2 + ai + aα = 0 we know

that a1 = · · · = ak, ak+1 = · · · = an are constant. Thus

(Aij) = diag(a1, · · · , a1︸ ︷︷ ︸
k

, a2, · · · , a2︸ ︷︷ ︸
n−k

).

Let µ = (a1 − a2)/(b1 − b2) and λ = tr(A)/n, then

A = µB + λg.

From Lemma 4.1, up to a conformal transformation, we know that eτ is constant. Com-

bining (2.9), we know that the principal curvatures of x are constant. From the classifica-

tion of spacelike isoparametric hypersurfaces (see [5], [7], [16]), the Dupin hypersurface

x is a spacelike isoparametric hypersurface in Mn+1
1 (c) up to a conformal transformation

of Mn+1
1 (c). We finish the proof of Theorem 1.2.

5. The proof of Theorem 1.3.

Let Mn be a spacelike Dupin hypersurface in Mn+1
1 (c) with r(≥ 3) distinct principal

curvatures. If the Möbius curvatures are constant, then C = 0, which implies [A,B] = 0.

Therefore we can choose a local orthonormal basis {E1, · · · , En} with respect to the

conformal metric g such that

(Aij) = diag(a1, · · · , an),
(Bij) = diag(b1, · · · , bn) = diag(b1̄, · · · , b1̄, b2̄, · · · , b2̄, · · · , br̄, · · · , br̄).

(5.25)

Using the covariant derivative of B, we have

(bi − bj)ωij =
∑
k

Bij,kωk. (5.26)

For some bi, in this section we define the index set

[bi] := {m|bm = bi}.

Since the conformal principal curvatures {b1, b2, · · · , bn} are constant, we have the fol-

lowing results,
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Bij,k = 0 when [bi] = [bj ] or [bi] = [bk],

ωij =
∑
k

Bij,k

bi − bj
ωk when [bi] ̸= [bj ].

(5.27)

Using (5.27) and the second covariant derivative of Bij defined by∑
l

Bij,klωl = dBij,k +
∑
l

Blj,kωli +
∑
l

Bil,kωlj +
∑
l

Bij,lωlk,

and the following Ricci identities

Bij,ij −Bij,ji =
∑
l

BljRliij +
∑
l

BilRljji,

we have

Rijij =
∑

k/∈[bi],[bj ]

2B2
ij,k

(bi − bk)(bj − bk)
when [bi] ̸= [bj ]. (5.28)

Under the basis {E1, · · · , En}, (Aij) = diag(a1, · · · , an). Using the covariant derivative

of A, we have

(ai − aj)ωij =
∑
k

Aij,kωk.

From the second formula in (5.27), we obtain the following equation,

ai − aj
bi − bj

Bij,k = Aij,k, when [bi] ̸= [bj ]. (5.29)

To prove Theorem 1.3, we need the following lemmas.

Lemma 5.1. Let ρ1, · · · , ρr, be r(≥ 3) distinct real numbers, and ε a real number.

Then there does not exist any real coefficients {Fijk} satisfying

(i) Fijk = Fjik = Fikj ,

(ii) ε− ρiρj =
∑
k ̸=i,j

(Fijk)
2

(ρi − ρk)(ρj − ρk)
, ρi ̸= ρj .

(5.30)

Proof. We assume that there exists a group of real coefficients {Fijk} satisfying

(5.30). We will find a contradiction to prove the lemma.

We can assume that ρ1 < ρ2 < · · · < ρr. The equation (5.30) implies that

ε− ρ1ρ2 ≥ 0, ε− ρ2ρ3 ≥ 0, · · · , ε− ρkρk+1 ≥ 0, · · · , ε− ρr−1ρr ≥ 0. (5.31)

For fixed induce i, the matrix

Fjk :=
(Fijk)

2

(ρi − ρk)(ρj − ρk)(ρi − ρj)
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is antisymmetric for indices j, k, thus∑
j,ρj ̸=ρi

ε− ρiρj
ρi − ρj

=
∑

j,k,ρj ̸=ρi

(Fijk)
2

(ρi − ρk)(ρj − ρk)(ρi − ρj)
= 0. (5.32)

The proof of the lemma is divided into two cases: (1), ρ1 < 0, (2), ρ1 ≥ 0.

For case (1), ρ1 < 0, we have ρ1ρ2 > ρ1ρ3 > · · · > ρ1ρr. Combining (5.31), we have

ε− ρ1ρ2 ≥ 0, ε− ρ1ρ3 > 0, · · · , ε− ρ1ρr > 0.

Thus

ε− ρ1ρj
ρ1 − ρj

≤ 0, ρj ̸= ρ1,

which is a contradiction with the equation (5.32) for i = 1.

For case (2), ρ1 ≥ 0. Then ρr > ρr−1 > · · · > ρ1 ≥ 0. Combining (5.31) we have

ε ≥ ρrρr−1 > ρrρr−2 > · · · > ρrρ1, that is

ε− ρrρr−1 ≥ 0, ϵ− ρrρr−1 > 0, · · · , ϵ− ρrρ1 > 0.

Thus

ε− ρrρj
ρr − ρj

≥ 0, ρj ̸= ρr,

which is a contradiction with the equation (5.32) for i = r. Thus we finish the proof of

the lemma. □

Lemma 5.2. Let Mn be a spacelike Dupin hypersurface in Mn+1
1 (c) with r dis-

tinct principal curvatures. If r ≥ 3 and the Möbius curvatures are constant. Then the

conformal second fundamental form is parallel, that is Bij,k = 0, 1 ≤ i, j, k ≤ n.

