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Abstract. A locally conformally Kähler (LCK) manifold is a complex

manifold, with a Kähler structure on its universal covering M̃ , with the deck

transform group acting on M̃ by holomorphic homotheties. One could think
of an LCK manifold as of a complex manifold with a Kähler form taking
values in a local system L, called the conformal weight bundle. The L-valued
cohomology of M is called Morse–Novikov cohomology; it was conjectured that

(just as it happens for Kähler manifolds) the Morse–Novikov complex satisfies
the ddc-lemma, which (if true) would have far-reaching consequences for the
geometry of LCK manifolds. In particular, this version of ddc-lemma would
imply existence of LCK potential on any LCK manifold with vanishing Morse–

Novikov class of its L-valued Hermitian symplectic form. The ddc-conjecture
was disproved for Vaisman manifolds by Goto. We prove that the ddc-lemma
is true with coefficients in a sufficiently general power of L on any Vaisman

manifold or LCK manifold with potential.

1. Introduction.

1.1. LCK manifolds and dθd
c
θ-lemma.

A locally conformally Kähler (LCK) manifold is a complex manifold which admits a

Kähler metric on its universal covering M̃ such that the monodromy acts on M̃ by Kähler

homotheties. For more details and the reference on this subject, please see Section 2.

The LCK property is equivalent to existence of a Hermitian form ω on M satisfying

dω = ω ∧ θ, where θ is a closed 1-form. This form is called the Lee form of the LCK-

manifold.

One can consider the Kähler form on M̃ as a Kähler form on M taking values in a

1-dimensional local system, or, equivalently, in a flat line bundle L. This bundle is called

the weight bundle of M .

The cohomology of this local system is known as the Morse–Novikov cohomology of

an LCK manifold. In locally conformally Kähler geometry, the Morse–Novikov cohomol-

ogy shares many properties of the Hodge decomposition with the usual cohomology of

the complex manifolds. The locally conformally Kähler form represents a cohomology

class (called the Morse–Novikov class) of an LCK manifold, encoding the topological
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properties of an LCK structure. However, the ddc-lemma, which plays a crucial role

for the Kähler geometry, is invalid in the Morse–Novikov setting. The main question

of the locally conformally Kähler geometry is to find a replacement of the ddc-lemma

which would allow one to study the interaction between the complex geometry and the

topology of a manifold.

The statement of the ddc-lemma seems, on the first sight, to be technical. It says

that on any compact Kähler manifold (M, I), one has im d ∩ ker dc = im ddc, where

dc = IdI−1 is the twisted de Rham differential. However, it is used as a crucial step in

the proof of the degeneration of the Dolbeault–Frölicher spectral sequence, and in the

proof of homotopy formality of Kähler manifolds.

For an LCK manifold, one replaces the de Rham differential by its Morse–Novikov

counterpart dθ := d− θ, where θ is the connection form of its weight bundle; the twisted

de Rham differential is replaced by dcθ = IdθI
−1. It was conjectured in [OV1] that

the dθd
c
θ-lemma would hold on any LCK manifold, giving im dθ ∩ ker dcθ = im dθd

c
θ.

The implication of the dθd
c
θ-lemma would include the topological classification of LCK

structures on some manifolds (such as nilmanifolds) and a construction of automorphic

Kähler potentials on LCK manifolds with vanishing Morse–Novikov class. However, this

conjecture was false, as shown by Goto ([G]).

1.2. Weighted Bott–Chern cohomology.

When the dθd
c
θ-lemma is false, one needs to study a more delicate cohomological

invariant, called the weighted Bott–Chern cohomology of a manifold :

Hp,q
BC(M,L) :=

ker dθ ∩ ker dcθ
im dθdcθ

∣∣∣
Λp,q(M)

.

In [G], Goto has shown that the Bott–Chern cohomology group is responsible for the

deformational properties of an LCK manifold, and computed it for certain (p, q) and

certain examples of LCK manifolds, called the Vaisman manifolds (see Subsection 2.2).

