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Abstract. It is shown that for each Hecke pair of ergodic discrete mea-
sured equivalence relations, there exists a Hecke pair of groups determined by
an index cocycle associated with the given pair. We clarify that the construc-
tion of these groups can be viewed as a generalization of a notion of Schlichting
completion for a Hecke pair of groups, and show that the index cocycle cited
above arises from “adjusted” choice functions for the equivalence relations. We
prove also that there exists a special kind of choice functions, preferable choice
functions, having the property that the restriction of the corresponding index
cocycle to the ergodic subrelation is minimal in the sense of Zimmer. It is then
proved that the Hecke von Neumann algebra associated with the Hecke pair
of groups obtained above is ∗-isomorphic to the Hecke von Neumann algebra
associated with the Hecke pair of equivalence relations with which we start.

1. Introduction.

The present authors initiated in [3] an intensive study on a certain type of inclu-

sions of ergodic discrete measured equivalence relations which produce, via the famous

Feldman–Moore construction ([9]), discrete inclusions of factors in the sense of Izumi–

Longo–Popa ([13]). Later, it was recognized in [4] that this special kind of pair of

ergodic equivalence relations resembles what is called a Hecke pair in group theory. A

pair of a group G and a subgroup H of G is said to be a Hecke pair if the subgroup

{g ∈ G; [H : H ∩ g−1Hg] < ∞, [H : H ∩ gHg−1] < ∞} coincides with the whole G.

Once a Hecke pair (G,H) is given, one can construct out of it a von Neumann algebra

W ∗(G,H), called the Hecke von Neumann algebra of (G,H). One can also construct a

C*-algebra, whose theory has attracted many operator-algebraists. To each pair (R,S)
of ergodic equivalence relations of the type mentioned above, we can similarly associate

a von Neumann algebra H∗(R,S) too (see [4, Section 9]), in such a way that if (R,S)
happens to be of the form (G�P, H �P) for some ergodic equivalence relation P and a

Hecke pair (G,H) of groups acting “nicely” on P, then H∗(R,S) is precisely the Hecke

von Neumann algebra of the Hecke pair (G,H). Because of this, such a pair (R,S) was
also termed a Hecke pair in [4]. That a Hecke pair of equivalence relations can be viewed

in some sense as a generalization of a Hecke pair of groups was verified also in [1], by

showing that (R,S) is a Hecke pair if and only if it admits a distinctive set of choice
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functions. Hence we believe at this point that it is worthwhile to further investigate this

analogy between Hecke pairs of groups and Hecke pairs of equivalence relations. This is

exactly what we do in this paper. Our first project along this line of investigation is to

study the Schlichting completion of a Hecke pair of groups. The Schlichting completion

is, as the term suggests, regarded roughly as a completion of a (countable) group. It is

known (see [14] or [21] for example) that for any (reduced) Hecke pair (G,H) of groups,

there exists a unique pair (G̃, H̃), up to isomorphism, in which

• G̃ is a totally disconnected locally compact group;

• H̃ is a compact open subgroup of G̃, such that

•
⋂

g∈ ˜G g−1H̃g = {e} (i.e., (G̃, H̃) is reduced);

• there is an (injective) group homomorphism θ : G → G̃ satisfying:

– θ(G) is dense in G̃;

– θ−1(θ(G) ∩ H̃) = H.

The main purpose of this article is to prove that

(1) there does exist a measure-theoretical counterpart of the Schlichting completion

(G ,K) in the case of a Hecke pair (R,S) of ergodic equivalence relations (Theo-

rem 7.1 and Proposition 7.5);

(2) the Hecke von Neumann algebra W ∗(G ,K) associated with the Schlichting com-

pletion (G ,K) exactly coincides with the von Neumann algebra which appears

in the tower of relative commutans of the inclusion of factors W ∗(R) ⊇ W ∗(S)
(Theorem 10.3).

The organization of this paper is as follows.

In Section 2, we introduce notation and terminology used in this paper.

As already cited above, the first author gave in [1] a nice characterization for an

inclusion S ⊆ R of ergodic equivalence relations to be a Hecke pair from the viewpoint

of the choice functions it produces. Although the original definition of a Hecke pair quite

involves operator-algebraic arguments, his characterization is purely measure-theoretical.

It often provides us with a useful insight into how the subrelation S sits inside of R. In

Section 3, we will give yet another characterization of a Hecke pair in terms of the choice

functions. The property we are interested in is the one that Kaiszewski, Landstad and

Quigg focused on in [14], where they discuss the Schlichting completion of a Hecke pair

of (countable) groups from their viewpoint.

In Section 4, as an application of the result obtained in the previous section, we

shall prove that the asymptotic range r∗(σ) of some index cocycle σ for S ⊆ R and the

asymptotic range r∗(σ|S) of the restriction σ|S together form a Hecke pair of groups.

In Section 5, we will show that if (R,S) is a Hecke pair of ergodic equivalence

relations, then we can always choose a set of choice functions for S ⊆ R so that the

restriction of the resulting index cocycle to S is a cocycle into a compact group which is

minimal in the sense of Zimmer. We say that a set of choice functions is preferable if it
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enjoys the property described above. We believe that preferable choice functions are the

most natural choice functions for Hecke pairs of ergodic measured discrete equivalence

relations.

In Section 6, starting with preferable choice functions {ψi}i∈I for a Hecke pair (R,S),
we will construct a pair (G (σ),K(σ)) of two subsets in the Polish group Per(I) of all the

bijections on the index set I; G (σ) is a locally compact group with the relative topology

and K(σ) is a compact and open subgroup of Per(I). We call the pair (G (σ),K(σ)) a

Schlichting completion of the Hecke pair (R,S). This will answer the above-mentioned

question as to whether there is a counterpart of the Schlichting completion in the case

of a Hecke pair (R,S) of equivalence relations.

In Section 7, it is shown that the pair (G (σ),K(σ)) constructed in the previous

section does not depend on the choice of preferable choice functions, up to conjugacy in

Per(I) (Theorem 7.1). We will also demonstrate how any two sets of preferable choice

functions are related to each other (Theorem 7.2). Although the construction performed

in Section 6 seems different from that considered in Section 4, it will be proved that

(r∗(σ), r∗(σ|S)) coincides with (G (σ),K(σ)).

In Section 8, we revisit the construction of the Hecke von Neumann algebraH∗(R,S)
associated with a Hecke pair (R,S) of equivalence relations considered in [4].

In Section 9, we will briefly review the construction of the Hecke von Neumann

algebra W ∗(G,K) associated with a Hecke pair (G,K) of groups.

In Section 10, starting with a Hecke pair (R,S) of equivalence relations, we will

prove that the von Neumann algebraH∗(R,S) is ∗-isomorphic to the Hecke von Neumann

algebra W ∗(G (σ),K(σ)). Since it was shown in [4] that H∗(R,S) is realized in the tower

of relative commutans of the inclusion of factors W ∗(R) ⊇ W ∗(S), one finds that the

Hecke von Neumann algebra W ∗(G (σ),K(σ)) is independent of the choice of a set of

choice functions for S ⊆ R.

Acknowledgments. The authors are grateful to the referee for his/her useful

and valuable comments on the earlier manuscript, which really pushed this work forward

to the current stage.

2. Preliminaries.

In this section, we introduce symbols that will be repeatedly used in the whole of

this paper. We also collect basic facts about discrete measured equivalence relations and

the Jones’ basic extension of an inclusion of factors, which are necessary for our later

discussion. The readers are referred to [3], [8], [9], [10], [13] regarding these topics.

We assume that all von Neumann algebras in this paper have separable preduals.

For a faithful normal semifinite weight φ on a von Neumann algebra M , we set

nφ := {x ∈ M : φ(x∗x) < ∞}, mφ := n∗φnφ, m+
φ := mφ ∩M+.

More generally, for an operator valued weight T ([20]) from a von Neumann algebra M

to a von Neumann subalgebra N , we set

nT := {x ∈ M : T (x∗x) ∈ N+}, mT := n∗T nT , m+
T := mT ∩M+.
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The Hilbert space obtained from φ by the GNS-construction will be denoted by Hφ, and

we let Λφ : nφ → Hφ stand for the natural injection.

2.1. Discrete measured equivalence relations.

Throughout this paper, we fix a discrete measured equivalence relation R on a

standard probability space (X,B, μ) in which μ is quasi-invariant for R. We denote by

ν the (σ-finite) measure on R given by

ν(E) :=

∫
X

|r−1({x}) ∩ E| dμ(x) (E: Borel subset of R),

where r : R → X is the projection onto the first coordinate, and |S| in general stands

for the cardinality of a (countable) set S. Replacing r by the map s : R → X given by

s(x, y) = y on the right-hand side of the formula above, we obtain another (σ-finite)

measure on R, which we denote by ν−1. The measures ν and ν−1 are absolutely contin-

uous with each other, and the Radon–Nikodym derivative dν/dν−1, called the module

of R, will be denoted by δ.

We also fix a (normalized) Borel 2-cocycle ω from R into the one-dimensional torus

T in what follows. We then write W ∗(R, ω) for the von Neumann algebra on the Hilbert

space L2(R, ν) obtained by the Feldman–Moore construction ([9]) from R and ω.

We define [R]∗ to be the set of all bimeasurable nonsingular transformations ρ from

a Borel subset Dom(ρ) of X onto a Borel subset Im(ρ) of X satisfying (x, ρ(x)) ∈ R for

μ-a.e. x ∈ Dom(ρ).

For a Borel 1-cocycle c from R into a Polish group K (i.e., a separable, completely

metrizable topological group K), the essential range of c is the smallest closed subset

σ(c) of K such that c−1(σ(c)) has complement of measure zero. The asymptotic range

r∗(c) of c is by definition ⋂
{σ(cB) : B ∈ B and μ(B) > 0},

where cB stands for the restriction of c to the reduction R ∩ (B × B) It is known that

r∗(c) is a closed subgroup of K.

Assume now that R is ergodic. Let S be a Borel subrelation of R. By [10], we

may choose a countable family {ψi}i∈I of Borel maps from X into itself such that (i)

(x, ψi(x)) ∈ R for all i ∈ I and μ-a.e. x ∈ X; (ii) for μ-a.e. x ∈ X, {S(ψi(x))}i∈I is

a partition of R(x), where R(x) := {y ∈ X : (x, y) ∈ R}. The family {ψi}i∈I is called

choice functions for S ⊆ R ([10]). Unless otherwise mentioned, we always agree that

I equals {0, 1, . . . , N − 1} if I is finite, or equals {0, 1, 2, . . .} when I is infinite, and

that ψ0 = idX . Once choice functions {ψi}i∈I are fixed, we can define the index cocycle

σ : R → Per(I) of the pair S ⊆ R, where Per(I) denotes the set of all bijections on I, by

the following rule:

σ(x, y)(i) = j ⇐⇒ (ψi(y), ψj(x)) ∈ S.

For any i ∈ I, define

Ci := {(x, y) ∈ R : ∃z ∈ X s.t. (x, z) ∈ S and (ψi(z), y) ∈ S}.
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By definition, every Ci is an S-invariant Borel subset. Clearly, we have R =
⋃

i∈I Ci.

2.2. Basic extension.

Let B ⊆ A be an inclusion of factors with a faithful normal conditional expectation

EB . (In our situation considered in the following sections, such an expectation always

exists uniquely.) Fix a faithful normal state φ0 on B and set φ := φ0 ◦ EB . Then the

equation eBΛφ(a) := Λφ(EB(a)) defines a projection eB ∈ B(Hφ) onto [Λφ(B)], where

[S] is in general the closed subspace spanned by a set S. We call eB the Jones projection

of the inclusion B ⊆ A. The basic extension of this inclusion (by EB) is the factor,

denoted by A1, acting on Hφ generated by A and eB . It is known that A1 = JφB
′Jφ,

where Jφ is the modular conjugation of φ.

According to [15] (see also [13, Section 2]), there exists a faithful normal semifinite

operator valued weight ÊB , called the operator valued weight dual to EB , from A1 to A.

It satisfies ÊB(eB) = 1 [15, Lemma 3.1], so that AeBA ⊆ m
̂EB

. The inclusion B ⊆ A is

said to be discrete (see [13, Definition 3.7]) if ÊB |A1∩B′ is semifinite.

2.3. Hecke pairs of ergodic equivalence relations.

Let us assume that our discrete equivalence relation R is ergodic, and consider the

factor A := W ∗(R, ω) on the Hilbert space L2(R, ν) for some 2-cocycle ω. We also

consider an ergodic Borel subrelation S of R and its associated subfactor B := W ∗(S, ω)
of A. There exists a unique faithful normal conditional expectation EB from A onto B.

According to [3], the commensurability groupoid CG(B) of B in A is by definition the set

of all partial isometries v ∈ A satisfying the following two conditions:

• Both v∗v and vv∗ belong to B.

• The projections zv and zv∗ belong to m+
̂EB

, where, for an element a ∈ A, za denotes

the projection onto [BaBξ0] which belongs to A1∩B′. Here ξ0 is the characteristic

function of the diagonal set {(x, x) : x ∈ X}.

It is shown among others in [3, Theorem 7.1] that the inclusion B ⊆ A is discrete in

the sense explained in Subsection 2.2 if and only if the subfactor generated by CG(B)

coincides with A. We say that (R,S) is a Hecke pair if CG(B)′′ = A, that is, B ⊆ A

is discrete. We refer the reader to [1] as well for a measure-theoretical approach to this

notion.

3. Definition of a Hecke pair—revisited.

The purpose of this section is to give a characterization of an inclusion S ⊆ R of

ergodic equivalence relations being a Hecke pair in terms of the corresponding choice

functions. We start with an ergodic R and an ergodic Borel subrelation S of R.

3.1. Choice functions for S ⊆ R when (R,S) is a Hecke pair.

We first assume that (R,S) is a Hecke pair. Thanks to [1, Theorem 3.8], we may

select choice functions {ψi}i∈I for S ⊆ R which satisfy the following:

(CF1) There exist a countable set Λ and natural numbers {nλ}λ∈Λ such that the index

set I is equal to {(λ, n) : λ ∈ Λ, n = 1, . . . , nλ}.
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(CF2) The index Ind(ψλ,n) of ψλ,n ([1]) is equal to nλ for each (λ, n) ∈ I.

(CF3) For each λ∈Λ and n,m∈{1, . . . ,nλ}, S(ψλ,n(S(x))) is equal to S(ψλ,m(S(x))) for
a.e. x∈X. Moreover, S(ψλ,n(S(x))) is equal to a disjoint union of {S(ψλ,k(x))}nλ

k=1

for a.e. x∈X.

Here refer to [1] for the definition and the basic properties of the index of a “nonsingular”

map ρ. In what follows, we fix choice functions {ψλ,n} as stated above.

Remark. By the proof of [1, Theorem 3.8], the natural numbers {nλ}λ∈Λ stated

above are determined as the values of the minimal projections in the relative commutant

A1∩B′ under ÊB |A1∩B′ in the basic extension (see Subsection 2.2). It means that neither

the countable set Λ nor the natural numbers {nλ}λ∈Λ depends on the choice of a family

of choice functions satisfying (CF1)–(CF3). Namely, if {ψ′λ′,n′}I′ is another family of

choice functions for S ⊂ R with I ′ = {(λ′, n′) : λ′ ∈ Λ′, n′ = 1, . . . , n′λ′} satisfying

(CF1)–(CF3), then there exists a bijection f from Λ′ to Λ which satisfies n′λ′ = nf(λ′)

for each λ′ ∈ Λ′.
Under this identification, we may and do assume that each family of choice functions

in this paper are always indexed by I = {(λ, n) : λ ∈ Λ, n = 1, . . . , nλ}.

Let σ be the index cocycle associated with the choice functions {ψλ,n}. Let Cj
(j ∈ I) be the S-invariant set introduced in Section 2.1. So, under the situation we are

now considering, we have, for each (λ, n) ∈ I:

Cλ,n := {(x, y) ∈ R : ∃z ∈ X s.t. (x, z) ∈ S and (ψλ,n(z), y) ∈ S}.

As noted in [4, Section 8], we have that, for a.e. (x, y) ∈ R and (λ, n) ∈ I, (x, y) is in

Cλ,n if and only if y ∈
⋃nλ

m=1 S(ψλ,m(x)). It is also true that Cλ,n is equal to Cλ,m up to

a null set. Put Cλ := Cλ,1. We note that {Cλ}λ∈Λ is a measurable partition of R.

Let λ ∈ Λ and (λ′, n′) ∈ I. For any x ∈ X, define a subset Kλ
(λ′,n′)(x) of I by

Kλ
(λ′,n′)(x) := {(λ1, n1) ∈ I : (ψλ′,n′(x), ψλ1,n1

(x)) ∈ Cλ}.

We regard this assignment x ∈ X �→ Kλ
(λ′,n′)(x) as a map from X into the family 2I of

all subsets of I, where 2I is equipped with the Fell topology ([11]) by viewing I as a

discrete topological space. Note that 2I is then a Polish space (see [11] or [5]).

By (the proof of) [1, Theorem 3.8], there exists a μ-null subset N0 of X such that

R(x) =
⊔

i∈I S(ψi(x)) (disjoint union) and

S(ψλ1,n1(S(x))) =
nλ1⊔
k=1

S(ψλ1,k(x)) for all x ∈ N c
0 and all (λ1, n1) ∈ I. (3.1)

Put N1 :=
⋃

i∈I ψ
−1
i (N0). Let x ∈ N c

1 . Then we have

(λ1, n1) ∈ Kλ
(λ′,n′)(x)

⇐⇒ (ψλ′,n′(x), ψλ1,n1
(x)) ∈ Cλ
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⇐⇒ ψλ1,n1(x) ∈ S(ψλ,1(S(ψλ′,n′(x))))

⇐⇒ ∃k ∈ {1, 2, . . . , nλ} s.t. (ψλ1,n1(x), ψλ,k(ψλ′,n′(x))) ∈ S (by Equation (3.1))

⇐⇒ ∃k ∈ {1, 2, . . . , nλ} s.t. (λ1, n1) = σ(x, ψλ′,n′(x))(λ, k).

Thus we get

Kλ
(λ′,n′)(x) = {σ(x, ψλ′,n′(x))(λ, k) : k ∈ {1, 2, . . . , nλ}}. (3.2)

In particular, we find that

|Kλ
(λ′,n′)(x)| = nλ for all x ∈ N c

1 , λ ∈ Λ and all (λ′, n′) ∈ I.

By [1, Remark], there exists a ν-null subset N2 of X such that, with S0 := S ∩
(N c

2 ×N c
2 ), for any (x, y) ∈ S0 and for any (λ, n) ∈ I, there is a unique m ∈ {1, 2, . . . , nλ}

satisfying

(ψλ,n(x), ψλ,m(y)) ∈ S.

Set N3 :=
⋃

i∈I ψ
−1
i (N2) and N := N1 ∪N3. To sum up, we have the following.

Lemma 3.1. There exists a μ-null subset N of X such that

(1) R(x) =
⊔

i∈I S(ψi(x)) and S(ψλ1,n1
(S(x))) =

⊔nλ1

k=1 S(ψλ1,k(x)) for all x ∈ Nc and

all (λ1, n1) ∈ I;

(2) We have

Kλ
(λ′,n′)(x) = {(λ1, n1) ∈ I : ∃k ∈ {1, 2, . . . , nλ} s.t. (ψλ1,n1(x), ψλ,k(ψλ′,n′(x))) ∈ S}

= {σ(x, ψλ′,n′(x))(λ, k) : k ∈ {1, 2, . . . , nλ}},

and |Kλ
(λ′,n′)(x)| = nλ for all x ∈ Nc, λ ∈ Λ and all (λ′, n′) ∈ I;

(3) With S0 := S ∩ (Nc × Nc), for any (x, y) ∈ S0 and for any (λ, n) ∈ I, there is a

unique m ∈ {1, 2, . . . , nλ} satisfying (ψλ,n(x), ψλ,m(y)) ∈ S;

(4) The properties listed in (1)–(3) are enjoyed if x is replaced by ψi(x) for any i ∈ I.

For any x ∈ X, let

L
(λ′,n′)
(λ,n) (x) :=

{
(λ1, n1) ∈ I : (λ′, n′) ∈ Kλ1

(λ,n)(x), n1 ∈ {1, 2, . . . , nλ1
}
}
.

Lemma 3.2. The function x ∈ X �→ L
(λ′,n′)
(λ,n) (x) ∈ 2I defined above is Borel.

Proof. First, we briefly review the definition of the Fell topology. For a subset

E of I, one defines the following subsets of 2I :

E− := {A ∈ 2I : A ∩ E �= ∅}, E+ := {A ∈ 2I : A ⊆ E}.
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Keeping in mind that I is equipped with the discrete topology, the Fell topology on 2I

has, by definition, as a subbase all sets of the form V −, where V is a subset of I, plus

all sets of the form (Kc)+, where K is a finite subset of I. Hence, in order to prove

our claim, it suffices to show that both
(
L
(λ′,n′)
(λ,n)

)−1

(V −) and
(
L
(λ′,n′)
(λ,n)

)−1

((Kc)+) are

Borel in X for any subset V and any finite subset K. We simply write L for L
(λ′,n′)
(λ,n) . Let

g0 : X → X ×X be g0(x) := (x, x). Then we have

x ∈ L−1(V −) ⇐⇒ ∃(λ1, n1) ∈ V s.t. (λ′, n′) ∈ Kλ1

(λ,n)(x)

⇐⇒ ∃(λ1, n1) ∈ V s.t. (ψλ,n(x), ψλ′,n′(x)) ∈ Cλ1

⇐⇒ ∃(λ1, n1) ∈ V s.t. x ∈ ((ψλ,n × ψλ′,n′) ◦ g0)−1(Cλ1).