Proof. We assume that there exists a Bi0j0k ̸= 0, we will find a contradiction to

prove the lemma.

We consider the pair (ai, bi) and let W denote the set of all of the pairs, that is,

W = {(a1, b1), (a2, b2), · · · , (an, bn)}.

For a number µ (including ∞) and an index i fixed, we define the set of pairs

Si(µ) := {(ak, bk) ∈ W | ai − ak
bi − bk

= µ, bk ̸= bi}
∪

{(ai, bi)}.

Since Bi0j0k ̸= 0, from (5.27), we know that bi0 ̸= bj0 ̸= bk. Using (5.29), we have

ai0 − aj0
bi0 − bj0

=
Ai0j0,k

Bi0j0,k
=

Ai0k,j0

Bi0k,j0

=
ai0 − ak
bi0 − bk

.

Let Ai0j0,k/Bi0j0,k = µ0. For (ai, bi), (aj , bj) ∈ Si0(µ0), we have (ai − aj)/(bi − bj) = µ0,
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thus there exists a constant ε such that

ai = µ0bi + ε, (ai, bi) ∈ Si0(µ0).

Thus

Rijij = −bibj + ai + aj = −(bi − µ0)(bj − µ0) + µ2
0 + 2ε, (ai, bi), (aj , bj) ∈ Si0(µ0).

Let b̃i = bi − µ0 and ϵ = µ2
0 + 2ε. From (2.5) and (5.28), we have

Rijij = 2
∑
k

(Bij,k)
2

(b̃i − b̃k)(b̃j − b̃k)
= 2ε+ µ2

0 − b̃ib̃j = ϵ− b̃ib̃j . (5.33)

Since bi0 ̸= bj0 ̸= bk, the number of distinct pairs in Si0(µ0) must be equal or more than

three. Thus there exist r (≥ 3) real numbers b̃i0 , b̃j0 , b̃k, · · · , b̃l satisfying (5.33)

ϵ− b̃ib̃j =
∑

k,bk ̸=bi,bj

2(Bij,k)
2

(b̃i − b̃k)(b̃j − b̃k)
,

which is a contradiction with Lemma 5.1. Thus we finish the proof of the Lemma. □

Next we give the proof of Theorem 1.3. From the equation (5.28) and lemma 5.2,

we have

Rijij =
∑

k/∈[bi],[bj ]

2B2
ij,k

(bi − bk)(bj − bk)
= 0, bi ̸= bj . (5.34)

Claim 1. The number of distinct principal curvatures r = 3.

We assume that r > 3, we can take four distinct conformal principal curvatures

b1, b2, b3, b4. Using (5.34) and (2.5), we have

−b1b2 + a1 + a2 = 0, −b1b3 + a1 + a3 = 0,

−b2b4 + a2 + a4 = 0, −b3b4 + a3 + a4 = 0,

which implies (b1 − b4)(b2 − b3) = 0. This is a contradiction, thus the number of the

distinct principal curvatures r = 3.

Now we assume that

(Bij) = diag(b1, · · · , b1, b2, · · · , b2, b3, · · · , b3), b1 < b2 < b3.

From (5.34), we have ai = aj , [bi] = [bj ], and

−b1b2 + a1 + a2 = 0, −b1b3 + a1 + a3 = 0, −b2b3 + a2 + a3 = 0.

Thus we can get

a1 =
b1b2 + b1b3 − b2b3

2
, a2 =

b1b2 + b2b3 − b1b3
2

, a3 =
b3b2 + b1b3 − b1b2

2
. (5.35)
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Using the covariant derivative of B and Bij,k = 0, we have

ωij = 0, [bi] ̸= [bj ],

which implies

dωi =
∑
j∈[bi]

ωij ∧ ωj . (5.36)

Let Vbi = span{Ej |j ∈ [bi]}. The equations (5.36) imply that the distributions Vb1 ,

Vb2 and Vb3 are integrable. Let M1,M2,M3 be integral submanifolds of Vb1 , Vb2 , Vb3 ,

respectively. Locally we can write

Mn = M1 ×M2 ×M3.

Let

g1 =
∑
i

ω2
i , i ∈ [b1], g2 =

∑
i

ω2
i , i ∈ [b2], g3 =

∑
i

ω2
i , i ∈ [b3].

Then we have

(Mn, g) = (M1, g1)× (M2, g2)× (M3, g3).

From (2.5) and (5.35), we have the following results:

(1) If dimM1 ≥ 2, then (M1, g1) has constant sectional curvature (b2 − b1)(b1 − b3) < 0.

(2) If dimM2 ≥ 2, then (M2, g2) has constant sectional curvature (b2 − b1)(b3 − b2) > 0.

(3) If dimM3 ≥ 2, then (M3, g3) has constant sectional curvature (b2 − b3)(b3 − b1) < 0.

Let q = dimM1, p = dimM2 and n − p − q = dimM3. From example 3.4, we can

find local isometries:

ϕ1 : (M1, g1) → (Hq(−
√
a2 − 1), g̃1),

ϕ2 : (M2, g2) → (Sp(a), g̃2), ϕ3 : (M3, g3) → (R+ × Rn−p−q−1, g̃3).

Therefore, we obtain a local diffeomerphism

ϕ = (ϕ1, ϕ2, ϕ3) : M
n → Hq(−

√
a2 − 1)× Sp(a)× R+ × Rn−p−q−1.

From (3.17), we see that the diffeomorphism preserves the conformal metric and the

conformal second fundamental form. we know that Mn is conformally equivalent to the

hypersurface given by example 3.4.
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