Definition 1.1. The local system L associated to a LCK manifold M is a real,

oriented line bundle overM with a flat connection. Trivializing this bundle, we can write

its connection as ∇L = d−θ, where θ is the Lee form of our LCK manifold. For arbitrary

a ∈ C, the connection ∇La := d−aθ is also flat. For a ∈ Z, the corresponding line bundle

is identified with the a-th tensor power of L, denoted as La. One may think of the flat

line bundle (L,∇La) as of a real (or complex) power of L. We denote this line bundle

and its local system by La, and call it a-th power of the weight bundle.

In this paper we compute the weighted Bott–Chern cohomology for La, on LCK

manifolds with proper potential, and show that it vanishes for all a outside of a discrete

countable subset of R (Corollary 4.2). This implies ddc-lemma for forms with coefficients

in La, for these values of a. This result is based on a computation of Dolbeault cohomol-

ogy with coefficients in La, which also vanishes for all a but a discrete countable subset

(Theorem 3.2).
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1.3. LCK manifolds with potential.

Definition 1.2. A compact LCK manifold (M,ω, θ) is called LCK with potential

if ω = dθd
c
θψ for a positive function ψ which is called LCK potential.

An equivalent definition will be given in Subsection 2.3.

LCK manifolds with potential are understood very well now. The following results

were proven in [OV2] and [OV3] (see also [OV6]). Recall that a linear Hopf manifold is

a quotient of Cn\0 by a Z-action generated by a linear map with all eigenvalues |αi| > 1.

Theorem 1.3. Let M be a compact complex manifold. Then M admits an LCK

metric with potential if and only if M admits an embedding to a linear Hopf manifold.

Theorem 1.4. Let M be an LCK manifold with potential. Then M is a defor-

mation of a Vaisman manifold (Definition 2.2). In particular, M is diffeomorphic to a

principal S1 × S1-bundle over a projective orbifold.

It would be nice to have a topological characterization of LCK manifolds with poten-

tial. Since [OV1], we were extending much effort trying to prove the following conjecture,

which has many geometric consequences.

Conjecture 1.5. Let (M,ω, θ) be a compact LCK manifold. Assume that ω is

dθ-exact. Then ω is dθd
c
θ-exact, that is, M is a LCK manifold with potential.

This conjecture is still open. It would trivially follow if the dθd
c
θ-lemma were true,

but it is known now to be false. However, a weaker conjecture still stands.

Conjecture 1.6. Let (M,ω, θ) be a compact LCK manifold, L its weight bundle,

and La the weight bundle to the power of a ∈ R (Definition 1.1). Then, for all a outside

of a discrete countable set, daθd
c
aθ-lemma is true: for any daθ-exact (1, 1)-form η, one has

η = daθd
c
aθf (but this does not imply that the daθd

c
aθ-lemma is true for other bidegrees).

In this paper, we prove that Conjecture 1.6 is true for LCK manifolds with proper

potential (Corollary 4.2). This is done by first proving a generic vanishing result for

weighted Dolbeault cohomology (Theorem 3.2).

2. Locally conformally Kähler geometry.

In this section we give the necessary definitions and properties of locally conformally

Kähler (LCK) manifolds.

2.1. LCK manifolds.

Definition 2.1. A complex manifold (M, I) is LCK if it admits a Kähler covering

(M̃, ω̃), such that the covering group acts by holomorphic homotheties.

Equivalently, there exists on M a closed 1-form θ, called the Lee form, such that ω

satisfies the integrability condition:

dω = θ ∧ ω.
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Clearly, the metric g := ω(·, I·) on M is locally conformal to some Kähler metrics

and its lift to the Kähler cover in the definition is globally conformal to the Kähler metric

corresponding to ω̃.

To an LCK manifold one associates the weight bundle LR −→ M . It is a real line

bundle associated to the representation1

GL(2n,R) ∋ A 7→| detA |1/n .

The Lee form induces a connection in LR by the formula ∇ = d − θ. ∇ is associated

to the Weyl covariant derivative (also denoted ∇) determined on M by the LCK metric

and the Lee form. As dθ = 0, then ∇2 = dθ = 0, and hence LR is flat.

The complexification of the weight bundle will be denoted by L. The Weyl connec-

tion extends naturally to L and its (0, 1)-part endows L with a holomorphic structure.