This shows that

L−1(V −) =
⋃

(λ1,n1)∈V
((ψλ,n × ψλ′,n′) ◦ g0)−1(Cλ1),

which in turn implies, since V is countable, that L−1(V −) is a Borel subset. Similarly,

we easily obtain

L−1((Kc)+) =

⎛⎝ ⋃
(λ1,n1)∈K

((ψλ,n × ψλ′,n′) ◦ g0)−1(Cλ1)

⎞⎠c

.

Therefore, L−1((Kc)+) is Borel. �

Lemma 3.3. Let N be the μ-null set in Lemma 3.1. Then

(i) L
(λ′,n′)
(λ,n) (x) is not an empty set for all x ∈ Nc;

(ii) For each x ∈ Nc,
∣∣∣L(λ′,n′)

(λ,n) (x)
∣∣∣ = nλ1 if (λ1, n1) ∈ L

(λ′,n′)
(λ,n) (x).

Proof. Fix any x ∈ Nc.

Since ψλ′,n′(x) ∈ R(ψλ,n(x)) =
⊔

i∈I S(ψi(ψλ,n(x))), there is a unique (λ1, n1) ∈ I

such that

(ψλ′,n′(x), ψλ1,n1
(ψλ,n(x))) ∈ S.

Thus (λ′, n′) ∈ Kλ1

(λ,n)(x), i.e., (λ1, n1) ∈ L
(λ′,n′)
(λ,n) (x). In particular, L

(λ′,n′)
(λ,n) (x) �= ∅.

Let (λ1, n1), (λ2, n2) ∈ L
(λ′,n′)
(λ,n) (x). Then (ψλ,n(x), ψλ′,n′(x)) ∈ Cλ1 and (ψλ,n(x),

ψλ′,n′(x)) ∈ Cλ2
. So there are u, v ∈ X such that (x, u) ∈ S, (x, v) ∈ S and (ψλ1,1(u),

ψλ′,n′(x)) ∈ S, (ψλ2,1(v), ψλ′,n′(x)) ∈ S. Hence

ψλ′,n′(x) ∈ S(ψλ1,1(S(x))) =
nλ1⊔
k=1

S(ψλ1,k(x)) and

ψλ′,n′(x) ∈ S(ψλ2,1(S(x))) =
nλ2⊔
k=1

S(ψλ2,k(x)).
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From this, we find that λ1 = λ2. By the definition of L
(λ′n′)
(λ,n) (x), (λ1, n1) ∈ L

(λ′,n′)
(λ,n) (x)

if and only if (λ1, n2) ∈ L
(λ′,n′)
(λ,n) (x) for n1, n2 ∈ {1, 2, . . . , nλ1

}. Therefore, we conclude

that
∣∣∣L(λ′,n′)

(λ,n) (x)
∣∣∣ = nλ1

once we know that one (λ1, n1) belongs to L
(λ′,n′)
(λ,n) (x). �

Lemma 3.4. Let λ, λ′ ∈ Λ. There exists a finite subset Lλ,λ′ of I such that⋃nλ

n=1

⋃nλ′
n′=1 L

(λ′,n′)
(λ,n) (x) = Lλ,λ′ for a.e. x ∈ X.

Proof. For any x ∈ X, set L(x) :=
⋃nλ

n=1

⋃nλ′
n′=1 L

(λ′,n′)
(λ,n) (x). Take the null set N

in Lemma 3.1. From Lemmas 3.1 and 3.2, we find that the map x ∈ Nc �→ L(x) ∈ 2I is

also Borel (cf. [19, Section 3.3]). Note also that L(x) is a finite set for all x ∈ Nc, due to

Lemma 3.3.

With S0 defined in Lemma 3.1, let (x, y) ∈ S0. Take any (λ1, n1) ∈ L
(λ′,n′)
(λ,n) (x).

So (ψλ,n(x), ψλ′,n′(x)) ∈ Cλ1
. Since (x, y) ∈ S0, there are m ∈ {1, 2, . . . , nλ} and m′ ∈

{1, 2, . . . , nλ′} such that (ψλ,n(x), ψλ,m(y)) ∈ S and (ψλ′,n′(x), ψλ′,m′(y)) ∈ S. From this,

we obtain (ψλ,m(y), ψλ′,m′(y)) ∈ Cλ1
. This yields (λ1, n1) ∈ L

(λ′,m′)
(λ,m) (x) ⊆ L(y). Hence

L(x) is contained in L(y). By reversing the roles of x and y in the above arguments, we

obtain the reverse inclusion. Consequently, we have L(x) = L(y). Since x ∈ X �→ L(x)

is a Borel map from X into the Polish space 2I , it follows form the ergodicity of S that

there exists a finite subset Lλ,λ′ of I such that L(x) = Lλ,λ′ for a.e. x ∈ X. �

For each (λ, n) ∈ I, set

Rλ,n := {(x, y) ∈ R : σ(x, y)(λ, n) = (λ, n)}.

It is easy to see that (ψλ,n × ψλ,n)
−1(S) ∩R = Rλ,n.

Proposition 3.5. Let (λ,n),(λ′,n′)∈I. There exists a ν-conull subset Rλ,n(λ
′,n′)

of Rλ,n such that the set

{σ(x,y)(λ′,n′) : (x,y)∈Rλ,n(λ
′,n′)}

is finite.

Proof. Consider N and S0 defined in Lemma 3.1. Then (ψλ,n ×ψλ,n)
−1(S0) is a

ν-conull subset of Rλ,n. By Lemma 3.4, there exist a μ-null subset N ′ of X and a finite

set Lλ,λ′ of I such that
⋃nλ

n=1

⋃nλ′
n′=1 L

(λ′,n′)
(λ,n) (x) = Lλ,λ′ for all x ∈ (N ′)c. Let Lλ,λ′ =

{(λ̄k, n̄k) : 1 ≤ k ≤ t} be an enumeration of Lλ,λ′ . We also know that there exist a μ-null

subset N ′′ of X and finite subsets Kk
λ (1 ≤ k ≤ t) of I such that

⋃nλ

m=1 K
λ̄k

(λ,m)(x) ⊆ Kk
λ

for all x ∈ (N ′′)c. Put Ñ :=
⋃

i∈I ψ
−1
i (N ∪N ′ ∪N ′′). Set

Rλ,n(λ
′, n′) := (ψλ,n × ψλ,n)

−1(S0) ∩ (Ñ c × Ñ c).

Clearly, Rλ,n(λ
′, n′) is ν-conull in Rλ,n. Let (x, y) ∈ Rλ,n(λ

′, n′). Then

σ(x, y)(λ′, n′) = σ(x, ψλ,n(x))σ(ψλ,n(x), ψλ,n(y))σ(ψλ,n(y), y)(λ
′, n′). (3.3)
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With (λy, ny) := σ(ψλ,n(y), y)(λ
′, n′). We have

σ(ψλ,n(y), y)(λ
′, n′) = (λy, ny) ⇐⇒ (λ′, n′) = σ(y, ψλ,n(y))(λy, ny)

=⇒ (λ′, n′) ∈ K
λy

(λ,n)(y)

=⇒ (λy, ny) ∈ L
(λ′,n′)
(λ,n) (y).

In particular, (λy, ny) = σ(ψλ,n(y), y)(λ
′, n′) belongs to Lλ,λ′ . Since (ψλ,n(x), ψλ,n(y)) ∈

S0, it follows that there exists a uniquemy ∈ {1, 2, . . . , nλy} such that σ(ψλ,n(x), ψλ,n(y))

(λy, ny) = (λy,my). Finally, thanks to Lemma 3.1 (2), one has σ(x, ψλ,n(x))(λy,my) ∈
K

λy

(λ,n)(x). With the results obtained above, we get

{σ(x, y)(λ′, n′) : (x, y) ∈ Rλ,n(λ
′, n′)} ⊆

t⋃
k=1

{
K λ̄k

(λ,n)(x) : x ∈ Ñ c
}

⊆
t⋃

k=1

nλ⋃
m=1

{
K λ̄k

(λ,m)(x) : x ∈ Ñ c
}

⊆
t⋃

k=1

Kk
λ .

This proves our proposition. �

3.2. Characterization of a Hecke pair in terms of choice functions.

As in the preceding section, let S be an ergodic subrelation of R. As usual, put

A := W ∗(R, ω) and B = W ∗(S, ω). Motivated by Proposition 3.5, we consider the

following condition for a set of choice functions {ψi}i∈I for S ⊆ R:

with Ri := {(x, y) ∈ R : σ(x, y)(i) = i} (∀i ∈ I), there exists, for each j ∈ I,

a ν-conull subset Ri(j) of Ri such that {σ(x, y)(j) : (x, y) ∈ Ri(j)} is finite.
(♠)

Lemma 3.6. Suppose that there exist a set of choice functions {ψi}i∈I for S ⊆ R
satisfying (♠). Then (R,S) is a Hecke pair.

Proof. Let Ci (i ∈ I) be the S-invariant set introduced in Section 2.1. Since

every Ci is S-invariant, χCi belongs to A1∩B′, where A1 is the basic extension of B ⊆ A.

Here χE in general stands for the characteristic function of a set E.

Let N0 be a μ-null subset of X such that R(x) =
⊔

i∈I S(ψi(x)) for all x ∈ N c
0 . We

may and do assume that N0 is S-invariant.
Fix any k ∈ I. We know that ∑

i∈I
χCk(x, ψi(x))

is constant for a.e. x ∈ X. So there exist a μ-null subset N1 of X and a C ∈ N ∪ {∞}
such that
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i∈I

χCk(x, ψi(x)) = C for all x ∈ N c
1 .

In the meantime, by assumption, there exists a μ-null subset N2 of X such that, if

E := {(x, y) ∈ R0 : x ∈ N c
2}, then E ⊆ R0(k) and ν(R0 \ (R0 ∩ (N c

2 ×N c
2 ))) = 0.

Let Ik := {i ∈ I : ν(Ck ∩ Γ(ψi)) > 0}. For any i ∈ (Ik)
c, there is a μ-

null set N(i) of X such that χCk(x, ψi(x)) = 0 for all x ∈ N(i)c. Put N ′
i :=⋃

j∈I ψ
−1
j

(⋃
i∈(Ik)c N(i) ∪N0 ∪N1 ∪N2

)
. We clearly have∑

i∈Ik
χCk(x, ψi(x)) = C for all x ∈ (N ′)c.

Thus, if we put Ik(x) := {i ∈ Ik : (x, ψi(x)) ∈ Ck} for each x ∈ (N ′)c, then we have

C = |Ik(x)| for any x ∈ (N ′)c. Fix any a ∈ (N ′)c. For each i ∈ Ik(a), there is a

zi ∈ X such that (a, zi) ∈ S and (ψk(zi), ψi(a)) ∈ S. Since a belongs to (N0 ∪N2)
c and

(a, zi) ∈ S, it follows that (a, zi) is in E ⊆ R0(k). Similarly, we find that (ψk(zi), ψi(a))

belongs to E ⊆ R0(k). Hence we have

i = σ(a, ψi(a))(0)

= σ(a, zi)σ(zi, ψk(zi))σ(ψk(zi), ψi(a))(0)

= σ(a, zi)σ(zi, ψk(zi))(0) (∵ (ψk(zi), ψi(a)) ∈ E ⊆ R0)

= σ(a, zi)(k) ∈ {σ(x, y)(k) : (x, y) ∈ R0(k)} (∵ (a, zi) ∈ E ⊆ R0(k)).

Hence Ik(a) is contained in the finite set {σ(x, y)(k) : (x, y) ∈ R0(k)}. In particular, C

is a finite number.

By the result of the previous paragraph, we find that ÊB(χCi) is finite for all i ∈ I.

Since R =
⋃

i∈I Ci, it follows that ÊB |A1∩B′ is semifinite. Therefore, the inclusion B ⊆ A

is discrete. Namely, (R,S) is a Hecke pair. �

Theorem 3.7. Let R be an ergodic discrete measured equivalence relation on a

standard Borel probability space (X,B, μ) and S be an ergodic Borel subrelation of R.

Then the following are equivalent :

(1) (R,S) is a Hecke pair.

(2) There exists a set of choice functions {ψi}i∈I of S ⊆ R satisfying (♠).

Proof. Theorem follows from Proposition 3.5 and Lemma 3.6. �

4. Index cocycles associated with Hecke pairs.

4.1. The range of an index cocycle.

The arguments given in this subsection overlap the exposition given in [14], but we

have decided to present them here for the reader’s convenience.

Let X be a set equipped with the discrete topology, and let Map(X) denote the set

of maps from X into itself, equipped with the product topology. Namely, we identify

Map(X) with the product space
∏

x∈X Xx, whereXx := X for all x ∈ X. For each a ∈ X,
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let pa denote the projection from Map(X) onto X: pa(f) := f(a)(∀f = {f(x)}x∈X ∈
Map(X)). By definition, a fundamental system of (open) neighborhoods of f ∈ Map(X)

consists of subsets of X of the form

p−1
x1

(U1) ∩ p−1
x2

(U2) ∩ · · · ∩ p−1
xn

(Un),

where x1, x2, . . . , xn ∈ X, n ∈ N, and U1, U2, . . . , Un are subsets of X with f(xk) ∈ Uk for

any k = 1, 2, . . . , n. (Note that p−1
a (U) is also closed, since p−1

a (U) = (p−1
a (U c))c.) Hence

each point in Map(X) admits a fundamental system of open and closed neighborhoods.

In this topology, a net {fi}i∈I in Map(X) converges to f ∈ Map(X) if and only if, for

any a ∈ X, there exists an i0 ∈ I such that fi(a) = f(a) for all i ≥ i0. In other words,

the topology on Map(X) we are considering is just the topology of pointwise convergence

arising from the discrete topology on X. It then easily follows that the topological space

Map(X) is Hausdorff and totally disconnected.

Let Per(X) be the set of bijections of X onto itself, with the relative topology from

Map(X). One can readily check that Map(X) is a topological semigroup, and that

Per(X) is a topological group.

Note that the discrete topology on X is given by the metric d0 on X defined by

d0(a, b) :=

{
0 (a = b),

1 (a �= b).

Let us assume for the moment that X is a countable set. So X is of second countable.

Let X = {xn} be an enumeration of the elements of X. Then Map(X) can be equipped

with a metric d, called the product metric [19, Section 2.1], given by

d(φ, ψ) :=
∑
n

1

2n+1
d0(φ(xn), ψ(xn)) =

∑
n : φ(xn)�=ψ(xn)

1

2n+1
(φ, ψ ∈ Map(X)).

Lemma 4.1. The metric topology on Map(X) introduced above coincides with the

product topology.

Proof. It suffices to prove the case where X is an infinite countable set. Thus

X = {xn}∞n=1. Suppose that φk → φ in the product topology of Map(X) (note that the

product topology is of second countable). By assumption, there exists a k1 ∈ N such

that φk(x1) = φ(x1) for all k ≥ k1. Suppose that we have constructed natural numbers

k1 < k2 < · · · < kl satisfying

φk = φ on the set {x1, x2, . . . , xj} (∀k ≥ kj),

for any j = 1, 2, . . . , l. Since φk → φ pointwise, we may choose kl+1 with kl+1 > kl so

that φk = φ on {x1, . . . , xl, xl+1} for all k ≥ kl+1. Thus we obtain a strictly increasing

sequence {kl}∞l=1 ⊆ N satisfying

φk = φ on the set {x1, x2, . . . , xl} (∀k ≥ kl),

for any l ∈ N. Fix any ε > 0. Choose an m ∈ N such that 2−m−1 < ε. If k ≥ km, then
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φk = φ on {x1, x2, . . . , xm}, so that

d(φk, φ) =
∑

n : φk(xn)�=φ(xn)

1

2n+1
≤

∑
m

1

2m+2
< ε.

Hence φk → φ in the metric topology.

Suppose conversely that φk → φ in the metric topology. Set J := {k ∈ N : φk = φ}.
It suffices to assume that N\J contains an infinite number of elements. Otherwise, there

is a k0 ∈ N such that φk = φ for all k ≥ k0. In particular, φk → φ in the product

topology. So let us suppose that N \ J = {k1, k2, . . . , kl, . . .}. Fix any x = xm ∈ X. For

each l ∈ N, define

Il := {n ∈ N : φkl
(xn) �= φ(xn)}, nl := min Il.

Then we have

0 <
1

2nl+1
<

∑
n∈Il

1

2n+1
= d(φkl

, φ) −→ 0 (l → ∞).

This implies that liml→∞ nl = ∞. Hence there is an l0 ∈ N such that nl > m for all l ≥ l0.

This means that m �∈ Ik for all k ≥ kl0 . Particularly, φk(x) = φk(xm) = φ(xm) = φ(x)

for any k ≥ kl0 . Therefore, φk converges to φ in the product topology. �

The next result can be found in [19, Sections 2.2 and 2.4].

Corollary 4.2. If X is countable, then Map(X) is a Polish space; Per(X) is a

Polish group.

Let us return to an ergodic discrete measured equivalence relation R and an ergodic

Borel subrelation S of R. We choose choice functions for S ⊆ R. Throughout the

rest of this note, we always assume that the index set I is an infinite (countable) set.

Thus Per(I) is a Polish group thanks to Corollary 4.2. We assert that the index cocycle

σ : R → Per(I) associated with {ψi} is Borel. Indeed, for each i ∈ I, then fi := pi ◦ σ is

given by fi(x, y) = σ(x, y)(i). So f−1
i (J) =

⋃
j∈J(ψi × ψj)

−1(S) ∩R for any subset J of

I. It follows that fi is Borel. Hence we find that σ is Borel, as asserted. It thus makes

sense to consider the asymptotic range r∗(σ) of the index cocycle σ.

4.2. Asymptotic range of an index cocycle associated with a Hecke pair.

In this subsection, we assume that (R,S) is a Hecke pair. From Theorem 3.7, we

may choose a set of choice functions {ψi}i∈I for S ⊆ R whose associated index cocycle

σ satisfies the condition (♠) defined in Section 3.2.

For each i ∈ I, setN (i) :=
⋃

j∈I Ri\Ri(j), which is a ν-null set. Put R̃i := Ri\N (i).

By definition, R̃i is a ν-conull subset of Ri with the property that {σ(x, y)(j) : (x, y) ∈
R̃i} is a finite set for all j ∈ J .

Theorem 4.3. The asymptotic range r∗(σ) of the index cocycle σ obtained from

the special choice functions {ψi}i∈I as above is a locally compact, totally disconnected,
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closed subgroup of the Polish group Per(I). The stabilizer subgroup r∗(σ)0 at 0 is a

compact open subgroup of r∗(σ). Therefore, (r∗(σ), r∗(σ)0) is a Hecke pair of groups.

Proof. Fix an arbitrary i ∈ I and consider the stabilizer subgroup r∗(σ)i at i. Let
φ ∈ r∗(σ)i. Take any j ∈ I. Since p−1

i ({i})∩p−1
j ({φ(j)}) is an open neighborhood of φ, it

follows from the definition of r∗(σ) that σ−1(p−1
i ({i})∩p−1

j ({φ(j)})) has positive measure.

Clearly, σ−1(p−1
i ({i})∩p−1

j ({φ(j)})) is contained inRi. So σ
−1(p−1

i ({i})∩p−1
j ({φ(j)}))∩

R̃i still has positive measure. We pick any (x, y) ∈ σ−1(p−1
i ({i}) ∩ p−1

j ({φ(j)})) ∩ R̃i.

Then σ(x, y)(i) = i = φ(i) and σ(x, y)(j) = φ(j). This means that φ = (φ(j))j∈I belongs

to
∏

j∈I{σ(x, y)(j) : (x, y) ∈ R̃i}, which is compact by the Tychonoff theorem. Thus

r∗(σ)i is contained in the compact set
∏

j∈I{σ(x, y)(j) : (x, y) ∈ R̃i}. Since r∗(σ)i is

closed, we find that r∗(σ)i is compact. Because r∗(σ) has a compact neighborhood of

the identity idI , namely any r∗(σ)i, it is locally compact. Total connectedness of r∗(σ)
follows from that of Map(I).

As we saw in the preceding paragraph, the stabilizer subgroup r∗(σ)0 at the point

0 ∈ I is compact and open. Hence (r∗(σ), r∗(σ)0) forms a Hecke pair. �

Proposition 4.4. The asymptotic range of the cocycle σ|S obtained by restricting

σ to the ergodic subrelation S coincides with the stabilizer subgroup r∗(σ)0 at 0.

Proof. Let us denote σ|S by c.