2.2. Vaisman manifolds.

Definition 2.2. A Vaisman manifold is an LCK manifold with ∇g-parallel Lee

form, where ∇g is the Levi–Civita connection.

The following definition is implicit in the work of Boyer and Galicki, see [BG]:

Definition 2.3. A Sasakian manifold is an odd-dimensional contact manifold S

such that its symplectic cone CS is equipped with a Kähler structure, compatible with

its symplectic structure, and the standard symplectic homothety map ρt : CS −→ CS

is holomorphic.

Compact Vaisman manifolds can be described in terms of Sasakian geometry as

follows.

Theorem 2.4. Let (M, I, g) be a compact Vaisman manifold. Then M admits a

conic Kähler covering (W × R+, t
2gW + dt2) such that the covering group is an infinite

cyclic group, generated by the transformation (w, t) 7→ (φ(w), qt) for some Sasakian

automorphism φ and q ∈ Z.

The typical example of a compact Vaisman manifold is the diagonal Hopf manifold

HA := Cn/⟨A⟩ with A = diag(αi), with |αi| > 1. An explicit construction of the Vaisman

metric on HA is given in [OV5]. Other Vaisman metrics appear on compact complex

surfaces, [Be].

Among the LCK manifolds which do not admit Vaisman metrics are some of the

Inoue surfaces (cf. [Tr], [Be]) and their generalizations to higher dimensions ([OT]).

The rank 0 Hopf surfaces are also non-Vaisman ([GO]).

2.3. LCK manifolds with potential.

Definition 2.5 ([OV2]). A compact complex manifold (M, I) is LCK with po-

tential if it admits a Kähler cover (M̃, ω̃) with global potential φ : M̃ → R+, such that

the monodromy map τ acts on φ by multiplication with a constant: τ(φ) = const ·φ.

1In conformal geometry, the weight bundle usually corresponds to | detA |1/2n. For LCK-geometry,

| detA |1/n is much more convenient.
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If φ is proper (inverse images of compact sets are compact), then (M, I) is called

LCK with proper potential.

Remark 2.6. In [OV2, Proposition 2.5] (see also [OV6]) it was proven that φ

is proper if and only if the monodromy of the weight bundle is discrete in R+, that is,

isomorphic to Z.

Vaisman manifolds are LCK with potential (the potential is equal to the squared

norm of the Lee field), which can be easily seen from the Sasakian description given above

([Ve1]). LCK metrics with potential are in one to one correspondence with strongly

pseudoconvex shells in affine cones, as shown in [OV5].

We summarize the main properties of compact LCK manifolds with potential:

Theorem 2.7.

(i) ([OV2]) The class of compact LCK manifolds with potential is stable to small

deformations.

(ii) ([OV3, Theorem 2.1]) Any LCK manifold with potential can be deformed to a Vais-

man manifold. Moreover, the set of points which correspond to Vaisman manifolds

is dense in the moduli of compact LCK manifolds with potential.

(iii) ([OV2]) Any compact LCK manifold with potential can be holomorphically embed-

ded into a Hopf manifold. Moreover, a compact Vaisman manifold can be holomor-

phically embedded in a diagonal Hopf manifold.

2.4. Morse–Novikov complex and cohomology of local systems.

Let M be a smooth manifold, and θ a closed 1-form on M . Denote by dθ :

Λi(M)−→ Λi+1(M) the map d− θ. Since dθ = 0, d2θ = 0.

Consider the the Morse–Novikov complex, (see e.g. [P], [Ra], [Mi])

Λ0(M)
dθ−→ Λ1(M)

dθ−→ Λ2(M)
dθ−→ · · ·

Its cohomology is the Morse–Novikov cohomology of (M, θ).

In Jacobi and locally conformal symplectic geometry, this object is called

Lichnerowicz–Jacobi, or Lichnerowicz cohomology, motivated by Lichnerowicz’s work [Li]

on Jacobi manifolds (see e.g. [LLMP] and [B]).

Obviously, the flat line bundle L can be viewed as a local system associated with

the character χ : π1(M)−→ R>0 given by the exponential eθ ∈ H1(M,R>0), considered

as an element of R>0-valued cohomology. Then we have:

Proposition 2.8 (see e.g. [N]). The cohomology of the local system L is naturally

identified with the cohomology of the Morse–Novikov complex (Λ∗(M), dθ).

The following result was proven in [LLMP] and, with a different method, in [OV1]:

Theorem 2.9. The Morse–Novikov cohomology of a compact Vaisman manifold

vanishes identically.
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On the other hand, on one of the Inoue surfaces (which is LCK but non-Vaisman)

the Morse–Novikov class of ω is non–zero, see [B, Theorem 1].

3. Weighted Dolbeault cohomology for LCK manifolds with potential.

Let M be an LCK manifold with proper potential, and M̃ its Z-covering equipped

with the automorphic Kähler metric. In [OV2] it was shown that the metric completion

M̃c ofM is a Stein variety with at most one isolated singularity. Moreover, M̃c is obtained

from M̃ by adding one point, called “the origin”. Denote this point by c, and let R be

its local ring.

Remark 3.1. IfM is Vaisman, then M̃ is a true (Riemannian) cone and the fibres

are Sasakian. In the general case, nothing more precise can be said neither on the metric

of M̃ nor on the contact metric structure of the fibres.

Since M̃c is a singular variety, to control what happens in the neighbourhood of

c we need some technique borrowed from algebraic geometry which we briefly explain

below. Note that we could arrive at the same results by using L2-estimates, but the

computations and technicalities would have been much more involved.

3.1. Main result: the generic vanishing theorem.

The main result of this paper is:

Theorem 3.2. Let M be an LCK manifold with proper potential, θ its Lee form,

M̃ its Kähler Z-cover and denote by t : M̃ −→ M̃ the monodromy action. Let α ∈ C be

arbitrary and let Lα be the flat line bundle on M corresponding to α·θ.
Then for any q ∈ N

Hq(M,Ωp
M ⊗ Lα) = 0,

for all α ∈ C but a discrete countable subset.

Remark 3.3. For some Hopf manifolds, stronger vanishing results were obtained

by Ise [Is] and Mall [Ma]. In these cases, the set of exceptions is made explicit.

We describe the main steps of the proof and give the details in the next section.

Step 1: reduction to the local cohomology.

One has the following exact sequence, (see Corollary 3.7, which follows from Theo-

rem 3.6):

0−→H0(M,Ωi
M ⊗ Lα)−→H0(M̃,Ωi

M̃
)

t−α−→
t−α−→ H0(M̃,Ωi

M̃
)−→H1(M,Ωi

M ⊗ Lα)−→ · · · (3.1)

We are thus reduced to the study of the maps

Hj
(
M̃,Ωi

M̃

)
t−α−→ Hj

(
M̃,Ωi

M̃

)
.
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Denote by Ωi
M̃c

be the exterior i-power of the sheaf of Kähler differentials on M̃c

and by S its stalk at c. Using cohomology with supports, we have an exact sequence

0−→H0
m(S)−→H0

(
M̃c,Ω

i
M̃c

)
−→H0

(
M̃,Ωi

M̃

)
−→

−→H1
m(S)−→H1

(
M̃c,Ω

i
M̃c

)
−→ · · ·

Since M̃c is Stein, Hj
(
M̃c,Ω

i
M̃c

)
= 0 for all j ≥ 1, we obtain isomorphisms

Hj
(
M̃,Ωi

M̃

)
≃ Hj+1

m (S),

and an exact sequence

0−→H0
m(S)−→H0

(
M̃c,Ω

i
M̃c

)
t−α−→ H0

(
M̃,Ωi

M̃

)
−→H1

m(S)−→ 0

These induce the commutative diagrams

Hi
(
M̃,Ωj

M̃

)
≃−−−−→ Hi+1

m (S)y y
Hi

(
M̃,Ωj

M̃

)
≃−−−−→ Hi+1

m (S)

(3.2)

and respectively

0 −−−−−→ H0
m(S) −−−−−→ H0

(
M̃c,Ω

i

M̃c

)
−−−−−→ H0

(
M̃,Ωi

M̃

)
−−−−−→ H1

m(S) −−−−−→ 0

t−α

y t−α

y t−α

y t−α

y
0 −−−−−→ H0

m(S) −−−−−→ H0
(
M̃c,Ω

i

M̃c

)
−−−−−→ H0

(
M̃,Ωi

M̃

)
−−−−−→ H1

m(S) −−−−−→ 0

(3.3)

Eventually, notice that Hi+1
m (S) and H0

(
M̃c,Ω

i
M̃c

)
are R-modules.