Take any φ ∈ r∗(σ)0. Let B be a Borel subset of X of positive measure. We also let

i1, i2, . . . , in be any points in I and U1, U2, . . . , Un be any subsets of I satisfying φ(ik) ∈ Uk

for 1 ≤ k ≤ n. Then, since p−1
0 ({0}) ∩

⋂n
k=1 p

−1
ik

(Uk) is an open neighborhood of φ, it

follows that (σB)
−1(p−1

0 ({0})∩
⋂n

k=1 p
−1
ik

(Uk)) has positive measure (with respect to ν).

If (x, y) ∈ R belongs to (σB)
−1(p−1

0 ({0}) ∩
⋂n

k=1 p
−1
ik

(Uk)), then we have σ(x, y)(0) = 0

and σ(x, y)(ik) ∈ Uk for 1 ≤ k ≤ n. So (x, y) particularly lies in S ∩ (B ×B). Hence we

obtain

(σB)
−1

(
p−1
0 ({0}) ∩

n⋂
k=1

p−1
ik

(Uk)

)
⊆ (cB)

−1

(
n⋂

k=1

p−1
ik

(Uk)

)
.

Hence φ ∈ r∗(c). Therefore, we have r∗(σ)0 ⊆ r∗(c).
Suppose conversely that φ ∈ r∗(c). Because p−1

0 ({φ(0)}) is an open neighborhood

of φ, it follows that ν(c−1(p−1
0 ({φ(0)}))) > 0. Let us take any (x, y) ∈ c−1(p−1

0 ({φ(0)})).
Then we have φ(0) = c(x, y)(0) = σ(x, y)(0) = 0, since (x, y) is in S. Thus we find that

φ belongs to the stabilizer subgroup Per(I)0. Let B, {ik} and {Uk} be as in the previous

paragraph. By definition, we have

ν

(
(cB)

−1

(
n⋂

k=1

p−1
ik

(Uk)

))
> 0.

If (x, y) belongs to (cB)
−1(

⋂n
k=1 p

−1
ik

(Uk)), then (x, y) ∈ S∩(B×B) and σ(x, y)(ik) ∈ Uk

for all k. In particular, we have σ(x, y)(0) = 0. Hence (x, y) is in (σB)
−1(p−1

0 ({0}) ∩⋂n
k=1 p

−1
ik

(Uk)). So we get
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(cB)
−1

(
n⋂

k=1

p−1
ik

(Uk)

)
⊆ (σB)

−1

(
p−1
0 ({0}) ∩

n⋂
k=1

p−1
ik

(Uk)

)
.

This in turn implies that (σB)
−1(

⋂n
k=1 p

−1
ik

(Uk)) is of positive measure. Thus φ ∈ r∗(σ).
Therefore, we have φ ∈ r∗(σ)0. We conclude that r∗(c) = r∗(σ)0. �

Let us compute the Hecke pair (r∗(σ), r∗(σ)0) obtained above in the case where

(R,S) is of a special form.

For a discrete measured equivalence relation P on a standard Borel probability

space X, we define [P] := {φ ∈ [P]∗ : Dom(φ) = Im(φ) = X} and call it the full group

of P. The normalizer N [P] of the full group [P ] is by definition the set of all Borel

automorphisms φ of X satisfying φ[P]φ−1 = [P].

Suppose now that there exist an ergodic Borel subrelation P contained in S, a

countable discrete group G in N [P] and a subgroup H of G such that

(1) G ∩ [P] = {e}, i.e., the action of G on P is outer;

(2) (S ⊆ R) = (H � P ⊆ G� P);

(3) (G,H) is a Hecke pair of groups, i.e., G = {g ∈ G : [H : H ∩ g−1Hg] < ∞}.

Thus we have

S = {(x, y) ∈ X ×X : ∃h ∈ H s.t. (x, h(y)) ∈ P},
R = {(x, y) ∈ X ×X : ∃g ∈ G s.t. (x, g(y)) ∈ P}.

In this setting, it is known (see [4, Section 11]) that (R,S) is a Hecke pair.

Let {tq}q∈H\G ⊆ G be a set of representatives of the right coset space H\G with

tH = e. For each q ∈ H\G, set ψq := tq. We see that {ψq}q∈H\G is a set of choice

functions for S ⊆ R. Hence the index set I of the choice functions for S ⊆ R is in this

special case the quotient space I = H\G, and the distinguished point 0 ∈ I is H ∈ H\G.

Thus the index cocycle σ is a Borel 1-cocycle from R into the Polish space Per(H\G).

By outerness of the action of G, we may and do assume that, for each (x, y) ∈ R, the

mapping σ(x, y) : H\G → H\G is the right translation θ(g): θ(g)q := qg−1(q ∈ H\G),

where g is determined by the condition (g(x), y) ∈ P. In particular, P is included in

Ker(σ).

Proposition 4.5. In the situation considered above, we have (r∗(σ), r∗(σ)H) =

(θ(G), θ(H)). Therefore, (r∗(σ), r∗(σ)H) is the Schlichting completion of the Hecke pair

(G,H) in the sense of [14].

Proof. Let g ∈ G and B ∈ B be such that μ(B) > 0. Since P is ergodic, there

exists a γ ∈ [P]∗ such that Dom(γ) ⊆ g(B) and Im(γ) ⊆ B. So g−1(Dom(γ)) ⊆ B. Put

E := {(x, γ(g(x))) : x ∈ g−1(Dom(γ))},

which is included in B × B. If x ∈ g−1(Dom(γ)), then (g(x), γ(g(x))) ∈ P. This

implies that (x, γ(g(x))) belongs to R. Hence E ⊆ R ∩ (B × B). Note that ν(E) has
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positive measure, because ν(E) equals μ(g−1(Dom(γ))). For any (x, γ(g(x))) ∈ E with

x ∈ g−1(Dom(γ)), we have σ(x, γ(g(x))) = θ(g), since (g(x), γ(g(x))) ∈ P. This means

that θ(g) belongs to r∗(σ). It follows that θ(G) ⊆ r∗(σ). In particular, θ(G) ⊆ r∗(σ).
Let φ ∈ r∗(σ). Also let F := {q1, . . . , qn} be any finite subset of H\G. Set

VF :=

n⋂
k=1

p−1
qk

({φ(qk)}).

We know by definition that {VF : F is a finite subset of H\G} forms a fundamental sys-

tem of neighborhoods of φ. Since φ ∈ r∗(σ), we have ν(EF ) > 0, where

EF := {(x, y) ∈ R : σ(x, y)(qk) = φ(qk) (1 ≤ k ≤ n)}.

For each g ∈ G, set Eg := {(x, y) ∈ E : (g(x), y) ∈ P}. Since E =
⋃

g∈G Eg, there is a

gF ∈ G such that ν(EgF ) > 0. By definition, if (x, y) ∈ EgF , then σ(x, y) = θ(gF ). Hence

we have θ(gF )|F = φ|F . This implies that θ(gF ) belongs to VF . So VF ∩ θ(G) �= ∅,
which shows that φ is in θ(G). Consequently, r∗(σ) is contained in θ(G). Therefore,

r∗(σ) = θ(G).

The identity r∗(σ)H = θ(H) can be proven similarly. So we leave the verification to

the reader. �

5. Preferable choice functions for Hecke pairs.

We shall show in this section that any index cocycle which arises from a Hecke pair

can be changed, within its cohomology class, into a new one which behaves nicely in our

context.

Let us begin with an ergodic discrete measured equivalence relation R on a stan-

dard Borel probability space (X,B, μ) and an ergodic Borel subrelation S of R. As in

Section 3, let us fix a set of choice functions {ψλ,n}(λ,n)∈I for S ⊆ R satisfying (CF1)–

(CF3), and let σ be the associated index cocycle. For each λ ∈ Λ, denote by P (λ)

the permutation group Per({1, 2, . . . , nλ}). Consider the direct product compact group

K :=
∏

λ∈Λ P (λ). Take any f = (fλ)λ∈Λ ∈ K. It induces a map f̃ : I → I given by

f̃(λ, n) = (λ, fλ(n)) (∀(λ, n) ∈ I).

It is easy to see that f̃ belongs to Per(I).

Lemma 5.1. The map f ∈ K �−→ f̃ ∈ Per(I) is a topological isomorphism onto

its image.

Proof. The map defined above is clearly a homomorphism.

Suppose that a net {fn = (f
(n)
λ )λ∈Λ}n ∈ K converges to f = (fλ)λ∈Λ ∈ K. Let

(λ, k) ∈ I. By assumption, we have limn f
(n)
λ = fλ in P (λ). So there is an n0 such that

for any n ≥ n0, one has f
(n)
λ (k) = fλ(k). This means that f̃n(λ, k) = f̃(λ, k). Hence

limn f̃n = f̃ . Namely, the map is continuous.

Conversely, suppose that limn f̃n = f̃ for a net {fn = (f
(n)
λ )λ∈Λ}n and an element
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f = (fλ)λ∈Λ. Take any λ ∈ Λ. By assumption, there exists an n1 such that for any n ≥
n1, we have f̃n(λ, k) = f̃(λ, k) for all k ∈ {1, 2, . . . , nλ}. This means that (λ, f

(n)
λ (k)) =

(λ, fλ(k)) for all k, which yields f
(n)
λ = fλ for any n ≥ n1. Since λ ∈ Λ is arbitrary, we

obtain limn fn = f . �

By this lemma, we may and do identify K with its image in Per(I), so that K is

regarded as a totally disconnected compact subgroup of Per(I). Since f̃(0) = 0 for every

f = (fλ)λ∈Λ ∈ K, K is contained in the stabilizer Per(I)0 at 0 ∈ I.

Let S0 be the Borel subset of S defined in Lemma 3.1. Take any (x, y) ∈ S0. By

Lemma 3.1 (3), for a fixed λ ∈ Λ, there exists a unique f ∈ P (λ) such that σ(y, x)(λ, n) =

(λ, f(n)) for any n ∈ {1, 2, . . . , nλ}. Motivated by this, we define, for any λ ∈ Λ and any

f ∈ P (λ), a subset S0(λ, f) of S0 by

S0(λ, f) := {(x, y) ∈ S0 : σ(y, x)(λ, n) = (λ, f−1(n)) (1 ≤ ∀n ≤ nλ)}.

Since

S0(λ, f) =

nλ⋂
n=1

(
ψλ,n × ψλ,f−1(n)

)−1
(S) ∩ S0,

S0(λ, f) is Borel. Clearly, we have

S0 =
⊔

f∈P (λ)

S0(λ, f).

From the argument given above, we find that for each (x, y) ∈ S0, there exists an element

(fλ(x, y))λ∈Λ of K such that

σ(y, x)(λ, n) = (λ, fλ(x, y)
−1(n)) (∀(λ, n) ∈ I).

For (x, y), (y, z) ∈ S0 and (λ, n) ∈ I, we have

(λ, fλ(x, z)
−1(n)) = σ(z, x)(λ, n) = σ(z, y)σ(y, x)(λ, n)

= σ(z, y)(λ, fλ(x, y)
−1(n))

= (λ, fλ(y, z)
−1(fλ(x, y)

−1(n))).

This shows that

fλ(x, z) = fλ(x, y)fλ(y, z) (5.1)

for all λ ∈ Λ. In particular, fλ(y, x) = fλ(x, y)
−1 and fλ(x, x) = id. Hence, under the

identification of K with its image in Per(I), the restriction of σ to S coincides almost

everywhere with the map c : S → K given by

c(x, y) =

{
(fλ(x, y))λ∈Λ ∈ K if (x, y) ∈ S0,

eK otherwise,
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where eK stands for the identity of K. For any λ ∈ Λ, let πλ denote the projection from

K onto P (λ). If F is a subset of P (λ), then we have

(πλ ◦ c)−1(F ) ∩ S0 =
⋃
f∈F

S0(λ, f).

This implies that c is a Borel map. Moreover, by (5.1), we have

c(x, y)c(y, z) = c(x, z)

for all (x, y), (y, z) ∈ S0. From [18, Theorem 3.2], it follows that there exists a Borel

1-cocycle c′ from S into K such that c = c′ a.e. Let us denote c′ by c again.

By [23, Corollary 3.8 (i)], c is equivalent (cohomologous) to a minimal cocycle c′.
Recall (see [23, Definition 3.7]) that a Borel cocycle α from a Borel equivalence relation

T into a compact group H is said to be minimal if there is no Borel cocycle β : T → H

cohomologous to α such that Hβ � Hα, where for a cocycle γ : T → H, Hγ stands for

the closed subgroup generated by γ(T ). Hence there exists a Borel map φ : X → K such

that the cocycle c′(x, y) := φ(x)c(x, y)φ−1(y) is minimal in the sense stated above. Set

φλ := πλ ◦ φ for each λ ∈ Λ, which is clearly Borel. It is easy to check that πλ ◦ c is a

Borel 1-cocycle on S into P (λ) for any λ ∈ Λ.

Now we introduce a family of maps {ψ′λ,n}(λ,n)∈I from X into itself by

ψ′λ,n(x) := ψλ,φλ(x)−1(n)(x) (x ∈ X, (λ, n) ∈ I).

Lemma 5.2. The maps ψ′λ,n defined above are Borel for all (λ, n) ∈ I.

Proof. Take an arbitrary (λ, n) ∈ I. Since φλ is Borel, {φ−1
λ ({τ}) : τ ∈ P (λ)} is

a Borel partition of X. Take any E ∈ B and τ ∈ P (λ). For x ∈ φ−1
λ ({τ}), we have

x ∈ (ψ′λ,n)
−1(E) ⇐⇒ ψλ,φλ(x)−1(n)(x) ∈ E

⇐⇒ ψλ,τ−1(n)(x) ∈ E

⇐⇒ x ∈ (ψλ,τ−1(n))
−1(E).

From this, it follows that one has

(ψ′λ,n)
−1(E) =

⊔
τ∈P (λ)

(ψ′λ,n)
−1(E) ∩ φ−1

λ ({τ}) =
⊔

τ∈P (λ)

(ψλ,τ−1(n))
−1(E) ∩ φ−1

λ ({τ}).

This shows that (ψ′λ,n)
−1(E) is a Borel subset. Therefore, ψ′λ,n is Borel. �

Lemma 5.3. The functions {ψ′λ,n}(λ,n)∈I defined above are choice functions for

S ⊆ R satisfying (CF1)–(CF3). Moreover, the index cocycle σ′ which comes from these

functions satisfies the following :

σ′(x, y)(λ, n) = (λ, πλ ◦ c′(x, y)(n)) ((x, y) ∈ S),

where c′ is the minimal cocycle from S into K that appeared above. In particular, the
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restriction of σ′ to S is a minimal cocycle into the compact group K.

Proof. By definition, φλ(x) ∈ P (λ) is bijective for each x ∈ X and λ ∈ Λ. So

we have that the set {ψ′λ,n(x)}
nλ
n=1 coincides with {ψλ,n(x)}nλ

n=1. Hence {ψ′λ,n}(λ,n)∈I are

also choice functions for S ⊆ R.

The second half assertion follows from a direct computation, using c′(x, y) =

φ(x)c(x, y)φ(y)−1. �

We regard the cocycle c′ as a (minimal) cocycle from S into the compact group Kc′ .

Then the skew-product relation Kc′ � X is ergodic by [23, Corollary 3.8 (ii)]. This is

equivalent to saying that the crossed product K̂c′ �W ∗(S) by αc′ is a factor, where αc′

is a coaction of Kc′ on W ∗(S) induced by c′ (see [2] for coactions induced by 1-cocycles

on measured equivalence relations).

It follows from [17, Chapter IV, Corollary 1.6] and [17, Chapter V, Corollary 2.7]

(see [2] also) that the Connes spectrum Γ(αc′), or equivalently the asymptotic range

r∗(c′), equals Kc′ .

Lemma 5.4. The 1-cocycle c′λ := πλ◦c′ is a minimal 1-cocycle on S onto a (finite)

subgroup (we denote it by Lλ) of P (λ) for each λ ∈ Λ. In particular, each Ker(c′λ) is an

ergodic subrelation of S with the index [S : Ker(cλ)] equals |Lλ|.

Proof. This follows from [23, Proposition 3.10] and the fact that c′λ is a 1-cocycle

onto a finite group. �

From the results we have established so far, we get the following:

Proposition 5.5. For each Hecke pair (R,S) of ergodic equivalence relations,

there exist choice functions for this pair satisfying (CF1)–(CF3) such that the restriction

of the associated index cocycle to S, which we denote by c, is a minimal cocycle into a

compact group K. The asymptotic range r∗(c) equals Kc. Moreover, πλ ◦ c is a minimal

cocycle whose kernel is ergodic for each λ ∈ Λ.

Definition 5.6. Let (R,S) be a Hecke pair of ergodic discrete measured equiv-

alence relations on a standard Borel probability space (X,B, μ). We say that a set of

choice functions for S ⊆ R is preferable if they enjoy the property mentioned in Propo-

sition 5.5.

We note that if the Hecke pair (R,S) has the form (R = G � P,S = H � P) as

discussed just before Proposition 4.6, then the set of choice functions {ψq}q∈H\G defined

there is preferable with Λ = H\G/H.

6. Construction of the sets G(σ) and K(σ).

Throughout this section, unless stated otherwise, we fix a set of preferable choice

functions {ψλ,n}(λ,n)∈I of a Hecke pair (R,S). As usual, we denote by σ : R → Per(I)

the index cocycle derived from {ψλ,n}(λ,n)∈I . From this cocycle, we will construct two

subsets G (σ) and K(σ) of Per(I). By preferability, the restriction c := σ|S of σ to S is
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a minimal cocycle into the compact group
∏

λ∈Λ P (λ). Write K(σ) or simply K for the

closed (hence compact) subgroup of
∏

λ∈Λ P (λ) generated by the image c(S).

Lemma 6.1. Let {ψi}i∈I be general choice functions for S ⊆ R. Let {Ci}i∈I be the

subset defined in Subsection 2.1. Suppose that N is a null subset of X. For each i ∈ I,

set

C′i := {(x, y) ∈ R : ∃z ∈ N c s.t. (x, z) ∈ S and (ψi(z), y) ∈ S}.

Then ν(Ci \ C′i) = 0 for any i ∈ I.

Proof. Fix an arbitrary i ∈ I. By the definition of the measure ν, we have

ν(Ci \ C′i) =
∫
X

∣∣r−1(x) ∩ (Ci \ C′i)
∣∣ dμ(x).

Put

E =
{
x ∈ X :

∣∣r−1(x) ∩ (Ci \ C′i)
∣∣ > 0

}
.

Take any a ∈ E. Then there is a b ∈ X such that (a, b) ∈ Ci \ C′i. This means that there

exists a z ∈ N such that (a, z) ∈ S and (ψi(z), b) ∈ S. Choose a countable subgroup

H of the full group [R] such that S = {(x, hx) : x ∈ X, h ∈ H}. Since (a, z) ∈ S,
it follows that a ∈

⋃
h∈H hN . Hence we obtain E ⊆

⋃
h∈H hN . Because N is a null

set, so is
⋃

h∈H hN . This implies that E is also a null set. Therefore, we conclude that

ν(Ci \ C′i) = 0. �

For any x ∈ X and λ ∈ Λ, define a subset A (x, σ, λ) of Per(I) by

A (x, σ, λ) =

nλ⋃
n=1

Kσ(x, ψλ,n(x))K.

Since K is compact, so is A (x, σ, λ). As before, we regard this assignment x ∈ X �→
A (x, σ, λ) as a map from X into the family F (Per(I)) of all the closed subsets of Per(I)

equipped with the Fell topology.

Lemma 6.2. For each λ ∈ Λ, the function x ∈ X �→ A (x, σ, λ) ∈ F (Per(I)) is

Borel.

Proof. Recall that the Fell topology on F (Per(I)) has as a subbase all sets of

the form V −, where V is an open subset of Per(I), plus all sets of the form (Cc)+, where

C is a compact subset of Per(I). Hence it suffices to shows that the inverse images of

V − and (Cc)+ under the map under consideration are Borel subsets in X for any open

set V and any compact set C of Per(I). As before, let g0 : X → X×X be g0(x) = (x, x).

Then we have

A (x, σ, λ) ∈ V − ⇐⇒ ∃θ ∈ A (x, σ, λ) ∩ V

⇐⇒ ∃k1, k2 ∈ K and ∃n ∈ {1, . . . , nλ} s.t. k1σ(x, ψλ,n(x))k2 ∈ V
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⇐⇒ ∃k1, k2 ∈ K and ∃n ∈ {1, . . . , nλ} s.t. σ(x, ψλ,n(x)) ∈ k−1
1 V k−1

2

⇐⇒ x ∈
nλ⋃
n=1

(σ ◦ (idX × ψλ,n) ◦ g0)−1(KVK).

This shows that

{x ∈ X : A (x, σ, λ) ∈ V −} =

nλ⋃
n=1

(σ ◦ (idX × ψλ,n) ◦ g0)−1(KVK).

Clearly, the set on the right-hand side is a Borel subset of X. Similarly, one can show

that

{x ∈ X : A (x, σ, λ) ∈ (Cc)+} =

nλ⋃
n=1

(σ ◦ (idX × ψλ,n) ◦ g0)−1(KCcK).

This completes the proof. �

Lemma 6.3. Let λ ∈ Λ. There exists a compact subset A (σ, λ) of Per(I) such that

A (x, σ, λ) = A (σ, λ) for a.e. x ∈ X. We have A (σ, 0) = K.

Proof. Assume that (x, y) ∈ S0, where S0 is the set defined in Lemma 3.1. Take

any θ ∈ A (x, σ, λ). By definition, there exist k1, k2 ∈ K and an n ∈ {1, . . . , nλ} such

that θ = k1σ(x, ψλ,n(x))k2. By Lemma 3.1 (3), there is a unique m ∈ {1, . . . , nλ} such

that (ψλ,n(x), ψλ,m(y)) ∈ S. Then

θ = k1σ(x, ψλ,n(x))k2

= k1σ(x, y)︸ ︷︷ ︸
in K

σ(y, ψλ,m(y))σ(ψλ,m(y), σλ,n(x))︸ ︷︷ ︸
in K

k2 ∈ Kσ(y, ψλ,m(y))K ⊆ A (y, σ, λ).

Thus A (x, σ, λ) ⊆ A (y, σ, λ). By changing the roles of x and y in the argument above,

we obtain the reverse inclusion. Hence we have A (x, σ, λ) = A (y, σ, λ). From this

and Lemma 6.2, it follows that the Borel map x ∈ X �→ A (x, σ, λ) ∈ F (Per(I)) is

S-invariant. From the ergodicity of S, we find that this Borel map is constant up to a

null set.

By definition, we have A (x, σ, 0) = Kσ(x, ψ0(x))K = KK = K for all x ∈ X, which

implies that A (σ, 0) = K. �

By Lemma 6.3, there exists a null subset Nσ of X such that A (σ, λ) = A (x, σ, λ) for

all x ∈ (Nσ)
c and all λ ∈ Λ. We choose an x0 ∈ (Nσ)

c such that A (σ, λ) = A (x0, σ, λ)

for all λ ∈ Λ. For each (λ, n), define θλ,n = σ(x0, ψλ,n(x0)). So we have A (σ, λ) =⋃nλ

n=1 Kθλ,nK.

Lemma 6.4. We have A (σ, λ) ∩ A (σ, λ′) = ∅ whenever λ �= λ′.

Proof. Assume that λ �= λ′. Suppose that A (σ, λ) ∩ A (σ, λ′) �= ∅. This means

that there are elements k1, k2, k
′
1, k

′
2 ∈ K, n ∈ {1, . . . , nλ} and n′ ∈ {1, . . . , nλ′} such

that k1θλ,nk2 = k′1θλ′,n′k′2. Then the map on the left transforms 0 ∈ I to (λ,m) for
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some m ∈ {1, . . . , nλ}, while the map on the right transforms 0 to (λ′,m′) for some

m ∈ {1, . . . , nλ′}. This is a contradiction. �

Define G (σ) =
⋃
λ∈Λ

A (σ, λ) ⊆ Per(I).

Lemma 6.5. For each λ ∈ Λ, the subset A (σ, λ) is compact and open in G (σ) with

respect to the relative topology.

Proof. We already know that every A (σ, λ) is compact. It suffices to prove that

it is open in G (σ).

Fix an arbitrary λ ∈ Λ. Define Uλ = {(λ, 1), . . . , (λ, nλ)}. We agree that U0 = {0}
if λ = 0. By the definition of the topology of Map(I), p−1

0 (Uλ) is open (and closed)

in Map(I). As we saw in the proof of Lemma 6.4, every element in A (σ, λ) sends

0 ∈ I to (λ, n) for some n ∈ {1, . . . , nλ}. This shows that (i) A (σ, λ) ⊆ p−1
0 (Uλ); (ii)

A (σ, λ′) ∩ p−1
0 (Uλ) = ∅ whenever λ′ �= λ. From this and Lemma 6.4, we find that

G (σ) ∩ p−1
0 (Uλ) =

⋃
λ′∈Λ

A (σ, λ′) ∩ p−1
0 (Uλ) = A (σ, λ) ∩ p−1

0 (Uλ) = A (σ, λ). (6.1)

This proves that A (σ, λ) is open in G (σ) with respect to the relative topology. �

Lemma 6.6. The set G (σ) is closed in Per(I).

Proof. Take any γ in the closure G (σ) of G (σ). Thus there is a sequence {γj}∞j=1

in G (σ) such that limj→∞ γj = γ. Suppose that γ(0) = (λ, n) ∈ I. Then p−1
0 ({(λ, n)})

is an open subset of Per(I) that contains γ. Hence there exists j0 ∈ N such that γj ∈
p−1
0 ({(λ, n)}) for all j ≥ j0. From the proof of Lemma 6.5, we know that G (σ) ∩

p−1
0 ({(λ, n)}) is included in the compact set A (σ, λ). So γj ∈ A (σ, λ) for all j ≥ j0.

Compactness of A (σ, λ) now implies that γ ∈ A (σ, λ) ⊆ G (σ). Therefore, G (σ) is closed.

�

Proposition 6.7. The set G (σ) is a locally compact (Hausdorff ) space with re-

spect to the relative topology from Map(I).

Proof. By Lemma 6.5, every element θ ∈ G (σ) has a compact and open neigh-

borhood A (σ, λ) when θ ∈ A (σ, λ). �

Lemma 6.8. We have σ(x, y) ∈ G (σ) for a.e. (x, y) ∈ R.

Proof. For each λ ∈ Λ, consider the subset Cλ. By definition, we have

Cλ = {(x, y) ∈ R : ∃z ∈ X s.t. (x, z) ∈ S, (ψλ,1(z), y) ∈ S}.

Set

Cλ(σ) = {(x, y) ∈ R : ∃z ∈ (Nσ)
c s.t. (x, z) ∈ S, (ψλ,1(z), y) ∈ S}.

By Lemma 6.1, we have Cλ(σ) is conull in Cλ. This then implies that
⋃

λ∈Λ Cλ(σ) is



Schlichting completion of Hecke pairs of equivalence relations 1633

conull in R.

Let (x, y) ∈
⋃

λ∈Λ Cλ(σ). Then there is a unique λ ∈ Λ such that (x, y) ∈ Cλ(σ).
Hence there exists a z ∈ (Nσ)

c such that (x, z) ∈ S and (ψλ,1(z), y) ∈ S. Since z ∈ (Nσ)
c,

we find that A (z, σ, λ) = A (σ, λ). This implies that σ(z, ψλ,1(z)) belongs to A (σ, λ).

Since A (σ, λ) is a two-sided K-invariant set, we have

σ(x, y) = σ(x, z)︸ ︷︷ ︸
in K

·σ(z, ψλ,1(z))︸ ︷︷ ︸
in A (σ, λ)

·σ(σλ,1(z), y)︸ ︷︷ ︸
in K

∈ A (σ, λ).

Thus we are done. �

As before, let H be a countable subgroup of the full group [R] such that S =

{(x, hx) : x ∈ X, h ∈ H}. Then define Xσ :=
(⋃

i∈I ψ
−1
i (HNσ)

)c
. Since Nσ is null and

ψis are non-singular in the sense that ψ−1
i (N) is null whenever N is null, it follows that

Xσ is a conull subset of X. Because Xσ ⊆ (Nσ)
c, we see that A (x, σ, λ) = A (σ, λ) for

all x ∈ Xσ and all λ ∈ Λ.

In the next lemma, recall that for each λ ∈ Λ, there is a unique λ−1 ∈ Λ such that

(Cλ)−1 = Cλ−1 .

Lemma 6.9. If θ ∈ A (σ, λ) for some λ ∈ Λ, then θ−1 ∈ A (σ, λ−1). In particular,

if θ ∈ G (σ), then θ−1 ∈ G (σ).

Proof. Let a ∈ Xσ and θ ∈ A (a, σ, λ). Thus there exists k1, k2 ∈ K and an

n ∈ {1, . . . , nλ} such that θ = k1σ(a, ψλ,n(a))k2. So θ−1 = k−1
2 σ(ψλ,n(a), a)k

−1
1 . Since

(a, ψλ,n(a)) belongs to Cλ,n = Cλ, we find that (ψλ,n(a), a) ∈ (Cλ)−1 = Cλ−1 . So there is

a z ∈ X such that (ψλ,n(a), z) ∈ S and (ψλ−1,1(z), a) ∈ S. If z ∈ Nσ, then the fact that

(ψλ,n(a), z) ∈ S would imply that a ∈ ψ−1
λ,n(HNσ), which leads to a contradiction that a

belongs to Xσ. Hence we have z ∈ (Nσ)
c. So A (z, σ, λ−1) = A (σ, λ−1). From this, it

follows that

θ−1 = k−1
2 σ(ψλ,n(a), a)k

−1
1

= k−1
2 σ(ψλ,n(a), z)σ(z, ψλ−1,1(z))σ(ψλ−1,1(z), a)k

−1
1

= k−1
2 σ(ψλ,n(a), z)︸ ︷︷ ︸

in K

·σ(z, ψλ−1,1(z)) · σ(ψλ−1,1(z), a)k
−1
1︸ ︷︷ ︸

in K

∈ A (z, σ, λ−1)=A (σ, λ−1).

This completes the proof. �

For each (λ, n) ∈ I and each x ∈ X, define a subset F(λ,n)(x) of {1, . . . , nλ} by

F(λ,n)(x) := {m ∈ {1, . . . , nλ} : σ(x, ψλ,m(x)) ∈ Kθλ,nK}.

By the definition of the set Nσ, we have for any x ∈ (Nσ)
c:

Kθλ,nK ⊆
nλ⋃

m=1

Kθλ,mK = A (x0, σ, λ) = A (x, σ, λ) =

nλ⋃
m=1

Kσ(x, ψλ,m(x))K.
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Thus there is at least one mx ∈ {1, . . . , nλ} such that

Kθλ,nK ∩Kσ(x, ψλ,mx
(x))K �= ∅.

From this, we immediately see that σ(x, ψλ,mx(x)) ∈ Kθλ,nK. In particular, we obtain

mx ∈ F(λ,n)(x). It follows that F(λ,n)(x) is non-empty for all x ∈ (Nσ)
c.

We now set

fλ,n(x) := |F(λ,n)(x)| (x ∈ X).

By the result of the previous paragraph, we see that fλ,n(x) ≥ 1 for a.e. x ∈ X. We

claim that fλ,n is constant almost everywhere. In fact, let (x, y) ∈ S0, where S0 is the

subset of S defined in Lemma 3.1. Take any l ∈ F(λ,n)(x). Thus σ(x, ψλ,l(x)) ∈ Kθλ,nK.

Meanwhile, there exists a unique q(l) ∈ {1, . . . , nλ} such that (ψλ,l(x), ψλ,q(l)(y)) ∈ S.
Then we have

σ(y,ψλ,q(l)(y)) = σ(y,x)︸ ︷︷ ︸
in K

·σ(x,ψλ,l(x)) ·σ(ψλ,l(x),ψλ.q(l)(y))︸ ︷︷ ︸
in K

∈K ·Kθλ,nK ·K=Kθλ,nK.

This shows that q(l) ∈ F(λ,n)(y). Thus we obtain a map q : F(λ,n)(x) → F(λ,n)(y).

Suppose that q(l1) = q(l2) for some l1, l2 ∈ F(λ,n)(x). Since

(ψλ,l1(x), ψλ,q(l1)(y)) ∈ S and (ψλ,l2(x), ψλ,q(l2)(y)) ∈ S,

it follows that (ψλ,l1(x), ψλ,l2(x)) ∈ S. Because {ψi} are choice functions, we have to

have l1 = l2, which shows that q is injective. Let m ∈ F(λ,n)(y). By changing the roles of

x and y in the argument above, we get an element l ∈ F(λ,n)(x) such that m = q(l). So

q is surjective as well. Hence q : F(λ,n)(x) → F(λ,n)(y) is bijective. In particular, we have

fλ,n(x) = |F(λ,n)(x)| = |F(λ,n)(y)| = fλ,n(y). We have shown that fλ,n is S0-invariant.

By the ergodicity of S, we find that fλ,n is constant almost everywhere, as claimed.

By the result of the preceding paragraph, there exists a conull subset Y (σ) of X

contained in (Nσ)
c such that fλ,n is constant on Y (σ) for each (λ, n) ∈ I. We assert that

we may assume from the outset that x0 belongs to Y (σ). Indeed, choose one element

x1 ∈ Y (σ) and set

θ′λ,n := σ(x1, ψλ,n(x1)),

F ′(λ,n)(x) := {m ∈ {1, . . . , nλ} : σ(x, ψλ,m(x)) ∈ Kθ′λ,nK},
f ′λ,n(x) := |F ′(λ,n)(x)|.

Since x1 ∈ Y (σ) ⊆ (Nσ)
c, we have that A (x1, σ, λ) = A (x0, σ, λ). Thus, for each

n ∈ {1, . . . , nλ}, there exists an n′ ∈ {1, . . . , nλ} such that Kθ′λ,n′K = Kθλ,nK. It

follows that for each n ∈ {1, . . . , nλ}, there exists n′ ∈ {1, . . . , nλ} such that fλ,n is equal

to f ′λ,n′ . Then we obtain f ′λ,n′(x) = fλ,n(x) = fλ,n(x1) = f ′λ,n′(x1) for any x ∈ Y (σ).

Hence what we have established concerning θλ,n, F(λ,n) and fλ,n is also true for θ′λ,n,
F ′(λ,n) and f ′λ,n. From this, we see that we may assume that x0 belongs to Y (σ) by

replacing x0 by x1.
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We shall show that for each λ ∈ Λ, there exists a Borel map φλ : X → P (λ) which

satisfies the following:

σ(x, ψλ,φλ(x)(n)(x)) ∈ Kθλ,nK (n ∈ {1, . . . , nλ}).

In what follows, we fix an arbitrary λ ∈ Λ, unless otherwise stated. We then choose

natural numbers 1 = m1 < · · · < mn′
λ
≤ nλ so that Kθλ,m1K, . . . ,Kθλ,mn′

λ

K are all

distinct and satisfy A (σ, λ) =
⋃n′

λ
j=1 Kθλ,mjK. Then we have for any x ∈ Y (σ):

{1, . . . , nλ} =

n′
λ⋃

j=1

F(λ,mj)(x). (6.2)

Note that the union is disjoint, because Kθλ,m1
K, . . . ,Kθλ,mn′

λ

K are distinct. We set

Fj = F(λ,mj)(x0) for each j = 1, . . . , n′λ. So {Fj}n
′
λ

j=1 is a partition of {1, . . . , nλ}.

Lemma 6.10. Let n ∈ {1, . . . , nλ} and k ∈ {1, . . . , n′λ}. Then n is in Fk if and

only if Kθλ,nK = Kθλ,mk
K.

Proof. Suppose that n is in Fk. So we have that n ∈ F(λ,mk)(x0). This means

that θλ,n = σ(x0, ψλ,n(x0)) belongs to Kθλ,mk
K. It follows that the two-sided cosets

Kθλ,nK and Kθλ,mk
K with respect to the subgroup K are equal to each other.

Conversely, suppose that Kθλ,nK is equal to Kθλ,mk
K. This implies that θλ,n =

σ(x0, ψλ,n(x0)) is in Kθλ,mk
K. It follows that n ∈ F(λ,mk)(x0) = Fk. �

For each k ∈ {1, . . . , n′λ} and each subset F of {1, . . . , nλ}, define Xk,F = {x ∈ X :

F(λ,mk)(x) = F}.

Lemma 6.11. Xk,F is Borel.

Proof. Note that Kθλ,nK is a compact subset of Per(I) for each n ∈ {1, . . . , nλ},
because K is. Since both σ and ψλ,n are Borel for any n, so is the map αn : X → Per(I)

given by αn(x) := σ(x, ψλ,n(x)). It follows that Xk,n := α−1
n (Kθλ,mk

K) is a Borel subset

of X. We claim that Xk,F is equal to
⋂

n∈F Xk,n ∩
⋂

n∈F c(Xk,n)
c. For this, suppose first

that x ∈ Xk,F . So we have F(λ,mk)(x) = F . It follows that for each n ∈ {1, . . . , nλ},
σ(x, ψλ,n(x)) is in Kθλ,mk

K if and only if n is in F . This means that x ∈ Xk,n for each

n ∈ F and x �∈ Xk,n′ for each n′ �∈ F .

Conversely, suppose that x ∈
⋂

n∈F Xk,n ∩
⋂

n∈F c(Xk,n)
c. Then σ(x, ψλ,n(x)) ∈

Kθλ,mk
K for any n ∈ F , and σ(x, ψλ,n′(x)) �∈ Kθλ,mk

K for each n′ ∈ F . It means that

F(λ,mk)(x) is equal to F , so that x ∈ Xk,F . Thus our claim has been proven.

Since each Xk,n is Borel, we conclude that Xk,F is also Borel. �

Lemma 6.12. For any fixed k ∈ {1, . . . , n′λ}, the family

{Xk,F : F ⊆ {1, . . . , nλ}, |F | = |Fk|}

is a Borel partition of X.
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Proof. Fix k ∈ {1, . . . , n′λ}. By Lemma 6.11, we know that each Xk,F is Borel.

It is obvious that x ∈ Xk,F(λ,mk)(x) for all x ∈ Y (σ). Moreover, we have |F(λ,mk)(x)| =
fλ,mk

(x) = |Fk|.
We next show that Xk,F ∩ Xk,F ′ = ∅ whenever F �= F ′ with |F | = |F ′| = |Fk|.

Indeed, if x belongs to Xk,F ∩Xk,F ′ , then F = F(λ,mk)(x) = F ′. �

For each subset F of {1, . . . , nλ} with |Fk| elements, there exists |Fk|! bijections from
Fk to F . Let us choose and fix one such map from them and denote it by κk,F .

Lemma 6.13. Fix any k ∈ {1, . . . , n′λ} and any F ⊆ {1, . . . , n′λ} with |F | = |Fk|.
Then σ(x, ψλ,κk,F (n)(x)) is in Kθλ,mk

K = Kθλ,nK for any n ∈ Fk and any x ∈ Xk,F .

Proof. Fix k ∈ {1, . . . , n′λ} and F ⊆ {1, . . . , n′λ} with |F | = |Fk|. Let n ∈ Fk

and x ∈ Xk,F . Since κk,F (n) is in F = F(λ,mk)(x), it follows from Lemma 6.10 that

σ(x, ψλ,κk,F (n)(x)) belongs to Kθλ,mk
K = Kθλ,nK. �

For each x ∈ X, we define a map φλ(x) from {1, . . . , nλ} into itself by the following

rule:

• If x ∈ Y (σ)c, then define φλ(x) = id. Otherwise, proceed to the next step.

• Take any n ∈ {1, . . . , nλ}. Then there is a unique k ∈ {1, . . . , n′λ} such that n ∈ Fk.

By Lemma 6.12, there exists a unique F ⊆ {1, . . . , nλ} with |F | = |Fk| such that

x ∈ Xk,F . Remark that F is realized as F(λ,mk)(x).

• Define φλ(x)(n) = κk,F (n). Equivalently, φλ(x)(n) = κk,F(λ,mk)(x)(n) by the re-

mark above.

We will show below that φλ(x) thus defined is a bijection.

Lemma 6.14. Let n ∈ {1, . . . , nλ} and x ∈ Y (σ). Then σ(x, ψλ,φλ(x)(n)(x)) ∈
Kθλ,nK.

Proof. Let n and x be as above. If n∈Fk, we have that φλ(x)(n)=κk,F(λ,mk)(x)(n)(n)

∈ F(λ,mk)(x). It follows from the definition of F(λ,mk)(x) and Lemma 6.10 that

σ(x, ψλ,φλ(x)(n)(x)) ∈ Kθλ,mk
K = Kθλ,nK. �

Lemma 6.15. For any x ∈ X, the map φλ(x) is in P (λ).

Proof. By definition, φλ(x) is bijective if x ∈ Y (σ)c. So let x ∈ Y (σ). It suffices

to show that φλ(x) is injective. Suppose that φλ(x)(n) = φλ(x)(n
′) with n ∈ Fk and

n′ ∈ Fk′ . This implies that

κk,F(λ,mk)(x)(n)
(n) = κk′,F(λ,m

k′ )(x)(n)
(n′) and σ(x,ψφλ(x)(n)(x)) ∈Kθλ,mk

K ∩Kθλ,mk′K.

Thus k = k′. It follows that κk,F(λ,mk)(x)(n) = κk,F(λ,mk)(x)(n
′). Since κk,F(λ,mk)(x) is a

bijection, we conclude that n = n′. �

Lemma 6.16. The map φλ : X → P (λ) is Borel.
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Proof. It suffices to show that {x ∈ X : φλ(x)(n) = m} is Borel for any n,m ∈
{1, . . . , nλ}. Note that

{x ∈ X : φλ(x)(n) = m} = {x ∈ Y (σ)c : φλ(x)(n) = m} ∪ {x ∈ Y (σ) : φλ(x)(n) = m}.

The first subset on the right-hand side equals either Y (σ)c or ∅, depending upon n = m

or not. In any case, it is Borel. So we examine the second subset. Suppose that n ∈ Fk.

We then claim the following identity:

{x ∈ Y (σ) : φλ(x)(n) = m} =
⋃

F⊆{1,...,nλ}, κk,F (n)=m

Xk,F ∩ Y (σ). (6.3)

Indeed, if x ∈ Y (σ) satisfies φ(x)(n) = m, then we have that κk,F(λ,mk)(x)(n) = m.