Step 2: algebraic proof of generic vanishing.

At this step we use the following result, which will be proven in section 3.3:

Theorem 3.4. For any local Noetherian C-algebra R endowed with a Z-action
given by an automorphism of local C-algebras tR and for any R-module N endowed also

with a Z action tN which is tR-equivariant, i.e.

tN (rm) = tR(r)tN (m), for all r ∈ R, m ∈ N,

the map tM − α is a C-linear isomorphism for all α ∈ C but a countable subset.

Step 3.

Using the above commutative diagrams (3.2), (3.3), we conclude that for each α ∈ C
but a countable subset and any i, j ≥ 0 the map
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t− α : Hi
(
M̃,Ωj

M̃

)
−→Hi

(
M̃,Ωj

M̃

)
is an isomorphism. From the exact sequence (3.1) we obtain Hi(M,Ωj

M ⊗ Lα) = 0,

for all α in C but a countable set. Moreover, by upper-continuity on α, the set {α ∈
C ; Hi(M,Ωj

M ⊗ Lα) = 0} is analytically Zariski open, and hence its complement is

discrete since it is countable.

3.2. Proof of Step 1: reduction to the local cohomology.

Definition 3.5. Let F be a sheaf of C-vector spaces over a topological vector

space. Denote by Fx the stalk of F in x ∈ M , and let God(F ) be the sheaf defined by

God(F )(U) :=
∏

x∈U Fx. The natural sheaf embedding F ↪→ God(F ) is apparent. The

sheaves Godi(F ) are defined inductively: set God0(F ) := F, God1(F ) := God(F ), and

then

Godi+1(F ) := God(Godi(F )/Godi−1(F )).

This gives an exact sequence

0−→ F −→ God1(F )−→ God2(F )−→ · · ·

called the Godement resolution of F .

Theorem 3.6. Let M̃
π−→ M be a manifold equipped with a free action of Z,

M := M̃/Z its quotient, and let F be a Z-equivariant sheaf on M̃ . For any character

α : Z−→ R, denote by Fα ⊂ π∗F the sheaf of automorphic sections of π∗F , associated

with the character α, considered as a sheaf on M .

Then one has the exact sequence

0−→H0(M,Fα)−→H0(M̃, F )
t−α−→ H0(M̃, F )−→H1(M,Fα)−→ · · · (3.4)

where t is the associated action by the generator of Z acting on M̃ , and α is the multi-

plication by the number α(t).

Proof. Consider the Godement resolution 0−→ F −→ F 1 −→ F 2 −→ · · · . Here

F i = God(F i−1/im(di−1)) = God(coker(di−1)), F
0 = F , and di : F

i−1 −→ F i. Then

0−→ F k
α −→ π∗F

k t−α−→ πkF
∗ −→ 0 (3.5)

is an exact sequence of complexes of flabby sheaves over M .

Indeed, F k
α = ker(t−α) and we only have to show that t−α is surjective. It is enough

to make the proof at the level of sections of F k. The argument is combinatorial. We look

at M̃ as
∪

i∈Z M̃i where M0 is a fundamental domain of the Z action and M̃i = ti(M0).

Then, given f ∈ F k(U), U ⊂ M̃ , it is enough to solve the equation (t− α)g = f for

each fi = f |Ui , Ui = U ∩ M̃i; this will give as solution the section gi−1 ∈ F (Ui−1), i ∈ Z.
The equation is

tgit
−1 − αgi−1 = fi−1,
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which can be solved recursively once we have chosen arbitrarily g0 ∈ F (U0).