Moreover, we clearly have x ∈ Xk,F(λ,mk)(x). Conversely, if x ∈ Xk,F ∩ Y (σ) for some

F which satisfies κk,F (n) = m, then, by Lemma 6.12, we have that F = F(λ,mk)(x) and

φλ(x)(n) = κk,F (n) = m. So we our claim has been proven.

Since each Xk,F is a Borel subset of X by Lemma 6.11, it follows from the claim

stated above that {x ∈ Y (σ) : φλ(x)(n) = m} is also Borel. �

For each (λ, n) ∈ I, we define a map ψ′λ,n : X → X by ψ′λ,n(x) := ψλ,φλ(x)(n)(x).

Lemma 6.17. For any (λ, n) ∈ I, the map ψ′λ,n defined above is Borel and nonsin-

gular, and satisfies Γ(ψ′λ,n) ⊆ R.

Proof. Let (λ, n) ∈ I. We immediately see that Γ(ψ′λ,n) ⊆ R, due to the fact

that Γ(ψλ,n) ⊆ R.

Take any Borel subset E of X. Clearly, we have

(ψ′λ,n)
−1(E) =

(
(ψ′λ,n)

−1(E) ∩ Y (σ)c
)
∪
(
(ψ′λ,n)

−1(E) ∩ Y (σ)
)
.

From the definition of ψ′λ,n, we see that (ψ′λ,n)
−1(E) ∩ Y (σ)c = ψ−1

λ,n(E) ∩ Y (σ)c, which

is Borel. In the meantime, it is easy to check the following identity:

(ψ′λ,n)
−1(E) ∩ Y (σ) =

nλ⋃
m=1

{x ∈ Y (σ) : φλ(x)(n) = m} ∩ ψ−1
λ,m(E).

The subset on the right-hand side is Borel, as we saw in the proof of Lemma 6.16 (see

Equation (6.3)). Therefore, ψ′λ,n is Borel, as desired. From the two identities displayed

above (and the nonsingularity of ψλ,n), we easily find that (ψ′λ,n)
−1(E) is null if E is. �

Lemma 6.18. If n1,n2∈{1, . . . ,nλ} satisfy n1 �=n2, then S(ψ′λ,n1
(x))∩S(ψ′λ,n2

(x))

=∅ for a.e. x∈X.

Proof. Since {ψλ,n}(λ,n)∈I are choice functions for S ⊆ R, there exists a conull

set X0 of X such that for each x ∈ X0, one has S(ψλ,l(x)) ∩ S(ψλ,m(x)) = ∅ if l,m ∈
{1, . . . , nλ} with l �= m. Now let x ∈ X0. By Lemma 6.15, we know that the map φλ(x)

is injective. So φλ(x)(n1) �= φλ(x)(n2). Hence we conclude that
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S(ψ′λ,n1
(x)) ∩ S(ψ′λ,n2

(x)) = S(ψλ,φλ(x)(n1)(x)) ∩ S(ψλ,φλ(x)(n2)(x)) = ∅.

Thus we are done. �

Lemma 6.19. We have

{ψ′λ,n(x) : 1 ≤ n ≤ nλ} = {ψλ,n(x) : 1 ≤ n ≤ nλ}

for any x ∈ X.

Proof. Fix any x ∈ X. Since φλ(x) is bijective by Lemma 6.15, it follows that

{ψ′λ,n(x) : 1 ≤ n ≤ nλ} = {ψλ,φλ(x)(n)(x) : 1 ≤ n ≤ nλ} = {ψλ,n(x) : 1 ≤ n ≤ nλ}.

So we complete the proof. �

Lemma 6.20. The maps {ψ′λ,n}(λ,n)∈I are choice functions for S ⊆ R.

Proof. This follows from Lemma 6.17, Lemma 6.18 and Lemma 6.19. �

Lemma 6.21. For each n ∈ {1, . . . , nλ}, there exist an m ∈ {1, . . . , nλ} and a

nonnull Borel subset F of X such that φλ(x)(n) = m for all x ∈ F .

Proof. For any n,m ∈ {1, . . . , nλ}, putXn,m := {x ∈ X : φλ(x)(n) = m}. By the

proof of Lemma 6.16, {Xn,m}nλ
m=1 is a Borel finite partition of X for each n ∈ {1, . . . , nλ}.

So there exists an m ∈ {1, . . . , nλ} such that Xn,m is nonnull. Put F := Xn,m and we

get the conclusion. �

Remark. Lemma 6.21 can be strengthened as follows. Let E be a nonnull Borel

subset of X. Then, for each n ∈ {1, . . . , nλ}, there exist an m ∈ {1, . . . , nλ} and a

nonnull Borel subset F of E such that φλ(x)(n) = m for all x ∈ F . Indeed, if we

consider X ′
n,m = {x ∈ E : φλ(x)(n) = m} instead of Xn,m in the proof of Lemma 6.21,

then {X ′
n,m}nλ

m=1 is a Borel finite partition of E for each n ∈ {1, . . . , nλ}.

Lemma 6.22. For any n1,n2∈{1, . . . ,nλ}, we have S(ψ′λ,n1
(S(x)))=S(ψ′λ,n2

(S(x)))
for a.e. x∈X.

Proof. By [1, Theorem 3.8 (4)], there exists a null subset N0 of X such that

S(ψλ,l(S(x))) = S(ψλ,m(S(x))) for all l,m ∈ {1, . . . , nλ} and all x ∈ (N0)
c.

Meanwhile, it follows from Lemma 6.21 that for each l ∈ {1, . . . , nλ}, there exist an

nl ∈ {1, . . . , nλ} and a nonnull subset Fl of X such that φλ(z)(l) = nl for all x ∈ Fl. By

[1, Theorem 3.8 (3)], for each l ∈ {1, . . . , nλ}, there is a null subset Nl of X such that

S(ψλ,nl
(S(x))) = S(ψλ,nl

|Fl
(S(x))) for all x ∈ (Nl)

c. We then set Xλ =
(
N0∪

⋃nλ

l=1 Nl

)c
,

which is a conull subset of X.

Let x ∈ Xλ be an arbitrary element, and let l ∈ {1, . . . , nλ}.
Take any y∈S(ψ′λ,l(S(x))). So there is a z∈X such that (x,z)∈S and (ψ′λ,l(z),y)∈

S. Thus (ψλ,φλ(z)(l)(z),y)∈S, which implies that y∈S(ψλ,φλ(z)(l)(S(x))). Hence
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y is in
⋃nλ

m=1S(ψλ,m(S(x)))=S(ψλ,1(S(x))). Therefore, we obtain S(ψ′λ,l(S(x)))⊆
S(ψλ,1(S(x))).

Conversely, we have

S(ψ′λ,l(S(x))) = {y ∈ X : ∃z ∈ X s.t. (x, z) ∈ S and (ψ′λ,l(z), y) ∈ S}
⊇ {y ∈ X : ∃z ∈ Fl s.t. (x, z) ∈ S and (ψ′λ,l(z), y) ∈ S}
= {y ∈ X : ∃z ∈ Fl s.t. (x, z) ∈ S and (ψλ,φλ(z)(l)(z), y) ∈ S}
= {y ∈ X : ∃z ∈ Fl s.t. (x, z) ∈ S and (ψλ,nl

(z), y) ∈ S}
= S(ψλ,nl

|Fl
(S(x)))

= S(ψλ,nl
(S(x)))

= S(ψλ,1(S(x))).

Therefore, we obtain S(ψ′λ,l(S(x))) = S(ψλ,1(S(x))) for all l ∈ {1, . . . , nλ} and all x ∈
Xλ. �

Corollary 6.23. Let (λ, l) ∈ I and E be a nonnull Borel subset of X. Then we

have S(ψ′λ,l(S(x))) = S(ψ′λ,l|E(S(x))) for a.e. x ∈ X.

Proof. Fix an arbitrary (λ, l) ∈ I. Let N0 be the null subset in the proof of

Lemma 6.22. By the remark just before Lemma 6.22, we see that for each n ∈ {1, . . . , nλ},
there exist an mn ∈ {1, . . . , nλ} and a nonnull subset En of E such that φλ(z)(n) = mn

for all x ∈ En. As in the proof of Lemma 6.22, we may choose a null subset N ′
n of

X such that S(ψλ,mn
(S(x))) = S(ψλ,mn

|En
(S(x))) for all x ∈ (N ′

n)
c. We then set

X ′
λ =

(
N0 ∪

⋃nλ

n=1 N
′
n

)c
, which is a conull subset of X. Let x ∈ X ′

λ. From the proof of

Lemma 6.22 again, we find that

S(ψλ,1(S(x))) = S(ψ′λ,l(S(x)))
⊇ S(ψ′λ,l|E(S(x)))
⊇ S(ψ′λ,l|El

(S(x)))
= S(ψλ,ml

|El
(S(x)))

= S(ψλ,ml
(S(x)))

= S(ψλ,1(S(x))).

Therefore, we obtain S(ψ′λ,l(S(x))) = S(ψ′λ,l|E(S(x))). �

Proposition 6.24. Let λ ∈ Λ. For any n1, n2 ∈ {1, . . . , nλ}, we have Kθλ,n1
K =

Kθλ,n2K

Proof. It suffices to show that Kθλ,n1
K ∩ Kθλ,n2

K is not empty. By

Corollary 6.23, there is a conull subset X0 of X such that S(ψ′λ,n1
(S(x))) =

S(ψ′λ,n2
|Y (σ)(S(x))) for any x ∈ X0. Set Z0 := Y (σ)∩X0, which is again conull. Take any

x ∈ Z0. So S(ψ′λ,n1
(S(x))) = S(ψ′λ,n2

|Y (σ)(S(x))). Since ψ′λ,n1
(x) ∈ S(ψ′λ,n1

(S(x))) =

S(ψ′λ,n2
|Y (σ)(S(x))), there is some z ∈ Y (σ) such that
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(x, z) ∈ S and (ψ′λ,n2
(z), ψ′λ,n2

(x)) ∈ S.

Remark that by Lemma 6.14, σ(x, ψ′λ,n1
(x)) belongs to Kθλ,n1

K, while σ(z, ψ′λ,n2
(z))

belongs to Kθλ,n2
K. It follows that

Kθλ,n1K � σ(x, ψ′λ,n1
(x)) = σ(x, z)︸ ︷︷ ︸

∈K

·σ(z, ψ′λ,n2
(z))︸ ︷︷ ︸

∈Kθλ,n2
K

·σ(ψ′λ,n2
(z), ψ′λ,n2

(x))︸ ︷︷ ︸
∈K

∈ Kθλ,n2K.

Thus we complete the proof. �

Thanks to Proposition 6.24, we immediately obtain the following

Corollary 6.25. For any λ ∈ Λ, we have A (σ, λ) = Kθλ,1K = · · · = Kθλ,nλ
K.

Lemma 6.26. Let λ ∈ Λ. Then the following are equivalent :

(1) For any k ∈ K and any n ∈ {1, . . . , nλ}, kθλ,n is contained in θk(λ,n)K.

(2) For any n ∈ {1, . . . , nλ}, Kθλ,nK is equal to
⋃nλ

m=1 θλ,mK.

(3) For any n ∈ {1, . . . , nλ}, σ(x, ψλ,n(x)) is contained in θλ,nK for a.e. x ∈ X.

Proof. ((1) ⇒ (2)): Let n ∈ {1, . . . , nλ}. By assumption, we see that Kθλ,n is

included in
⋃nλ

m=1 θλ,mK (recall that every element of K moves only n in (λ, n)). Thus

we obtain Kθλ,nK ⊆
⋃nλ

m=1 θλ,mK. For the reverse inclusion, just note that we have

θλ,mK ⊆ Kθλ,mK = Kθλ,nK, due to Proposition 6.24.

((2) ⇒ (3)): Let n ∈ {1, . . . , nλ}. Take any x ∈ (Nσ)
c. By Corollary 6.25, we find

that

nλ⋃
m=1

θλ,mK = Kθλ,nK = A (σ, λ) = A (x, σ, λ) =

nλ⋃
m=1

Kσ(x, ψλ,m(x))K.

It follows that σ(x, ψλ,n(x)) belongs to θλ,mK for some m ∈ {1, . . . , nλ}. Note that

σ(x, ψλ,n(x))(0) = (λ, n), while every element in θλ,mK sends 0 ∈ I to (λ,m). Thus we

must have m = n.

((3) ⇒ (1)): Define

K0 := {τ ∈ K : τθλ,n ∈ θτ(λ,n)K (∀n ∈ {1, . . . , nλ})}.

Let τ1, τ2 ∈ K0 and n ∈ {1, . . . , nλ}. By definition, there is some k2 ∈ K such that

τ2θλ,n = θτ2(λ,n)k2. Note that τ2(λ, n) is of the form τ2(λ, n) = (λ,m) for some m ∈
{1, . . . , nλ}. Because τ1 is in K0, it follows that there exists a k1 ∈ K such that τ1θλ,m =

θτ1(λ,m)k1. Thus

τ1τ2θλ,n = τ1θτ2(λ,n)k2 = τ1θλ,mk2 = θτ1(λ,m)k1k2 = θτ1τ2(λ,n)(k1k2).

This proves that τ1τ2 belongs to K0.

Fix any n ∈ {1, . . . , nλ}. Since τ−1
1 is in K, τ−1

1 (λ, n) has the form τ−1
1 (λ, n) = (λ, l)

for some l ∈ {1, . . . , nλ}. For this l, k1 being in K0, there is some k ∈ K such that
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τ1θλ,l = θτ1(λ,l)k. From this, we find that τ−1
1 θλ,n = θτ−1

1 (λ,n)k
−1. This proves that τ−1

1

is in K0. From the current and the previous paragraphs, we see that K0 is a subgroup

of K. One can show without difficulty that K0 is closed.

Now we proceed to the proof of the implication (3) ⇒ (1). Since K is by definition

generated by σ(S), it suffices by the result of the preceding paragraph to show that K0

contains σ(S). By assumption, there is a null subset N of X such that σ(x, ψλ,n(x)) ∈
θλ,nK for all x ∈ N c and all n ∈ {1, . . . , nλ}. Choose a countable subgroup H of

the full group [R] such that S = {(x, hx) : x ∈ X, h ∈ H}. With N defined just before

Lemma 3.1, setX0 =
(⋃

h∈H h(N ∪N)
)c
, which is a conull S-invariant subset ofX. Then

we consider the essential reduction S1 := S ∩ (X0×X0) of S to X0. From the minimality

of the 1-cocycle σ|S : S → K, we find that the closed subgroup generated by σ(S1)

coincides with K itself. Hence it is enough to show that K0 contains σ(S1). Take any

(x, y) ∈ S1 and any n ∈ {1, . . . , nλ}. Since y ∈ X0 ⊆ N c, we have σ(y, ψλ,n(y)) ∈ θλ,nK,

so that there exists a k ∈ K such that θλ,n = σ(y, ψλ,n(y))k. Hence we obtain

σ(x, y)θλ,n = σ(x, y)σ(y, ψλ,n(y))k = σ(x, ψλ,n(y)) ·k.

Because (x, y) ∈ S1 ⊆ S0, where S0 is defined in Lemma 3.1, it follows that there is an

l ∈ {1, . . . , nλ} such that (ψλ,l(x), ψλ,n(y)) ∈ S. This means that σ(x, y)(λ, n) = (λ, l).

Note that since x ∈ X0 ⊆ N c, we have σ(x, ψλ,l(x)) = θλ,lk
′ for some k′ ∈ K. Thus

σ(x, y)θλ,n = σ(x, ψλ,l(x))σ(ψλ,l(x), ψλ,n(y))k

= θλ,lk
′σ(ψλ,l(x), ψλ,n(y))k

= θσ(x,y)(λ,n) · k′σ(ψλ,l(x), ψλ,n(y))k︸ ︷︷ ︸
in K

∈ θσ(x,y)(λ,n)K.

Therefore, σ(x, y) belongs to K0. �

Lemma 6.27. If the equivalent conditions in Lemma 6.26 hold for each λ ∈ Λ, then

the set G (σ) is a subgroup of Per(I).

Proof. Thanks to Lemma 6.9, we already know that G (σ) is closed under taking

the inverse operation. Hence we show below that G (σ) is closed under the group multi-

plication. For this, it suffices by (2) to show that θi1kθi2 ∈ G (σ) for any k ∈ K and any

i1, i2 ∈ I. So let us fix arbitrary k ∈ K and i1, i2 ∈ I. By (3), there exists a null subset N

of X such that σ(x, ψi(x)) ∈ θiK for all x ∈ N c and all i ∈ I. Set X0 :=
(⋃

i∈I ψ
−1
i (N)

)c
,

which is conull in X. Take any z ∈ X0. Then σ(z, ψi1(z)) ∈ θi1K. So θi1 has the form

θi1 = σ(z, ψi1(z))k1

for some k1. Then, by (1), k1kθi2 is in θk1k(i2)K, so that there is a k2 ∈ K such that

k1kθi2 = θk1k(i2)k2. Since σ(ψi1(z), ψk1k(i2)(ψi1(z))) belongs to θk1k(i2)K thanks to (3),

we find that

θk1k(i2) = σ(ψi1(z), ψk1k(i2)(ψi1(z)))k3
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for some k3 ∈ K. Define i3 := σ(z, ψi1(z))(k1k(i2)) ∈ I. By definition, we have

(ψi3(z), ψk1k(i2)(ψi1(z))) ∈ S. Hence it follows that

θi1kθi2 = σ(z, ψi1(z))k1kθi2

= σ(z, ψi1(z)) · θk1k(i2)k2

= σ(z, ψi1(z)) · σ(ψi1(z), ψk1k(i2)(ψi1(z)))k3k2

= σ(z, ψk1k(i2)(ψi1(z)))k3k2

= σ(z, ψi3(z))︸ ︷︷ ︸
in θi3K by (3)

·σ(ψi3(z), ψk1k(i2)(ψi1(z)))k3k2︸ ︷︷ ︸
in K

∈ θi3K ⊆ G (σ).

So G (σ) is a subgroup of Per(I). �

Let Λ0 be a finite subset of Λ and denote by πΛ0 the projection
∏

λ∈Λ P (λ) onto∏
λ∈Λ0

P (λ). Define a 1-cocycle cΛ0 : S →
∏

λ∈Λ0
P (λ) by

cΛ0
= πΛ0

◦ c.

Thanks to [23, Proposition 3.10], cΛ0 is a minimal cocycle. Write LΛ0 for the subgroup of∏
λ∈Λ0

P (λ) generated by cΛ0(S). As explained just before Lemma 5.4, we have r∗(cΛ0) =

LΛ0
. It follows that for each g ∈ LΛ0

, there exists ρ ∈ [S]∗ such that cΛ0
(x, ρ(x)) is equal

to g for all x ∈ Dom(ρ).

Put PΛ0
:= Ker(cΛ0

). Since LΛ0
is a finite group, we have that PΛ0

is an ergodic

subrelation of S.

Lemma 6.28. For a.e. x ∈ X, we have

{cΛ0
(x, z) : z ∈ S(x)} = {cΛ0

(y, x) : y ∈ S(x)} = LΛ0
.

Proof. For each x ∈ X, set LΛ0(x) := {cΛ0(x, z) : z ∈ S(x)}. A direct computa-

tion shows that LΛ0
(x) is equal to LΛ0

(y) for a.e. (x, y) ∈ PΛ0
. By the ergodicity of PΛ0

,

there exist a subset S of LΛ0
and a conull Borel subset X0 of X such that LΛ0

(x) = S

for all x ∈ X0. Take any g ∈ LΛ0
. As remarked just before this lemma, there is ρ ∈ [S]∗

such that cΛ0
(x, ρ(x)) = g for all x ∈ Dom(ρ). Choose one x0 ∈ X0 ∩Dom(ρ). Then

S = LΛ0(x0) � cΛ0(x0, ρ(x0)) = g.

Therefore, S = LΛ0
. �

Proposition 6.29. The set G (σ) is a subgroup of Per(I).

Proof. It suffices to show that Lemma 6.26 (3) always holds.

Fix any (λ, n) ∈ I and set E := {x ∈ X : σ(x, ψλ,n(x)) �∈ θλ,nK}. We will prove

below that E is a null set in X.

Suppose that E is not null. Since θλ,nK is closed, the condition σ(x, ψλ,n(x)) �∈
θλ,nK is equivalent to the one that some (open) neighborhood of σ(x, ψλ,n(x)) does

not intersect with θλ,nK, which is in turn equivalent to saying that there is a finite



Schlichting completion of Hecke pairs of equivalence relations 1643

subset F of I such that, with the notation pa : Map(I) → I in Section 4, we have⋂
i∈F p−1

i ({σ(x, ψλ,n(x))(i)}) ∩ θλ,nK = ∅. Hence, if we define F(I) to be the family of

finite subsets of I, and if we define, for any F ∈ F(I), a Borel set XF by

XF := {x ∈ X : ∀k ∈ K, ∃ik ∈ F such that σ(x, ψλ,n(x))(ik) �= θλ,nk(ik)},

then we obtain

E =
⋃

F∈F(I)

XF .

Because E is non-null, there exists F0 ∈ F(I) such that XF0
is non-null. Note that if

F0 is of the form F0 = {(λ1, l1), . . . , (λm, lm)}, then, for every k ∈ K, kF0 has the form

kF0 = {(λ1, l
′
1), . . . , (λm, l′m)}. This observation ensures that we may assume if necessary

that kF0 = F0 for any k ∈ K. With the map qΛ : I → Λ given by qΛ((λ
′, n′)) = λ′, define

a finite subset Λ0 of Λ by the following:

Λ0 := qΛ({θλ,n(i) : i ∈ F0} ∪ {(λ, n)}).

We assert that XF0 is PΛ0 -invariant. To verify this, assume that x ∈ XF0 and (x, y) ∈
PΛ0 . Since (x, y) ∈ PΛ0 , we have σ(x, y)|{(λ,l): l∈{1,...,nλ}} = id, which implies that

σ(x, y)(λ, n) = (λ, n), i.e., (ψλ,n(y), ψλ,n(x)) ∈ S. Thus σ(ψλ,n(y), ψλ,n(x)) ∈ K. Take

any k ∈ K. Because x ∈ XF0
, there exists i0 ∈ F0 such that σ(x, ψλ,n(x))(i0) �=

θλ,nkσ(ψλ,n(y), ψλ,n(x))(i0). Set j0 := σ(ψλ,n(y), ψλ,n(x))(i0), which also belongs to F0

since F0 is K-invariant. Then we have that

σ(y, ψλ,n(y))(j0) = σ(y, x)σ(x, ψλ,n(x))σ(ψλ,n(x), ψλ,n(y))(j0)

= σ(y, x)σ(x, ψλ,n(x))(i0)

�= σ(y, x)θλ,nkσ(ψλ,n(y), ψλ,n(x))(i0)

= σ(y, x)θλ,nk(j0)

= θλ,nk(j0) (∵ qΛ(θλ,n(j0)) ∈ Λ0).

So we conclude that y is also in XF0
, which proves the PΛ0

-invariance of XF0
, as asserted.

From the ergodicity of PΛ0
, it follows that XF0

is conull.

On the other hand, we already have shown in the present section that σ(x, ψλ,n(x))∈
Kθλ,nK for a.e. x∈X. Thus there is a conull Borel subset X0 such that σ(x, ψλ,n(x))∈
Kθλ,nK for all x∈X0. Let z=θλ,nK be the point in the quotient Polish space Per(I)/K.

We think of Per(I)/K as a Polish K-space. Then the K-orbit S of the point z is Borel

(see [22, Corollary 5.8] for example). Let Kz be the stabilizer subgroup of z. Since K

is compact, the canonical map kKz ∈ K/Kz �−→ kz ∈ S is a homeomorphism (refer to

[24, Chapter 2]). We denote by f the inverse of this homeomorphism. Next we choose a

Borel cross section s : K/Kz → K with s(Kz) = e. Then define a Borel map ξ : X0 → K

by

ξ(x) := s(f(σ(x, ψλ,n(x))K)) (x ∈ X0).
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Because σ(x, ψλ,n(x)) ∈ Kθλ,nK for all x ∈ X0, the equation

η(x) := θ−1
λ,nξ(x)

−1σ(x, ψλ,n(x)) (x ∈ X0)

defines a Borel map η from X0 into K. Thus we have

σ(x, ψλ,n(x)) = ξ(x)θλ,nη(x) (x ∈ X0)

Set πΛ0(ξ(x)) :=
∏

λ∈Λ0
πλ(ξ(x)) (x ∈ X0). Note that πΛ0

(K) is a finite group, and

let {g0 = id, . . . , gM} be its enumeration. If X0(j) := {x ∈ X0 : πΛ0(ξ(x)) = gj} (j =

0, . . . ,M), then at least one of X0(j) is a non-null Borel set, because X0 =
⋃M

j=0 X0(j).

Let X0(j1) be such a set. By Lemma 6.28, there exists ρ ∈ [S]∗ such that Dom(ρ) ⊆
X0(j1) and the equation

cΛ0
(x, ρ(x)) = πΛ0

(ξ(x)) = gj1

holds for each x ∈ Dom(ρ). Hence if i ∈ F0 and x ∈ Dom(ρ), then we have

σ(ρ(x), ψλ,n(x))(i) = σ(ρ(x), x)ξ(x)θλ,nη(x)(i)

= g−1
j1

gj1(θλ,nη(x)(i)) (∵ qΛ(θλ,nη(x)(i)) ∈ Λ0)

= θλ,nη(x)(i).

Thus we have shown

σ(ρ(x), ψλ,n(x))(i) = θλ,nη(x)(i) for all i ∈ F0. (6.4)

This holds true even if i=0, since qΛ(θλ,nη(x)(0))=λ∈Λ0. In particular, by the defini-

tion of θλ,n, we get σ(ρ(x),ψλ,n(x))(0)=θλ,nη(x)(0)=(λ,n), so that (ψλ,n(ρ(x)),ψλ,n(x))

∈S. It follows that for each i∈F0, we have

σ(ρ(x), ψλ,n(ρ(x)))(i)

= σ(ρ(x), ψλ,n(x))σ(ψλ,n(x), ψλ,n(ρ(x)))(i)

= θλ,nη(x)σ(ψλ,n(x), ψλ,n(ρ(x)))(i) (∵ (6.4) and K-invariance of F0).

Since η(x)σ(ψλ,n(x), ψλ,n(ρ(x))) ∈ K, the result just obtained above indicates that the

non-null subset Im(ρ) of X is included in the null set (XF0
)c. This is a contradiction.

Therefore, we complete the proof. �

Definition 6.30. We call the pair (G (σ),K(σ)) a Schlichting completion of the

Hecke pair (R,S). As we proved in this section, G (σ) is a locally compact Hausdorff

totally disconnected group, and K(σ) is an open and compact subgroup of G (σ). Hence

(G (σ),K(σ)) is a Hecke pair of groups.
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7. Dependency of the construction of the pair (G(σ),K(σ)).

7.1. Dependency of the construction.

In the preceding section, we saw that every set of preferable choice functions for a

Hecke pair (R,S) of ergodic equivalence relations produces a Hecke pair (G (σ),K(σ))

of groups in Per(I). The purpose of this section is to clarify how the construction of

(G (σ),K(σ)) depends on the choice of preferable choice functions.

Let σ : R → Per(I) be the index cocycle that arises from the preferable choice

functions {ψλ,n} of the Hecke pair (R,S) which we have been considering so far. Thus

c := σ|S is a minimal cocycle into the compact subgroup
∏

λ∈Λ P (λ) of Per(I). As before,

we set K := K(σ), the closed subgroup of
∏

λ∈Λ P (λ) generated by c(S).
Let σ′ : R → Per(I) be another index cocycle derived from another family of prefer-

able choice functions {ψ′λ,n}(λ,n)∈I of S ⊆ R. Since σ′ is cohomologous to σ, there is a

Borel function φ : X → Per(I) such that

σ′(x, y) = φ(x)σ(x, y)φ(y)−1 (7.1)

for a.e. (x, y) ∈ R. Thus there is an R-invariant Borel conull subset X ′ of X such

that (7.1) holds true for all (x, y) ∈ R ∩ (X ′ × X ′). Since {ψ′λ,n}(λ,n)∈I is preferable,

the restriction c′ := σ′|S of σ′ to S is a minimal 1-cocycle from S into the compact

group
∏

λ∈Λ P (λ). Let H be the closed subgroup of
∏

λ∈Λ P (λ) generated by c′(S). By

definition, we have

c′(x, y) = φ(x)c(x, y)φ(y)−1 that is, c′(x, y)φ(y) = φ(x)c(x, y) (7.2)

for a.e. (x, y) ∈ S. It follows that there exists an S-invariant Borel conull subset X(0) of

X, contained in X ′ defined above, such that with S(0) := S ∩ (X(0)×X(0)), which is a

conull subset of S, we have

c′(x, y) = φ(x)c(x, y)φ(y)−1 (∀(x, y) ∈ S(0)). (7.3)

Multiplying both sides of the second identity of (7.2) by H from the left and by K from

the right, we obtain

Hφ(y)K = Hφ(x)K. (7.4)

It follows that the assignment x ∈ X �−→ Hφ(x)K ∈ H\Per(I)/K from X into the

double coset space H\Per(I)/K is a Borel S-invariant function. Since H\Per(I)/K is a

standard Borel space, we find that this function is constant up to a null set. So there

exist an element τ ∈ Per(I) and an S-invariant conull subset X(1) of X, contained in

X(0) introduced above, such that

Hφ(x)K = HτK (7.5)

for all x ∈ X(1). Define a Borel function φ0 : X → Per(I) by
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φ0(x) =

{
φ(x) (x ∈ X(1)),

τ (x ∈ X \X(1)).

Then φ0 obviously satisfies (7.5) for all x ∈ X. We consider the set

A := {(x, h) ∈ X ×H : h−1φ0(x)K = τK}.

With two Borel functions f1 : X → Per(I)/K and f2 : H → Per(I)/K given by f1(x) =

φ0(x)K and f2(h) = hτK, we have A = {(x, h) : f1(x) = f2(h)}. It follows that A is a

Borel subset of X ×H. For each x ∈ X, the section Ax = {h ∈ H : (x, h) ∈ A} of A at x

is nonempty, thanks to (7.5). Moreover, since Ax = {h ∈ H : hτK = φ0(x)K}, we easily

see that Ax is closed, hence compact. By [19, Theorem 5.12.1], there is a Borel function

� : X → H such that (x, �(x)) ∈ A for all x ∈ X. This means that

φ0(x)K = �(x)τK (∀x ∈ X). (7.6)

By (7.6), we obtain a Borel function r : X → K satisfying

φ0(x) = �(x)τr(x) (∀x ∈ X). (7.7)

Let S1 := S ∩ (X(1)×X(1)), which is a conull subset of S. By (7.3), we have

c′(x, y) = �(x)τr(x)c(x, y)r(y)−1τ−1�(y)−1 (∀(x, y) ∈ S1) or,

�(x)−1c′(x, y)�(y) = τ · r(x)c(x, y)r(y)−1 · τ−1 (∀(x, y) ∈ S1). (7.8)

Note that the function c1(x, y) = r(x)c(x, y)r(y)−1 ((x, y) ∈ S) is a Borel 1-cocycle,

cohomologous to c, whose image is contained in K. Because c is minimal, it follows that

the closed subgroup Kc1 generated by c1(S) equals K. Likewise, the closed subgroup

Kc2 generated by the 1-cocycle c2 defined by c2(x, y) = �(x)−1c′′(x, y)�(y) is equal to H.

From this and (7.8), we find that

H = τKτ−1. (7.9)

Let Nσ be as before. From Lemma 6.8, we see that there is an R-invariant Borel

conull subset Zσ of X such that we have σ(x, y) ∈ G (σ) for all (x, y) ∈ R ∩ (Zσ × Zσ).

Set Z ′σ :=
(⋃

i∈I(ψ
′
i)
−1((Zσ)

c)
)c
, which is again an R-invariant conull subset.

We also know that there is a null set Nσ′ of X such that A (σ′, λ) = A (x, σ′, λ) for
all x ∈ (Nσ′)c. Set

X(2) = X(1) ∩ Zσ ∩

⎛⎝ ⋃
g∈G

⋃
i∈I

g(ψ′i)
−1(Nσ′)

⎞⎠c

.

By definition, X(2) is an R-invariant conull set. Let x ∈ X(2).

Hσ′(x, ψ′λ,n(x))H = Hφ(x)σ(x, ψ′λ,n(x))φ(ψ
′
λ,n(x))

−1H

= H�(x)τr(x)σ(x, ψ′λ,n(x))r(ψ
′
λ,n(x))

−1τ−1�(ψ′λ,n(x))
−1H
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= Hτr(x)σ(x, ψ′λ,n(x))r(ψ
′
λ,n(x))

−1τ−1H

= τ · τ−1Hτ · r(x)σ(x, ψ′λ,n(x))r(ψ′λ,n(x))−1 · τ−1Hτ · τ−1

= τ ·K · r(x)σ(x, ψ′λ,n(x))r(ψ′λ,n(x))−1 ·K · τ−1

= τ ·Kσ(x, ψ′λ,n(x))K · τ−1

⊆ τKG (σ)Kτ−1

= τ G (σ)τ−1.

From this, we obtain

A (x, σ′, λ) =
nλ⋃
n=1

Hσ′(x, ψ′λ,n(x))H ⊆ τ G (σ)τ−1.

It follows that G (σ′) ⊆ τ G (σ)τ−1. Reversing the roles of σ and σ′, we get G (σ) ⊆
τ−1G (σ′)τ . Therefore, we conclude that

G (σ′) = τ G (σ)τ−1. (7.10)

We now summarize what we have obtained so far in the theorems that follow.

Theorem 7.1. Let {ψλ,n}(λ,n)∈I and {ψ′λ,n}(λ,n)∈I be two preferable choice func-

tions of the Hecke pair (R,S). Let σ and σ′ be the corresponding index cocycles re-

spectively. Then the associated pairs (G (σ),K(σ)) and (G (σ′),K(σ′)) are conjugate in

Per(I). To be precise, there exists an element τ ∈ Per(I) such that

G (σ′) = τ G (σ)τ−1, K(σ′) = τK(σ)τ−1. (7.11)

Hence the conjugacy class of the pair (G (σ),K(σ)) in Per(I) is independent of the choice

of preferable choice functions of the Hecke pair (R,S).

Theorem 7.2. Let {ψλ,n}(λ,n)∈I be preferable choice functions of the Hecke pair

(R,S) and σ : R → Per(I) be the corresponding index cocycle.

(1) Let r : X → K(σ) be a Borel function, {ρi}i∈I be a family of maps in [S]∗ with

Dom(ρi) = X, and τ ∈ Per(I) be such that it satisfies τK(σ)τ−1 ⊆
∏

λ∈Λ P (λ). For

each i ∈ I, define a function ψ′i : X → X by ψ′i(x) := ρi(ψr(x)−1τ−1(i)(x)). Then {ψ′i}
are also preferable choice functions of (R,S) whose associated index cocycle σ′ satisfies
(G (σ′),K(σ′)) = (τ G (σ)τ−1, τK(σ)τ−1).

(2) Every set of preferable choice functions of (R,S) arises in the manner described

in (1).

Proof. (1) First, we prove that every ψ′i is Borel. It suffices to show that the

map γi(x) := ψr(x)−1τ−1(i)(x) is Borel for each i ∈ I. Fix an arbitrary (λ, n) ∈ I and

write τ−1(λ, n) = (λ′, n′). Note that r(x)−1 has the form r(x)−1(λ′, n′) = (λ′, f(x)(n′)),
where f(x) ∈ P (λ′). Since f : X → P (λ′) is Borel, {f−1({ξ}) : ξ ∈ P (λ′)} is a Borel

partition of X. Take any E ∈ B and ξ ∈ P (λ′). For x ∈ f−1({ξ}), we have
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x ∈ (γλ,n)
−1(E) ⇐⇒ ψr(x)−1(λ′,n′)(x) ∈ E

⇐⇒ ψλ′,f(x)(n′)(x) ∈ E

⇐⇒ x ∈ (ψλ′,ξ(n′))
−1(E).

From this, it follows that one has

(γλ,n)
−1(E) =

⊔
ξ∈P (λ′)

(ψ′λ,n)
−1(E) ∩ f−1({ξ}) =

⊔
ξ∈P (λ)

(ψλ′,ξ(n′))
−1(E) ∩ f−1({ξ}).

This shows that (γλ,n)
−1(E) is a Borel subset. Therefore, ψ′λ,n is Borel.

The fact that {ψ′λ,n} are choice functions can be easily verified, so we leave the

verification to the readers.

Let σ′ be the index cocycle associated with {ψ′λ,n}. Suppose that σ′(x, y)(i) = j.

This means that (ψ′j(x), ψ
′
i(y)) ∈ S, i.e., (ψr(x)−1τ−1(j)(x), ψr(y)−1τ−1(i)(y)) ∈ S, because

all ρi are in [S]∗. So

σ(x, y)(r(y)−1τ−1(i)) = r(x)−1τ−1(j) = r(x)−1τ−1(σ′(x, y)(i)).

It follows that

σ′(x, y) = τr(x)σ(x, y)r(y)−1τ−1 ((x, y) ∈ R). (7.12)

Define c := σ|S . By assumption, c is a minimal cocycle into
∏

λ∈Λ P (λ) whose image

generates K(σ) as a closed subgroup.

Claim. The restriction c′ of σ′ to S is a minimal cocycle in the compact group∏
λ∈Λ P (λ). The closed subgroup generated by c′(S) is τK(σ)τ−1. (Note that since τ

satisfies τK(σ)τ−1 ⊆
∏

λ∈Λ P (λ), τK(σ)τ−1 is a compact group.)

(∵) The function c1(x, y) = r(x)c(x, y)r(y)−1 ((x, y) ∈ S) is a Borel 1-cocycle, coho-

mologous to c, whose image is contained in K(σ). From the minimality of c, it follows

that the closed subgroup Kc1 generated by c1(S) equals K(σ). By (7.11), we find that

the closed subgroup generated by c′(S) is τK(σ)τ−1. So c′ is a 1-cocycle of S into the

compact group τK(σ)τ−1, and the closed subgroup generated by c′(S) is τK(σ)τ−1.

Take any Borel function q : X → τK(σ)τ−1, and set c′′(x, y) = q(x)c′(x, y)q(y)−1

((x, y) ∈ S). Then t(x) := τ−1q(x)τ · r(x) (x ∈ X) is a Borel function from X into K(σ)

and satisfies

c2(x, y) := t(x)c(x, y)t(y)−1 ∈ K(σ) ((x, y) ∈ S).

Thus c2 is a Borel 1-cocycle of S into K(σ), cohomologous to c. From the minimality of

c, it follows that the closed subgroup of K(σ) generated by c2 equals K(σ). This in turn

implies that

c′′(x, y) = q(x)c′(c, y)q(y)−1 = τ · t(x)c(x, y)t(y)−1 · τ−1 = τc2(x, y)τ
−1

generates, as a closed subgroup, τK(σ)τ−1. This proves that every 1-cocycle into
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τK(σ)τ−1 cohomologous to c′ engenders as a closed subgroup τK(σ)τ−1. Hence c′

is a minimal cocycle into τK(σ)τ−1. By [23, Theorem 3.9], c′ is still a minimal cocycle

into the compact group
∏

λ∈Λ P (λ).

By Claim above, we see that {ψ′λ,n} are also preferable choice functions.

(2) Let {ψ′λ,n}(λ,n)∈I be another family of preferable choice functions of (R,S) and
σ′ : R → Per(I) be the associated index cocycle. Since σ′ is cohomologous to σ, there is

a Borel function φ : X → Per(I) such that

σ′(x, y) = φ(x)σ(x, y)φ(y)−1 (7.13)

for a.e.(x, y) ∈ R. In fact, due to [10, Lemma 1.2 (b)], the function φ can be characterized

by the identity

S(ψ′i(x)) = S(ψφ(x)−1(i)(x)) (∀i ∈ I, ∀x ∈ X). (7.14)

Thus there is a family {ρi}i∈I of maps in [S]∗ with Dom(ρi) = X such that

ψ′i(x) = ρi(ψφ(x)−1(i)(x)) (∀x ∈ X). (7.15)

The restriction c′ := σ′|S of σ′ to S is a minimal 1-cocycle from S into the compact

group
∏

λ∈Λ P (λ). Let H be the closed subgroup of
∏

λ∈Λ P (λ) generated by c′(S) (that
is, H = K(σ′)). As we have proved in this section, there is τ ∈ Per(I) satisfying (7.5),

where K := K(σ). We know that τKτ−1 = H ⊆
∏

λ∈Λ P (λ). In particular, we have

Hτ = τK. Thus

Hφ(x)K = HτK = τK.

Hence there exists a Borel function r : X → K such that φ(x) = τr(x)(x ∈ X). Substi-

tuting this into (7.15), we completes the proof. �

7.2. Relation to the pair (r∗(σ), r∗(σ)0).
As in the previous subsection, we fix preferable choice functions {ψλ,n}(λ,n)∈I of a

Hecke pair (R,S), and denote by σ the corresponding index cocycle, where I = {(λ, n) :
λ ∈ Λ, n = 1, . . . , nλ}.

First, let us note that by Proposition 4.4, the stabilizer r∗(σ)0 at 0 of the asymptotic

range r∗(σ) of σ is nothing but r∗(c), where c := σ|S . Recall that we explained at the

end of Section 5 that r∗(c) actually coincides with K(σ). As mentioned at the beginning

of Section 5, this property of the cocycle c is usually referred to as regularity of c. We

explained in Section 5 how the regularity of c follows from the results in [23] and [17].

Let us indicate that one can also show the regularity of c by using [2, Proposition 7.4].

In any case, this fact together with Theorem 7.1 implies the following

Proposition 7.3. The stabilizer r∗(σ)0 at 0 of the asymptotic range r∗(σ) of σ
equals K(σ).