The long exact sequence associated to (3.5) is precisely (3.4). □

Let now M be a locally conformally Kähler manifold with Kähler covering M̃ and

monodromy Γ ∼= Z. Consider the weight bundle L on M , and let Lα be its power

associated with the character α ∈ Hom(Γ,R). Since the automorphic forms on M̃ can be

identified with forms on M with values in L, from the above result we directly obtain:

Corollary 3.7. For a compact LCK manifold with monodromy Z one has the

exact sequence for the Dolbeault cohomology of M with values in Lα:

0−→H0(M,Ωi
M ⊗ Lα)−→H0

(
M̃,Ωi

M̃

)
t−α−→

t−α−→ H0
(
M̃,Ωi

M̃

)
−→H1(M,Ωi

M ⊗ Lα)−→ · · ·

3.3. Proof of Step 2: algebraic proof of generic vanishing.

Remark 3.8. Let (Vn, tn)n≥0 be a sequence of finite-dimensional vector spaces

and endomorphisms tn : Vn −→ Vn. Let V =
∏

n≥0 Vn and t =
∏

n≥0 tn. Then

Spec(t) =
∪
n≥0

Spec(tn)

In particular, Spec(t) is at most countable.

Here, for a C-vector space V and u ∈ End(V ), Spec(u) := {λ ∈ C ; u − λ ·
id is not an isomorphism}.

This implies the following:

Lemma 3.9. If (M, tm) is a finitely generated complete R-module which is equi-

variant, then Spec(tM ) is at most countable.

Proof. Since M is complete we have

M =
∏
n≥0

mnM/mn+1M.

Since M is finitely generated, mnM/mn+1M is finite dimensional C-vector space for all

n ≥ 0, so Remark 3.8 applies. □

Unfortunately, the cohomology modules Hi
m(M) are usually not finitely generated,

so we need to elaborate further, by first reducing to the case of regular rings, and then

using local duality and the explicit description of the injective hull of the residue field.

First, since local cohomology does not change under completion (cf [Hun], Propo-

sition 2.15), we may assume that both R and M are complete.

Next, we reduce to the case when R is regular.

To do this, we choose a minimal system of generators for mR, m1, . . . ,mn and define

a map
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π : S = C[[X1, . . . , Xn]]−→R,

by Xi 7→ mi, i = 1, . . . , n.

The action tR on R lifts to an action tS on S as follows. Choose lifts si ∈ S of t(mi)

for all i = 1, . . . , n, and define tS(Xi) = si. Note that tS is well-defined as a morphism

of local C-algebras by [E, Theorem 7.16].

So we can look at M as an equivariant S-module.

Also, the local cohomology is preserved, since mR = mSR and using [Hun, Propo-

sition 2.14 (2)], we have Hi
mS

(M) ≃ Hi
mR

(M).

Denote by ti the endomorphism of Hi
m(M) induced by tM and tR.

By local duality ([Hun, Theorem 4.4]) we have:

Hi
m(M) ≃ Extn−i

R (M,R)∨ = HomR(Ext
n−i
R (M,R), E(k))

where E(k) is the injective hull of the residue field.

For regular rings, the injective hull E(k) is described by Lyubeznik ([Ly]):

E(k) = D/mD

where D is the space of differential operators.

Notice that D has a direct sum decomposition of the form D = ⊕n≥0Dn where Dn

is the set of differential operators of order n with no lower-order terms. Note that Dn is

invariant under the map induced by tR and finitely generated over R. So

E(k) =
⊕
n≥0

E(k)n

where E(k)n = Dm/mDn and each E(k)n is equivariant and finitely generated R-module.

This gives a decomposition as follows:

Hi
m(M) ≃

⊕
n≥0

HomR(Ext
n−i
R (M,R), E(k)n)

But each factor HomR(Ext
n−i
R (M,R), E(k)n) is finitely generated over R so Lemma 3.9

applies to it. Since there are countably many factors in the above decomposition, we see

Spec(ti) is countable.

Now Theorem 3.2 is completely proven. □

3.4. Degeneration of the Dolbeault–Frölicher spectral sequence with co-

efficients in a local system.