Proposition 7.4. The asymptotic range r∗(σ) coincides with G (σ).
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Proof. It suffices to show that θλ,n is in r∗(σ) for each (λ, n) ∈ I. For this, we

shall show that θλ,n is in the essential range of σ|R∩X′×X′ for each nonnull Borel subset

X ′ of X.

Let the notation be as in the proof of Proposition 6.29.

We proved there that E = {x ∈ X : σ(x, ψλ,n(x)) ∈ θλ,nK} is a null set. Recall

that we have E =
⋃

F∈F(I) XF . Hence XF is null for any F ∈ F(I). Fix a K-invariant

F0 ∈ F(I) and set Λ0 := qΛ(F0). Put X0 = X ′ ∩XF0
, which is a conull Bore subset of

X ′. By the definition of XF0
, we see that for every x ∈ X0, there exists kx ∈ K such

that the equation σ(x, ψλ,n(x))(i) = θλ,nkx(i) holds for all i ∈ F0. Suggested by this, we

define a subset B of X0 ×K by

B := {(x, k) ∈ X0 ×K : θ−1
λ,nσ(x, ψλ,n(x))(i) = k(i) (∀i ∈ F0)}.

So (x, kx) ∈ B for all x ∈ X0. Remark that with the map pa : Map(I) → I introduced

in Section 4 and the continuous map f : Per(I)×K → Per(I) given by f(φ, k) = k−1φ,

we have

B =
(
(θ−1

λ,n ◦ σ ◦ (idX0
× ψλ,n|X0

)× idK

)−1

◦ f−1

(⋂
i∈F

p−1
i ({i})

)
.

This proves that B is Borel. Let pr1 : X0 × K → X0 be the projection onto the first

coordinate : pr1(x, k) = x. Then, since (x, kx) ∈ B, the map pr1 is onto. By von

Neumann selection theorem (see [7, Theorem I.14] for example), there exist a conull

Borel subset Y0 in X0 (hence conull in X ′ in particular) and a Borel map ξ : Y0 → K

such that (y, ξ(y)) ∈ B for all y ∈ Y0. By using the same arguments as in the proof

of Proposition 6.29, there are non-null Borel subset Z0 of Y0 and an element g in the

finite group πΛ0
(K) such that πΛ0

(ξ(z)) = g for all z ∈ Z0. Since K = r∗(σ|S) ⊂ r∗(σ)
and PΛ0

(⊂ S) is ergodic, there exists ρ ∈ [S]∗ which satisfies Dom(ρ) ⊂ ψλ,n(Z0),

Im(ρ) ⊂ X ′ and πΛ0
(σ(ψλ,n(x), ρ(ψλ,n(x)))) = g−1. It then follows that for any z ∈ Z0

and any i ∈ F0, we have

σ(z, ρ(ψλ,n(z)))(i) = σ(z, ψλ,n(z))σ(ψλ,n(z), ρ(ψλ,n(z)))(i) = θλ,ng · g−1(i) = θλ,n(i).

Since F0 is arbitrary, we conclude that θλ,n is in the essential range of σ|R∩X′×X′ .

Therefore, we complete the proof. �

Proposition 7.5. The Schlichting completion (G (σ),K(σ)) of the Hecke pair

(R,S) is reduced in the sense that K(σ) contains no nontrivial normal subgroup of G (σ).

Proof. Suppose that H is a subgroup of K(σ) which is normal in G (σ). We

shall show that H is trivial. Put P := σ−1(H). By Proposition 7.4, we have that H is

contained in r∗(σ). So it suffices to show that P coincides with Ker(σ). By Lemma 6.27,

we have that G (σ) is equal to
⋃

i∈I θiK(σ) and σ(x, ψi(x)) ∈ θiK(σ) for a.e. x ∈ X. So,

for a.e. (x, y) ∈ P and i ∈ I, we have

σ(ψi(x), ψi(y)) = σ(ψi(x), x)σ(x, y)σ(y, ψi(y)) ∈ K(σ)θ−1
i HθiK(σ) = K(σ).
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It means that σ(x, y)(i) = i. This completes the proof. �

8. On the Hecke von Neumann algebra H∗(R,S).

We briefly review the construction of the Hecke von Neumann algebra H∗(R,S).
Consider the set L∞(I ×X)S of all functions F in L∞(I ×X,μc × μ) satisfying

F (i, x) = F (σ(y, x)(i), y) for a.e. (x, y) ∈ S and all i ∈ I,

where μc is the counting measure on I. By [4, Lemma 9.7], the map Ξ: I × X → Λ

defined by Ξ((λ, n), x) = λ induces a ∗-isomorphism Ξ∗ from �∞(Λ) onto L∞(I × X)S

given by Ξ∗(f) := f ◦ Ξ, where f ∈ �∞(Λ). Set Fλ := Ξ∗(δλ) for all λ ∈ Λ. Refer

to [4, Sections 8 and 9] for basic properties of {Fλ}λ∈Λ. We define a faithful normal

semifinite trace Ω on L∞(I ×X)S given by

Ω(F ) =
∑
λ∈Λ

|f(λ)|nλ,

where F = Ξ∗(f).
We denote by I(R,S) the set of all functions F in L∞(I × X)S satisfying, with

F = Ξ∗(f),

‖F‖1,
 :=
∑
λ∈Λ

|f(λ)|nλ < ∞ and ‖F‖1,r :=
∑
λ∈Λ

|f(λ−1)|nλ < ∞.

For any F ∈ L∞(I ×X)S , define a Borel function F � on I ×X by

F �(i, x) := F (σ(ψi(x), x)(0), ψi(x)) ((i, x) ∈ I ×X),

which can be proved to belong to I(R,S) as well (see [4, p. 643]). Thus I(R,S) is a

subspace of L∞(I ×X)S which is closed under the �-operation. Since Ξ∗(δλ) = Fλ for

any λ ∈ Λ, the linear span I0(R,S) of {Fλ : λ ∈ Λ} is contained in I(R,S). Because

I0(R,S) is σ-strongly* dense in L∞(I ×X)S , so is I(R,S). If F ∈ nΩ and Ξ∗(f) = F ,

then

‖ΛΩ(F )‖2 =
∑
λ∈Λ

|f(λ)|2nλ.

From this, we see that I(R,S) is contained in nΩ. Since I0(R,S) is σ-strongly* dense

∗-subalgebra contained in nΩ, it follows that ΛΩ(I0(R,S)) is dense in the GNS Hilbert

space HΩ. In particular, ΛΩ(I(R,S)) is total in HΩ.

Let F1 and F2 be in I(R,S). Define a Borel function F1 ∗ F2 on I ×X by

(F1 ∗ F2)(i, x) :=
∑
j∈I

F1(σ(ψj(x), x)(i), ψj(x))F2(j, x). (8.1)

This defines an associative product on I(R,S) which makes it a �-algebra. I0(R,S)
is a �-subalgebra of I(R,S), which we call the algebraic Hecke algebra associated with
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(R,S). It turns out that ΛΩ(I(R,S)) is a left Hilbert algebra in HΩ. We call the left

von Neumann algebra of ΛΩ(I(R,S)) the Hecke von Neumann algebra associated with

(R,S), and denote it by H∗(R,S). Let πl be the left multiplication of the left Hilbert

algebra ΛΩ(I(R,S)). So, by definition, we have πl(ΛΩ(I(R,S)))′′ = H∗(R,S). Thus

F ∈ I(R,S) �−→ πl(ΛΩ(F ))

defines a ∗-representation of the involutive algebra I(R,S), which we still denote by πl.

Hence

πl(I(R,S))σ-strong* = H∗(R,S).

It is also true that

πl(I0(R,S))σ-strong* = H∗(R,S).

It is proved in [4] among other things that if W ∗(S) ⊆ W ∗(R) ⊆ A1 ⊆ A2 is the basic

extension of the inclusion W ∗(S) ⊆ W ∗(R), then A2 ∩ A′ is ∗-isomorphic to H∗(R,S).
This particularly shows that H∗(R,S) is independent of the choice of choice functions

for S ⊆ R.

Define �∞1 (Λ) := (Ξ∗)−1(I(R,S)) and �∞0 (Λ) := (Ξ∗)−1(I0(R,S)). By definition,

�∞0 (Λ) is the linear span of the set {δλ : λ ∈ Λ}. Hence �∞0 (Λ) consists of functions on

Λ with finite support. One can transport the �-algebraic structure of I(R,S) to �∞1 (Λ).

We still denote by ∗ and � the corresponding convolution and involution on �∞1 (Λ). Then

Lemma 9.8 in [4] tells us that

f �(λ) = f(λ−1) (8.2)

holds for any f ∈ �∞1 (Λ). To see how the convolution on �∞0 (Λ) is defined, we pay

attention to the equality obtained on page 648 in [4], which is

(Fλ1 ∗ Fλ2)((λ, n), x) =

nλ2∑
k=1

χCλ1
(ψλ2,k(x), ψλ,n(x)). (8.3)

Throughout the remainder of this section, we consider the situation taken up in

Section 6. Let K be the open and compact subgroup K(σ). Fix arbitrary λ1, λ2 ∈ Λ in

what follows. By Lemma 6.26 (3), there exists a conull Borel subset X(λ2) of X such

that σ(x, ψλ2,m(x)) ∈
⋃nλ2

n=1 θλ2,nK for all x ∈ X(λ2) and all m ∈ {1, . . . , nλ2
}. Fix any

k1 ∈ {1, . . . , nλ1
} and any k2 ∈ {1, . . . , nλ2

}. Define φk2
: X → K by

φk2(x) :=

{
θ−1
λ2,k2

σ(x, ψλ2,k2(x)) if x ∈ X(λ2),

id if x ∈ X(λ2)
c.

Since σ(x, ψλ2,k2(x)) ∈ θλ2,k2K for all x ∈ X(λ2), the image of φk2 is indeed contained

in K.

For the next lemma, recall that for each λ0 ∈ Λ, the Borel subset Ek1,k2

λ0
defined by
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Ek1,k2

λ0
:= {x ∈ X : (x, ψλ1,k1(ψλ2,k2(x))) ∈ Cλ0}

was introduced in Section 9 of [4] (see the discussion on page 649 there).

Lemma 8.1. Let λ0 ∈ Λ. For x ∈ X(λ2) to belong to Ek1,k2

λ0
, it is necessary and

sufficient that it should satisfy θλ2,k2
θφk2

(x)(λ1,k1) ∈ Kθλ0,1K.

Proof. Let x ∈ X(λ2).

Suppose first that x ∈ Ek1,k2

λ0
. So (x, ψλ1,k1

(ψλ2,k2
(x))) ∈ Cλ0

. By the definition of

Cλ0
, there exists z ∈ X such that (x, z) ∈ S and (ψλ0,1(z), ψλ1,k1

(ψλ2,k2
(x))) ∈ S. Thus

σ(x, z) ∈ K and σ(z, ψλ2,k2
(x))(λ1, k1) = (λ0, 1).

This yields

σ(x, ψλ2,k2
(x))(λ1, k1) = σ(x, z)(λ0, 1).

By the definition of φk2 , we have σ(x, ψλ2,k2(x))=θλ2,k2φk2(x). Hence the identity above

can be written as

θλ2,k2
φk2

(x)(λ1, k1) = σ(x, z)(λ0, 1).

Because φk2(x)(λ1, k1) = θφk2
(x)(λ1,k1)(0) and (λ0, 1) = θλ0,1(0), it follows that

θλ2,k2
θφk2

(x)(λ1,k1)(0) = σ(x, z)θλ0,1(0).

Namely,

(θλ0,1)
−1σ(z, x)θλ2,k2

θφk2
(x)(λ1,k1)(0) = 0.

This means that (θλ0,1)
−1σ(z, x)θλ2,k2

θφk2
(x)(λ1,k1) ∈ K, because the stabilizer subgroup

of G at 0 ∈ I coincides with K due to the results obtained before. Hence

θλ2,k2
θφk2

(x)(λ1,k1) ∈ σ(x, z)θλ0,1K ⊆ Kθλ0,1K.

Assume conversely that x satisfies θλ2,k2
θφk2

(x)(λ1,k1) ∈ Kθλ0,1K. By Lemma 6.26

(2), there exist h ∈ K and m ∈ {1, . . . , nλ0} such that θλ2,k2θφk2
(x)(λ1,k1) = θλ0,mh.

Hence we have

θλ2,k2
θφk2

(x)(λ1,k1)(0) = θλ0,mh(0),

θλ2,k2
φk2

(x)(λ1, k1) = θλ0,m(0),

σ(x, ψλ2,k2
(x))(λ1, k1) = (λ0,m),

(ψλ0,m(x), ψλ1,k1
(ψλ2,k2

(x))) ∈ S,
(x, ψλ1,k1

(ψλ2,k2
(x))) ∈ Cλ0,m = Cλ0

.

Therefore, x ∈ Ek1,k2

λ0
. �

According to the arguments on page 649 in [4], there corresponds to each pair
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(k1, k2), where k1 ∈ {1, . . . , nλ1} and k2 ∈ {1, . . . , nλ2}, an index λk1,k2 ∈ Λ such that

E :=
⋂nλ1

k1=1

⋂nλ2

k2=1 E
k1,k2

λk1,k2
is a non-null Borel subset of X. Put Λ0 := {λk1,k2

: k1 ∈
{1, . . . , nλ1

}, k2 ∈ {1, . . . , nλ2
}}.

Lemma 8.2. In the notation introduced above, we have

Λ0={λ∈Λ: ∃k1∈{1, . . . ,nλ1} and ∃k2∈{1, . . . ,nλ2} such that θλ2,k2θλ1,k1 ∈Kθλ,1K}.

Proof. Take any λ0 ∈Λ0. By definition, there exist k1 ∈ {1, . . . , nλ1
} and k2 ∈

{1, . . . , nλ2} such that λ0 = λk1,k2 . Choose any x ∈ E =
⋂nλ1

k1=1

⋂nλ2

k2=1 E
k1,k2

λk1,k2
. Since x ∈

Ek1,k2

λk1,k2
, it follows from Lemma 8.1 that θλ2,k2

θφk2
(x)(λ1,k1) ∈ Kθλk1,k2

,1K = Kθλ0,1K.

Because φk2
(x) is in K, φk2

(x)(λ1, k1) has the form (λ1,m) = φk2
(x)(λ1, k1) for some

m ∈ {1, . . . , nλ1
}. Then θλ2,k2

θλ1,m ∈ Kθλ0,1K.

Next let λ∈Λ have the property that there exist k1 ∈{1, . . . , nλ1
} and k2 ∈

{1, . . . , nλ2
} such that θλ2,k2

θλ1,k1
∈ Kθλ,1K. Again, choose one x ∈ E. Then there is a

unique m ∈ {1, . . . , nλ1
} such that φk2

(x)(λ1,m) = (λ1, k1). By Lemma 8.1, we have

Kθλ,1K � θλ2,k2θλ1,k1

= θλ2,k2
θφk2

(x)(λ1,m)

∈ Kθλm,k2
,1K (∵ x ∈ Em,k2

λm,k2
).

It follows that Kθλ,1K = Kθλm,k2
,1K. Hence we have to have λ = λm,k2 ∈ Λ0. �

As in the arguments in Section 9 of [4] (see page 648 there), for each λ ∈ Λ, let us

look at the Borel subset Kλ1

λ2,λ
of X defined by

Kλ1

λ2,λ
:=

nλ⋃
k=1

nλ2⋃
k2=1

{x ∈ X : (ψλ2,k2
(x), ψλ,k(x)) ∈ Cλ1

}.

It was observed that

• Kλ1

λ2,λ
is either null or conull;

• For any λ ∈ Λ \ Λ0, K
λ1

λ2,λ
is contained in E, so it is null.

Lemma 8.3. For λ ∈ Λ to belong to Λ0, it is necessary and sufficient that Kλ1

λ2,λ

is conull. Therefore,

Λ0 = {λ ∈ Λ: Kλ1

λ2,λ
is conull}.

Proof. Let λ ∈ Λ.

As noted just before this lemma, λ belongs to Λ0 if Kλ1

λ2,λ
is conull.

Suppose that λ∈Λ0. By definition, there are k1 ∈{1, . . . , nλ1
} and k2 ∈{1, . . . , nλ2

}
such that λ = λk1,k2

. Let us take an arbitrary x ∈ E. Since x particularly belongs to

Ek1,k2

λ = Ek1,k2

λk1,k2
, it follows that (x, ψλ1,k1

(ψλ2,k2
(x))) ∈ Cλ. Thus there exists z ∈ X

such that (x, z) ∈ S and (ψλ,1(z), ψλ1,k1(ψλ2,k2(x))) ∈ S. The second fact implies that
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σ(z, ψλ2,k2(x))(λ1, k1) = (λ, 1). Applying σ(x, z) to both sides yields

σ(x, ψλ2,k2
(x))(λ1, k1) = σ(x, z)(λ, 1).

Since σ(x, z) ∈ K, there is some m ∈ {1, . . . , nλ} such that σ(x, z)(λ, 1) = (λ,m). Hence

we obtain

σ(x, ψλ2,k2
(x))(λ1, k1) = (λ,m).

Due to the proof of Lemma 8.5 of [4] (or one of the results in Section 3.1), we see that

(ψλ2,k2
(x), ψλ,m(x)) ∈ Cλ1

. Hence x belongs to Kλ1

λ2,λ
. We have proved that the non-null

subset E is contained in Kλ1

λ2,λ
. Because Kλ1

λ2,λ
is either null or conull, it must be conull.

�

Set Xλ1,λ2
=

(⋂
λ∈Λ0

Kλ1

λ2,λ

)
∩
(⋂

λ∈Λ\Λ0

(
Kλ1

λ2,λ

)c)
∩X(λ2). Thanks to the results

obtained so far, Xλ1,λ2
is a conull Borel subset of X. In [4] (refer to one of the equations

on page 648), we obtained the identity

(Fλ1 ∗ Fλ2)((λ, n), x) =

nλ2∑
k2=1

χCλ1
(ψλ2,k2(x), ψλ,n(x)). (8.4)

As in the arguments on page 650 in [4], one can easily show by using the identity above

that (Fλ1 ∗ Fλ2)((λ, n), x) = 0 whenever λ ∈ Λ \ Λ0 and x ∈ Xλ1,λ2
.

Suppose now that λ ∈ Λ0 and x ∈ Xλ1,λ2
. Due to the proof of Lemma 8.5 of [4] (or

one of the results in Section 3.1), we have

χCλ1
(ψλ2,k2

(x),ψλ,n(x))=1 ⇐⇒ (ψλ2,k2
(x),ψλ,n(x))∈Cλ1

⇐⇒ ∃k1∈{1, . . . ,nλ1
} s.t. (λ,n)=σ(x,ψλ2,k2

(x))(λ1,k1).

Owing to this equivalence, (8.4) can be reduced to the form

(Fλ1 ∗ Fλ2)((λ, n), x) =

nλ1∑
k1=1

nλ2∑
k2=1

δ(λ,n), σ(x,ψλ2,k2
(x))(λ1,k1). (8.5)

Since x ∈ X(λ2), it follows that σ(x, ψλ2,k2
(x))(λ1, k1) = θλ2,k2

φk2
(x)(λ1, k1). For a

fixed k2, we have

{φk2(x)(λ1, k1) : k1 ∈ {1, . . . , nλ1}} = {(λ1, k1) : k1 ∈ {1, . . . , nλ1}},

because φk2
(x) ∈ K. Hence (8.5) can be further reduced to the form

(Fλ1 ∗ Fλ2)((λ, n), x) =

nλ1∑
k1=1

nλ2∑
k2=1

δ(λ,n),θλ2,k2
(λ1,k1). (8.6)

We observe



1656 H. Aoi and T. Yamanouchi

(λ, n) = θλ2,k2(λ1, k1) ⇐⇒ θλ,n(0) = θλ2,k2θλ1,k1(0)

⇐⇒ (θλ,n)
−1θλ2,k2

θλ1,k1
(0) = 0

⇐⇒ (θλ,n)
−1θλ2,k2

θλ1,k1
∈ K

⇐⇒ θλ2,k2
θλ1,k1

∈ θλ,nK.

From this, we obtain

(Fλ1 ∗Fλ2)((λ,n),x)=
∣∣{(k1,k2)∈{1,...,nλ1

}×{1,...,nλ2
} : θλ2,k2

θλ1,k1
∈θλ,nK}

∣∣. (8.7)

So, for any n ∈ {1, . . . , nλ}, we define

P (λ)n = {(k1, k2) ∈ {1, . . . , nλ1
} × {1, . . . , nλ2

} : θλ2,k2
θλ1,k1

∈ θλ,nK}.

Let n ∈ {1, . . . , nλ}. Since θλ,n ∈ Kθλ,1K, there are h1, h2 ∈ K such that θλ,1 =

h1θλ,nh2. Take any (k1, k2) ∈ Pn. By Lemma 6.26 (1), there is a unique ψ(k2) ∈
{1, . . . , nλ2} such that h1θλ2,k2 = θh1(λ2,k2)K = θλ2,φ(k2)K. This in turn implies that

there is a unique h ∈ K such that h1θλ2,k2
= θλ2,φ(k2)h. By Lemma 6.26 (1) again, there

is a unique φ(k1) ∈ {1, . . . , nλ1
} such that hθλ1,k1

∈ θλ1,φ(k1)K. Thus we obtain

θλ2,φ(k2)θλ1,φ(k1) ∈ θλ2,ψ(k2) · hθλ1,k1
K

= θλ2,ψ(k2)h · θλ1,k1K

= h1θλ2,k2
θλ1,k1

K

⊆ h1 · θλ,nK ·K (∵ θλ2,k2
θλ1,k1

∈ θλ,nK)

= h1θλ,nh2K

= θλ,1K.

Hence (φ(k1), ψ(k2)) ∈ P (λ)1. In this way, we obtain a map F : P (λ)n → P (λ)1 given

by F (k1, k2) = (φ(k1), ψ(k2)).

Claim. The map F is bijective.

Proof of Claim. Suppose that F (k1, k2) = F (k′1, k
′
2). First, by definition, ψ(k2)

and ψ(k′2) are determined by the equations

h1(λ2, k2) = (λ2, ψ(k2)) and h1(λ2, k
′
2) = (λ2, ψ(k

′
2)).

If ψ(k2) = ψ(k′2), then k2 = k′2 by the bijectivity of h1. From this, we see that φ(k1) and

φ(k′1) are determined by the equations

h(λ1, k1) = (λ1, φ(k1)) and h(λ1, k
′
1) = (λ1, ψ(k

′
1)).

If φ(k1) = φ(k′1), then k1 = k′1 by the bijectivity of h. Hence F is injective.

To prove that F is surjective, take any (l1, l2) ∈ P (λ)1. By Lemma 6.26 (1) again,

there is a unique k2 ∈ {1, . . . , nλ2
} such that h−1

1 (λ2, l2) = (λ2, k2) and (h1)
−1θλ2,l2 ∈

θλ2,k2
K. So there exists a unique h′ ∈K such that (h1)

−1θλ2,l2 = θλ2,k2
h′. By Lemma 6.26
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(1) again, there is a unique k1 ∈ {1, . . . , nλ1} such that h′(λ1, l1) = (λ1, k1) and h′θλ1,l1 ∈
θλ1,k1K. Thus we obtain

θλ2,k2
θλ1,k1

∈ (h1)
−1θλ2,l2(h

′)−1 · h′θλ1,l1K

= (h1)
−1θλ2,l2θλ1,l1K

⊆ (h1)
−1 · θλ,1K ·K (∵ θλ2,l2θλ1,l1 ∈ θλ,1K)

= θλ,nh2K

= θλ,nK.

This shows that (k1, k2) belongs to P (λ)n. Because of how k1 and k2 are defined above,

one can verify that F (k1, k2) = (l1, l2). �

Thanks to Claim, it makes sense to define

Cλ1,λ2

λ = |P (λ)1| ∈ N ∪ {0} (λ1, λ2, λ ∈ Λ).

Owing to Lemma 8.2, we find that Cλ1,λ2

λ > 0 for all λ ∈ Λ0. Then from (8.7), we obtain

(Fλ1 ∗ Fλ2)((λ, n), x) = Cλ1,λ2

λ . (8.8)

Hence

Fλ1 ∗ Fλ2 =
∑
λ∈Λ0

Cλ1,λ2

λ Fλ. (8.9)

This proves that we have the identity

δλ1
∗ δλ2

=
∑
λ∈Λ0

Cλ1,λ2

λ δλ (λ1, λ2 ∈ Λ). (8.10)

This, together with (8.2), completely describes the involutive(�)-algebraic structure of

�∞0 (Λ). Note that we should write Λ0(λ1, λ2) for Λ0, for it completely depends on the

pair (λ1, λ2).

9. Review on the Hecke von Neumann algebra W ∗(G,K) associated

with a Hecke pair (G,K) of groups.

Throughout this section, we fix a Hecke pair (G,K) of groups. Hence G is a locally

compact Hausdorff totally connected group, and K is an open and compact subgroup of

G. We freely identify

• the functions on K\G with the left K-invariant functions on G ;

• the functions on G/K with the right K-invariant functions on G ;

• the functions on K\G/K with the two-sided K-invariant functions on G.

Let H(G,K) be the vector space consisting of all functions on the discrete space

K\G/K, identified freely with the two-sided K-invariant functions on G, with finite
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support. If we fix a complete set of the representatives {tq}q∈K\G of the right coset

space K\G satisfying tK = id, then the equation

(f1 ∗ f2)(g) =
∑

q∈K\G
f1(gt

−1
q )f2(tq) (f1, f2 ∈ H(G,K)) (9.1)

defines an associative product operation on H(G,K), which is independent of a choice

of the representatives {tq}q∈K\G. We also have an expression

(f1 ∗ f2)(g) =
∑

p∈G/K

f1(sp)f2(s
−1
p g) (g ∈ G), (9.2)

where {sp}p∈G/K is a complete set of representatives of the left coset space G/K. We

also let {qc ∈ K\G : c ∈ K\G/K} be a complete set of representatives of K\G/K

satisfying qK = K ∈ K\G. We simply write tc for tqc for each c ∈ K\G/K. Consider

the right K-action K � K\G: (q, k) ∈ K\G×K → q · k ∈ K\G. One can easily check

that the stabilizer group KKg at the point Kg ∈ K\G equals K ∩ g−1Kg. Note that

|KKg\K| = L(g), where L(g) is in general defined by L(g) = [K : K∩g−1Kg]. IfKg = qc
for some c ∈ K\G/K, then we get |Kqc\K| = |KKtc\K| = L(tc). For any c ∈ K\G/K,

we choose a set {k(c)i : 1 ≤ i ≤ L(tc)} ⊆ K of representatives of the right coset space

Kqc\K. Then, by construction, the points qck
(c)
i (c ∈ K\G/K, 1 ≤ i ≤ L(tc)) are all

distinct and K\G = {qck(c)i : c ∈ K\G/K, 1 ≤ i ≤ L(tc)}.
Let f ∈ H(G,K) with supp(f) := {c ∈ K\G/K : f(c) �= 0}. With the notation

introduced above, we have,

∑
q∈K\G

f(q) =
∑

c∈K\G/K

L(tc)∑
i=1

f(qck
(c)
i ) =

∑
c∈K\G/K

L(tc)∑
i=1

f(qc) (9.3)

=
∑

c∈K\G/K

f(qc)L(tc) =
∑

c∈supp(f)
f(c)L(tc).

This particularly shows that f belongs to �r(K\G) for any r ∈ [1,∞]. Now take any

ξ ∈ �2(K\G). As in Equation (9.1), define a function f ∗ ξ on G by

(f ∗ ξ)(g) =
∑

q∈Γ\G
f(gt−1

q )ξ(tq) (g ∈ G). (9.4)

As we have observed before, we see that f ∗ ξ is independent of a choice of the repre-

sentatives {tq}, and that it is right K-invariant. Thus we regard f ∗ ξ as a function on

K\G.

It can be shown that f ∗ ξ belongs to �2(K\G) and ‖f ∗ ξ‖2 ≤
√

‖f‖1,l‖f‖1,r ‖ξ‖2,
where

‖f‖1,l =
∑

c∈supp(f)
|f(c)|L(t−1

c ), ‖f‖1,r :=
∑

c∈supp(f)
|f(c)|L(tc). (9.5)

It follows that, for each f ∈ H(G,K), the equation
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L(f)ξ := f ∗ ξ (ξ ∈ �2(K\G))

defines a bounded operator L(f) on �2(K\G) satisfying ‖L(f)‖≤
√
‖f‖1,l‖f‖1,r. It is

easy to check that L : H(G,K) → B(�2(K\G)) is a representation. We call L the regular

representation of the Hecke algebra H(G,K). One can check also that L(χe) is the

identity operator. Thus L is a unital map.

For any f ∈ H(G,K), define a function f � on G by f �(g) := f(g−1). Clearly, f �

is two-sided K-invariant, so it is regarded as a function on K\G/K. With the nota-

tion introduced before, we have f �(c) = f(t−1
c ) for all c ∈ K\G/K. Since supp(f �)

= {Kt−1
c K ∈ K\G/K : c ∈ supp(f)}, f � too has finite support. Hence it belongs

to H(G,K). One can verify that the operation � defined above makes H(G,K) an

involutive(�) algebra. One can easily verify that L(f)∗ = L(f �). Therefore, L is a

∗-representation. Remark that L is faithful, because L(f)χK = f for any f ∈ H(G,K).

Definition 9.1. We denote by W ∗(G,K) the von Neumann algebra generated by

the unital ∗-subalgebra L(H(G,K)) and call it the Hecke von Neumann algebra associ-

ated with the Hecke pair (G,K).

It is known that χK ∈ �2(K\G) is a separating vector for W ∗(G,K). Thus the

equation

ω0(x) := (xχK | χK) (x ∈ W ∗(G,K))

defines a faithful normal state on W ∗(G,K). It is easy to verify that

ω0(L(f)) = f(e), ω0(L(g)∗L(f)) =
∑

c∈K\G/K

f(tc)g(tc)L(td). (9.6)

In what follows, we consider the situation taken up in Section 6. We let G := G (σ)

and K := K(σ). From

Kθλ,nK = (Kθλ−1,1K)−1 =

(nλ−1⋃
n=1

θλ−1,nK

)−1

=

nλ−1⋃
n=1

K(θλ−1,n)
−1, (9.7)

we may choose {K(θλ−1,n)
−1 : λ ∈ Λ, n ∈ {1, . . . , nλ−1}} for a complete set of represen-

tatives of K\G. Namely, with the previous notation, we have tK(θλ−1,n)
−1 = (θλ−1,n)

−1.

The double coset space K\G/K equals {Kθλ,1K}λ∈Λ, so it is parametrized by the set

Λ. Hence one can choose {K(θλ−1,1)
−1}λ∈Λ for the complete set {qc} of representatives

of K\G/K. More precisely, with the previous notation, we have qKθλ,1K = K(θλ−1,1)
−1

with c = Kθλ,1K, since K(θλ−1,1)
−1K = Kθλ,1K for all λ ∈ Λ. In particular, tKθλ,1K =

(θλ−1,1)
−1. In this case, the convolution (9.1) becomes

(f1 ∗ f2)(g) =
∑
λ∈Λ

nλ−1∑
n=1

f1(gθλ−1,n)f2((θλ−1,n)
−1). (9.8)

Because {θλ,nK : (λ, n) ∈ I} is a complete set of representatives of the left coset space
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G/K, it follows from (9.2) that the convolution (9.1) can be also written in the form

(f1 ∗ f2)(g) =
∑

(λ,n)∈I
f1(θλ,n)f2((θλ,n)

−1g). (9.9)

The equation (9.3) has the form

∑
λ∈Λ

nλ−1∑
n=1

f(K(θλ−1,n)
−1) =

∑
λ∈Λ

f(Kθλ,1K)L((θλ−1,1)
−1) =

∑
λ∈Λ

f(Kθλ,1K)nλ−1 . (9.10)

Also note that we have

‖f‖1,l =
∑
λ∈Λ

|f(Kθλ,1K)|nλ, ‖f‖1,r =
∑
λ∈Λ

|f(Kθλ,1K)|nλ−1 . (9.11)

Fix any c1 = Kθλ1,1K and c2 = Kθλ2,1K in K\G/K. Let c = KgK ∈ K\G/K be

arbitrary. By (9.9), we have

(δc1 ∗ δc2)(c) =
∑

(λ,n)∈I
δKθλ1,1K(θλ,n)δKθλ2,1K((θλ,n)

−1g).

Note that

δKθλ1,1K(θλ,n) = 1 ⇐⇒ λ = λ1.

From this, we get

(δc1 ∗ δc2)(c) =
nλ1∑
n=1

δKθλ2,1K((θ(λ1),n)
−1g).

Now we observe that

δKθλ2,1K((θλ1,n)
−1g) = 1 ⇐⇒ (θλ1,n)

−1g ∈ Kθλ2,1K

⇐⇒ g ∈ θλ1,nθλ2,k2K for some k2 ∈ {1, . . . , nλ2}
⇐⇒ KgK ⊆ Kθλ1,1Kθλ2,1K.

Suggested by this, we introduce the number Dc1,c2
c by

Dc1,c2
c =

∣∣{(k1, k2) : θλ1,k1θλ2,k2 ∈ gK}
∣∣ ∈ N ∪ {0}, (9.12)

where c1 = Kθλ1,1K, c2 = Kθλ2,1K and c = KgK. Then, from the results above, we

obtain

(δc1 ∗ δc2)(c) = Dc1,c2
c . (9.13)

Therefore, we obtain
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δc1 ∗ δc2 =
∑

c∈K\G/K
c⊆Kθλ1,1Kθλ2,1K

Dc1,c2
c δc, (9.14)

where c1 = Kθλ1,1K, c2 = Kθλ2,1K, as before.

10. Relation between H∗(R,S) and W ∗(G,K).

Again, we consider the situation taken up in Section 6. We let G := G (σ) and

K := K(σ).

We define a map Φ from �∞(Λ) into �∞(K\G/K) by

Φ(f) =
∑
λ∈Λ

f(λ−1) δKθλ,1K (f ∈ �∞(Λ)). (10.1)

It is easy to see that Φ is indeed a ∗-isomorphism between abelian von Neumann algebras

�∞(Λ) and �∞(K\G/K). The restriction of Φ to �∞0 (Λ) will be still denoted by Φ, which

is a vector space isomorphism from �∞0 (Λ) onto H(G,K). Let f ∈ �∞0 (Λ). Then

Φ(f �) =
∑
λ∈Λ

f �(λ−1) δKθλ,1K

=
∑
λ∈Λ

f(λ) δKθλ,1K

=
∑
λ∈Λ

f(λ) δKθλ,1K

= Φ(f)�.

Thus Φ is involutive (i.e., preserves the �-operation).

For the next proposition, let us introduce the notation: for any f ∈ �∞0 (Λ), define

f∨ by f∨(λ) = f(λ−1). We use the same notation for the functions in H(G,K): η∨(g) =
η(g−1) (η ∈ H(G,K)). Then by a straightforward computation, we can verify the fol-

lowing

Lemma 10.1. For any f1, f2 ∈ �∞0 (Λ) and λ ∈ Λ, we have (f1 ∗ f2)
∨ = f∨2 ∗ f∨1

and (δλ)
∨ = δλ−1 . Also, we have (η1 ∗ η2)∨ = η∨2 ∗ η∨1 for η1, η2 ∈ H(G,K).

Proposition 10.2. Φ is a involutive(�)-isomorphism from �∞0 (Λ) into H(G,K).

Proof. It suffices to check that Φ satisfies Φ(δλ1 ∗ δλ2) = Φ(δλ1) ∗ Φ(δλ2). Take

any λ1, λ2 ∈ Λ. As we saw in Section 8 (see (8.10)), we have

(δλ1 ∗ δλ2)(λ
−1) = Cλ1,λ2

λ−1 , (10.2)

which in turns equals D
Kθλ2,1K,Kθλ1,1K

Kθλ−1,1K
by (9.13). So we have

Φ(δλ1
∗ δλ2

) =
∑
λ∈Λ

(δλ1
∗ δλ2

)(λ−1)δKθλ,1K
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=
∑
λ∈Λ

Cλ1,λ2

λ−1 δKθλ,1K

=
∑
λ∈Λ

D
Kθλ2,1K,Kθλ1,1K

Kθλ−1,1K
δKθλ,1K

=
∑
λ∈Λ

(δKθλ2,1K ∗ δKθλ1,1K)(Kθλ−1,1K)δKθλ,1K

=
∑
λ∈Λ

(δKθλ2,1K ∗ δKθλ1,1K)∨(Kθλ,1K)δKθλ,1K

=
∑
λ∈Λ

(
δKθ

λ
−1
1 ,1

K ∗ δKθ
λ
−1
2 ,1

K

)
(Kθλ,1K)δKθλ,1K (by Lemma 10.1)

=
∑
λ∈Λ

(Φ(δλ1
) ∗ Φ(δλ2

))(Kθλ,1K)δKθλ,1K

= Φ(δλ1
) ∗ Φ(δλ2

).

Thus we are done. �

Recall (see [4, Equations (9.4) and (9.5)]) that we considered a faithful normal

semifinite trace Ω on L∞(I ×X)S given by

Ω(F ) =
∑
λ∈Λ

f(λ)nλ, (10.3)

where F = Ξ∗(f) ∈
(
L∞(I ×X)S

)
+
. Set Ω1 := Ω◦Ξ∗, a faithful normal semifinite trace

on �∞(Λ) given by Ω1(f) =
∑

λ∈Λ f(λ)nλ (f ∈ �∞(Λ)+). Then set Ω2 := Ω1 ◦ Φ−1, a

faithful normal semifinite trace on �∞(K\G/K) given by

Ω2(f) =
∑
λ∈Λ

f(Kθλ−1,1K)nλ (f ∈ �∞(K\G/K)+). (10.4)

In comparison with (9.11), we obtain the next identities

‖f‖1,l = Ω2(|f∨|), ‖f‖1,r = Ω2(|f |). (10.5)

By definition, all the GNS Hilbert spaces HΩ, HΩ1 , HΩ2 are naturally isomorphic.

The subspaces

ΛΩ(I0(R,S)), ΛΩ1
(�∞0 (Λ)), ΛΩ2

(H(G,K))

are dense in the relevant Hilbert spaces. For example, the equation

VΛΩ(F ) = ΛΩ2
(Φ ◦ (Ξ∗)−1(F )) (F ∈ I0(R,S)) (10.6)

defines a unitary from HΩ onto HΩ2
. Recall (see [4, p. 653]) that the �-algebra I0(R,S)

admits an involutive representation πl on B(HΩ) defined by

πl(F1)ΛΩ(F2) = ΛΩ(F1 ∗ F2) (F1, F2 ∈ I0(R,S)).
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Moreover, due to [4, Proposition 9.22], the Hecke von Neumann algebra H∗(R,S) asso-
ciated with the Hecke pair (R,S) equals πl(I0(R,S))′′ = πl(I0(R,S))σ-strong*.

Fix any (λ, n)∈I. Due to condition (2) in Lemma 6.26, Kθλ,nK equals
⋃nλ

m=1 θλ,mK.

This, together with Corollary 6.25, implies that L((θλ,n)
−1)=nλ. Moreover, by

Lemma 6.26 (2) again, we have Kθλ−1,mK =
⋃nλ−1

n=1 θλ−1,nK. In the meantime, by

(9.7), we have L(θλ,n) = nλ−1 .

By definition, for any f1, f2 ∈ H(G,K), we have

(ΛΩ2
(f1) | ΛΩ2

(f2)) = Ω2(f
∗
2 f1) =

∑
λ∈Λ

f1(Kθλ−1,1K)f2(Kθλ−1,1K)nλ. (10.7)

With the notation just before (9.8), we have tKθλ−1,1K
=(θλ,1)

−1. So we have

L(tKθλ−1,1K
) = L((θλ,1)

−1) = nλ. Hence (10.7) becomes

(ΛΩ2
(f1) | ΛΩ2

(f2)) =
∑

c∈K\G/K

f1(tc)f2(tc)L(tc). (10.8)

By (9.6), we have∑
c∈K\G/K

f1(tc)f2(tc)L(tc) = ω0(L(f2)∗L(f1)) = (Λω0(L(f1)) | Λω0(L(f2))).

Owing to this, the equation

WΛΩ2(f) = Λω0(L(f)) (f ∈ H(G,K))

defines a unitary W from HΩ2
onto Hω0

. If F1, F2 ∈ I0(R,S), then

WVπl(F1)ΛΩ(F2) = WVΛΩ(F1 ∗ F2)

= WΛΩ2(Φ ◦ (Ξ∗)−1(F1) ∗ Φ ◦ (Ξ∗)−1(F2))

= Ωω0
(L(Φ ◦ (Ξ∗)−1(F1) ∗ Φ ◦ (Ξ∗)−1(F2)))

= L(Φ ◦ (Ξ∗)−1(F1))Λω0
(Φ ◦ (Ξ∗)−1(F2))

= L(Φ ◦ (Ξ∗)−1(F1))WVΛΩ(F2).

This shows that

(WV)πl(F )(WV)∗ = L(Φ ◦ (Ξ∗)−1(F )) (10.9)

holds for all F ∈ I0(R,S), which implies that

(WV)H∗(R,S)(WV)∗ = W ∗(G,K).

Therefore, we have proved

Theorem 10.3. (H∗(R,S), HΩ) is spatially isomorphic to (W ∗(G,K), Hω0).

Namely, the Hecke von Neumann algebra of a Hecke pair of ergodic measured equiv-
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alence relations is ∗-isomorphic to the Hecke von Neumann algebra of its Schlichting

completion.
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[20] Ş. Strătilă, Modular theory in operator algebras, Abacus Press, 1981.

[21] K. Tzanev, Hecke C∗-algebras and amenability, J. Operator Theory, 50 (2003), 169–178.

[22] V. S. Varadarajan, Geometry of Quantum Theory, Second Edition, Springer, New York, 1985.

[23] R. J. Zimmer, Extensions of ergodic group actions, Illinois J. Math., 20 (1976), 373–409.

[24] R. J. Zimmer, Ergodic theory and semisimple groups, Monogr. Math., 81, Brikhäuser, Basel,
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