The next result, interesting in itself, proves that on compact LCK manifolds with

proper potential, in the Dolbeault–Frölicher spectral sequence with coefficients in a local

system Lα,

Ep,q
1 := Hq(M,Ωp

M ⊗ Lα) ⇒ Hp+q(M,Lα(C)),

all the terms vanish at E2 level: Ep,q
2 = 0 (where Lα(C) denotes the local system asso-

ciated to Lα). This parallels the degeneration of this spectral sequence at E1 level for
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compact Kähler manifolds (where Lα is taken to be trivial). In particular, this gives a

new proof to Theorem 2.9 and produces new examples of compact complex manifolds

that do not carry LCK metrics with potential. One of the approaches to finding such

manifolds is due to S. Rollenske ([Ro]), who showed that on a nilmanifold, the Dolbeault–

Frölicher spectral sequence does not necessarily degenerate, and gave examples when the

n-th differential dn is non-zero, for arbitrarily high n.

Proposition 3.10. Let M be a compact LCK manifold with proper potential,

α ∈ Hom(Γ,R+) a positive character, and Lα the corresponding line bundle. For any

p, q, consider the map

∂p.q : Hp(M,Ωq
M ⊗ Lα)−→Hp(M,Ωq+1

M ⊗ Lα).

Then ker ∂q,p+1 = im ∂q,p, for all p, q.

Proof. The monodromy map t̃ on M̃ is the exponential of a holomorphic vector

field X. This is proven in [OV4, Theorem 2.3] using the embedding of M in a Hopf

manifold CN \ {0})/⟨A⟩ where A is linear, with all eigenvalues smaller than 1. The

holomorphic vector field is then X = logA. In particular:

t̃∗(η) = LieX η.

Let now [η] ∈ Hp(M,Ωq+1
M ⊗ Lα). A representative η can be seen as a (q + 1, p)-form on

M̃ which is ∂-closed and automorphic of weight α.

Suppose η is also ∂-closed. Then, since t̃∗(η) = α · η, we obtain

α · η = LieX(η) = diXη + iXdη,

by Cartan’s formula.

But ∂(η) = ∂η = 0 by assumption, thus iXdη = 0, and we are left with:

α · η = ∂(iXη) + ∂(iXη).

As X is holomorphic, iXη is of type (q, p), and hence ∂(iXη) is of type (q, p+1). On the

other hand both ∂iX(η) and α · η are of type (q + 1, p), implying ∂(iXη) = 0 and

α · η = ∂(iXη).

This yields η = ∂iX
(
1
αη

)
, and hence η ∈ im(∂q,p). □

4. Weighted Bott–Chern cohomology for LCK manifolds with potential.

We now generalize [OV1, Theorem 4.7]. We have:

Proposition 4.1. Let (M, I, g) be a compact LCK manifold. Then the following

sequence is exact for all α ∈ C but a discrete countable subset:

Hq−1

∂
(Ωp

M ⊗ Lα)⊕Hp−1

∂
(Ωq

M ⊗ Lα)
∂θ+∂θ−→ Hp,q

BC(M,Lα)
ν−→ Hp+q(M,Lα(C)) (4.1)
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where ν is the tautological map, ∂θ = ∂ − θ1,0 and ∂θ = ∂ − θ0,1.

Proof. We prove that im(∂θ + ∂θ) = ker ν. Let η be a (p, q)-form with values

in Lα whose class vanishes in the cohomology of the local system Lα(C). Then η =

dθβ. Suppose that β has only two Hodge components, β = βp,q−1 + βp−1,q. Then η

decomposes as η = ∂θβ
p,q−1 + ∂θβ

p−1,q. On the other hand, as η is of bidegree (p, q),

we have ∂θβ
p,q−1 = 0 and ∂θβ

p−1,q = 0, and hence βp,q−1 and βp−1,q produce the

cohomology classes in [βp−1,q] ∈ Hq−1

∂
(Ωp

M ⊗Lα) and [βp,q−1] ∈ Hp−1

∂
(Ωq

M ⊗ Lα). Then

[η]BC = ∂θ[β
p−1,q] + ∂θ[β

p,q−1].

It remains to reduce Proposition 4.1 to the case when β has only two Hodge com-

ponents. We may already assume that Hp,q(Lα) = 0 for all p, q (Theorem 3.2). We use

induction by the number of Hodge components. Take the outermost Hodge component

of β, say, βp−d−1,q+d, with d > 0. Then ∂θ(β
p−d−1,q+d) = 0, hence, by vanishing of

the Dolbeault cohomology group Hp−d−1,q+d(Lα), we have βp−d−1,q+d = ∂θ(γ), where

γ ∈ Λp−d−1,q−1+d(M,Lα) is an Lα-valued (p−d−1, q−1+d)-form. Now if we replace β

by β − dθγ, we obtain another form β′ such that η = dθβ
′, and β′ has a smaller number

of Hodge components. □

As compact LCK manifolds with potential are topologically equivalent with Vais-

man manifolds, Theorem 2.7 (ii), by Theorem 2.9 their cohomology of the local system

Lα(C) vanishes identically. Together with our main result (Theorem 3.2), this proves the

following generic vanishing of Bott–Chern cohomology (we keep the notations in Section

3):

Corollary 4.2. Let M be an LCK manifold with proper potential, α ∈ C and Lα

the flat line bundle corresponding to α · θ. Then Hp,q
BC(M,Lα) = 0 for all α ∈ C but a

discrete countable subset.

Remark 4.3. Note that Hp,q
BC(M,Lα) = 0 implies the dαθd

c
αθ-lemma at the level

(p, q), and hence our result says that, generically, a compact LCK manifold with proper

potential satisfies the dαθd
c
αθ-lemma for all (p, q).
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(1977), 253–300.

[Ly] G. Lyubeznik, Finiteness properties of local cohomology modules (an application of D-modules

to commutative algebra), Invent. Math., 113 (1993), 41–55.

[Ma] D. Mall, The cohomology of line bundles on Hopf manifolds, Osaka J. Math., 28 (1991),

999–1015.

[Mi] D. V. Millionshchikov, Cohomology of solvmanifolds with local coefficients and problems in

the Morse–Novikov theory, Russian Math. Surveys, 57 (2002), 813–814.

[N ] S. P. Novikov, The Hamiltonian formalism and a multivalued analogue of Morse theory (Rus-

sian), Uspekhi Mat. Nauk, 37 (1982), 3–49.

[OT] K. Oeljeklaus and M. Toma, Non-Kähler compact complex manifolds associated to number

fields, Ann. Inst. Fourier, 55 (2005), 1291–1300.

[OV1] L. Ornea and M. Verbitsky, Morse–Novikov cohomology of locally conformally Kähler mani-

folds, J. Geom. Phys., 59 (2009), 295–305.

[OV2] L. Ornea and M. Verbitsky, Locally conformally Kähler manifolds with potential, Math. Ann.,

348 (2010), 25–33.

[OV3] L. Ornea and M. Verbitsky, Topology of Locally Conformally Kähler Manifolds with Potential,

Int. Math. Res. Notices, 4 (2010), 717–726.

[OV4] L. Ornea and M. Verbitsky, Locally conformally Kähler manifolds admitting a holomorphic

conformal flow, Math. Z., 273 (2013), 605–611.

[OV5] L. Ornea and M. Verbitsky, Locally conformally Kähler metrics obtained from pseudoconvex

shells, Proc. Amer. Math. Soc., 144 (2016), 325–335.

[OV6] L. Ornea and M. Verbitsky, LCK rank of locally conformally Kähler manifolds with potential,

J. Geom. Phys., 107 (2016), 92–98.

[ P ] A. V. Pajitnov, Exactness of Novikov-type inequalities for the case π1(M) = Zm and for

Morse forms whose cohomology classes are in general position, Soviet Math. Dokl., 39 (1989),

528–532.

[Ra] A. Ranicki, Circle valued Morse theory and Novikov homology, Topology of high-dimensional

manifolds, No. 1, 2 (Trieste, 2001), 539–569, ICTP Lect. Notes, 9, Abdus Salam Int. Cent.

Theoret. Phys., Trieste, 2002.
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